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A B S T R A C T

In the last few years, Neural Painting (NP) techniques became capable of producing extremely realistic
artworks. This paper advances the state of the art in this emerging research domain by proposing the first
approach for Interactive NP. Considering a setting where a user looks at a scene and tries to reproduce it on a
painting, our objective is to develop a computational framework to assist the user’s creativity by suggesting the
next strokes to paint, that can be possibly used to complete the artwork. To accomplish such a task, we propose
I-Paint, a novel method based on a conditional transformer Variational AutoEncoder (VAE) architecture with
a two-stage decoder. To evaluate the proposed approach and stimulate research in this area, we also introduce
two novel datasets. Our experiments show that our approach provides good stroke suggestions and compares
favorably to the state of the art.
. Introduction

One of the main objectives of image generation methods is enabling
ovel and more powerful ways in which humans can express their
reativity. This objective inspired a lot of research and advancements
n deep generative models, that are now able to produce outputs with
hotorealistic quality in several generation tasks. A recent trend in
eep image generation is that of improving the way in which users
an control and interact with the generation process, thus providing
ools to convey users intentions. In this context, recent works allow
sers to generate or edit images with high quality by sketching (Ghosh
t al., 2019; Liu et al., 2021a), modifying the semantic layouts (Lee
t al., 2020; Ling et al., 2021; Park et al., 2019; Zhu et al., 2020), or
roviding a text prompt (Bau et al., 2021; Nichol et al., 2021; Ramesh
t al., 2021; Xu et al., 2022). These methods, however, allow users to
nfluence the final output only in an indirect manner, i.e. through the
ketched semantic layout or the input text.

Recently, several learning-based methods for painting generation
ave been proposed, commonly referred to as Neural Painting (NP)
ethods. Differently from other generative approaches that operates

n the pixel space, NP methods leverage a parameterized brushstroke
epresentation which is more aligned to how humans visualize and

∗ Corresponding author.
E-mail address: elia.peruzzo@unitn.it (E. Peruzzo).

conceptualize an artwork (Kotovenko et al., 2021; Liu et al., 2021b;
Zou et al., 2021). The strokes-based vector representation offers several
benefits compared to the pixel-based representation, such as the ability
to modify or erase individual strokes. Additionally, separating the
representation from the rendering process enables the strokes to be
rendered at any desired output resolution.

Painting has historically been a powerful tool with which humans
expressed their creativity. However, in this respect, current NP methods
are inherently limited, as they are only designed to reconstruct and
stylize a given target image, leaving no possibility for the user to
influence the generation process. Lacking the ability to integrate users’
painting style, these methods are unsuitable in interactive scenario.
This work represents the first attempt to fill this gap in the literature
and bring the next level of interaction to NP. Inspired by en plein air
painting, i.e. the setting where a painter looks at an outdoor scene
and tries to represent it on a canvas, we introduce the novel task of
Interactive Neural Painting (see Fig. 1). Specifically, we propose an
iterative and interactive process where, given a reference image the
user would like to paint and an incomplete canvas, a computational
tool based on NP techniques assists the user in drawing the painting.
The tool provides multiple suggestions about the next strokes at each
iteration, from which the user can choose to continue its artwork. Such
ttps://doi.org/10.1016/j.cviu.2023.103778
eceived 23 October 2022; Received in revised form 31 May 2023; Accepted 4 Jul
vailable online 8 July 2023
077-3142/© 2023 The Authors. Published by Elsevier Inc. This is an open access
http://creativecommons.org/licenses/by/4.0/).
y 2023

article under the CC BY license

https://doi.org/10.1016/j.cviu.2023.103778
https://www.elsevier.com/locate/cviu
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2023.103778&domain=pdf
mailto:elia.peruzzo@unitn.it
https://doi.org/10.1016/j.cviu.2023.103778
http://creativecommons.org/licenses/by/4.0/


E. Peruzzo, W. Menapace, V. Goel et al. Computer Vision and Image Understanding 235 (2023) 103778

t
t

Fig. 1. Inspired by en-plain-air setting, we tackle the task of representing a reference image on the canvas. The final painted result is obtained by sequentially placing strokes on
he canvas, refining the artwork until the user is satisfied. In this figure we describe a single step of such a process. In Neural Painting (a), a deep architecture is learned in order
o create a realistic artwork of a reference image with a sequence of strokes (outlined in yellow). Note that the user is not involved in this process. Differently, in Interactive

Neural Painting (b), the user directly contributes to the generation process in an interactive loop with the deep model. At each iteration, the model provides a set of stroke
suggestions based on the reference image and current state of the painting, and the user either selects a suggested set of strokes (outlined in yellow) or directly draws new strokes
on the canvas (outlined in green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
a tool speeds up the painting process but, differently from existing NP
approaches, leaves the user a high degree of control on the final output,
with the potential of making painting an artistic medium accessible not
only to highly-skilled individuals. Our system can be integrated into
digital drawing tools used by amateur and professional artists, such as
Adobe Photoshop, GIMP, and Krita, as shown by our demo in the Supp.
Mat..

We devise the first method for Interactive NP (INP). Our method,
which we call I-Paint, introduces a conditional transformer VAE archi-
tecture that generates stroke suggestions. To ensure seamless interac-
tion with the user, our method is specifically trained to produce stroke
suggestions that closely match the dynamics of the painting process
represented in a given dataset of painting demonstrations. The dataset
is built to reflect in a synthetic manner the main aspects valued by a
human painter such as color consistency, local proximity and object-
based painting. Additionally, artists typically begin by portraying a
rough depiction of the reference image, and incrementally incorporate
finer details during the painting process (Zhao et al., 2020; Singh et al.,
2021). We follow previous work (Zou et al., 2021; Liu et al., 2021b) and
adopt a coarse-to-fine assumption in our dataset to reflect this behavior,
with rough strokes spatially covering the canvas in the first stages of
the painting an detailed localized strokes towards the final stages (see
Section 4.1 for more details). To effectively learn the characteristics
of the stroke dataset, we introduce a distribution matching loss that
minimizes the discrepancies between the suggested strokes and the
painting demonstrations. In addition, a two-stage VAE decoder is pro-
posed that tightly integrates visual features into the stroke prediction
process. Furthermore, we make our approach probabilistic by nature
to capture the complex distribution of possible continuations given
the current canvas state. In this way, I-Paint can produce multiple
suggestions about what to paint next. We demonstrate our method on
two novel datasets which we specifically introduce for the INP task,
built upon the ADE 20K Outdoor (Zhou et al., 2017) and Oxford-IIIT
Pet (Parkhi et al., 2012) datasets. Our extensive evaluation shows that
our model produces a wide set of suggestions that closely match the
characteristics of the painting demonstrations. Quantitative comparison
against state of the art NP methods, supported by results on a user
study, demonstrates state-of-the-art performance of our method.
Contributions. To summarize, our main contributions are:

• The novel image generation task of INP, which for the first time
brings interactivity to neural painting.
2

• The first approach based on conditional transformer VAE to ad-
dress this task, with specific architectural choices and training
protocols.

• Two novel synthetic datasets and a set of evaluation metrics
for training and evaluating INP models, to foster and assess the
research in this new area.

2. Related work

In this section, we discuss the most related works in the field of NP
and interactive image generation.

2.1. Neural painting

Neural Painting techniques are derived from the intriguing idea
of teaching machines how to paint. NP is typically formalized as the
process of artistically recreating a given image using a neural network
which generates a series of strokes. Several approaches are present
in the literature that address this task. Some of them make use of
reinforcement learning (RL) (Huang et al., 2019; Schaldenbrand and
Oh, 2021; Singh et al., 2021; Singh and Zheng, 2021; Xie et al., 2012),
where, given the current environment represented by the present status
of the canvas and a reference image, an agent is trained to predict the
parameters of the next strokes. The training objective is formulated
as the maximization of the cumulative rewards of the whole painting
process, typically expressed as the increase in similarity between the
new canvas state and the reference image. Since no gradients need to be
directly backpropagated from the reward function, RL-based methods
do not require a differentiable stroke rendering procedure.

Other methods, instead, make use of a differentiable stroke ren-
derer that allows direct optimization of a loss objective. Among these
methods, Zou et al. (2021) and Kotovenko et al. (2021) directly op-
timize a set of parameters describing the stroke sequence, producing
high-quality results at the cost of long inference times. Other works
overcome this limitation by using a model to predict stroke parameters
rather than directly optimizing them. In this context, the state of the
art is represented by Paint Transformer (PT, Liu et al., 2021b), where
NP is expressed as a set prediction problem and a transformer-based
architecture is proposed that predicts the parameters of a stroke set
with a feedforward network. Our method shares similarities with Liu
et al. (2021b) as we also assume a differentiable stroke renderer and
predict stroke parameters with a feedforward network. However, we
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address a different (and new) task, by focusing on an interactive setting
that requires seamless integration between model predictions and user
inputs.

Finally, a different class of methods focuses on the closely related
task of sketch generation which consists in the generation of abstract
sketches. Sketch-RNN (Ha and Eck, 2018) and Sketch-BERT (Lin et al.,
2020) represent sketches as sequences of points and are based respec-
tively on RNN and transformer models. While these methods can be
employed in interactive tasks such as sketch completion, they are not
able to reproduce natural images and do not model realistic painting
effects.

2.2. Interactive image generation

Interactive image generation refers to the task of automatically
generating photo-realistic images, conditioned on user inputs. Early
works fall into two directions: (1) image-to-image translation, which
investigates the problem of translating an input image to a target
domain, allowing to synthesize photos from label maps or reconstruct
objects from edge maps (Isola et al., 2017; Tang et al., 2019; Zhu et al.,
2017a,b); (2) learning a human-interpretable latent space (Chen et al.,
2016), projecting a natural image into it, manipulating the latent code
to achieve an edit, and synthesizing a new image accordingly (Abdal
et al., 2019, 2020; Brock et al., 2017; Lin et al., 2021; Zhu et al., 2016).
To provide a more compelling experience, recent works on interactive
image generation allow more user-friendly interaction, e.g. by means
of sketches (Ghosh et al., 2019; Liu et al., 2021a), semantic maps (Lee
et al., 2020; Ling et al., 2021; Park et al., 2019; Tang et al., 2020;
Zhu et al., 2020), paint strokes (Cheng et al., 2022; Singh et al., 2022),
and text (Bau et al., 2021; Nichol et al., 2021; Ramesh et al., 2021; Xu
et al., 2022). Ghosh et al. (2019) introduced iSketchNFill, an interactive
GAN-based sketch-to-image translation method that helps novice users
to easily create images of simple objects with a sparse sketch and
the desired object category. Differently, GauGAN (Park et al., 2019)
converts a semantic segmentation mask to a photo-realistic image
with a spatially-adaptive normalization layer. To flexibly manipulate
an existing image, Bau et al. (2019) allows the user to perform a
localized edit of an image by selecting a specific region, while (Liu
et al., 2021a) empowers the user to edit low-level details by sketching
the desired modifications. Singh et al. (2022) condition the image
generation on strokes painted by the user, to provide a more intuitive
way compared to segmentation maps, while Cheng et al. (2022) rely
on sketches and paint strokes to guide the generation process, allowing
both flexibility and precise control. Fueled by the success of text-to-
image generation (Ramesh et al., 2021), very recent works proposed
to control image manipulations with natural language, creating an
intuitive way of interaction for the user. Notably, Jiang et al. (2021)
and Shi et al. (2021) focused on the problem of global image editing,
while Xia et al. (2021) proposed a unique framework to both generate
and manipulate images using text inputs.

However, all the aforementioned methods are evaluated by the
quality of the generated results, the diversity of the suggestions, and
how closely they match the users’ input. The proposed task of INP adds
an additional level of complexity. Since INP gives the users complete
stroke-by-stroke control over the final artwork, it is necessary to repre-
sent the process that leads to the final result. To ensure smooth interac-
tion with the user, the method should follow a paint-like-demonstration
behavior (see Section 3 for a discussion). This requirement, and the
level of control over the final output, is peculiar to the task of INP,
and differentiates it from the existing literature in interactive image

generation. i

3

3. Methodology

In the following we describe our method in detail: Section 3.1
provides a formalization of the task and an overview of the pro-
posed method, Section 3.2 describes the architectural components,
respectively the context encoder, the VAE encoder and decoder, Sec-
tion 3.3 illustrates the employed losses and training procedure, Sec-
tion 3.4 describes the inference process, while Section 3.5 describes the
implementation details.

3.1. Problem formulation and overview

We start the section by formalizing the task of Interactive Neural
Painting (INP). We assume a dataset  of reference images paired with
a sequence of stroke parameters 𝑠 = 𝑠1∶𝑇 of length 𝑇 , representing a
decomposition of the image into a sequence of individual strokes. Each
stroke is represented by a tuple of eight parameters as 𝑠 = (𝑥, 𝜌, 𝜎, 𝜔),
where 𝑥 is the position of the stroke center on the canvas, 𝜌 is the
color, 𝜎 represents the stroke size expressed as height and width, and
𝜔 is the stroke orientation. At time 𝑡, given a reference image 𝐼ref and
the corresponding sequence of strokes up to the current time 𝑠1∶𝑡, the
INP task consists in predicting a set of stroke sequences of length 𝑘.
The set of predicted stroke sequences is presented to the user who can
either select one sequence, partially or in its entirety, as the paint-
ing continuation or manually define the next strokes if no proposed
sequence captures the user’s current painting intentions (see Fig. 1).
Note that predicting a sequence of length 𝑘 > 1 (Liu et al., 2021b; Zou
et al., 2021) gives the user the possibility to better understand whether
the proposed continuation corresponds to her painting intentions. The
operation is repeated iteratively until completion of the painting. The
expected behavior of predicted strokes should exhibit the following
characteristics:

• Each sequence makes the canvas more similar to the reference
image, hence assisting the user in the final goal of completing
the painting.

• Each sequence presents the same characteristics of the dataset
stroke sequences in terms of positioning, color, size and orien-
tation, thus ensuring seamless interaction between the user and
the painting agent.

• The predicted set contains diverse sequences that cover the main
possible continuations of the painting process, hence providing
diverse continuation to the user among which to choose.

We devise a set of quantitative evaluation metrics that captures each
of these desired behaviors and present them in Section 4.2.

In this paper we propose I-Paint, a method for INP. Our approach
consists in a transformer-based conditional VAE architecture and is
depicted in Fig. 2. At time 𝑡, given a reference image 𝐼ref , context
strokes 𝑠𝑐 = 𝑠𝑡−𝑘+1∶𝑡, and a context image 𝐼𝑐 defined as the rendering
of strokes 𝑠1∶𝑡, the context encoder 𝐶 extracts a context vector 𝑐 =
𝐶(𝐼ref , 𝐼𝑐 , 𝑠𝑐 ). During training, the VAE encoder 𝐸 encodes the target
stroke sequence 𝑠𝑡 = 𝑠𝑡+1∶𝑡+𝑘 into a posterior gaussian distribution
𝜇𝑧, 𝜎2𝑧 = 𝐸(𝑠𝑡, 𝑐) and the latent code 𝑧 is sampled from it. During
inference, instead, the latent code is sampled from the prior distribution
 (0, 1). The latent code 𝑧 is used in conjunction with 𝑐 to condition
the VAE decoder that produces the sequence of inferred target strokes
̂𝑡 = 𝐷(𝑧, 𝑐).

.2. Architecture components

Next, we describe the architectural components of I-Paint depicted

n Fig. 2.



E. Peruzzo, W. Menapace, V. Goel et al. Computer Vision and Image Understanding 235 (2023) 103778

r
w
𝐷
p
b
o

C
i
o
o
e
F
r
f
i
𝑓
t
t
r
i
2
d
s
s
p

V
i
W
q
h
s
e
m
𝐸
o
o
i
i

s
i
c
t
1
t
s
c
o
v
i
t
b
𝑓
s
s
a

Fig. 2. Overview of I-Paint. Our model is based on a conditional VAE architecture. A context encoder 𝐶 extracts a context vector 𝑐 from the reference and context images (𝐼ref , 𝐼c
espectively) and the context strokes 𝑠𝑐 . The VAE encoder 𝐸 encodes the target stroke sequence 𝑠𝑡 into a posterior distribution. A latent code 𝑧 is sampled and used in conjunction
ith 𝑐 to condition the VAE decoder that reconstructs the target stroke sequence. At inference time, the latent code 𝑧 is sampled from the prior distribution  (0, 1). The decoder
is composed of two steps, 𝐷1 which predicts the position of the strokes �̂�, and 𝐷2, which predicts the remaining parameters that are concatenated with �̂� to form the final

rediction �̂�𝑡. Transformers (Vaswani et al., 2017) are used to model 𝐶, 𝐸 and 𝐷. We use ∼ to represent sinusoidal positional encodings and ∥ to represent concatenation. The
lue outline denotes components that are used only during training. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
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ontext encoder. The context encoder 𝐶 receives as input the reference
mage 𝐼ref ∈ R3×𝐻×𝑊 , the context image 𝐼𝑐 ∈ R3×𝐻×𝑊 , the sequence
f context strokes parameters 𝑠𝑐 ∈ R𝑘×8 and produces a representation
f the context 𝑐. First, a visual feature encoder 𝐹 , modeled as a CNN,
xtracts visual features 𝑓𝑐,visual ∈ Rdim×𝐻 ′×𝑊 ′ from the input images.
ollowing Liu et al. (2021b), we model 𝐹 as a separate backbone for
eference and context images respectively, and concatenate the output
eatures along the channel dimension to obtain 𝑓𝑐,visual. A linear layer
s used to extract context stroke features from 𝑠𝑐 , resulting in features
strokes ∈ R𝑘×demb . Successively, we flatten the spatial dimensions of
he visual features 𝑓𝑐,visual ∈ R(𝐻 ′⋅𝑊 ′)×demb , and concatenate them with
he storkes features 𝑓strokes along the sequence length dimension. The
esulting token sequence 𝑐𝑖𝑛 ∈ R𝐿×demb , with 𝐿 = (𝐻 ′ ⋅ 𝑊 ′) + 𝑘,
s enriched with 3D sinusoidal positional encodings (Vaswani et al.,
017) which are added to each element of the sequence. Two encoding
imensions represent the 𝑥 and 𝑦 coordinates of the visual feature or
troke and the third is used to represent the temporal position of each
troke in the sequence. Lastly, a Transformer encoder 𝐶𝑒 process 𝑐𝑖𝑛
roducing the context output 𝑐 ∈ R𝐿×demb .

AE encoder and decoder. We use a VAE conditioned on the context
nformation 𝑐 to produce a reconstruction �̂�𝑡 of the target strokes.

e model the VAE encoder 𝐸 as a transformer decoder receiving as
uery input a the target strokes 𝑠𝑡 ∈ R𝑘×8, which are projected to the
idden dimension of the transformer demb with a linear layer. The input
equence is enriched with 3D sinusoidal positional encodings (Vaswani
t al., 2017), and two learnable tokens corresponding to the output
ean and variance of the posterior gaussian distribution 𝜇𝑧, 𝜎2𝑧 =
(𝑠𝑡, 𝑐). We make use of the learnable tokens as a way to obtain
utputs from the transformer representing the input sequence pooled
ver the temporal dimension (Petrovich et al., 2021). The context
nformation is used to condition 𝐸 and is provided as key and value
nputs, conditioning the encoder through cross-attention.

The VAE decoder 𝐷 produces the sequence of reconstructed target
trokes �̂�𝑡 = 𝐷(𝑧, 𝑐). Preliminary experiments show that directly predict-
ng �̂�𝑡 from 𝑧 and the context 𝑐 is difficult, so we propose a decoder
omposed of two stages 𝐷 = 𝐷2◦𝐷1, each modeled as a separate
ransformer decoder. The initial decoder 𝐷1 receives as query input
D sinusoidal positional encodings (Vaswani et al., 2017) providing
emporal information regarding target strokes and predicts stroke po-
itions �̂�𝑡 = 𝐷1(𝑧, 𝑐) of the target strokes. The transformer decoder is
onditioned with the cross-attention mechanism on the context 𝑐 and
n the latent variable 𝑧 ∼  (𝜇𝑧, 𝜎2𝑧 ) which are received as key and
alue inputs. The second transformer decoder 𝐷2 is responsible for
nferring the remaining stroke parameters conditioned by �̂�𝑡. In order
o provide precise information about the reference image in the neigh-
orhood of each predicted position, we extract image features 𝑓𝑥 from
corresponding to the predicted position of each stroke using bilinear

ampling, i.e. 𝑓�̂� = 𝚋𝚒𝚕𝚒𝚗𝚎𝚊𝚛(𝑓, �̂�𝑡). Similarly to the VAE encoder, the
ampled features are enriched with 3D sinusoidal positional encodings

nd are used as query inputs to infer the remaining stroke parameters w

4

�̂�𝑡, �̂�𝑡, �̂�𝑡) = 𝐷2(𝑧, 𝑐, 𝑓�̂�). As with 𝐷1, 𝑐 and 𝑧 condition the decoder
s key and value inputs in the cross-attention operation. Finally, the
utputs of 𝐷1 and 𝐷2 are combined to form the reconstructed target
trokes �̂�𝑡 = (�̂�𝑡, �̂�𝑡, �̂�𝑡, �̂�𝑡).

.3. Training

We train our model using the 𝛽-VAE (Higgins et al., 2017) objective
ith an isotropic Gaussain prior as the main driving loss:.

𝛽−VAE = E𝑧∼𝐸(𝑠𝑡 ,𝑐)
‖

‖

𝑠𝑡 − �̂�𝑡‖‖
2
2

+ 𝜆KLKL( (𝜇𝑧, 𝜎2𝑧 ) ∥  (0, 1)).
(1)

In addition, we notice that imprecisions in the reconstruction of the
troke positions �̂�𝑡 may bring to a situation where the reconstructed
troke color �̂�𝑡 differs from the color of 𝐼ref at �̂�𝑡 which we call �̃�𝑡 =
ref (�̂�𝑡). This mismatch is caused by the model ignoring the reference
mage and predicting target colors by attending only to context strokes
nd latent code and leads to performance degradation. For this reason,
e introduce a color reconstruction loss that fosters the model to
roduce output strokes whose color is coherent with 𝐼ref :

col = ‖�̃� − �̂�‖22 . (2)

Moreover, we propose two additional regularization losses that are
imed at improving the visual results at inference time when the
atent codes 𝑧 are sampled from the prior distribution rather than the
osterior. First, we impose the same color reconstruction loss on the
redicted strokes to improve color coherency:
𝑟𝑒𝑔
col = E𝑧∼ (0,1)

‖

‖

𝐼ref (𝑥(𝐷(𝑧, 𝑐))) − 𝜌(𝐷(𝑧, 𝑐))‖
‖

2
2 , (3)

here 𝑥(⋅) and 𝜌(⋅) represent function extracting respectively position
nd color from the tuple of stroke parameters. Second, we impose
distribution matching objective aimed at maximizing the similarity

etween the characteristics of predicted and dataset stroke sequences.
n particular, we propose to explicitly maximize the likelihood of
ampling from the prior a sequence of strokes that is compatible with
he dataset stroke distribution. For each sequence of corresponding
ontext and target strokes, we concatenate them forming vector 𝑠 = 𝑠𝑐 ∥
𝑡 = 𝑠𝑡−𝑘+1∶𝑡+𝑘, and build the corresponding feature vector 𝜓 capturing
he relations between neighboring strokes. The feature vector 𝜓 is
omputed by taking the concatenation of the stroke features computed
s follows:

= ∥𝑙max
𝑙=1

(

∥𝐿−𝑙𝑖=1 (𝑠
𝑖+𝑙 − 𝑠𝑖)

)

, (4)

here 𝐿 = 2𝑘 represents the sequence length and 𝑙max represents
he maximum distance between strokes for which to extract features.
n the following, we denote as 𝜓 the features produced on dataset
troke sequences and as �̂� the features produced on inferred stroke
equences. To make the computation tractable and easy to optimize,

e assume independence of each dimension and fit two multivariate
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gaussian distributions  (𝜇𝜓 , 𝛴𝜓 ) and  (𝜇�̂� , 𝛴�̂� ), respectively on 𝜓
and �̂� . Successively, we minimize KL divergence between the dataset
distribution and the generated strokes distribution:

𝑟𝑒𝑔dist = E𝑧∼ (0,1)KL( (𝜇�̂� , 𝛴�̂� )∥ (𝜇𝜓 , 𝛴𝜓 )). (5)

The final optimization objective is given by:

 = 𝛽−VAE + 𝜆colcol + 𝜆
𝑟𝑒𝑔
col

𝑟𝑒𝑔
col + 𝜆

𝑟𝑒𝑔
dist

𝑟𝑒𝑔
dist , (6)

where 𝜆col, 𝜆
𝑟𝑒𝑔
col and 𝜆𝑟𝑒𝑔dist represent positive weighting terms. We show

details of our training procedure in the Supp. Mat..

3.4. Inference

At inference time, our model is used iteratively to assist users in
the creation of paintings corresponding to a reference image 𝐼ref . We
consider the current state of the canvas as 𝐼𝑐 and the last 𝑘 strokes
drawn on the canvas as the context strokes 𝑠𝑐 . The context encoder
𝐶 is used to extract the context representation 𝑐. We note that, given
the interactive scenario, the context strokes can originate either from
the user or by a previous iteration of the model. We then sample a
latent vector 𝑧 from the prior distribution  (0, 1) and use the decoder
to produce a plausible continuation of the painting process 𝐷(𝑧, 𝑐). By
repeatedly sampling the latent vector 𝑧 from the prior distribution and
keeping the context fixed, we provide a diverse set of plausible contin-
uations of the painting from which the user can select the best option
or keep drawing strokes manually if not satisfied by the proposals. The
process is iterated until the painting is complete.

3.5. Implementation details

Following Liu et al. (2021b), we set the sequence length 𝑘 = 8 in
all our experiments. We observe that, at inference time, the effective
value of 𝑘 can be smaller, with the user selecting a sub-sequence of the
proposed continuation. Likewise, the length of the context strokes 𝑠𝑐 is
set to 𝑘 = 8, which can be modified at inference time according to the
user needs. We set the image resolution of 𝐼ref , 𝐼𝑐 to 𝐻 = 𝑊 = 256, and
implement the context feature extractor 𝐹 as a convolutional network
reducing the spatial dimension of the input by a factor of 8, thus
resulting in a feature map 𝑓𝑐,visual of size 𝐻 ′ = 𝑊 ′ = 16. This makes
the effective length of 𝑐𝑖𝑛, the input of the context encoder, 𝐿 = 256+8.
We model the context encoder 𝐶𝑒 as a transformer encoder, while the
VAE encoder 𝐸 and VAE decoder 𝐷 are implemented as transformer
decoders. In all the cases, we set the hidden dimension of the models to
demb = 256. We train the final model for 5000 epochs, with a batch size
of 32, using the AdamW optimizer (Loshchilov and Hutter, 2019) with
initial learning rate of 1e−4 and cosine scheduler. We select the weights
of each loss component in Eq. (6) with a grid-search on the Oxford-IIIT
Pet INP, and apply the same configuration for experiments on the ADE
20K Outdoor INP. The weight of each loss component is, respectively,
𝜆KL = 2.5e−4, 𝜆col = 2.5e−2, 𝜆𝑟𝑒𝑔col = 2.5e−3 and 𝜆𝑟𝑒𝑔dist = 5.0e−6. Additional
implementation details are present in the Supp. Mat..

4. Experiments

In this section, we perform experimental evaluation of the proposed
method for INP. Section 4.1 describes the adopted datasets, Section 4.2
describes the adopted metrics, Section 4.3 shows ablation results on our
method, Section 4.4 performs quantitative comparison against baselines
and shows qualitative results.
5

4.1. Datasets

To train our architecture, we assume a dataset of images with an
associated sequence of stroke parameters, representing the painting
process used to produce the corresponding painting. To produce re-
alistic stroke suggestions, our model captures the characteristics of
the painting process represented in the dataset. To overcome the cost
associated to collecting human painting demonstrations, we follow
recent work of Cheng et al. (2022) and Singh et al. (2022) and choose
to demonstrate that our framework is capable of modeling a painting
process considering a synthetic dataset of stroke sequences that mimic
a human painting process. Importantly, our method is general and learn
the characteristics of the strokes provided as demonstration, thus can
be readily applied to a human collected dataset if available.

We consider two existing image datasets and associate a sequence
of strokes to each image, producing our INP datasets:

• ADE 20K Outdoor INP: we employ a subset of 5000 images of
the ADE 20K dataset (Zhou et al., 2017) consisting in the set of
original images depicting outdoor scenes. We split the dataset into
a set of 4750 training images and 250 images for evaluation.

• Oxford-IIIT Pet INP: the dataset consists of 7349 images depicting
different cat and dog breeds from Oxford-IIIT Pet (Parkhi et al.,
2012), both in indoor and outdoor scenarios. The dataset is split
into 6980 training images and 369 images for evaluation.

Each image is decomposed into a sequence of strokes, parameterized
as Section 3, using the NP method of Zou et al. (2021). Similar to
the human painting process, the obtained sequence is organized in
different levels of details, with large strokes depicting the outline of the
image first and fine-grained detail later in the sequence. However, such
sequences of strokes do not contain the sequential patterns typically
produced by humans. Painters, in fact, due to the constraints imposed
by physical brushes which discourage changes in color and brush,
tend to produce sequences of strokes where the same color and brush
sizes are maintained across several subsequent strokes. In addition,
it is common for humans to produce paintings on a object-by-object
basis (Singh et al., 2021; Zhao et al., 2020) and to produce strokes in
contiguous regions. To replicate these patterns in our synthetic dataset
and produce sequences with characteristics closer to real ones, we
perform a reordering of the stroke sequence produced by Zou et al.
(2021) by optimizing a cost function that penalizes sequences with
large differences in size, position or color between adjacent strokes or
where adjacent strokes are placed on different subjects. Specifically, we
perform a reordering of the sequences by minimizing the following cost
function, computed along the complete stroke sequence:

cost =
𝑇
∑

𝑡=2
(𝜆ord𝑥

‖

‖

‖

𝑥𝑡 − 𝑥𝑡−1‖‖
‖

2

2
+ 𝜆ord𝜌

‖

‖

‖

𝜌𝑡 − 𝜌𝑡−1‖‖
‖

2

2

+ 𝜆ord𝜎 (𝜎𝑡 − 𝜎𝑡−1)2 + 𝜆obj𝜒(𝑥𝑡, 𝑥𝑡−1)) (7)

where 𝜆ord𝑥 , 𝜆ord𝜌 , 𝜆ord𝜎 , 𝜆obj are positive weighting parameters. The func-
tion 𝜒(𝑥𝑡, 𝑥𝑡−1) is equal to 1 if the input strokes are located on different
subjects and 0 otherwise, and it is computed using the dataset segmen-
tation masks.We ensure that the ordering relation between overlapping
strokes is preserved, guaranteeing that both the original and reordered
sequences of strokes produce the same visual output when rendered.
Such problem is an instance of the Sequential Ordering Problem which
we optimize following Helsgaun (2017).

4.2. Evaluation metrics

As outlined in Section 3.1, the key three factors that we expect in the
INP setting are: (i) the method is painting the reference image, (ii) the
produced strokes parameters have characteristics that match the ones
of the stroke dataset, (iii) diverse stroke continuations can be produced
for the same context. We devise a set quantitative metrics to capture
these desiderata, and describe them in the following:
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Table 1
Loss ablation results on the ADE 20K Outdoor INP dataset and the Oxford-IIIT Pet INP dataset.

𝛽-VAE col 𝑟𝑒𝑔col 𝑟𝑒𝑔dist ADE 20K Outdoor INP Oxford-IIIT Pet INP

L2↓ FSD↓ FVD↓ WD↓ DTW↓ LPIPS↑ L2↓ FSD↓ FVD↓ WD↓ DTW↓ LPIPS↑

✓ ✗ ✗ ✗ 0.136 1.64 11.9 0.032 0.849 0.038 0.155 1.29 13.2 0.031 0.851 0.038
✓ ✓ ✗ ✗ 0.058 2.44 7.18 0.034 0.899 0.031 0.057 2.05 7.31 0.033 0.910 0.029
✓ ✓ ✓ ✗ 0.043 6.84 8.16 0.040 0.974 0.028 0.039 5.17 6.77 0.035 0.942 0.030
✓ ✓ ✗ ✓ 0.094 1.92 10.5 0.033 0.892 0.044 0.091 1.16 9.51 0.031 0.893 0.039

Full ✓ ✓ ✓ ✓ 0.044 2.04 6.60 0.034 0.893 0.033 0.042 1.51 6.72 0.032 0.893 0.030
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• Stroke Color L2 (L2) (i): we measure the L2 difference between
the color of the predicted strokes and the color of the underlying
reference image region. To avoid big strokes from dominating the
metric, the L2 distance associated to each stroke is normalized by
the stroke area before averaging.

• Fréchet Stroke Distance (FSD) (ii): inspired by FID (Heusel et al.,
2017), we introduce a metric measuring the similarity between
ground truth and predicted stroke sequences. For each sequence
of context and target strokes, we compute stroke features 𝜓 as in
Eq. (4). We report the Frechet Distance (Fréchet, 1957) between
the distribution of features derived from ground truth sequences
and predicted ones.

• Fréchet Video Distance (FVD) (Unterthiner et al., 2018) (ii): given
a sequence of context and target strokes, we generate videos
of the corresponding canvas rendered up to each stroke in the
sequence. We use FVD between videos produced with ground
truth and predicted strokes as a metric capturing the similarity
between sequences.

• Wasserstein Distance (WD) (Kantorovich, 1939) (ii): following Liu
et al. (2021b), we adopt the Wasserstein Distance between gaus-
sian distributions fitted on the ground truth and predicted strokes
as a stroke reconstruction quality metric.

• Dynamic Time Warping (DTW) (Mueller, 2007) (ii): we employ
DTW between the ground truth and inferred target strokes to
measure the quality of matching.

• LPIPS (Zhang et al., 2018) (iii): following Zhu et al. (2017b),
we use LPIPS as a metric to compute the diversity of the pro-
duced outputs. For each reference image and context, we produce
5 stroke predictions and measure the average LPIPS diversity
between all pairs of rendered results.

For each image in the test set, we extract 5 sequences of corre-
ponding context and target strokes and compute the metrics on these
amples. We note that WD and DTW require paired sequences of ground
ruth and reconstructed target sequences, while at inference time our
ethod generates plausible stroke sequences that may not match the

round truth. For these metrics, we adopt a top-1 sampling strategy (Yu
t al., 2021) and generate 100 plausible stroke sequences, reporting the
etric obtained for the best one.

.3. Ablation study

In this section, we ablate the main losses and architectural com-
onents of the proposed method. To improve the number of analyzed
odel configurations, in this section we reduce the number of training

pochs to 1000. We start our analysis by ablating the contribution of
he proposed losses (see Table 1). Training the model only with the
−VAE loss produces stroke outputs with high diversity but whose
troke Color L2 is the highest in all the configurations, suggesting
hat the model is predicting strokes that are not consistent with the
eference image. Introducing col promotes the model to take 𝐼ref into
ccount, resulting in a consistent reduction of the Stroke Color L2.
o further improve the performance, we introduce our two training
egularization losses, which are aimed at improving quality when
he latent code 𝑧 is sampled from the prior distribution at inference
ime. Introducing 𝑟𝑒𝑔 improves color accuracy as demonstrated by
col

6

the best Stroke Color L2, but prevents the model from learning the
users’ painting style resulting in the highest FSD. Vice-versa, with only
our proposed 𝑟𝑒𝑔dist we can effectively learn the distribution of strokes,
achieving the best performances in terms of FSD, WD, and LPIPS, but
performance decreases in terms of the Stroke Color L2. Only when
combining all the proposed losses in our full model we obtain good
performance under all metrics.

Next, to ablate the contribution of each proposed architectural
component, we produce the following modified versions of our method:
(i) remove the context information provided by 𝑠𝑐 and 𝐼𝑐 , the only
context information comes from the reference image 𝐼ref ; (ii) remove
𝐶𝑒; (iii) remove the two-step decoding procedure and replace it with

single transformer decoder that directly predicts �̂�𝑡; We show the
blation results in Table 2. As expected, removing 𝑠𝑐 and 𝐼𝑐 from
he context information significantly degrades the performance. In-
erestingly, LPIPS is the highest among the configurations, probably
ecause, without conditioning from the context, the predictions can
ary more freely. Likewise, removing the transformer encoder block
𝑒 consistently reduces the metrics, showing the importance of the
odule that provides richer context information to the decoder 𝐷 by

ombining visual and strokes features. Configuration (iii) shows the
mpact of the two-step decoding procedure, designed to provide the
odel with richer visual information. This version of the method results

n a degraded Stroke Color L2, FSD and FVD, showing the importance
f detailed visual features in the prediction of strokes.

.4. Comparison against baselines

In this section, we compare our method against the state-of-the-art
P methods of Zou et al. (2021) and of Liu et al. (2021b). Due to the
ovelty of the task, these works are not directly comparable with the
roposed one since they do not consider interaction, and need to be
dapted to the INP setting. A key component of the selected methods
hat makes them unsuitable for INP is their hierarchical rendering
ipeline that iteratively divides the reference image and the canvas
nto smaller regions and operates on each in separation. This procedure
llows the models to progressively focus on finer details and accurately
econstruct the reference image, but produces poor performance in INP
ince at each iteration the method may be forced to output strokes in
region far from the area the user is painting. To avoid this limitation

nd make the model aware of the context, instead of operating on
ardcoded regions, at each iteration we consider as the current region
portion of the image centered on the last context stroke. We call such

egion the context region. In this way, we encourage the method to
utput a sequence of strokes in the neighborhood of the context. In
ddition, we make the size of the region proportional to the area of
he context strokes 𝑠𝑐 , fostering the models to produce strokes with a
evel of detail compatible with the one currently adopted by the user.

e apply this modification to both methods and produce the following
aselines:

• Paint Transformer (PT) (Liu et al., 2021b): the model makes a
prediction in the context region, but no explicit knowledge about
the distribution of the dataset stroke sequences can be leveraged.
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𝐼

Table 2
Ablation architectural choices on ADE 20K Outdoor INP and Oxford-IIIT Pet INP datasets. Each row represent a different model version, respectively: (i) remove context information
𝐶 and 𝑠𝑐 , (ii) remove 𝐶𝑒, (iii) decode all strokes parameters with a single-step decoder and our full model.
Model version ADE 20K Outdoor INP Oxford-IIIT Pet INP

L2↓ FSD↓ FVD↓ WD↓ DTW↓ LPIPS↑ L2↓ FSD↓ FVD↓ WD↓ DTW↓ LPIPS↑

(i) 0.060 16.4 21.7 0.058 1.11 0.039 0.059 11.9 23.3 0.058 1.13 0.037
(ii) 0.050 2.27 7.45 0.035 0.907 0.031 0.048 1.87 7.78 0.036 0.915 0.027
(iii) 0.052 2.28 7.12 0.032 0.868 0.029 0.049 1.70 7.83 0.033 0.893 0.028

Full 0.044 2.04 6.60 0.034 0.893 0.033 0.042 1.51 6.72 0.032 0.893 0.030
Table 3
Comparison with baselines on ADE 20K Outdoor INP and Oxford-IIIT Pet INP datasets.

Method ADE 20K Outdoor INP Oxford-IIIT Pet INP

L2↓ FSD↓ FVD↓ WD↓ DTW↓ LPIPS↑ L2↓ FSD↓ FVD↓ WD↓ DTW↓ LPIPS↑

PT (Liu et al.,
2021b)

0.056 10.6 9.06 0.073 1.41 0 0.048 11.3 8.77 0.074 1.47 0

SNP (Zou et al.,
2021)

0.044 13.7 7.05 0.082 1.25 0.018 0.037 16.3 6.09 0.075 1.27 0.017

SNP+ (Zou et al.,
2021)

0.045 8.50 7.20 0.081 1.16 0.017 0.039 9.57 5.95 0.074 1.20 0.017

I-Paint 0.040 1.50 6.27 0.031 0.876 0.032 0.037 1.12 4.73 0.029 0.867 0.031
• Stylized Neural Painting (SNP) (Zou et al., 2021): we randomly
initialize the sequence of predicted strokes to lie in the context
region and optimize their parameters with the original SNP ob-
jective. Note that the method is not expressly conditioned on the
context strokes and does not consider the characteristics of the
dataset stroke sequences.

• Stylized Neural Painting+ (SNP+) (Zou et al., 2021): we modify
SNP to explicitly take into consideration the characteristics of the
dataset stroke sequence. In detail, we modify the SNP optimiza-
tion objective by introducing a term similar to the distribution
matching loss reg

dist to produce stroke sequences whose features �̂�
match those of the training dataset 𝜓 . We extract stroke features
from the dataset using Eq. (4) and fit a multivariate gaussian
distribution with independent components on 𝜓 . We improve the
realism of inferred strokes by maximizing the likelihood that the
inferred features �̂� match the fitted distribution.

Table 3 shows comparison results of our method against the base-
lines. To ensure a fair comparison, we follow Liu et al. (2021b) and set
the length of predicted sequence to 𝑘 = 8 for all the methods. While
baseline methods are designed with the main objective of producing
strokes that closely match the reference image, we notice that our
method presents a Stroke Color L2 metric similar to SNP and SNP+,
and lower with respect to PT. Moreover, Paint Transformer and Stylized
Neural Painting have, by design, no way to leverage information about
the characteristics of the dataset strokes and tend to produce stroke
sequences whose characteristics do not match the ones in the dataset.
This is highly reflected in the metrics that capture the ability to paint
like the demonstration; our method strongly outperforms PT and SNP
in terms of the WD, DTW, FVD, and FSD. On the other side, SNP+
can exploit such information. As expected, this greatly reduces the FSD
compared to the naive SNP, but comes at the cost of increasing the
Stroke Color L2. Interestingly, our method can outperform SNP+ in
this metric, suggesting that better performance of our model is due not
only to distribution matching objectives but also to the architecture
design. Finally, we evaluate the capacity of the method to produce
varied plausible outputs for a fixed context. We observe that, while PT
is deterministic and no variability can be produced, diverse predictions
for a given context can be obtained for SNP and SNP+ by starting
the optimization from different randomly initialized stroke parameters.
Our method instead is probabilistic by nature, with a conditional
VAE designed to generate different plausible continuations for a fixed
context. Despite the non-determinism of some baselines, the diversity
of their predictions is inferior to the ones obtained with our method,
which achieves the highest LPIPS diversity score.
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Table 4
User study comparing the preferences between I-Paint and the respective baseline.

PT SNP SNP+
Liu et al. (2021b) Zou et al. (2021) Zou et al. (2021)

Preferences 97.9% 97.1% 95.0%

User study. We complement our quantitative results with a user study.
We show the users a set of reference videos with rendered stroke
sequences from the dataset followed by two videos, one with rendered
strokes produced by one of the baselines, and one produced by I-
Paint. To ease the evaluation, we produce sequences with a length
of 24 strokes and render the obtained strokes in a short video. We
ask the users to express which of the two videos has strokes whose
characteristics resemble the reference videos the most. We gather a
total of 960 votes from 8 unique users. We report the results in Table 4,
showing a clear preference for I-Paint when evaluated on the INP task
(see Supp. Mat. for additional details).

4.5. Qualitative results

We provide qualitative results comparing our method with the base-
lines. Visualizing results as still images provides limited understanding
of the INP task, we refer the reader to Supp. Mat. for video results
along with a working demo. When comparing different methods, the
predicted strokes sequences should satisfy three criteria: (i) make the
canvas more similar to the reference image, (ii) present similar char-
acteristics as the demonstrations, (iii) provide diverse continuations
Sections (Section 3.1, 4.2). While all the methods perform similarly
when assessing (i), I-Paint strongly outperform the competitors accord-
ing to (ii) and (iii) which are peculiar of the interactive component of
the task.

First, we analyze the ability of I-Paint to model the characteristics
of the dataset strokes (ii). Given the reference image and the context
fixed, we sample 100 possible stroke continuations. A method that
correctly captures the original stroke distribution is expected to yield at
least a stroke continuation close to the ground truth. In Fig. 3 we plot
qualitative results showing the sampled sequence that better matches
the ground truth in terms of L2 distance. In all examples, our method
is able to produce a sequence close to the ground truth, while PT, SNP
and SNP+ struggle to generate a matching sequence, indicating that our
method is able to better capture the characteristics of the dataset stroke
sequences. In Fig. 4 we show the heatmap depicting the probability,

obtained with the aforementioned sampling procedure, that a certain
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Fig. 3. Qualitative comparison of I-Paint with baselines. Given the context (blue)
strokes, we generate 100 predicted (red) stroke sequences and plot the one that better
matches the ground truth (green). First row, only I-Paint is able to produce a sequence
whose stroke positioning is similar to the ones of the ground truth, while the baselines
tend to unrealistically cluster the strokes in a tight area. Second row, successive
strokes predicted by I-Paint have similar colors as in the dataset demonstrations, while
the baselines unrealistically jump between the grass, the sky, and the trees. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Next predicted stroke probability distribution. For each method, we show the
probability that a given pixel will be occupied by a predicted stroke for the given
context. The context (outlined in blue in the first column) is kept fixed and we sample
𝑛 = 500 continuations for each method to estimate the probability distribution. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

pixel will be covered by one of the next 𝑘 strokes. We notice that
only I-Paint is able to produce different plausible suggestions (iii) while
predicting strokes on the same object as the last context strokes (ii).
Second, we further evaluate the ability of I-Paint to predict different
stroke continuations given a fixed context (iii). Note that, as shown in
Fig. 1(b), this is an important feature of an INP method since at each
iteration of the painting process the method should be able to propose
at least a stroke sequence that matches the user painting intentions.
In Fig. 5 we show different stroke suggestions for a fixed context
obtained by sampling different latent codes 𝑧 from the unit normal prior
distribution  (0, 1). Our method is capable of generating diverse stroke
8

Fig. 5. Diversity of proposed continuations. Given a fixed context (blue), we sample
different 𝑧𝑖 ∼  (0, 1) and plot the correspondent predicted (red) strokes in different
columns. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 6. Latent code 𝑧 interpolation results (the reference image is omitted for better
visualization). For each image, given the same context strokes, we sample two latent
codes 𝑧start , 𝑧end ∼  (0, 1) and linearly interpolate, obtaining 𝑧𝑖 = (1 − 𝛼) ⋅ 𝑧start + 𝛼 ⋅ 𝑧end
(outlined in red). The strokes smoothly transition changing position but focusing on
the same object. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

continuations, each of which focuses on a similar region, color and
subject with respect to the given context. Finally, we show the structure
of the learned latent representation (Fig. 6). Specifically, we sample
two different latent codes from the prior distribution, 𝑧start , 𝑧end ∼
 (0, 1) and we linearly interpolate between the two samples, plotting
the predicted results along the interpolation path (see Supp. Mat. for
video animation). It is possible to notice that the strokes smoothly
transition between the two samples 𝑧start , 𝑧end, changing their position
but focusing on the same subject suggesting that the learned latent
space is well structured.

5. Conclusions

In this paper we introduce the novel task of interactive neural
painting, where a user tries to reproduce a scene on a painting and
the objective is to give (multiple) suggestions about the next strokes
to paint, thus helping the user in producing its artwork. The proposed
method is based on a conditional transformer VAE architecture, which
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is demonstrated on two novel datasets. Our experiments show that
our model: is correctly painting the reference image, outputs strokes
whose characteristics are close to demonstration data, gives diverse
yet plausible brush-stroke suggestions; and outperforms the analyzed
baselines on a large set of metrics and on a user study. We hope that
our work can stimulate further research in this domain.
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Appendix

In this appendix, we provide additional details about parametriza-
tion and rendering of the strokes, a description of the architecture and
the losses, and user study details.

This appendix is complemented by a supplementary website where
we show additional qualitative results in the form of videos. In partic-
ular, we showcase a demo of I-Paint in an Interactive Neural Painting
(INP) scenario, where a user interacts with our model to paint a
reference image. The material is available at this link: https://helia95.
github.io/inp-website.

Dataset

Due to the cost associated with the acquisition of a real stroke
dataset, we evaluate our model on two synthetic stroke datasets, built
to mimic human painting style (see Section 4.1 of the main paper for a
discussion). Here we detail the dataset acquisition procedure. Examples
from the dataset are provided on the supplementary website.

Images. We rely on two publicly available datasets, each contain-
ing images and associated segmentation masks. The Oxford-IIIT Pet
dataset (Parkhi et al., 2012), contains 7349 images of cats and dogs
of different species for a total of 37 different classes. The ADE 20K
dataset (Zhou et al., 2017) is a large-scale dataset containing 20,100
images from more than 3𝐾 classes. The dataset is filtered to contain
images of outdoor scenes, resulting in a subset of 5000 images.

Strokes Parametrization. Following the work of Zou et al. (2021), we
parametrize the strokes as 𝑠 = (𝑥, 𝜌, 𝜎, 𝜔). The center of the stroke is
represented by 𝑥 = (𝑥𝑥, 𝑥𝑦). The height and width of the strokes are
represented by 𝜎 = (𝜎ℎ, 𝜎𝑤), while 𝜔 represents the orientation, which
is the counter-clock wise angle in the range [0, 𝜋]. Lastly, the color
9

of the stroke is represented by 𝜌 = (𝜌𝑟, 𝜌𝑔 , 𝜌𝑏). All the parameters are
normalized to lie in the interval [0, 1].

Decomposition. We make use of Stylized Neural Painting (SNP) (Zou
et al., 2021), to extract a sequence of brushstrokes from a given image.
We notice that SNP tends to produce very large strokes in the first
iterations of the method, which cover a wide area of the canvas. This
practice is unrealistic since the size limitations of physical brushstrokes
would prevent a human painter from doing this. To circumvent such
behavior, we clamp the parameter 𝜎 to a maximum value of 0.4. As
described in Zou et al. (2021), we employ a progressive rendering
pipeline with a total of 4 iterations, dividing the image in a grid with 4,
9, 16, and 25 regions. We allocate a different number of strokes during
the progressive rendering process, respectively 30, 20, 15, and 10 to
each region, which results in a total of 790 strokes per image. Lastly,
SNP represents the color of each stroke using two triples of (r, g, b)
values that are interpolated to obtain a smooth color. For simplicity,
we use the average of the two, and represent the stroke with a uniform
color 𝜌.

Reordering. We perform a reordering of the sequences, by minimiz-
ing the cost function described in Section 4.1 of the main paper.

Rendering. To render the strokes on the canvas, we follow Liu
et al. (2021b) and use a parameter free renderer. Starting from a
primitive brushstroke, affine transformations are applied to obtain the
foreground 𝐼𝑠𝑡 and the alpha matte 𝛼𝑠𝑡 associated to 𝑠𝑡 = (𝑥, 𝜌, 𝜎, 𝜔). The
canvas can be updated computing 𝐼 𝑡𝑐 = 𝛼𝑠𝑡 ⋅ 𝐼𝑠𝑡 + (1−𝛼𝑠𝑡 ) ⋅ 𝐼 𝑡−1𝑐 . We refer
the reader to Liu et al. (2021b) for additional details.

Method

Architecture. We report more details of the architecture, depicted
in Fig. 2 of the main paper. Our model relies on the Transformer
architecture of Vaswani et al. (2017), where we set the embedding
dimensionality demb = 256, the number of heads in multi-head attention
to 4, the dimension of the intermediate linear layer to 1024, and the
dropout rate to 0. The CNN encoder 𝐹 is composed of 4 convolutional
blocks with residual connection and receives as input an image of
size 256 × 256. The spatial resolution of the features is reduced by
a factor of 2 in each block, resulting in a 16 × 16 output feature map.
Following Liu et al. (2021b), we use two distinct image encoders for
𝐼ref and 𝐼𝑐 . The features obtained by the two input images are concate-
nated and projected to the embedding dimensionality demb. Similarly,
the context strokes 𝑠𝑐 and the target strokes 𝑠𝑡 are projected to demb
sing a linear layer. The remaining components are implemented as
tandard transformers blocks. In particular, 𝐶𝑒 is transformer encoder
ith number of layers equal to 8, while 𝐸, 𝐷1, 𝐷2 are transformer
ecoders with number of layers equal to 6.
Losses. We provide additional details about the computation of the

osses. The reconstruction loss component of 𝛽−VAE is computed by
eighting the reconstruction error differently for each component of

he stroke parameter:

𝑠𝑡 − �̂�𝑡‖‖
2
2 = 𝜆𝑥 ‖‖𝑥𝑡 − �̂�𝑡‖‖

2
2 + 𝜆𝜌 ‖‖𝜌𝑡 − �̂�𝑡‖‖

2
2

+ 𝜆𝜎 ‖‖𝜎𝑡 − �̂�𝑡‖‖
2
2 + 𝜆𝜔 ‖‖𝜔𝑡 − �̂�𝑡‖‖

2
2

(A.1)

ith 𝜆𝑥 = 1, 𝜆𝜌 = 2.5e−1, 𝜆𝜎 = 1 and 𝜆𝜔 = 1. In early experiments,
e noticed that the component corresponding to the predicted color
, i.e. ‖

‖

𝜌𝑡 − �̂�𝑡‖‖
2
2, was difficult to jointly optimize with col, hence we

educed its weights until convergences of the two. The last component
f our objective is the distribution matching loss 𝑟𝑒𝑔dist . We noticed that,
hen this loss is used, the predicted strokes may present a distorted
eight/width ratio. To avoid this issue, when computing this loss we
xclude the size 𝜎 and the orientation 𝜔 from the computation of
eatures 𝜓 . The same modification is applied to the SNP+ baseline for
airness of comparison.

https://helia95.github.io/inp-website
https://helia95.github.io/inp-website
https://helia95.github.io/inp-website
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User study. We now provide details on the user study presented
in the main paper. Each task of the user study consists of an HTML
page divided into two sections. In the first, called the demonstration
section, we show a collection of stroke sequences taken from the
training set. In the second section, called the evaluation section, we
show the users two stroke sequences produced from the same reference
images and stroke context, one produced with I-Paint and the other
with one of the baselines. We asked the participants to select which of
the two sequences of strokes presents characteristics (in terms of stoke
positions, colors, and subject consistency) that are most similar to the
ones of the strokes in the demonstration section. To ease the evaluation,
we produce sequences with a length of 24 strokes and render the
obtained strokes in a short video. The user study was conducted on
40 images taken from the test set of Oxford-IIIT Pet INP dataset, from
which a total of 120 tasks was generated. We collected a total of 960
votes from 8 unique users. Examples of the user study are provided on
the supplementary website.
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