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Planetary protection in trajectory design aims to assess the impact probability of space

mission disposed objects based on their initial uncertain conditions, to avoid contaminating

other planetary environments. High precision dynamical models and propagation methods

are required to reach high confidence levels on small estimated impact probabilities. These

requirements have so far confined planetary protection analyses to robust Monte Carlo-based

approaches, using the Cartesian formulation of the full force problem dynamics. This work

presents the improvements brought by adopting the Kustaanheimo-Stiefel (KS) formulation of

the dynamics. The KS formulation is combined with reference frame switch procedures and

adaptive non-dimensionalization upon detection of close encounters. The fibration property of

the KS space, namely the parametrizable locus of point arising when mapping to a higherdi-

mensional space, is exploited to minimize the computational time, because of the minimized

numerical stiffness of the system. Impact probability estimation tasks become more efficient

than the single simulation case, since the regularization of the dynamics removes the singularity

of gravitational potentials for distances approaching zero. Despite an almost halved computa-

tional burden for Monte-Carlo analysis, the precision of the single simulations is increased by

nearly one order of magnitude, setting a new performance benchmark for planetary protection

tasks.
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Nomenclature

(𝑖, 𝑗 , 𝑘) = Unit vectors of the Cartesian frame

𝑟 = {𝑟1, 𝑟2, 𝑟3}𝑇 = Cartesian position vector

r = Quaternion with vanishing 𝑘 component of the position vector 𝑟

𝑟 = Magnitude of r or 𝑟

u = {𝑢1, 𝑢2, 𝑢3, 𝑢4}𝑇 = KS quaternion

u = Conjugate of u

u∗ = Star-conjugate (anti-involute) of u

𝜑 = Angle parametrizing the fibration of the KS space

L(u) = Multiplication matrix of the KS1 transform

𝑠 = Fictitious KS time

𝑡 = Physical time

𝑑 ( ·)
𝑑𝑡
or ¤(·) = First derivative with respect to 𝑡

𝑑2 ( ·)
𝑑𝑡2
or ¥(·) = Second derivative with respect to 𝑡

𝑑 ( ·)
𝑑𝑠
or (·) ′ = First derivatives with respect to 𝑠

𝑑2 ( ·)
𝑑𝑠2
or (·) ′′ = Second derivatives with respect to 𝑠

𝛽 = Arbitrary constant for the Sundman transformation

𝐾 = Arbitrary function of position, time and velocity for the Sundman

transformation

𝜖 = Kepler orbital energy

𝜖0 = Total orbital energy

𝜇 = Gravitational parameter of the primary body in the Kepler problem

𝑓 (𝑟, 𝑡) = Generic perturbation in Cartesian coordinates, function of 𝑟 and 𝑡

f(r, 𝑡) = 𝑓 written as quaternion with vanishing 𝑘 component

𝑛, 𝑁 = body identifier and limit of the restricted N-body problem

𝜇𝑛 = gravitational parameter of body 𝑛

r𝑛 = Cartesian position of body 𝑛 written as quaternion with vanishing

𝑘 component
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{𝑙𝑟𝑒 𝑓 , 𝑡𝑟𝑒 𝑓 , 𝑣𝑟𝑒 𝑓 , 𝜇𝑟𝑒 𝑓 } = reference dimensional length, physical time, velocity, gravitational

parameter

{𝐴𝑈,𝑌𝑒𝑎𝑟} = Astronomical Unit and Year(
p, 𝑝𝑙 , 𝑝𝑚,

)
= Condensed for linear combination of KS states

(𝛿, 𝜈) = Displacements along the fibration parameter 𝜑

EN = abbreviation for Energetic non-dimensionalization

AUY = abbreviation for AU-Year non-dimensionalization

FIXED = abbreviation for integration without frame switch

SWITCH = abbreviation for integration with frame switch

SUN = abbreviation for Sun-centric interplanetary simulations

SSB = abbreviation for barycentric interplanetary simulations

RK45 = Runge Kutta 4(5) integration scheme

RK78 = Runge Kutta 7(8) integration scheme

SolO = Solar Orbiter

I. Introduction
Complying with planetary protection policies introduces a set of technical requirements that any space mission

phase or task must contribute to fulfil. In order not to contaminate the environment of any visited planet, care must

be taken particularly for those objects which cannot be sterilized because of their function, such as upper stages of

launchers. For instance, a mission to Mars has all of its lander components sterilized before launch, so that possible

traces of life are not introduced from Earth, but the stages of the launchers are not and cannot be. Furthermore, they are

disposed in space once the injection of the payload into its route to Mars is completed, which makes their dynamics

completely uncontrolled. Planetary protection policies are developed and maintained every few years by COSPAR

(Committe On Space Research) [1]. The work of Kminek et al. [2] outlines the requirements that any European Space

Agency’s (ESA) mission must fulfill. For disposal objects they turn into body-dependent small values of accepted

impact probability (lower for higher likelihood to find traces of local life in the specific moon or planet), which must be

estimated at 95% confidence level and considering the evolution of the uncontrolled trajectory 100 years forward in time.

Starting from the requirements introduced by Kminek et al. [2], the ESA SNAPPshot suite was developed by Letizia

et al. [3, 4] and Colombo et al. [5] to compute the impact probability of a given initial condition and uncertainty. A
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Monte Carlo simulation is performed on a large set of trajectory propagations, computed in the Cartesian formulation of

the full force dynamics, keeping static reference frame and non-dimensionalization quantities throughout the integration.

The impact probability of the orbiting body with all the planets encountered in the trajectory is then determined as the

ratio between the number of runs turning into an impact over the total number of generated samples.

Romano et al. [6] proposed a line sampling method for the computation of impact probabilities. It is a Markov Chain

Monte Carlo-based approach, which bounds the uncertainty regions finding the lines perpendicular to such regions, and

therefore sampling the uncertainty along them. It ensures a better estimate especially for small probabilities and is also

more efficient, as it requires around 35% less total runs than the standard Monte Carlo. Another work from Romano [7]

investigated the influence of numerical schemes in the performance and precision of the SNAPPshot [5] approach. An

attempt was also made to develop a covariance propagation technique in the Cartesian formulation of the dynamics,

motivating the choice of regularized formulation of this work. Even before flyby events, the propagated continuous

covariance quickly degrades when Cartesian dynamics is used because of the strong non-linearity and the Lyapunov

instability of the Kepler problem, requiring to split the uncertainty initial distribution repeatedly and cumulatively [7].

The results obtained in [7], together with other functionalities, contributed to the development of the improved version

of the SNAPPshot suite [8].

Regularizing the dynamics is not necessarily attached to a new set of coordinates per se, in fact the Kustaanheimo-

Stiefel (KS) regularization was born bringing together two concepts: the first, adding a fourth coordinate trying to

describe the Kepler problem as a four dimensional harmonic oscillator, originally presented by Kustaanheimo [9], and

the introduction of the time transformation of the Sundman type [10], operated later with the contribution of Stiefel [11].

All the later developments over the newly created KS formalism use to refer to the more comprehensive manuscript by

Stiefel and Scheifele [12]. Bond proposed a variation of parameters approach that generically accounts for perturbing

effects starting from the original four-vector KS formulation [13].

In the work of Stiefel and Scheifele [12] the properties of quaternion algebra are mentioned, even though the original

developers of the KS transformation did not pay much attention on this aspect. Quaternions in the KS formalism

have been explored first by Velte [14] and better detailed by the successive works of Vivarelli [15–17], introducing

the concept of anti-involute and quaternion cross product. The KS transformation was re-derived and refined in the

quaternion formalism by Deprit et al. [18] where it was obtained by doubling from a Levi-Civita transformation. Deprit

[19–21] also extensively studied the canonical Lissajous transformation, concept that has recently been re-proposed by

Breiter and Langner [22, 23] starting from the KS formulation. A more recent work by Waldvogel [24] provided new

insight on the algebraic properties of quaternions in the KS regularization and the related fibration of the KS space,

re-defining Vivarelli’s anti involute [16] as the quaternion star conjugate.

Saha [25] proposed a quaternion approach to the KS transformation more suitable to the analysis of Hamiltonian

systems. Based on the work of Saha, Breiter and Langner [26] explored the role of the preferential direction chosen to

4



perform the regularization, which they generalized to an arbitrary one of the original three-dimensional space. In fact,

almost all the analyses already performed in the context of the KS formulation adhere to the original one proposed by

Kustaanheimo and Stiefel [11]. Denoting with (𝑥, 𝑦, 𝑧) the axes of a generic three-dimensional Cartesian space, not

necessarily attached to any commonly used Solar System direction, the first coordinate 𝑥 was selected as the reference

direction for the KS transformation. Using the same notation as Breiter and Langner [26], choosing 𝑥 as preferential

direction the KS tranformation is identified as KS1, whereas for instance the KS3 version is presented by Saha [25]

using the direction 𝑧. The work of Breiter and Langner [26] did not stop to this generalization, but provided new insight

to the physical meanings of the KS coordinates themselves.

Partially quoting Breiter and Langner [26] and recalling the quaternion description of rotations, in the KS1 version

"the normalized KS variables are the Euler-Rodrigues parameters of the rotation turning the 𝑥 axis into the direction of

the Cartesian position vector which generated the KS coordinates". From this sentence, the physical meaning of the

fibration property of the transformation [12, 24, 26] also becomes more clear, recalling that such a rotation may happen

in an infinite number of ways. Another work by Langner and Breiter [27] explores the properties of the quaternionic KS

formulation in Hamiltonian systems, tackling also the rotating frame case. Some other work in a similar direction was

done by Roa and Peláez [28], they make use of the Minkowskian geometry that was originally proposed by Kustaanheimo

and Stiefel [9, 11] to handle close approaches and their hyperbolic geometry. Still Roa et al. also worked on the KS

formulation [29], showing that the Lyapunov stability does not apply to the whole KS fiber with respect to the physical

time. Roa and Kasdin made use of quaternions also developing a new set of non-singular orbital elements that models

the intermediary evolution of the orbital plane [30].

When dealing with regularized orbital dynamics, the DROMO formulation is among the latest state-of-the-art

results for the perturbed two-body problem. It was first proposed by Peláez et al. [31], seeking for a numerically

stable, regularized and efficient formulation, furthermore rendering the same accurate results for any type of primarily

two-body trajectory (elliptical, parabolic, hyperbolic) [32], using a variation of parameters approach. The description of

the motion is broken into three steps [32]: the evolution of the orbital plane, the evolution of the trajectory on the orbital

plane and finally the position change on the osculating orbit as a function of time. The independent variable is a fictitious

time obtained by a Sundman transformation [10], which reduces to the true anomaly in case of Keplerian motion, instead

of the eccentric anomaly of the KS case. The original DROMO formulation is singular for null angular momentum.

Recent revisions worked to fix these sensitivity issues: Baù et al. [33] developed E-DROMO, a non-singular formulation

of DROMO for any bound orbit, removing the singularities on null eccentricity and inclination. Roa et al. [34] analyzed

the singularities posed by deep flybys and then proposed the re-formulation H-DROMO, not sensitive to a vanishing

angular momentum. The latest updates involve the study of the evolution of an intermediate frame [35]. The interest

on universal variables, capable of managing either closed, open or even rectilinear trajectories is introduced. Amato

et al. [36] studied the reference frame switch for close approaches using the DROMO formulation, and numerically
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identified a region of "best switch distance" that does not correspond either to the Hill surfaces or the sphere of influence.

The way all the DROMO formulations were built makes them sensitive to the task they are used for. In the case of

flyby events, a frame switch procedure is required to enhance its robustness, being a variations of parameters approach.

Moreover, if events need to be computed requiring to retrieve the propagated coordinates, the conversion burden is

inevitably added to the integration runtime, although DROMO, and variations of parameters in general, remain more

efficient in terms of accuracy and required function evaluations. Furthermore, the DROMO approach remains limited to

the perturbed two-body problem. KS coordinates are chosen because of the introduction of the barycentric version in

this work, foreseeing a future validation of the technique to low-energy planetary protection tasks, building a framework

conceptually similar to the rotating frame case proposed by Langner and Breiter [27]. A new term appears in the KS

Hamiltonian in [27], that solution may represent a suitable starting point to study a barycentric KS-like formulation in

the context of the restricted three body problem, once the rotating frame assumption is removed. The version presented

here regularizes the evolution of the physical time based on the distance from the barycenter, but keeps the inertial

reference. The proposed barycentric formulation can be extended to a fully Hamiltonian system, if expressed as a

doubled set of first order equations, and would be equivalent to the complete Hamiltonian set introduced by Breiter and

Langner [26] upon extension to the conjugate momentum of the physical time 𝑡. In their derivation, Breiter and Langner

exploit a zero-energy manifold for the full Hamiltonian to define the conjugate momentum𝑈∗. The equations of motion

are then derived from a new Hamiltonian obtained by applying the Sundman time transformation. The process to extend

the barycentric equations of motion to a fully Hamiltonian formulation would be equivalent.

Other works are tailored to the exploration of the most numerical side of the formulation. An extensive analysis of

this kind on the KS1 case was proposed by Arakida and Fukushima [37]. Fukushima alone published a series of works

that aim to improve the numerical performances of the integration in KS variables and regularized time [38–43]. Several

aspects that all contributed to the enhancement of the pure numerical efficiency of the integration were touched: single

and quadruple scaling techniques to each of the KS coordinates are proposed, and the latter was extended applying a

linear transformation to obtain quasi-conserved quantities to monitor and adjust the scaling during the integration. A

time element formulation that reduces the error growth was studied, and then extended to a complete set of variables

through the variation of parameters approach. Still within the context of regularized formulation but without using the

KS formulation, an orbital longitude integration and manifold correction methods were proposed.

Other works have developed a formalism stemming from the KS approach, in the attempt to regularize the complete

N-body problem. Aarseth and Zare [44] started with the regularization of the three-body problem based on the KS

formulation for a configuration considering the two primary binaries, extended shortly after by Heggie [45] for any

configuration and having regularized collisions for any pairs. Palmer et al. [46] and Mikkola and Aarseth [47–51]

extended Aarseth’s approach to a N-body chain regularization technique, together with different implementation

solutions for how to switch the chain configuration in case of close encounters and analyses of the numerical performance.
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Mikkola and Merrit [52, 53] extended the regularization chain algorithm also to include velocity-dependent perturbation

sources, with specific mention to general relativity through the post-Newtonian approximation. Their work strictly

involves the simulation of full N-body systems, whereas the proposed adaptation and implementation focuses on the

motion of a small particle of negligible mass under the action of the gravitational forces of the N-bodies, as well as other

arbitrary perturbations.

For planetary protection applications, reducing the precision of the integration simplifying the physical model might

lead to significantly different results because of the accumulated error, especially at the end of the integration span. This

makes it necessary to deal with a force model that is as complete as possible, which requires the use of ephemerides

data to avoid integrating the N-body problem for faster integrations. In fact, the computational burden is currently the

major limitation to the extensive performance of planetary protection analysis. Nowadays, the compliance with the

requirements outlined for instance by Kminek et al. [2] is assessed with a Monte Carlo based approach, for each point in

the trajectory where the disposal of an object is required. Were a trajectory solution to be discarded, all the Monte Carlo

runs would need to be run anew, assessing whether the next candidate complies with the requirements or not, and so on.

Improving the computational cost of the planetary protection analysis turns therefore into a reduction of the overall

trajectory design development time, as any solution whose compliance with the given requirements needs to be secured

benefits from more efficient techniques.

On the application viewpoint, KS coordinates have already been used in a few applications. Hernandez and Akella

[54] developed a Lyapunov-based guidance strategy using KS coordinates to target several types of orbit conditions,

e.g. specified angular momentum vector, and applied it to the design of low thrust trajectories. Woollands et al. [55]

developed a Lambert solver based on KS coordinates and used it to provide a good initial guess to the Picard-Chebyshev

numerical integration of the perturbed two-body problem. Sellamuthu and Sharma analysed the J2, J3, J4 terms of

Earth’s oblateness and the third body luni-solar perturbation when approximated with a Legendre polynomial expansion

with KS coordinates [56–58]. Using the equation they obtained, they then implemented an orbital propagator and

studied the effects of such perturbations on resident space objects with high perigee and highly eccentric orbits.

This work shows that the adoption of KS coordinates in the barycentric restricted relativistic N-body problem

reduces the computational cost of the single simulations, and therefore of the whole planetary protection compliance

analysis, without any sacrifice of precision. The sensitivity of the regularized formulation on flyby events is mitigated

implementing a dynamic and automatic frame switch to the primary body whenever a close approach is detected,

generating new KS coordinates for the permanence within the sphere of influence. Section II summarizes the KS1

formulation for a generic perturbed problem, deriving the equations of motion from the original Cartesian formulation

obtaining an incomplete Hamiltonian set that handles the barycentric regularized motion with the same numbers of states

as the planetocentric one. Quaternion algebra is extensively used and exploited in the derivations. Section III shortly

presents the non-dimensionalization technique adopted in SNAPPshot [8] and introduces the adaptive energy-based
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strategy that is needed to implement KS coordinates with the dynamic frame switch for flyby events. Section IV presents

the optimization approach that exploits the fibration of the KS1 space to minimize the system’s numerical stiffness and

in turn the number of integration time steps. Section V presents the numerical performances of the proposed approach

in comparison to the standard formulation currently employed in SNAPPshot [8].

II. KS regularization
The Kustaanheimo-Stiefel (KS) formulation rewrites the two body problem as an isotropic∗, four-dimensional

harmonic oscillator. The conservation of the orbital energy is also introduced, leading to a simple linear ordinary

differential equation. The first formulation was proposed indeed by Kustaanheimo and Stiefel [11, 12], and extended the

usual Cartesian position vector 𝑟 = {𝑟1, 𝑟2, 𝑟3}𝑇 into a four-vector, by adding the length 𝑟 =
√
𝑟 · 𝑟 as fourth coordinate.

The underline notation 𝑟 will be used to stress the difference between three-dimensional Cartesian vectors and the KS

four vectors/quaternions, denoted in bold r. Using the initial formulation proposed by Kustaanheimo, the physical

coordinates are linked to the spinor regularized coordinates u = {𝑢1, 𝑢2, 𝑢3, 𝑢4}𝑇 through:

𝑟1 = 𝑢
2
1 − 𝑢

2
2 − 𝑢

2
3 + 𝑢

2
4

𝑟2 = 2
(
𝑢1𝑢2 − 𝑢3𝑢4

)
𝑟3 = 2

(
𝑢1𝑢3 + 𝑢2𝑢4

)
𝑟 = 𝑢21 + 𝑢

2
2 + 𝑢

2
3 + 𝑢

2
4

(1)

later re-arranged in matrix-vector product as

r = L(u)u (2)

which gives x = {𝑟1, 𝑟2, 𝑟3, 0}𝑇 , with

L(u) =



𝑢1 −𝑢2 −𝑢3 𝑢4

𝑢2 𝑢1 −𝑢4 −𝑢3

𝑢3 𝑢4 𝑢1 𝑢2

𝑢4 −𝑢3 𝑢2 −𝑢1


(3)

The other key concept is converting the integration time from the physical time 𝑡 to the fictitious time 𝑠, with a first

order Sundman transformation [10]:
𝑑𝑠

𝑑𝑡
=
𝛽

𝑟
𝑒
∫
𝐾𝑑𝑡 (4)

with 𝛽 an arbitrary constant coefficient and 𝐾 an arbitrary function of position, velocity and time. Setting 𝛽 = 1 and
∗All the four components oscillate with the same frequency and phase.
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𝐾 = 0 to operate the time transformation, replacing r = L(u)u and its derivatives, the KS transformation converts the

Kepler two-body problem

¥r = − 𝜇
𝑟3

r (5)

into

u′′ =
𝜖

2
u (6)

where ¥(·) and (·) ′′ stand for second 𝑡 and 𝑠 derivatives respectively, and 𝜖 denotes the two-body orbital energy. Because

the adopted Sundman regularization is of the first order, for unperturbed orbits the new independent variable 𝑠 follows

the evolution of the eccentric anomaly. The achieved behavior reflects a sort of slow motion movie for the near-pericenter

part of the orbit, with smaller physical time steps the closer the trajectory gets to the attractor.

Vivarelli [16] first showed the connection with quaternions, introducing the definition u∗ = {𝑢1, 𝑢2, 𝑢3,−𝑢4}𝑇 as the

"anti-involute" of u, later re-defined as "star conjugate" by Waldvogel [24]. For the sake of conciseness, the notation

used by Waldvogel is proposed here.

A. KS regularized formulation using quaternion notation

The position vector 𝑟 of the three-dimensional Cartesian space can be written as a quaternion r with null 𝑘

component:

𝑟 = {𝑟1, 𝑟2, 𝑟3}𝑇 −→ r = 𝑟1 + 𝑖𝑟2 + 𝑗𝑟3 + 𝑘 · 0 (7)

In the following, quaternions are represented with the scalar part as the first element of the associated four-vector. It can

be shown that [24], given a quaternion u = 𝑢1 + 𝑖𝑢2 + 𝑗𝑢3 + 𝑘𝑢4, the mapping

r = uu∗ (8)

produces a quaternion r with vanishing 𝑘 component, and with the other components as defined in Equation (1):

𝑟1 = 𝑢
2
1 − 𝑢

2
2 − 𝑢

2
3 + 𝑢

2
4

𝑟2 = 2
(
𝑢1𝑢2 − 𝑢3𝑢4

)
𝑟3 = 2

(
𝑢1𝑢3 + 𝑢2𝑢4

) (9)

The magnitude of r can also be written in terms of quaternion operations:

𝑟2 = | |𝑟 | |2 = |r|2 = uu (10)
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with u = 𝑢1 − 𝑖𝑢2 − 𝑗𝑢3 − 𝑘𝑢4 the standard definition of quaternion conjugate.

Following Waldvogel [24], inheriting the conformality properties of the Levi-Civita mapping can partially fix the

degree of freedom left whenever mapping from R3 to R4. A constraint is added for the definition of the components of

u, and particularly appears as the following differentiation rule for r:

𝑑r = 2u 𝑑u∗ (11)

The fiber defining the mapping from R3 to R4 can be parametrized by the angle 𝜑, through a two-step process. First,

the unique quaternion with vanishing 𝑘 component is found:

u|𝜑=0 =
r + |r|√︁
2(𝑟1 + |r|)

(12)

Then, the whole KS fiber is found through 𝜑 as

u = u|𝜑=0 𝑒𝑘𝜑 = u|𝜑=0 (cos 𝜑 + 𝑘 sin 𝜑) (13)

which is proved as follows [24]:

uu∗ = u|𝜑=0 𝑒𝑘𝜑 𝑒−𝑘𝜑u∗ |𝜑=0 = u|𝜑=0u∗ |𝜑=0 = r (14)

Denoting with ¤(·) the derivative with respect to the physical time, the dynamics of the two-body problem can be

equivalently written by the Cartesian three-dimensional coordinate 𝑟 or the quaternion with vanishing 𝑘 component r:

¥𝑟 = − 𝜇
𝑟3
𝑟 ⇐⇒ ¥r = − 𝜇

𝑟3
r (15)

and the two-body energy can be also written in terms of the quaternion r

1
2
| ¤r|2 − 𝜇

𝑟
= 𝜖 = const (16)

The fictitious time 𝑠 is now introduced by the Sundman transformation of Equation (4) [10], which becomes:

𝑑𝑡 = 𝑟 𝑑𝑠;
𝑑 (·)
𝑑𝑠

= (·) ′ (17)
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The derivatives with respect to the physical time 𝑡 become

¤(·) = 1
𝑟
(·) ′; ¥(·) =

¤(
1
𝑟
(·) ′

)
=
1
𝑟

(
1
𝑟
(·) ′

) ′
= − 1

𝑟3
𝑟 ′(·) ′ + 1

𝑟2
(·) ′′ (18)

with the dynamics and the energy equations re-written as:

𝑟r′′ − 𝑟 ′r′ + 𝜇r = 0
1
2𝑟2

|r′ |2 − 𝜇

𝑟
= 𝜖

(19)

Using Equations (8) and (10), the differentiation rule presented in Equation (11) gives

r′ = 2uu∗′ ; r′′ = 2uu∗′′ + 2u′u∗′ ; 𝑟 ′ = u′u + uu′ (20)

Replacing the definitions of r, r′, r′′, 𝑟 ′ in the dynamics and energy equations and exploiting the properties of

quaternion algebra, Equation (20) becomes:

2𝑟u∗′′ + (𝜇 − 2|u′ |2)u∗ = 0

𝜇 − 2|u′ |2 = −𝑟𝜖
(21)

Finally, the expression of the orbital energy appears in the regularized dynamics equation, leading to the simple

four-dimensional harmonic oscillator [24]:

u∗′′ − 𝜖

2
u∗ = 0⇐⇒ u′′ − 𝜖

2
u = 0 (22)

B. Perturbed problem

Perturbing physical accelerations f, if written again as a quaternion with vanishing 𝑘 component, are accounted

for simply by an additional non-null term on the right hand side of the equations of motion. The generic perturbed

two-body problem becomes

¥r = − 𝜇
𝑟3

r + f(r, 𝑡) (23)

The derivation remains equal to the unperturbed case. Introducing the derivative with respect to the KS time gives

𝑟r′′ − 𝑟 ′r′ + 𝜇r = 𝑟3f(r, 𝑡) (24)
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and using 𝑟 = uu, after multiplying both sides by u−1 a similar expression to Equation (21) is obtained [24]

2𝑟u∗′′ + (𝜇 − 2|u′ |2)u∗ = 𝑟2uf(r, 𝑡)

𝜇 − 2|u′ |2 = −𝑟𝜖
(25)

Note that the energy 𝜖 is not necessarily constant in the perturbed case. Replacing the energy expression in the equations

of motion and dividing by 2𝑟 leads to

u∗′′ − 𝜖

2
u∗ =

𝑟

2
uf(r, 𝑡) (26)

The final expression is obtained by taking the star conjugate of both sides:

u′′ − 𝜖

2
u =

𝑟

2
f(r, 𝑡)u∗ (27)

Since the physical time 𝑡 can appear in f(r, 𝑡) either implicitly or explicitly, it should still be tracked, even though its

removal was necessary to reach a simpler form of the equations of motion. Closed form expressions for 𝑡 = 𝑡 (𝑠) cannot

be found for the perturbed case, whereas 𝑠 evolves like the eccentric anomaly [24], up to a constant, in the unperturbed

two-body problem. However, from Equation (17) the relation 𝑑𝑡/𝑑𝑠 = 𝑟 can be used to add the physical time as another

state element for numerical integrations accounting for perturbations. The two-body energy 𝜖 can either be computed at

each time step with

𝜖 = −1
𝑟

(
𝜇 − 2|u′ |2

) (28)

or be added as another state element as well, and its derivatives are defined as:

𝜖 ′ = 𝑟 ′ · 𝑓 (𝑟, 𝑡)

¤𝜖 = ¤𝑟 · 𝑓 (𝑟, 𝑡)
(29)

C. Barycentric KS formulation for the full force problem

The original KS formulation of the orbital dynamics requires the reference frame to be centered in one body, that

serves both as regularization point and primary attractor for the computation of the orbital energy. However, a more

complex dynamics that does not necessarily follow a dominantly two-body trajectory could not benefit from the KS

regularization if it was kept in its standard form. Moreover, as it will be shown in Section V, the barycentric formulation

of the dynamics builds a more efficient simulation already in the Cartesian form, since tidal terms are not present. Such

an efficiency improvement is even more relevant when accounting for relativistic effects, since the N-bodies barycenter

is the origin of the reference frame where the Post-Newtonian Einstein-Infeld-Hoffmann equations are derived [59].
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Because of this reason, with the purpose of building a simulation setup that remains as general as possible in the cases it

can efficiently tackle although still featuring the core benefits of the KS formulation, a barycentric formulation of the KS

equations of motion is derived. For the sake of conciseness only the perturbing effects of the N bodies are presented.

Other perturbing sources, such as relativistic effects and solar radiation pressure, are not explicitly written, as they would

follow the same process to be included in the KS formulation of the dynamics.

Before dealing with the barycentric case and to highlight the differences with respect to the perturbing effects of the

N-bodies on the traditional KS formulation, keeping the frame centered on one of the N-bodies brings:

u′′ − 𝜖

2
u = − 𝑟

2

𝑁∑︁
𝑛=1
𝑛≠𝑛𝑝

(
𝜇𝑛 (r − r𝑛)
|r − r𝑛 |3

+ 𝜇𝑛r𝑛
|r𝑛 |3

)
u∗

(30)

with 𝑛𝑝 identifying the primary body, included in the definition of the two-body energy 𝜖 , r𝑛 and 𝜇𝑛 position vector

with respect to the primary and gravitational parameter of the body 𝑛, respectively.

A few modifications are required to write the dynamics centered in the barycenter of the N bodies involved. In

general, through the regularization, smaller physical time steps are implicitly taken in the proximity of the center of the

reference frame. Its correspondence with the main attractor in the Keplerian problem is not necessary, but becomes

convenient when combined with the expression for the orbital energy 𝜖 . In the barycentric case, the state r does not

identify the position with respect to the primary, therefore every single gravitational contribution must be included

among the right hand side terms. Equation (19) for the barycentric state becomes:

𝑟r′′ − 𝑟 ′r′ = −
𝑁∑︁
𝑛=1

𝜇𝑛 (r − r𝑛)
|r − r𝑛 |3

1
2𝑟2

|r′ |2 −
𝑁∑︁
𝑛=1

𝜇𝑛

|r − r𝑛 |
= 𝜖0

(31)

and introducing the KS variables u

u′′ =
|u′ |2
𝑟

u − 𝑟

2

𝑁∑︁
𝑛=1

𝜇𝑛 (r − r𝑛)
|r − r𝑛 |3

u∗

2
𝑟
|u′ |2 −

𝑁∑︁
𝑛=1

𝜇𝑛

|r − r𝑛 |
= 𝜖0

(32)

The energy equation may be included in the dynamics only if accounted as the total energy 𝜖0 of the system. The

presented formulation is suitable for fully numerical simulations and any other perturbing effect could be included as

done for the effects of the N bodies. The numerical performances are presented in Section V.

To extend the presented barycentric formulation to a complete Hamiltonian set of equations, the process proposed

by Breiter and Langner [26] can be followed, with the only difference that the zero-energy manifold should be set on the

kinetic contribution alone. This follows the way gravitational forces are treated in the force-based derivation outlined in
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this section, since they are all included in the right-hand side term. On the contrary, preserving a body-centric reference

frame allows to keep the definition of main and perturbing gravitational potential, leading exactly to the formulation

proposed by Breiter and Langner [26].

III. Energy-based nondimensionalization and dynamic frame switch
When numerically simulating any dynamic phenomenon, well posed reference quantities allow the states’ magnitude

to remain as close as possible to the unity along the trajectory, which may boost the numerical performances of the

simulator as the time steps taken can be the largest.

SNAPPshot currently implements static reference quantities, such as the "AU-year" based non-dimensionalization

[5] for interplanetary tasks, which takes the astronomical unit and the year as typical length and time scales, 𝑙𝑟𝑒 𝑓 and

𝑡𝑟𝑒 𝑓 , for the orbital phenomena. As only two out of all the four quantities involved are independent, the reference

velocity 𝑣𝑟𝑒 𝑓 and gravitational parameter 𝜇𝑟𝑒 𝑓 are derived from them:

𝑙𝑟𝑒 𝑓 = 𝐴𝑈

𝑡𝑟𝑒 𝑓 = 𝑌𝑒𝑎𝑟

𝑣𝑟𝑒 𝑓 =
𝑙𝑟𝑒 𝑓

𝑡𝑟𝑒 𝑓

𝜇𝑟𝑒 𝑓 =
𝑙3
𝑟𝑒 𝑓

𝑡2
𝑟𝑒 𝑓

(33)

Although simple, this reference choice is not optimal for different reasons. First, the state is well referenced only

for near-Earth objects. Secondly, the gravitational parameters are never close to the unity, consequently the primary

acceleration will not be close to 1. Only the Sun is represented in an acceptable way, with its gravitational parameter 𝜇

equal to 2𝜋 because of the relation between the year and Earth’s orbital period. Lastly, were any flybys to happen, their

characterizing fast dynamics would be excessively different from the non-dimensional time and length scales.

It may be reasonable to introduce another non-dimensionalization strategy, that is not sensitive to either the geometry

of the possible unperturbed solution (ellipses or hyperbolas in the weakly perturbed two-body problem) and the primary

attractor (the Sun for open interplanetary space or a planet for temporary flybys). Note also that, for interplanetary

dominantly two-body trajectories but featuring a close approach, it is impossible to properly catch both events with a

single choice. It may then be reasonable to allow for a dynamic frame switch for flyby events, following the approach

already presented by Amato et al. [36]. The purpose of the proposed work is only to validate the concept of dynamic

frame switch, without trying to identify an optimal switch distance as in [36]. The results shown in Section V will

prove that, at least for long term application, the simple definition of sphere of influence does not affect the integration

accuracy.
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The just made observations lead to the following general non-dimensionalization algorithm, valid for both

interplanetary and planetary systems, starting from the dimensional state magnitudes expressed with respect to a known

primary (i.e. knowing if that initial state is within or without the sphere of influence of a planet). Particularly, the

following steps can be taken each time the reference frame is switched, either for initialization or flyby event. First,

the state at the entrance/exit of the sphere of influence is converted into its Cartesian and dimensional representation.

Secondly, the center of the reference frame is changed by simple vector summation. Third and last, the state is converted

back in the original formulation and is made non-dimensional according to the newly updated reference length, time,

velocity and gravitational parameter. The new reference dimensions are defined through a four-step process. 𝜇𝑟𝑒 𝑓 is set

equal to either the primary or the equivalent gravitational parameter, for dominantly two-body or multi-body cases

respectively. Keeping a general notation to include both the equivalent and primary cases, a reference two-body energy

is computed as

𝜖𝑟𝑒 𝑓 = −
𝜇𝑟𝑒 𝑓

𝑟
+ 1
2
𝑣2 (34)

where 𝑟 and 𝑣 refer to position and velocity magnitude in the current reference frame (Sun-centric, planetocentric, or

barycentric). 𝜖𝑟𝑒 𝑓 is used to set the reference length 𝑙𝑟𝑒 𝑓 as the absolute value of the semi-major axis of the fictitious

orbit that would arise from 𝜇𝑟𝑒 𝑓 and position and velocity in the current reference frame:

𝑙𝑟𝑒 𝑓 =
𝜇𝑟𝑒 𝑓

2|𝜖𝑟𝑒 𝑓 |
(35)

Finally, the reference time 𝑡𝑟𝑒 𝑓 and the reference velocity 𝑣𝑟𝑒 𝑓 are obtained from the values 𝜇𝑟𝑒 𝑓 and 𝑙𝑟𝑒 𝑓 :

𝑡𝑟𝑒 𝑓 =

√√
𝑙3
𝑟𝑒 𝑓

𝜇𝑟𝑒 𝑓

𝑣𝑟𝑒 𝑓 =
𝑙𝑟𝑒 𝑓

𝑣𝑟𝑒 𝑓

(36)

Note that for closed two-body orbits non-dimensionalized in the presented way the orbital period becomes equal to 2𝜋.

The choice should be constrained to the sole principal attractor for flyby events whose dynamics is primarily two-body,

so that the typical time and length scales can be properly identified.

IV. Optimal selection of the fibration parameter 𝜑 with energy-nondimensional variables
Observing the KS equations of motion (Equations (30) and (32)), it can be noted that their right-hand sides are

all multiplied by their corresponding element of the KS position vector. Consequently, in the unperturbed case a null

element of the vector u implies a constant value for the corresponding element of u′ throughout the integration. Thus

the same element, initially null, evolves linearly, in contrast to the sinusoidal or hyperbolic behavior of the remaining
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elements, depending on the bound or unbound trajectory case. As a consequence, having a null element results in an

increased numerical stiffness of the system, because of the significantly different state variations.

Despite this effect remains small even in the case of null element, the degree of freedom left by choosing the fibration

parameter can be exploited to optimize the simulation, maximizing the numerical stability to achieved minimized

integration steps. Other than restoring a common variation trend among the state elements, the best performance can be

achieved by also minimizing the difference among the variation magnitudes. A suitable choice of fibration parameter

𝜑 would maximize the minimum magnitude element: all the magnitudes of the remaining elements will be bounded

from below and, at the same time, their magnitude will be reduced with respect to the original null-element case, to

accommodate for the position constraint of Equation (8).

A. Necessary condition for the optimal selection of 𝜑

First, it should be noted that maximizing (minimizing) the value of any of the elements of both the initial and

averaged KS states implies having another element with null magnitude. This can be seen because, for both the initial

KS vectors u0 (𝜑) and u′
0 (𝜑), denoting both cases with p(𝜑) and the four components with 𝑝𝑙 (𝜑), 𝑙 = 1, ..., 4 it holds

that
𝑑p(𝜑)
𝑑𝜑

=
{
− 𝑝4 (𝜑), 𝑝3 (𝜑),−𝑝2 (𝜑), 𝑝1 (𝜑)

}𝑇 (37)

𝑑𝑝𝑙/𝑑𝜑 = 0 is necessary for 𝑝𝑙 (𝜑) to be locally maximized or minimized, which implies that one other element of p(𝜑)

must vanish. Note that the pairs of linked elements of p(𝜑) correspond in the vector position for both u0 (𝜑) and u′
0 (𝜑).

Therefore, the same claim holds for initial, period-average and the generic interval-averaged KS states, for both bound

and unbound trajectories, because these are simple linear combinations of u0 (𝜑) and u′
0 (𝜑) in the KS formulation.

Based on this observation, it can be proved that if the magnitude of the minimum magnitude element of both the

initial and the averaged KS state vectors is maximized, then that specific 𝜑∗ makes that magnitude equal to the magnitude

of another of the elements of the same vector. Recalling the collective notation p(𝜑) for both the cases of u0 (𝜑) and

u′
0 (𝜑), this happens because any element of p(𝜑) is a continuous, periodic and bounded function of 𝜑. The magnitudes

of its elements always remain within the closed intervals
[
0,max |𝑝𝑙 (𝜑) |

]
, with 𝑙 = 1, ..., 4.

Suppose that 𝑝𝑙 (𝜑∗), 𝑙 = 1, ..., 4 is the local minimum magnitude element of p(𝜑). Because of its definition,

|𝑝𝑙 (𝜑∗) | ≤ |𝑝𝑚 (𝜑∗) |, with 𝑚 = 1, ...4 and 𝑚 ≠ 𝑙. Introducing the variation 𝛿 to 𝜑∗, the local minimum magnitude

element at the point 𝜑∗ + 𝛿 will be identified by comparing all the elements |𝑝𝑙 (𝜑∗ + 𝛿) | and |𝑝𝑚 (𝜑∗ + 𝛿) | with each

other, requiring only 𝑚 ≠ 𝑙.

Because of the periodicity, the value 𝜑∗ + 𝛿 will always be bounded by 0 and 2𝜋, moreover also 𝑝𝑙 (𝜑∗ + 𝛿) will

be bounded by 0 and max |𝑝𝑙 (𝜑) |. Therefore, the minimum magnitude element either remains identified by 𝑝𝑙 , but at

the coordinate 𝜑∗ + 𝛿, or it switches to another 𝑝𝑚 (𝜑∗ + 𝛿), with 𝑚 = 1, ..., 4 and 𝑚 ≠ 𝑙. The above made observation
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ensures that any element of p(𝜑) cannot reach its maximum magnitude while remaining the minimum magnitude

element, because its "dual" will vanish.

Suppose that 𝜑̃ = 𝜑∗ + 𝛿∗ identifies a switch condition, i.e. the point where |𝑝𝑙 (𝜑̃) | = |𝑝𝑚 (𝜑̃) | holds, with

𝑚, 𝑙 = 1, ..., 4 and 𝑚 ≠ 𝑙. Introducing the small displacement 𝜈, assume that the minimum magnitude element switches

from 𝑝𝑙 to 𝑝𝑚 when moving from 𝜑̃ − 𝜈 to 𝜑̃ + 𝜈. Since 𝑝𝑙 and 𝑝𝑚 are continuous functions of 𝜑 and have continuous

derivatives, the switch can happen when 𝑑𝑝𝑙/𝑑𝜑 and 𝑑𝑝𝑚/𝑑𝜑 have either common or different sign. In the former case,

the minimum magnitude element will keep increasing or decreasing, depending on the sign of 𝑑𝑝𝑚/𝑑𝜑. In the latter

case instead, the minimum magnitude element will be either locally minimized or maximized. Therefore, the condition

|𝑝𝑙 (𝜑̃) | = |𝑝𝑚 (𝜑̃) | is necessary, but not sufficient, to locally maximize the minimum magnitude element. In turn, the

same condition is also necessary to globally maximize the minimum magnitude element.

The presented necessary optimality condition can be used to evaluate all the possible candidates of 𝜑 that maximize

the minimum magnitude element of the averaged state vector, and then select the actual maximizer. Within a specified 𝜑

interval, at most 28 evaluations of the values of 𝜑 making two elements equal in magnitude are needed to check all the

candidate points, for the eight-dimensional KS state including position and velocity. Analytic formulas can be easily

obtained setting the various equalities among all the state elements, because they are linear on sin 𝜑 and cos 𝜑. They are

not reported for the sake of conciseness.

B. Numerical support to the optimal selection of 𝜑

A numerical analysis of the presented necessary optimality condition is given in Figures 1, 2a and 2b. In Figure

1 1000 different initial KS conditions are simulated starting from evenly spaced values of 𝜑 between 0 and 2𝜋, for a

100 year simulation of the asteroids Apophis and 2010RF12. Despite a fixed and constant value of 𝜑 is not necessarily

optimal for all the integration intervals arising from the frame switch, the comparison with the analytic optimal 𝜑 for

the period averaged KS state obtained from the first initial condition can already prove the optimality of the choice.

To better highlight the spikes, the plotted analytic function in Figure 1 is 𝑓 (𝜑) = − log(min |𝑝𝑙 (𝜑) |), with 𝑙 = 1, ..., 8,

normalized and shifted to be graphically superposed to the numerical results. As expected and well predicted by the

analytical spikes, the number of time steps taken increases the smaller the smallest magnitude element of the averaged

(i.e. manipulated initial) state vector become. Furthermore the absolute minima for the time steps are well predicted by

the points of maximized minimum magnitude element (black envelope line) in Figures 2a and 2b, where the validity of

the necessary optimality condition is also confirmed as such points feature two of the vector elements (grey) with equal

magnitudes. The small oscillations that can be seen in the simulation results of Figure 1 are due to the chaotic full

dynamics being integrated instead of the unperturbed two-body problem, whose magnitude is anyway much smaller than

the time step reduction achieved by selecting the optimal 𝜑 instead of, for instance, 𝜑 = 0. Choosing the optimal 𝜑 is

therefore proved to also be a robust choice for always step-wise nearly optimal simulations in the perturbed environment.
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Fig. 1 Time steps dependence on the fibration parameter 𝜑.

(a) Apophis

(b) 2010RF12

Fig. 2 Non-dimensional magnitude of the minimum magnitude element (black), compared against the magni-
tude variation of all the KS state elements (grey).
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The simulations are performed in the same framework that will be better detailed in Section V, also the evolution of

the position error |Δr| = |r𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − r𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑖𝑑𝑒𝑠 | with respect to the ephemerides data for the two asteriods does

not change with 𝜑 and is always the one presented in Figures 3a and 3b, thus 𝜑 can be exploited with the purpose of

performing faster simulations.

V. Numerical performances and validation for the single simulation
The performances of the different simulation strategies in the single long term simulation will be shown for the

two near Earth asteroids Apophis and 2010RF12, in terms of time steps taken, CPU runtime and error evolution with

respect to SPICE data. The initial state was taken from SPICE ephemerides data on the 1st January 1989 at noon and

the simulations are carried out 100 years forward in time in the J2000 reference frame. Both the asteroids feature a

steep close encounter with Earth within this time span. Due to the prevalent interplanetary nature of the motion the

integration neglects J2 and drag effects. Solar radiation pressure is not considered, because the product of the refraction

coefficient for asteroids and the area-to-mass ratio is negligible, and also difficult to estimate given the irregular asteroid

shapes and variable material composition. General relativity effects are included, based on a self manipulation [60] of

the post-Newtonian model proposed by Will [59] as written by Seidelmann [61]. The simulations have been performed

using an Intel® Xeon® CPU E5-4620 V4 running at 2.10 GHz.

The following nomenclature is used to identify the tested cases: "FIXED" or "SWITCH" to consider whether

switching the integration center in case of flybys, "COWELL" or "KS" for the adopted dynamics formulation (either the

Cartesian or the KS formulation of the restricted N-body problem), "EN" or "AUY" for the energy-based and AU-Year

non-dimensionalization strategies respectively, "SUN" or "SSB" for the center of the interplanetary legs (either the

Sun’s center of mass or the Solar System’s barycenter).

A. Single trajectory simulation results

All the presented runs have been performed using the Runge Kutta 4/5 and 7/8 numerical schemes. Dimensional

simulations are not presented, as the maximum number of time steps, set to 105 in this work, is reached before reaching

5% of the time span, also before the flyby events. Given the problem typical magnitudes (108 km for positions, 101

km/s for velocities) dimensional simulations could likely be made faster if the values for the absolute tolerances were

made high enough. The preferred approach is however to use suitable non-dimensionalization procedures, to preserve

robustness that high order schemes, such as the Runge Kutta 7/8 used in this work, have for propagations with stringent

tolerances. All the presented analyses have been performed using Matlab® and interfacing with JPL’s ephemerides

data through the SPICE toolkit [62] for retrieving the coordinates of the N bodies, considered as all the Solar System’s

planets plus the Moon.

The benchmark time steps and runtimes are reported in Table 1.
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Table 1 Simulation performance benchmark, AUY-COWELL-FIXED, average of 200 runs.

RK45 RK78
Case Features Steps Runtime [s] Steps Runtime [s]

Apophis

Relativity No
63218 140.63 7246 34.25

Centre SSB
Relativity No

63118 149.09 7357 34.88
Centre SUN

Relativity Yes
62863 180.61 7187 39.74

Centre SSB
Relativity Yes

62805 193.42 7316 44.24
Centre SUN

2010RF12

Relativity No
59679 134.21 6820 32.29

Centre SSB
Relativity No

59596 142.12 6934 33.72
Centre SUN

Relativity Yes
59664 167.13 6820 37.59

Centre SSB
Relativity Yes

59625 179.14 6929 42.09
Centre SUN

The same cases are re-run making use of the energy non-dimensionalization, shown in Table 2. One can already see

that, despite the two objects are near-Earth asteroids, the better tuning of the reference quantities already reduces the

number of time steps taken and the total runtime by more or less 10% for the correspondent center and force benchmark

cases. No significant step and runtime difference was found running the SWITCH case for the same formulation and

non-dimensionalization strategy.

Finally, Table 3 shows the time steps and the runtimes obtained using the KS formulation of the energy non-

dimensional variables and dynamically switching the centre of the reference frame to the flyby body whenever the

propagated object enters a sphere of influence. The proposed KS barycentric formulation is used when the default

center of the interplanetary phase is the SSB, whereas the standard perturbed KS formulation is adopted whenever

a flyby happens and also for default Sun-centric integrations in the interplanetary phase. The presented steps and

runtimes correspond to the fibration point selected according to the optimization presented in Section IV.A, in the

interval [0, 𝜋/2]. To this extent, Figures 2a and 2b show the time steps that are obtained for other values of the fibration

parameter 𝜑. The runtime is not reported, although it is proportional to the increase in time steps since the dynamics

formulation and implementation remains the same.

Simulations in KS coordinates without frame switch are not presented, because the numerical scheme led to the

minimum step-size at the moment of close encounter, exceeding the maximum number of steps (106) before the

end of the integration span although matching the accuracy of the presented cases in the pre-flyby legs. In fact,
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Table 2 Simulation performances, EN-COWELL-FIXED, average of 200 runs.

RK45 RK78
Case Features Steps Runtime [s] Steps Runtime [s]

Apophis

Relativity No
58949 133.11 6551 28.82

Centre SSB
Relativity No

58952 140.90 6646 32.51
Centre SUN

Relativity Yes
58579 166.27 6549 37.40

Centre SSB
Relativity Yes

58519 174.61 6637 40.85
Centre SUN

2010RF12

Relativity No
55770 128.99 6287 27.56

Centre SSB
Relativity No

55749 130.62 6404 31.96
Centre SUN

Relativity Yes
55754 160.14 6282 36.04

Centre SSB
Relativity Yes

55727 165.68 6385 39.81
Centre SUN

the regularization concept introduced with the KS formulation makes the dynamics sensitive to flyby events, i.e.

nearly-singular accelerations, since happening over a non-regularized center.

For all the presented cases the angle 𝜑 for the initial KS vector generation has been set according to the necessary

optimality condition, searching for the best among the possible 0 < 𝜑 < 𝜋/2 candidates based on the averaged

unperturbed KS state, every time the reference frame was switched. Note that the same condition is used for barycentric

simulations, because the problem being weakly perturbed and heavily dominated by the Sun makes the difference

between barycentric and Sun-centric coordinates small.

It can be clearly seen in Table 3 that the number of time steps taken drops of almost 40% with respect to the

benchmark case, and the total runtime of about 30%, comparing the respective force and center cases. This 10%

difference bewteen runtime and time step improvements can be explained by the switch events not computed at all in the

previous cases. In any case, the improvement brought by the longer time steps that can be safely taken outbalances the

advantages to the KS formulation even for cases where the event computation is not necessarily required, despite the

extra function evaluations. Another 10% difference is added if the results obtained using the barycentric KS formulation

are compared with the Sun-centric benchmark cases for the same force model.

Figures 3a and 3b portrait the evolution of the position error |Δr| = |r𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − r𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑖𝑑𝑒𝑠 | with respect to JPL’s

ephemerides data [62] for the two different formulations, Cowell’s method with the AU-year non-dimensionalization

and KS formulation with energy non-dimensionalization and dynamic frame switch. The precision of the frame switch
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Table 3 Simulation performances, EN-KS-SWITCH, average of 200 runs.

RK45 RK78
Case Features Steps Runtime [s] Steps Runtime [s]

Apophis

Relativity No
39760 102.68 4025 23.19

Centre SSB
Relativity No

39806 100.73 4423 25.22
Centre SUN

Relativity Yes
39502 123.03 4007 26.89

Centre SSB
Relativity Yes

39500 130.87 4407 31.60
Centre SUN

2010RF12

Relativity No
37479 94.79 3765 21.88

Centre SSB
Relativity No

37449 95.94 4373 24.95
Centre SUN

Relativity Yes
37448 113.59 3782 25.34

Centre SSB
Relativity Yes

37445 123.49 4366 31.35
Centre SUN

and the Energy non-dimensionalization was tested on the Cowell’s method too, which is not shown because no visible

difference with the results from the benchmark (AU-year, no switch) case was found. Similarly, the RK45 and RK78

numerical schemes are equivalent and non-distinguishable in terms of accuracy, although the latter always requires a

lower computational effort. It can be clearly seen that the two respective force cases match, with or without accounting

for general relativity effects. This already promotes the KS optimized formulation as the simulation method to be always

preferred when compared to Cowell’s, even for long term simulations in the fully perturbed environment, as it runs

significantly faster achieving the same precision for the correspondent force models. Furthermore, as it can also be seen

considering the results presented in Table 3, the relativistic integration in KS variables is always faster than the Cowell’s

N-body integration, allowing for increased precision and reducing the required computational effort.

Figures 4a and 4b still represent the evolution of the position error throughout the integration accounting for

relativistic effects, despite showing its relative magnitude with respect to JPL’s ephemerides data, and add a comparison

with a higher accuracy integration performed on the EN-COWELL-SWITCH case but setting absolute and relative

tolerances to 10−14 with the RK78 scheme. The denser higher precision solution has been cubic spline-fitted to the

already presented integration, particularly before the flyby events precision difference and fitting noise cannot be told

apart. On the contrary, after the flyby it can be seen that the integration performed with the KS formulation remains

nearly one order of magnitude closer to the higher precision solution. The relative error measure referred to JPL’s

ephemerides data for the two asteroids highlights again the flyby effect on long term simulations. For the particular case
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(a) Apophis

(b) 2010RF12

Fig. 3 Position error evolution for the different force models and formulations, with respect to JPL’s data.

of Apophis, the steep flyby of Earth has the effect of amplifying by several orders of magnitude the error accumulated

before the close encounter. Despite the physical model adopted in this work for the relativistic integration should

match the one used by JPL (the user manual points to the model presented by Seidelmann [61] for the ephemerides

generation), other error sources are present, which could all explain the still low error accumulated before the flybys:

JPL’s ephemerides are generated with an Adams-Bashforth scheme and are then stored as coefficient of a polynomial

interpolation, so that the user can request their value at specific epochs [62].

B. Monte Carlo simulation and planetary protection analysis in KS coordinates

The case of the upper stage of the launcher of Solar Orbiter (SolO) is presented, performing a Monte Carlo simulation

with samples generated from the uncertainty on the initial condition given as a covariance matrix, reported in Table

5 and with initial condition given in Table 4. Such data have been taken from [5], where this test case was studied

first. Note that it refers to a mission profile later discarded, whose launch was originally scheduled for late 2018 and

ultimately happened in February 2020. The presented results have been obtained with the same simulation routines used

for the just discussed single simulation cases.

A total of 54114 samples has been generated for each case and simulated, based on the results of Wilson’s expression

[63] as done by Jehn [64] and Wallace [65], and following the implementation proposed in [3–5].
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(a) Apophis

(b) 2010RF12

Fig. 4 Relative position error evolution with higher precision relativistic simulation.

Table 4 Inital state of SolO’s upper stage of launcher, J2000 reference frame [5].

𝑟𝑖 [km] 𝑟 𝑗 [km] 𝑟𝑘 [km] 𝑣𝑖 [km/s] 𝑣 𝑗 [km/s] 𝑣𝑘 [km/s] 𝑡0 [MJD2000]
132048839.02 63140185.88 27571915.38 -12.20 20.24 9.77 6868.62

After the completion of the Monte Carlo simulation, the impact probability of the disposal upper stage of launcher

with Earth, Mars and Venus is computed by taking the ratio of the number of simulated impacts over all the generated

samples. Tables 6 and 7 presents the results of different Monte Carlo simulations, parallelizing the simulations over 40

cores of the same kind of the one used for the single trajectory simulation. Particularly, the Cowell’s case is propagated

in one of the two fixed reference frames, SUN and SSB, and persistently checks whether an impact with Venus, Earth

and Mars has happened or not at each time step. The KS case switches between either SSB or SUN and planetocentric

frames, uses the energy non-dimensionalisation and checks for impacts only if entering any sphere of influence. Also

the same numerical scheme, Runge-Kutta 7/8, is used in both cases and for all the samples. In particular, Table 6

highlights the integration steps required by the different setups to detect the impact characterizing the barycenter of

the sampled uncertainty cloud. The regularization benefits become particularly visible in this case: impacts can be

detected almost twenty times faster, because of the removed mathematical singularity experienced by the Cartesian

formulation when approaching any of the considered attractors, and more in general close approaches can be handled by
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Table 5 Elements of the covariance matrix of SolO’s upper stage of launcher, J2000 reference frame [5].

Position Covariance
𝑟𝑖 [km] 𝑟 𝑗 [km] 𝑟𝑘 [km]

𝑟𝑖 [km] 5.351 39 × 104

𝑟 𝑗 [km] 5.409 22 × 104 1.355 41 × 105

𝑟𝑘 [km] −2.562 06 × 104 4.507 88 × 103 1.728 26 × 105

Cross Covariance
𝑟𝑖 [km] 𝑟 𝑗 [km] 𝑟𝑘 [km]

𝑣𝑖 [km/s] 2.482 01 × 10−1 2.336 55 × 10−1 −1.370 13 × 10−1

𝑣 𝑗 [km/s] 2.744 11 × 10−1 7.100 15 × 10−1 5.015 10 × 10−2

𝑣𝑘 [km/s] −1.205 15 × 10−1 3.426 92 × 10−2 8.333 12 × 10−1

Velocity Covariance
𝑣𝑖 [km/s] 𝑣 𝑗 [km/s] 𝑣𝑘 [km/s]

𝑣𝑖 [km/s] 1.155 77 × 10−6

𝑣 𝑗 [km/s] 1.179 08 × 10−6 3.724 23 × 10−6

𝑣𝑘 [km/s] −6.484 88 × 10−7 3.077 51 × 10−7 4.019 29 × 10−6

the KS formulation with much larger time steps than what Cowell’s method does. The small differences between the

barycentric and the Sun-centric results of the barycenter simulation may be due to the particular configuration of the

selected case. Table 7 focuses instead on whole Monte carlo outcome. The total runtime is almost halved, achieving a

Table 6 Simulation outcome of the uncertainty barycenter of SolO’s upper stage of launcher.

Case Barycenter
Result Steps

AUY-COWELL-FIXED-SSB Impact 1872
AUY-COWELL-FIXED-SUN Impact 1889
EN-COWELL-SWITCH-SSB Impact 1823
EN-COWELL-SWITCH-SUN Impact 1798
EN-KS-SWITCH-SSB Impact 88
EN-KS-SWITCH-SUN Impact 84

reduction of more than 46%. As the number of time steps taken by the barycenter of the generated cloud (Table 6) tells,

this, in turn, provides the observed performance enhancement with respect to the single simulation cases presented in

Table 3: estimating impact probabilities requires analyzing what happens close to the encountered bodies, which is also

the main advantage of the KS formulation, as it embeds an adaptive scaling of the physical time for different distances

from the current primary attractor. Note finally that the estimated impact probability remains basically unchanged, the

slight difference might be due to both few borderline cases where the time step that would actually be within the impact
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Table 7 Planetary protection analysis of SolO’s upper stage of launcher [5]

Case Estimated Runtime
impact probability

AUY-COWELL-FIXED-SSB 4.0211 % 26.66 hours
AUY-COWELL-FIXED-SUN 4.0211 % 26.45 hours
EN-COWELL-SWITCH-SSB 4.0248 % 27.65 hours
EN-COWELL-SWITCH-SUN 4.0192 % 28.75 hours
EN-KS-SWITCH-SSB 4.0192 % 14.23 hours
EN-KS-SWITCH-SUN 4.0156 % 13.22 hours

region is skipped by the KS integration, and also because of the slightly different samples generated from the initial

same covariance matrix (Table 5).

C. Results summary

This work aimed to improve the efficiency of the single simulation strategies, which once performed within a Monte

Carlo simulation and post-processed accordingly build a complete planetary protection analysis. Figure 5 shows the

relative steps and runtime improvements brought by the different formulations and implementations analyzed in this

work, for the single simulations of the asteroids Apophis and 2010RF12 in the relativistic case, with respect to the

AUY-COWELL-FIXED case. The results for the Newtonian simulations that could be plotted from the values available

in Tables 1, 2, and 3 are analogous, despite a lower improvement margin introduced by the barycentric simulations.

As dimensional propagations are not efficient in general, the adaptive energy-based non-dimensionalization has

been shown to also improve the usual simulation techniques using Cartesian coordinates. For the transition to KS

coordinates, this choice of reference quantities becomes necessary, as well as switching the center of reference frame

becomes mandatory for the simulation convergence.

The primary-centric KS formulation has been implemented and used in the full force problem and its barycentric

counterpart has been derived. In general, the KS approach improves the efficiency of numerical simulations as larger

time steps can be taken without any precision loss. Despite the on-paper lost linearity property, the barycentric KS

formulation exhibits the best performances overall, both in terms of time steps taken and total runtime required, especially

for the relativistic case. In this context, the runtime reduces more than the number of steps, with respect to the KS

Sun-centric case. The reduced time steps may be explained by an overall more regular dynamics being propagated,

not affected by tidal terms. The further runtime reduction especially evident in relativistic simulations is experienced

because evaluating the dynamics function itself is much more efficient in the barycentric case, also being the original

frame where the dynamical model is given [61]. Despite not as much as in the relativistic case, an improvement is also

obtained in the Newtonian dynamics simulations, again because of the absence if tidal terms in the force model.

The energy-based non-dimensionalization has been exploited to obtain a closed form expression for the optimal
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Fig. 5 Speedup provided by the different formulations and implementations.

pre-processing of the KS initial condition, for problems whose primary dynamics remains two-body. The degree

of freedom left in the mapping to the four-dimensional KS space has been fixed maximizing the magnitude of the

averaged (or initial, equivalently) minimum magnitude element in the unperturbed problem. Because of the way adaptive

numerical integration schemes take the initial time steps, the ranges of possible initial conditions that lead to minimized

integration steps could be accurately predicted. Furthermore, the improvement is not limited to the step and runtime

reduction: as Figures 4a and 4b show, the simulations performed with the KS formulation remain nearly one order of

magnitude more accurate than the correspondent Cartesian cases, for the same numerical scheme and absolute and

relative integration tolerances.

The proposed KS formulation has been finally adopted to perform the planetary protection analysis of Solar Orbiter’s

upper stage of launcher. An even larger relative reduction of the total runtime is obtained, with respect to the presented

single simulation cases: impacts, therefore close approaches, are the objective of analysis and the KS formulation is

exactly built to better handle small distances from the primary. This aspect was highlighted particularly by the much

lower time steps taken by the impacting barycenter, it can be seen in Table 6, more than twenty times lower than the

usual Cowell’s approach.
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VI. Conclusions
Kustaanheimo-Stiefel variables have been proven to efficiently propagate trajectories experiencing near singularities,

such as flybys or impacts. Implementing a dynamic frame switch procedure was crucial to this extent, shifting also

the regularization over the closely approached body. The energetic non-dimensionalization contributes to the overall

stability and efficiency of the system, enhancing the numerical performance as the reference quantities it identifies are as

close as it can be predicted to the actual trajectory. The barycentric version of the equation of motion ensures the best

performance overall because it embeds a dynamical system that is deprived of all tidal terms and therefore made the

more regular possible. This version of the dynamics should be tested on low energy problems, to assess whether the

same benefits observed on dominantly two-body cases can be obtained on low energy problems or not. The degree of

freedom left by the introduction of the fourth dimension in the KS space can be effectively exploited to minimize the

numerical stiffness of the system. One possible fibration paradigm exploitation is therefore defined, allowing to identify

specific KS states with the purpose of maximizing the efficiency of trajectory propagations.

Single simulations performed in KS coordinates, even if characterized by flybys, experience a reduction of the

computational burden of more than 40%, while at the same time remaining nearly one order of magnitude more accurate

than the same case propagated in Cartesian coordinates, on a Sun-centric reference frame and with Astronomical Unit

and Year set as reference dimensions. Even the highest fidelity tasks, main reason for which most applied simulators

using complex force models still use Cartesian coordinates, should be executed in KS coordinates, since their adoption

would only bring precision and efficiency advantages.

Finally, it can be said that the more singular the analysis requiring orbital propagations, the greater the improvements

that the KS formulation can bring with respect to the Cartesian case, regardless the physical model adopted. The faster

assessment of impacts remarkably simplifies one of the computational challenges of the design of mission trajectories.

The compliance of a disposal maneuver with planetary protection requirements can be verified almost twice as fast with

KS coordinates, without any sacrifice of precision, at least for dominantly two-body trajectory legs. Upon testing of the

barycentric version on more modern missions arising from the exploitation of low-energy environments, even in the

case of three body-like trajectories the regularization benefits could be introduced, ultimately leading to a generic and

efficient computational tool that could contribute to speed-up the trajectory development process.
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