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Abstract

In this paper we present a mathematical and numerical model for human cardiac perfusion which accounts for 
the different length scales of the vessels in the coronary tree. Epicardial vessels are represented with fully 
three-dimensional (3D) fluid-dynamics, whereas intramural vessels are modeled as a multi-compartment 
porous medium. The coupling of these models takes place through interface conditions based on the con-
tinuity of mass and momentum. Instead, is neglected in this first preliminary model the myocardium 
deformation. To estimate the physical parameters of the multi-compartment model, a virtual intramural 
vascular network is generated using a novel algorithm which works in non-convex domains. Modeling epi-
cardial vessels with a 3D model and intramural ones with a porous medium approach makes it possible to 
apply the proposed strategy to patient-specific heart geometries reconstructed from clinical imaging data. We 
also address the derivation of numerical solvers for the coupled problem. In particular, we propose a splitting 
algorithm for the monolithic problem, with the corresponding convergence analysis performed in a simplified 
linearized case, and a suitable preconditioner for the multi-compartment porous sub-model. Finally, we test 
the computational framework in a realistic human heart, obtaining results that fall in the physiological range 
for both pressures and local myocardial flows.

Keywords: Cardiac perfusion, multi-compartment Darcy model, intramural vessel network, iterative 
numerical scheme, Finite Elements, perfusion regions

1. Introduction

The cardiac muscular tissue (myocardium) requires continuous oxygen supply to properly work, i.e. to
contract and pump the blood into the whole arterial system. Oxygenated blood reaches the heart through
the coronaries and perfuses the whole myocardium, allowing the exchange of oxygen at the level of the
microvasculature [66]. A reduced oxygen delivery to the myocardium can occur in the presence of flow
reduction either because of the presence of coronary arteries obstructions, like in atherosclerosis, as well
as in the presence of normal coronary arteries because of a severe aortic valve regurgitation, with steal of
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coronary flow during diastole, or because of severe left ventricular hypertrophy, causing inadequate oxygen
delivery, like in severe aortic valve stenosis or chronic systemic hypertension.

The direct measurement of blood perfusion is nowadays possible by means of myocardial blood flow
(MBF) maps [45, 12, 51] or myocardial perfusion reserve [68, 17, 6], obtained by Computed Tomography
(CT) scan and Magnetic Resonance Imaging (MRI), respectively. However, these techniques are still seldom
used in the daily diagnostic practice, also because they require very expensive procedures, which are also
very demanding for the patients in terms of radiological exposition and/or duration of the acquisition exam.
In addition, we have to take in account that a realistic coronary tree reconstruction should provide not only
morphometric data but also information about the flow [49]. The myocardium is the organ in the body with
the highest oxygen consumption and extraction per gram [29], and the coronary blood flow is controlled by
multiple mechanisms [29, 49], with the coronary microvessels responsible for the major portion of the flow
resistance [49].

Numerical simulation can in principle provide meaningful quantitative information about myocardial
perfusion, both in physiological and in pathological conditions. It allows, for instance, to quantify the
amount of blood perfusing the different regions of the myocardium for selected virtual scenarios of coronary
artery stenosis. For this reason several authors have developed in the past few years mathematical and
numerical models for a better understanding of such process.

For a comprehensive mathematical description of myocardial perfusion, we detail in what follows the
specific processes and features that should be considered in the models, together with some related significant
works.

1. The coronary tree is characterized by the co-existence of multiple space scales, going from the large
coronaries (∼ 1 mm), to the arterioles and venules (∼ 0.1 mm), until the microvasculature (∼ 0.01 mm)
[43]. Since only the large coronaries are detectable by the standard imaging techniques, it is mandatory
to properly build surrogate models for arterioles/venules and microvasculature or reconstruct them
from ex-vivo data. The blood dynamics in the largest coronaries is typically described by means of
the 3D fluid-structure interaction problem [30, 37], the 3D Navier-Stokes equations in rigid domains
[61, 60], or the reduced 1D model for blood flow [64]. Regarding the modeling of the medium and
micro- vasculature, a multi-compartment model based on a hierarchical subdivision of the vessels has
been considered in [33, 32]. After operating an homogenization procedure, the blood flow in the
myocardium is treated as the flow through a porous medium. In this respect, a straight Darcy model
has been considered in [42], whereas a more-sophisticated multi-compartment Darcy model has been
proposed in [15, 47, 34, 35, 41], see also [57] for an application to the perfusion in the liver.

2. The interaction between the cardiac muscle and the coronaries is relevant because there is a strong
interplay between the blood dynamics in the large vessels, which are usually located on the epicardium,
and that in the medium and micro- vessels which sit in the myocardial muscle. Indeed, pressures and
flow rates are continuously exchanged. With this aim, a 1D-3D model for the coupling between large
coronary arteries and intramural vessels has been considered in [47, 35, 42, 41].

Further, the coronary flow rate is strongly influenced by the cardiac muscle contraction. During the
systolic phase the myocardial contraction increases the ventricular pressure, causing the compression
and the closure of the intramural coronary vessels. The corresponding increase of vascular resistances
leads to a decrease of the coronary blood flow during the systole. On the contrary, during the dias-
tolic phase, the myocardial relaxation reduces the ventricular pressure, the lumen of the intramural
coronaries is open and the tissue can be widely perfused [77]. This effect is usually called the systolic
inhibition. To account for this, some authors considered a poro-elastic model of the myocardium, see
e.g. [33, 13, 15, 42, 41, 75].

3. Selective perfusion is important because recent studies suggested that the myocardium is composed by
well defined regions which are perfused by distinct arterial coronaries [67]. For the modeling of such
feature, a subdivision of the myocardium in perfusion regions has been proposed in [15], see also [9]
for an application to the upper limb.
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4. A complete description of both ventricles is particularly relevant in view of an integrated model of
myocardial perfusion and coronary hemodynamics, accounting for the blood supply provided by the
coronary arteries, with the total coronary blood flow unequally distributed between right and left
coronary arteries [6], and for the corresponding coronary venous return.

On the basis of the works reviewed above, we present a mathematical model applied to myocardial 
perfusion in both left and right ventricles of a human heart. We adopt a multi-physics approach where we 
couple the 3D blood dynamics inside the large coronary vessels with the blood dynamics inside the intramural 
vasculature, which is modeled by means of 3D multi-compartment Darcy equations. This model requires a set 
of parameters, the estimation of which depends on the topology of the network of the intramural vessels. To 
this purpose, we propose an algorithm to generate a surrogate intramural vascular network in a biventricular 
geometry combining the algorithm proposed for the cube in [34] with the strategy proposed in [63] for the 
generation of vessels in non-convex domains. This approach has the advantage to be directly applicable to 
data that are available in clinical practice, such as the CT scan of the coronary tree (also named CT 
angiography, CTA). In fact, such data allow to reconstruct the geometries of the main epicardial coronaries 
and the ventricles. Moreover, we carry out an in-depth investigation of the numerical approximation of the 
multi-physics coupled problem. In particular, we propose an iterative algorithm to split the monolithic 
problem and we provide a convergence analysis for a simplified linearized version of the problem. Further, we 
approximate the Navier-Stokes and the multi-compartment Darcy subproblems by means of backward 
differences formula for time and Finite Elements for space discretizations and we propose a block diagonal 
preconditioner for the algebraic problem related to the multi-compartment Darcy problem. Finally, we assess 
the validity of the proposed algorithms by means of numerical experiments both in an ideal and in a realistic 
scenario, taking a first step towards the validation of the proposed models.

The outline of this work is as follows. In Section 2 we present the mathematical coupled problem, the 
strategy for the partition of the myocardium, and we describe how to generate the intramural network for the 
estimation of the multi-compartment Darcy model parameters. In Section 3 we introduce the Finite Elements 
and time discretizations, we detail the splitting strategies to handle the coupled problem and we describe the 
preconditioners used for the solution of the linear systems. In Section 4 we present several numerical results 
showing the effectiveness of the mathematical and numerical models proposed in this work. We conclude the 
paper with some final remarks in Section 5.

2. Multi-physics modeling of myocardial perfusion

The morphology of the coronary arterial tree (form large vessels to capillaries) has a well-defined struc-
ture, as illustrated in Figure 1(a). The large coronaries start at the aortic root and spread along the epicardial 
surface. A clear scale separation is observed between the main vessels laying on the epicardium and the smaller 
vessels penetrating into the tissue. Following the subdivision proposed in [43], we name the former as 
epicardial coronaries and the latter as intramural vessels. We point out that in this classification we include 
microvessels and in particular capillaries into the intramural vessels. Intramural vessels should not be 
confused with the intramural coronary artery, which refers to the coronary patterns in which there is an 
intimate relationship between aortic and coronary arterial walls; histologically, the aortic and coronary medial 
walls are attached without interposed adventitia [48]. We also observe that much smaller vessels depart 
transversally from the main coronaries and penetrate into the cardiac muscle to perfuse portions of it. We refer 
to such vessels as transversal vessels.

On the basis of the observable scale separation, multiscale and multi-physics approaches seem the only 
viable choice for a comprehensive mathematical description of myocardial perfusion. In this work, we adopt a 
multi-physics model where epicardial vessels are represented as three-dimensional objects (see Sect. 2.1). To 
model the variation and the evolution of spatio-temporal fields, such as the pressure, in the intramural vessels, 
we adopt a homogenization approach leading to a multi-compartment porous medium model in the 
myocardium (see Sect. 2.2). This model is well suited to be coupled with the 3D description of the coronary 
flow because they share the same geometric dimension and mathematical structure. However, the coefficients 
characterizing such a model are difficult to measure, partly because they may vary in space through the
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Figure 1: (a) Cast of Coronary Arteries, source Wikipedia; (b) epicardial vessels; (c) intramural vessels; (d) 3D blood flow 
dynamics model inside coronary domain (pressure depicted); (e) porous media flow model inside myocardial domain (pressure 
depicted); (f) myocardium partitioned into different perfusion regions; (g) example of generated intramural vascular network 
inside a perfusion region.

myocardium. For this reason we introduce a (sub-scale) description of the myocardium into perfusion 
districts combined with the generation of virtual intramural vascular trees, respecting the fundamental 
physiological principles. Even if this subscale description could be used to obtain a direct accurate numerical 
solution (as an example the whole myocardium will be split in our case reported here into 17 perfusion regions 
each containing thousands of vessels), due to the computational effort we use them only to estimate the 
physical parameters characterizing the porous medium perfusion model, see Section 2.4. In conclusion, the 
proposed multi-physics model consists in the 3D description of blood flow coupled with a multi-compartment 
porous medium model applied to the myocardial perfusion. The coupling takes place at multiple levels: 
directly, through interface conditions based on the continuity of mass and of momentum (see Sect. 2.3), 
and indirectly, through the virtual network of intramural vessels. The design of the multi-physics model is 
displayed in Figure 1.

2.1. Fluid-dynamics in the epicardial coronary vessels

Nowadays standard biomedical imaging acquisition techniques, like CT scan, allow to detect and recon-
struct only the large coronaries, above 1 mm of diameter. For such vessels (usually up to about 20 vessels 
for the most detailed level of reconstruction), classical segmentation techniques [4] can be applied to recon-
struct the 3D patient-specific vascular geometry. 3D Navier-Stokes (NS) equations are then used to model 
the blood dynamics therein. Although far more computationally expensive than 1D flow models (very often 
used for the coronary tree), 3D models ensure a better accuracy and a better fit of the patient coronary 
shapes. These features are of primary importance, e.g. to evaluate the vascular flow reserve, as well as to 
better capture flow disturbance downstream a stenosis, an instance that could have a great impact on the 
clinical applications of the cardiac perfusion model. Notice however that we are not accounting here for the 
compliance of the coronary vessels wall. Fluid-structure interaction problems, where 3D NS equations are 
coupled with suitable elastodynamic equations for wall deformation [55], possibly combined to poro-elasticity 
models for the intramural vessels, could provide an interesting improvement for future studies.
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Referring to Figure 2, the blood dynamics in the coronary domain ΩC are modeled by means of the Navier-
Stokes equations for an incompressible, homogeneous, and Newtonian fluid [54], under the assumption of
rigid walls:

ρ

(
∂uC

∂t
+ (uC · ∇)uC

)
− µ∇ ·

(
∇uC + (∇uC )T

)
+∇pC = 0 in ΩC , (1a)

∇ · uC = 0 in ΩC ,

uC = 0 on Γw , (1b)

uC = uin on Γin, (1c)

where uC and pC are the blood velocity and pressure, respectively, in the epicardial coronaries, ρ the
blood density, µ the blood viscosity; Γw is the lateral physical vessel wall, where a no-slip condition (1b)
is prescribed. The surface Γw includes also the outlet sections feeding the atria, where we assume that the
flow rate is negligible with respect to the ventricular outlets [71]; Γin is the inlet section representing the
coronary left and right ostia located at the aortic root, where a physiological velocity profile uin is imposed.

Figure 2: Sketch of the computational domain for the epicardial coronary vessels

As we can notice from Figure 2, the computational domain is composed also by the distal outflow sections
Γj , j = 1, ... , J. Here, the coupling with the intramural vasculature is considered. The corresponding coupling
interface conditions will be discussed in Sect. 2.3.

2.2. Fluid-dynamics in the intramural vasculature: multi-compartment Darcy model

In this section we introduce a mathematical model for the intramural (medium and micro) vessels. We
consider a porous media model for the description of the myocardium because the standard biomedical in-vivo
imaging techniques do not allow to reconstruct the patient-specific geometry of the intramural vasculature.
To account for the different length scales of the vessels in such a region, we consider a 3D multi-compartment
Darcy model [34, 35]. That requires the introduction of parameters representing the local permeability and
conductance among compartments.

The multi-compartment Darcy model relies on using the Darcy equation in every compartments, featuring
different length scales, that coexist in the same domain ΩM representing the myocardial muscle [34, 35, 47,
15]. The equations of Darcy flow for compartment i ∈ [1, N], with N being the number of compartments,
are:

K
−1
i uM,i +∇pM,i = 0 in ΩM , (2a)

∇ · uM,i = gi −
N∑

k=1

βi ,k(pM,i − pM,k) in ΩM , (2b)

uM,i · n = 0 on ∂ΩM , (2c)
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where, in the i − th compartment for i = 1 ... N, uM,i and pM,i are the Darcy velocity and the pore pressure,
respectively, Ki the permeability tensor, gi a volumetric source (or sink) term, and βi ,k ≥ 0, i , k = 1 ... N,
represent the inter-compartment pressure-coupling coefficients. In particular, the model hypothesizes that
due to mass conservation, the divergence of the Darcy velocity is compensated by a source or sink external
term and by mass exchanges between different compartments, which depend on the pressure jumps between
the latter. To enforce mass conservation among compartments, we have that βi ,k = βk,i , ∀i , k = 1, ... , N,.
Moreover, βi ,k 6= 0 whenever k = i ± 1 for 2 ≤ i ≤ N − 1, k = 2 for i = 1, k = N − 1 for i = N, since the
compartment i exchanges mass only with adjacent compartments. The estimation of such parameters will
be investigated in Sect. 2.4.

The first compartment is the one upstream, its g1 will be provided by the epicardial blood dynamics
(see Sec. 2.3). Instead, the volumetric term of the farthest away compartment gN (i.e. the microvascu-
lature), is a sink term that accounts for coronary venous return, see Section 2.3. Finally, we notice that
gj = 0, j = 2, ... , N − 1, since the intermediate compartments do not exchange mass with the external
environment.

From the mass conservation and the null flux conditions on the epicardial and endocardial surface ∂ΩM

(2c), we have the following compatibility condition:∫
ΩM

(g1 + gN)dx = 0.

For our purposes, we deem that three compartments are enough for a description of the hemodynamics
in the intramural vessels, see also [35]. We will therefore set N = 3 from now on.

Notice that the most of the blood perfusion in the myocardium (about 80% [29]) occurs during the
relaxation phase, when the deformation of the myocardial muscle does not affect significantly the intramural
vessels cross-section. This motivates our choice to neglect, as a first approximation, the myocardial movement
due to heart contraction and relaxation.

2.3. Mathematical formulation of the coupled problem and coupling conditions

In this section we close the mathematical problems introduced in the previous sections by providing
the coupling conditions between the epicardial and the intramural hemodynamics. We need two coupling
conditions, one ensuring the conservation of mass and another one for the balance of interface forces (third
Newton law, see [56]).

We also identify perfusion regions Ωj
M , j = 1, ... , J, [67] where the exchange of information between

epicardial and intramural vessels occurs. We assume that there is a one-to-one correspondence between
outlets of epicardial vessels and perfusion regions. So to have exactly J perfusion regions. The procedure
used to partition the myocardial domain in non-overlapping perfusion regions will be described in Section
2.4.1. The coupling conditions between NS equations (1a)-(1c) and the multi-compartment Darcy model
(2a)-(2c) are the following:

a) conservation of mass: the first compartment in the multi-compartment Darcy model (the most up-
stream one) exchanges mass with the coronary outflows Γj . Thus, the volumetric source g1 in (2b)
should be provided by the outgoing coronary flow rate:

g1(x) =
J∑

j=1

χΩj
M

(x)

|Ωj
M |

∫
Γj

uC · ndγ,

where the notation χA stands for the characteristic function of the domain A;

b) balance of interface forces: due to the heterogeneity of the two models and to the distributed nature
of the Darcy model, we expect to have a pressure jump at the interface Γj which induces the following
epicardial coronary flow rate [74]:∫

Γj

uC · ndγ = αj

(
1

|Γj |

∫
Γj

pC (x)dx− 1

|Ωj
M |

∫
Ωj

M

pM,1(x)dx

)
, j = 1, ... , J,
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where n is the unit outer normal vector and αj the conductances (supposed to be dependent on the
perfusion region). Notice that again only the first compartment is involved in the coupling condition
and that we consider the average of pressure on the whole compartment Ωj due to the homogenized
nature of the Darcy equation.

The previous condition is defective since involves average quantities [73, 26, 53]. We therefore re-
formulate it into the following mixed pointwise/defective Robin condition, which guarantees enough
boundary information for the normal component :

−pC + µ
(
∇uC + (∇uC )T

)
n · n+

1

αj

∫
Γj

uC · ndγ = − 1

|Ωj
M |

∫
Ωj

M

pM,1(x)dx on Γj ,

where we have assumed a constant coronary normal traction over the section Γj .

Being a second order partial differential equation, the epicardial problem needs also a condition for
the tangential components. Here, we assume that tangential tractions are null, i.e.:

µ(∇uC + (∇uC )T )n · τi = 0, i = 1, 2 on Γj ,

where τi are the two tangential unit vectors.

In what follows we summarize the whole coupled problem with its coupling conditions. In order to
better highlight its properties in the case we are interested in, we write it directly for the case of three
compartments (N = 3 in the multi-compartment Darcy model).

ρ

(
∂uC

∂t
+ (uC · ∇)uC

)
− µ∇ ·

(
∇uC + (∇uC )T

)
+∇pC = 0 in ΩC , (3a)

∇ · uC = 0 in ΩC , (3b)

pC − µ
(
∇uC + (∇uC )T

)
n · n− 1

αj

∫
Γj

uC · ndγ =
1

|Ωj
M |

∫
Ωj

M

pM,1dx on Γj , (3c)

µ(∇uC + (∇uC )T )n · τi = 0 i = 1, 2 on Γj ,

uM,1 + K1∇pM,1 = 0 in ΩM ,

∇ · uM,1 =
J∑

j=1

χΩj
M

|Ωj
M |

∫
Γj

uC · ndγ − β1,2(pM,1 − pM,2) in ΩM , (3d)

uM,2 + K2∇pM,2 = 0 in ΩM ,

∇ · uM,2 = −β2,1(pM,2 − pM,1)− β2,3(pM,2 − pM,3) in ΩM ,

uM,3 + K3∇pM,3 = 0 in ΩM ,

∇ · uM,3 = −γ(pM,3 − pveins)− β3,2(pM,3 − pM,2) in ΩM ,

where in the last equation we have accounted for the coronary venous return through pveins which de-
notes the venous pressure and γ is a suitable coefficient. Parameters Ki , i = 1, 2, 3, αj , j = 1, ... , J, and 
βi ,k , i , k = 1, 2, 3, need to be properly estimated. This will be the topic of the next section.

2.4. Generation of the intramural vascular network and parameter estimation
In order to provide the estimation of parameters Ki , i = 1, 2, 3, αj , j = 1, ... , J, and βi ,k , i , k = 1, 2, 3, 

appearing in the coupled problem (3), we first need to generate a personalized intramural vascular network. 
Although this is not patient-specific, it is however built on patient data, such as the myocardial and the 
epicardial coronaries geometries. Indeed, while the epicardial coronaries can be reconstructed from in-vivo 
medical images, intramural vessels are too small to be visible in standard in-vivo clinical data. Thus, the 
intramural vascular network must be artificially generated starting from the available patient-specific 
geometries. With this aim, in Sect. 2.4.1 we introduce a new algorithm to obtain a partition of the 
myocardium in non-overlapping perfusion regions (see Section 2.3), whereas in Section 2.4.2 we describe the 
steps for the generation of the network. Finally, in Section 2.4.3 we detail the procedure for the estimation 
of the parameters.
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2.4.1. Partitioning of the myocardium into perfusion regions

In this section, we describe the procedure used to partition the myocardial domain into non-overlapping
perfusion regions. As highlighted before, each perfusing vessel feeds only one of such regions.

We state that a generic point P in the myocardium belongs to the perfusion region Ωj
M , j = 1, ... , J, if,

among all the epicardial outflows, the section Γj is the closest one to P. Given P, to find j such that P ∈ Ωj
M ,

we propose the following steps, see Figure 3:

Figure 3: The three main steps of the partitioning of the domain: (a) computing the closest epicardial point to the barycenter
(projected outflows Q j ); (b) domain with 4 projected outflows and solution of the corresponding 4 eikonal problems; (c)
corresponding perfusion regions

1. for any outflow section Γj , j = 1, ... , J, we look for the point Q j such that

Q j = argmin
P∈∂ΩM

‖xP − xB j‖,

where xP are the coordinates of P and B j is the barycenter of Γj (see Figure 3(a)). In other words, we
look for the closest point of the epicardial surface ∂ΩM , named Q j to Γj ; for this reason we refer to Q j

as projected outflows;

2. for each j = 1, ... , J, we solve the following eikonal problem:

|∇d j | = 1 in ΩM ,

d j = 0 on Q j .

This allows us to compute for each point x of the myocardium the signed distance d j (x) from Γj (i.e. from 
its barycenter, see Figure 3(b)). The application of the eikonal equation to compute a signed distance in 
meshes was used and analyzed in literature [23, 16]. Fast Marching Method [40] and Fast Sweeping 
Method [31] are two of the most famous methods based on such approach;

3. finally, according to the definition of perfusion region provided above, we define Ωj
M as follows (see

Figure 3c):

Ωj
M =

{
P ∈ ΩM : d j(xP) = min

k=0,...,J
dk(xP)

}
.

2.4.2. Generation of the intramural vasculature network

To overcome the lack of anatomical data on the intramural vasculature, we propose here an algorithm to
generate a personalized (although not patient-specific) intramural vascular network. This is inspired by the
bifurcating volume-filling network generation algorithm proposed in [76, 69], extended here to the case of
non-convex geometries using an approach similar to the one proposed in [63], based on iso-potential surfaces
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constraint. Moreover, we have to specify the radius distribution along the network. With this aim, we
suppose that at each bifurcation the radii of the daughter vessels follow the Murray’s law:

r 3
γ = r 3

α + r 3
β ,

where rγ is the radius of the parent vessel, whereas rα and rβ are the radii of the daughter vessels.
The preliminary step of the procedure consists in subdividing the myocardial domain into right and left

ventricles. Accordingly, referring to Figure 4, we compute the solution of the following Laplace equation
for the potential function Ψ between the epicardium (∂Ωepi ) and the endocardium of the right and the left
ventricles (∂Ωrv and ∂Ωlv , respectively )[7]:

Figure 4: The biventricle domain (on the left) and the Laplace solution (on the right)

∆Ψ = 0 in ΩM ,

Ψ = 0 on ∂Ωepi ,

Ψ = −1 on ∂Ωrv ,

Ψ = 2 on ∂Ωlv .

The boundary conditions are chosen to distinguish the two ventricles walls. Indeed, we create a positive
(resp. negative) gradient potential inside the left (resp. right) ventricle wall (Figure 4) and the values (Ψ = 2
and Ψ = −1, respectively) allow to assign two thirds of the septum to the left ventricle and one third to
the right ventricle, according to experimental evidence [21, 28, 2, 59, 11]. In particular, if there exist x1 and

x2 ∈ Ωj
M s.t. Ψ(x1) Ψ(x2) < 0, then the perfusion region Ωj

M is split into the two subdomains Ωj ,lv
M and Ωj ,rv

M

that will be treated as single perfusion regions from now on (with an abuse of notation we will still use Ωj
M

to refer to such regions).
The following step consists in another pre-process of the myocardium to allow the vascular network

generation in the domain ΩM . Indeed, the bifurcating volume-filling network generation algorithm [76, 69] in
its standard definition is not enough to generate a network inside a non-convex geometry like the myocardial
one. For this reason, similarly to [63], we want to define isopotential volumes inside the myocardium to
address the vascular network generation in a first phase in which the generated vessels cover part of the
topology of the epicardial surface. In a second phase the following vessels penetrate and ”fill” the walls of
the myocardium.

To this aim, for each perfusion region Ωj
M , we build Niso isopotential surfaces that will be used to find a set

of layers L`, ` = 0, ... , Niso−1, inside Ωj
M , defined as the volumes included between two consecutive isopoten-

tial surfaces. Then we use these layers to distinguish two different zones of the myocardial wall, one for each
phase of the vessel generation: the first one, defined as the set of layers L` with ` = 0, ... , Niso−epi << Niso ,
where the vessels grow according to the topology of the epicardial surface and the second one, corresponding
to the internal layers Niso−epi < ` < Niso , where the vessels penetrate the myocardial wall.

The last step of the procedure consists in the network generation itself. To generate the vessels in the
first zone, for each perfusion region Ωj

M , we consider a double loop with indices ` for the layers and m for

9



the volumes generated within a layer. We start from layer ` = 0, we define the nodes x−1
B,1 = x−1

∗,1 = B j (B j

being the barycenter of the outflow section Γj , cf Figure 3(a)) and x−2
B,1 = O, and we set Υ0

1 = Ωj
M . Thus,

remembering that dy/xe indicates the superior integer part (ceiling) of y/x , we have Algorithm 1.

Algorithm 1 Generation of the intramural network

1: for ` = 0, ... , Niso−epi − 1 do
2: for m = 1, ... , 2` do
3: Compute the barycenter x`B,m of the volume Υ`

m;

4: Find the point y`B,m = argminP∈L`∩Υ`m
‖xP − x`B,m‖;

5: Compute the midpoint z`m =
y`B,m − x`−1

∗,dm/2e

2
;

6: Find the point x`∗,m = argminP∈L`∩Υ`m
‖xP − z`m‖;

7: Generate a new vessel considering the line going from x`−1
∗,dm/2e to x`∗,m;

8: Split the domain Υ`
m into two subdomains Υ`+1

2m−1 and Υ`+1
2m using the plane passing through the

points x`B,m, x`−1
B,dm/2e and x`−2

B,dm/4e;

9: end for
10: end for

Figure 5: Procedure to generate the vessels in the first zone of the myocardial wall

This procedure allows us to create for each level ` exactly 2` volumes Υ`
m. Each volume contains the

terminal point of a vessel of the network. Notice also that Υ`−1
m//2

is the parent volume of Υ`
m, whereas

Υ`−2
m//4

its grandparent. With respect to the algorithm proposed in [76, 69], we added here the solution of

the Laplacian (5) and the definition of the layers L`. This allows us to create vessels that better follow the
morphology of the epicardium. This is possible thanks to the definition of points x`∗,m used to generate the
vessels instead of the barycenters x`B,m as done in [76, 69]. The use of barycenters would not be optimal in
our case since the non-convexity of the domain would lead to barycenters outsides the volume.

Finally, regarding the second zone (the inner layers L`, ` > Niso−epi ), we consider the generation of the
vessels using the original algorithm in [76, 69]. This is motivated by the fact that for the inner layers the
domains are regular and convex. The generation stops if the radius of a daughter vessel is less than Rmin.
In this work, we have set Rmin = 30µm. This means that, in order to reduce the complexity, we do not
generate vessels in the microvasculature. Thus, since we want to correlate the third compartment to the
microvasculature, but we do not generate the corresponding vessels of the network, we choose to associate
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the intramural vascular network only to the first and second compartment (see Section 2.2), and not correlate 
any vessel to the third one.

Other approaches have been proposed in the literature for the generation of a coronary network and in 
particular to determine the bifurcation angle, introducing anatomical and physiological information. For 
example, in [38] the authors generated a coronary network by using the anatomical data from [39] and with 
a bifurcation angle taken from [81, 82]. Instead, in [65] the authors, starting again from the data reported in 
[39], used a bifurcation angle based on the minimization of the shear rate [80], whereas in [36] physiological 
constraints are introduced by means of the Constraint Constructive Optimization (CCO) method [62], which 
relies on hemodynamics principles. Here, for the sake of simplicity we preferred to use a pure geometric 
criterion to generate the network. We stress that the aim of our algorithm is to generate a personalized-
surrogate network to be used only to estimate the parameters and not to directly compute blood dynamics 
quantities.

An example of the results of the proposed procedure is shown in Figure 6.

Figure 6: Example of a generated network inside a partition region: on the left the first 2Niso−epi − 1 vessels in the case
Niso−epi = 3, the first zone (in grey) and the Laplace solution; on the right the complete network

2.4.3. Estimation of the multi-compartment model parameters

Once we have generated a vascular network for the intramural vessels, we can consider the estimation of
parameters Ki , i = 1, 2, 3, αj , j = 1, ... , J, and βi ,k , i , k = 1, 2, 3, in (3).

The first step consists in the separation of the intramural vascular network into two groups of vessels
using a specific metric. This is motivated by the fact that we can relate the largest vessels to the first
compartment, whereas the smallest ones to the second compartment (remember that we do not have vessels
in the third compartment). To perform such operation, a hierarchic parameter ζ ∈ [0, 1] is defined for each
node yi of the network. Following the approach used in [34, 35], ζ(yi ) is defined as the ratio between the sum
of the lengths of the vessels which are located distally to yi and the the sum of the lengths of all the vessels
of the network. In this way ζ will be 1 for the most proximal nodes and 0 for the most distal terminal nodes.
Then, given for each perfusion region Ωj

M a value Z j ∈ (0, 1), we sort a vessel of the network to belong to
the first (resp. second) group if the average of the values of ζ in the nodes of the vascular network at hand
is in the range [0, Z j) (resp. [Z j , 1]). The values Z j are chosen in order to have about the same number of
vessels in the two groups.

Let Kj
i be the permeability tensor of the i − th compartment in the perfusion region Ωj

M . Following [34],
we assume that this tensor is isotropic:

K
j
i = φji I,
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where I is the identity tensor with unit of cm2Pa−1s−1 and φji is the constant porosity. The latter is defined
as follows:

φji =

∑M j
i

n=1 V j
i ,n

VΩj
M

,

where VΩj
M

is the volume of Ωj
M , M j

i the number of the vessels in Ωj
M , and V j

i ,n the volume of the n− th vessel

in the i − th compartment of Ωj
M . Finally, the global piecewise constant permeability tensor Ki is defined as

Ki (x) =
J∑

j=1

K
j
i χΩj

M
(x).

The choice of an isotropic tensor is motivated by the observation made in [34] that the error between 
the Poiseuille and the multi-compartment pressures is smaller with respect to that obtained by using an 
anisotropic tensor.

To compute parameters βi ,k and αj , the geometric description of the network is not enough. We need 
also information about the pressure and flow distributions in the vascular network. In order to find an 
approximation of them, we consider the solution of a Poiseuille flow problem along vascular network, given 
by the union between the epicardial coronaries and the intramural network. To reduce the computational 
effort, we consider the epicardial coronaries as 1D models (notice that this is done only here for the parameter 
estimation, whereas elsewhere in the model the coronaries are 3D). As for the boundary conditions, we 
prescribe an inlet pressure of 109 mmHg [14] and outlet pressures depending on the radius of the terminal 
vessels [14]. A constant multiplicative correction factor η is in case applied to all the vessels radii in order 
to obtain a physiological flow rate starting from this pressure gradient. In our case, we adopt η = 2.3.

Referring to this Poiseuille solution, let Q j
i ,k = Q j

k,i , i , k = 1, 2, 3, be the total flow rate exchanged in the

perfusion region Ωj
M at the interface between compartment i and compartment k. Since we do not have

vessels in the third compartment, we set Q j
2,3 to be equal to the total flow rate at the outlet of the second

compartment of Ωj
M . Moreover, let pj

i ,n, i = 1, 2, be the pressure in the n − th vessel of compartment i in

the perfusion region Ωj
M and pj

3 = 39 mmHg a reference value for the microvasculature pressure for all j ,
computed as the average value between the pressure of the most downstream vessels (' 56 mmHg [14] )

and the value of pveins = 22.5 mmHg [35]. Thus, introducing the local coupling coefficient βj
i ,k inside the

perfusion region Ωj
M (symmetric over the indices i and k), we have [34]:

βj
1,2 =


0 if pj

1 − pj
2 = 0,

Q
j

1,2

|pj
1 − pj

2|
otherwise,

βj
2,3 =


0 if pj

2 − pj
3 = 0,

Q
j

2,3

|pj
2 − pj

3|
otherwise,

βj
i ,k = 0 elsewhere,

where

Q
j

i ,k =
Q j

i ,k

VΩj
M

and

pj
i =

∑M j
i

n=1 pj
i ,nV j

i ,n∑M j
i

n=1 V j
i ,n

i = 1, 2. (6)

As done before for the permeability Ki , the global piecewise constant inter-compartment coupling coefficient
βi ,k is defined as:

βi ,k(x) =
J∑

j=1

βj
i ,kχΩj

M
(x).

12



In a similar way the conductance coefficient αj is computed as:

αj =
Q j

inlet

|pj
inlet − pj

1|
, j = 1, ... , J,

where Q j
inlet is the flow rate entering in the first compartment of Ωj

M and pj
inlet is the pressure in the first 

node of the first compartment of Ωj
M .

We observe that the intramural topology obtained using our strategy has no direct impact on the math-
ematical model formulation since the network is used only for parameters estimation. We stress that the 
characteristics of the vascular network that may have a major impact on the values of the multi-compartment 
model parameters are the vessel length, since this could determine the belonging of the vessel to one Darcy 
compartment or to another one, and the value of the vessel radii, since this would heavily influence the 
downstream resistances.

Remark 1. We notice that similar strategies to those reported in the previous sections have been used in 
computational mechanics for lungs. For example, a similar approach to ensure mass conservation has been 
considered in [79] for the coupling between the upper airways and the parenchyma, whereas in [78] a 3D-1D 
coupling between the upper and lower airways with an algorithm to generate a surrogate network for the latter 
and the use of one-to-one correspondence between each terminal bronchiole and a specific lung region, similar 
to our perfusion regions, have been proposed. We also mention [8] where a subdivision of the porous region in 
distinct subdomains with interface mass conservation conditions has been considered.

3. Numerical approximation

In this section we describe the numerical methods used to solve the problems addressed above. In 
particular, for the spatial discretization of problems (4), (3) and (5) we use the Finite Element method 
for spatial discretization in combination with the Finite Difference method for time discretization. To this 
purpose we have created two volumetric tetrahedral meshes, one for ΩC and one for ΩM . Moreover, for an 
effective numerical solution of the coupled problem (3), we propose an iterative splitting strategy for the 
solution and an efficient numerical strategy to solve the corresponding linear systems.

3.1. Time and Finite Element discretizations

We adopt P1 Finite Elements for both the eikonal problem (4) and the Laplace equation (5). We recall 
that the standard FE discretization of the eikonal equation is unstable; in order to stabilize it, we add an 
artificial diffusion term ε∆d j , with ε = hmax /2 and where hmax is the maximum cell diameter of the mesh of 
ΩM .

Regarding problem (3), for the time discretization we subdivide the time interval [0, T ] into Nt subinter-

vals of dimension ∆t = T
t 

and the time steps are defined as tn = n∆t for n = 0, ... , Nt . Accordingly, given a
N

function of time z(t), we indicate with zn the approximation of z(tn). Then, for the fluid problem (3a)-(3b), 
we use a backward differentiation formula of order 1 and we treat the convective term in a semi-implicit way

[56]. This introduces a CFL-like restriction on the time discretization parameter, ∆t . hmin, where hmin is 
the minimum cell diameter of the mesh of ΩC . As for the spatial discretization, we consider P1/P1 Finite 
Elements with a SUPG-PSPG stabilization [70, 72, 25, 27] for (3a)-(3b), whereas we adopt RT 0/P0 Finite 
Elements for the multi-compartment Darcy problem.

3.2. Iterative splitting strategy

For the numerical solution of the coupled problem (3) a monolithic (one shot) approach would be very 
demanding in terms of computational costs. For this reason, we propose an iterative strategy based on the 
splitting of the problem into two sub-problems which are solved sequentially. This idea is based on the 
heterogeneous Domain Decomposition approach for multi-physics problems, see [56]. Examples of splitting 
algorithms in such context are given, e.g., by [18, 5] for the fluid-structure interaction problem, [20] for the
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Stokes-Darcy coupling, [10] for the 3D-1D geometric multiscale coupling, [57] for the liver perfusion coupled 
problem. In particular, the idea is to equip the fluid problem with a Neumann boundary condition coming 
from the Robin interface condition (3c), and to provide to the first (most upstream) Darcy problem a mass 
term coming from (3d). The iterations read as follows:
Let the current temporal index n + 1 be omitted for the notation; then, we propose the iterative procedure

‖x (s)−x (s−1)‖
described in Algorithm 2, where s is the current iteration, εtol is a given tolerance, diffx = ‖x (s)‖ and

the norm has to be intended in [H1]3 for the velocities and L2 for the pressures.

Algorithm 2 Iterative splitting strategy

1: for n = 1 ... Nt do
2: while max(diffuC

; diffpC ; diffuM,1
; diffpM,1

) > εtol do
3: Solve the fluid problem at iteration s:

ρ

(
u

(s)
C − un

C

∆t
+ (un

C · ∇)u
(s)
C

)
− µ∇ ·

(
∇u(s)

C +
(
∇u(s)

C

)T)
+∇p

(s)
C = 0 in ΩC ,

∇ · u(s)
C = 0 in ΩC ,

− p
(s)
C + µ

(
∇u(s)

C + (∇u(s)
C )T

)
n · n = − 1

|Ωj
M |

∫
Ωj

M

p
(s−1)
M,1 dx− 1

αj

∫
Γj

u
(s−1)
C · ndγ on Γj ,

µ(∇u(s)
C + (∇u(s)

C )T )n · τi = 0 i = 1, 2 on Γj ;

4: Solve the multi-compartment Darcy problem at iteration s:

u
(s)
M,1 + K1∇p

(s)
M,1 = 0 in ΩM ,

∇ · u(s)
M,1 =

J∑
j=1

χΩj
M

|Ωj
M |

∫
Γj

u
(s)
C · ndγ − β1,2(p

(s)
M,1 − p

(s)
M,2) in ΩM ,

u
(s)
M,2 + K2∇p

(s)
M,2 = 0 in ΩM ,

∇ · u(s)
M,2 = −

3∑
k=1

β2,k(p
(s)
M,2 − p

(s)
M,k) in ΩM ,

u
(s)
M,3 + K3∇p

(s)
M,3 = 0 in ΩM ,

∇ · u(s)
M,3 = −γ(p

(s)
M,3 − pveins)− β3,2(p

(s)
M,3 − p

(s)
M,2) in ΩM ;

5: s → s + 1;
6: end while
7: end for

We considered two versions of this algorithm: the first one is fully explicit, in which we perform only one 
iteration per time step, whereas the second one is implicit, which means that we continue to subiterate until 
convergence. In the first case, we expect to have another bound on ∆t to ensure stability of the scheme. 
However the numerical experiments showed that this constraint is milder than the CFL one coming from 
the semi-implicit treatment for the discretization of the Navier-Stokes problem.

In what follows, we provide a convergence analysis of a simplified linearized version of Algorithm 2. To do 
this, we consider, for the sake of simplicity, the Stokes equations for the 3D fluid problem at step 3, constant 
scalar permeabilities Ki and just one outflow Γ. Moreover, since the coupled problem is linear, we
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are interested at each time step in the convergence towards the null solution, thus we set to zero the forcing
terms and the quantities at previous time step. We refer to this algorithm as Algorithm 2bis. Thus, we have
the following result.

Proposition 1. Consider Algorithm 2bis defined above. Then, given ε > 0 small enough, under the following
hypotheses on the parameters

K1 > K2,

β2,3(K2 − εK3) ≥ β1,2(K1 − K2),

γ ≥ 1− 2ε

2ε
− K2β2,3

2K3
,

µ >
2K1C 2

T |Γ|1/2

|ΩM |β1,2(K1 − K2)
,

∆t <
ρ

µ
,

there exists a constant C with 0 < C < 1 such that the algorithm is a contraction with respect to the interface
variable pM,1, i.e.

‖p(s)
M,1‖L2(ΩM ) ≤ C‖p(s−1)

M,1 ‖L2(ΩM ).

Proof. From now on, if not specified, the current iteration s will be understood.
We start from the weak formulation of the 3D fluid problem at step 3. We obtain, for uC , vC ∈ [H1(ΩC )]3

and pC ∈ L2(ΩC ):

ρ

∆t

∫
ΩC

uC · vC + µ

∫
ΩC

∇uC : ∇vC −
∫

ΩC

pC ∇ · vC +
1

α

∫
Γ

uC · n
∫

Γ

vC · n = − 1

|ΩM |

∫
ΩM

p
(s−1)
M,1

∫
Γ

vC · n,

where, for the sake of simplicity, we have taken the term 1
αj

∫
Γj u

(s)
C · ndγ in the Robin condition at the

current iteration. Taking vC = uC , we obtain

ξ‖uC‖2
H1(ΩC ) ≤

1

|ΩM |

∫
ΩM

p
(s−1)
M,1 CT‖uC‖H1(ΩC ),

where CT is the constant of the trace inequality and ξ = min{ρ/∆t;µ}. Thus, from the Cauchy-Schwarz
inequality, we have

‖u(s)
C ‖H1(ΩC ) ≤

CT

ξ|ΩM |1/2
‖p(s−1)

M,1 ‖L2(ΩM ). (10)

Consider now the multi-compartment Darcy problem at step 4. Its weak formulation, for uM,i , vM ∈ [H1
div ,0(ΩM)]3

and pM,i , qM ∈ L2(ΩM), reads:∫
ΩM

uM,1 · vM − K1

∫
ΩM

pM,1∇ · vC = 0,∫
ΩM

∇ · uM,1qM =
1

|ΩM |

∫
Γ

uC · n
∫

ΩM

qM − β1,2

∫
ΩM

(pM,1 − pM,2)qM ,∫
ΩM

uM,2 · vM − K2

∫
ΩM

pM,2∇ · vC = 0,∫
ΩM

∇ · uM,2qM = −β2,1

∫
ΩM

(pM,2 − pM,1)qM − β2,3

∫
ΩM

(pM,2 − pM,3)qM ,∫
ΩM

uM,3 · vM − K3

∫
ΩM

pM,3∇ · vC = 0,∫
ΩM

∇ · uM,1qM = −γ
∫

ΩM

pM,3qM − β3,2

∫
ΩM

(pM,3 − pM,2)qM .
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By taking vM = uM,i , i = 1, 2, 3 in the first, third and fifth equation, respectively, and qM = pM,i , i = 1, 2, 3
in the second, fourth and sixth equation, respectively, and then summing up, we obtain

3∑
i=1

‖uM,i‖2
L2(ΩM ) + K1

∫
ΩM

β1,2(pM,1 − pM,2)pM,1 + K2

∫
ΩM

β1,2(pM,2 − pM,1)pM,2 + K2

∫
ΩM

β2,3(pM,2 − pM,3)pM,2

+ K3

∫
ΩM

β2,3(pM,3 − pM,2)pM,3 + γ‖pM,3‖L2(ΩM ) = K1
1

|ΩM |

∫
Γ

uC · n
∫

ΩM

pM,1.

From the Young inequality applied to the mixed pressure terms, we obtain(
K1β1,2

2
− K2β1,2

2

)
‖pM,1‖2

L2(ΩM ) +

(
−K1β1,2

2
+

K2β1,2

2
+

K2β2,3

2
− εK3β2,3

2

)
‖pM,2‖2

L2(ΩM )

+

(
−K2β2,3

2
+

K3β2,3

2ε
+ γK3

)
‖pM,3‖2

L2(ΩM ) ≤
K1CT |Γ|1/2

|ΩM |1/2
‖uC‖H1(ΩC )‖pM,1‖L2(ΩM ),

where ε > 0 is used for the term
∫

ΩM
K3β2,3pM,2pM,3. Owing to hypotheses (9), we have

‖p(s)
M,1‖L2(ΩM ) ≤

2K1CT |Γ|1/2

|ΩM |1/2β1,2(K1 − K2)
‖u(s)

C ‖H1(ΩC ).

By inserting (10) in the previous inequality, we obtain

‖p(s)
M,1‖L2(ΩM ) ≤

2K1CT |Γ|1/2

|ΩM |1/2β1,2(K1 − K2)

CT

ξ|ΩM |1/2
‖p(s−1)

M,1 ‖L2(ΩM ) = C‖p(s−1)
M,1 ‖L2(ΩM ).

Thanks to hypotheses (9), we have 0 < C < 1 and thus the thesis follows.

Remark 2. In the numerical experiments often K2 < K3 (as for example in Test I reported in Section 
4.1). Thus, we introduced ε in the previous proof in order to make positive the left hand side of the second 
hypothesis (9).

Hypothesis K1 > K2 follows, e.g., if, as in our case, the number of vessels in compartments 1 and 2 is the 
same. Since the dimension of the vessels in the first compartment is greater, this implies that the porosity there 
is larger. The hypothesis on the lower bound for γ guarantees that the resistance of the venous tract 
downstream the capillaries is small enough to allow the exit of blood from the latter. The hypothesis on ∆t is 
very mild since the right hand side is of the order of seconds.

The existence of a fixed point for Algorithm 2bis ensures the well-posedness of the corresponding unsplit 
problem. Notice also that the analysis should be easily extended (owing to suitable technicalities) to the case 
of many outlets and non-constant permeabilities, whereas the extension to the Navier-Stokes case requires the 
treatment of the non-linear term which should guarantee estimate (10) provided that the data (and then uC ) 
are small enough.

3.3. Numerical Solvers
We detail here the numerical solvers used to solve the two subproblems (7) and (8) appearing at each 

iteration of the previous iterative algorithm.
The algebraic linear system associated to the fluid problem (7) is solved using the preconditioned GMRES. 

In particular, we consider the SIMPLE preconditioner in its approximated formulation (aSIMPLE) [19].
Regarding the multi-compartment Darcy problem (8), we start defining the corresponding algebraic 

system (omit for the sake of simplicity the iteration index s):

A1 BT O O O O
B C12 O −C12 O O
O O A2 BT O O
O −C21 B C21 + C23 O −C23

O O O O A3 BT

O O O −C32 B C32 + Cγ





UM,1

PM,1

UM,2

PM,2

UM,3

PM,3


=



O
G1(UC )

O
O
O
G3


, (14)
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where, for each compartment i = 1, 2, 3, UM,i and PM,i are the velocity and the pressure vectors of unknowns,
respectively, Gi is the vector accounting for the source term (notice in particular the dependence of G1 on
the epicardial coronary velocity UC ). Moreover, let ψj and ϕ` the basis functions related to the velocity and

pressure, respectively. Thus we have (Ai )jp =
∫

ΩM
(K−1

i ψp)·ψj , B`j = −
∫

ΩM
∇·ψjϕ`, (Cik)`m =

∫
ΩM

βi ,kϕmϕ`,

(Cγ)`m =
∫

ΩM
γϕmϕ`.

To solve the linear system (14), we consider a block diagonal preconditioner P defined as follows:

P =



A1 BT O O O O
B C12 O O O O
O O A2 BT O O
O O B C21 + C23 O O
O O O O A3 BT

O O O O B C32 + Cγ


. (15)

This is a convenient choice because, to compute the residual at each iteration of a Krylov method, each
block of (15) can be considered as an independent mono-compartment Darcy problem which can be solved
using an internal GMRES method and applying the aSIMPLE preconditoner adapted to the Darcy case.
As for the external iterations, we consider the Flexible-GMRES (FGMRES) variant of GMRES to deal with
the fact that at each iteration we are solving each subproblem inexactly, up to a prescribed tolerance [58].

4. Numerical results

In this section, we present several numerical results aiming at assessing the reliability, stability and 
accuracy of the proposed methods and algorithms. In particular, we consider a first test in an ideal domain 
to check the validity of the code (Test I) and a second one in a real computational domain of human 
coronaries and myocardial ventricles to test the robustness and validity of the method when operating on 
physiological data (Test II). At the end, we present an application of the model to a patient-specific case to 
provide a preliminary comparison between the results and measured clinical data (Test III).

In all the numerical simulations of the coupled problem given by iterations (7)-(8) in Algorithm 2, we used 
the following parameters: ρ = 1.06 g/cm3, µ = 0.035 dyne/cm2, γ = 10−4 1/(Pa · s), Niso−epi = 3, Niso = 300, 
∆t = 0.01 s, εtol = 10−5, the scalar permeability K3 is chosen equal to 10−3 cm2 · (Pa · s)−1 according to [35], 
whereas the scalar permeabilities K1 and K2 are estimated as described in Section 2.4.3. We consider in all 
the cases three Darcy compartments and we set pveins = 22.5 mmHg [47].

In order to ensure that blood flow reaches the myocardium despite using a rigid model of the heart, we 
prescribe at the inlet of the 3D coronaries a Dirichlet boundary condition for the 3D NS. Such condition 
enforces a flow rate that is mainly active during the diastole, as expected in the physiological conditions. 
Such model input partially compensates the absence of heart contraction.

All the numerical simulations of the coupled problem (3) are performed using the FE library LifeV 
(https://bitbucket.org/lifev-dev/lifev-release/wiki/Home). The numerical simulations of both the eikonal 
problem (4) and the Laplace equation (5) are instead obtained using a numerical solver implemented in 
FEniCS [3, 44].

4.1. Test I: Idealized geometry

In the first numerical test, we consider the computational domain given by an idealized cylindrical 
coronary ΩC and by a cube ΩM representing a portion of the myocardium, see Figure 7.

At the inlet section Γin of the coronary vessel, we prescribe the following flow rate condition:

ρ

∫
Γin

uC · ndγ = Qin,
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Figure 7: Computational meshes of domains ΩC and ΩM . Test I.

where Qin(t) = qPoiseuillesin(2πt) cm3/s for t ≤ 0.5 s and null elsewhere, and qPoiseuille is the flow rate at the
inlet of the intramural vascular network obtained by the Poiseuille flow model. In particular, we obtain
qPoiseuille = 8.68 · 10−3 cm3/s.

In this test we want to check the mass conservation in the implementation of Algorithm 2 and the
performance of Algorithm 1. To this aim, we build a network in ΩM with Algorithm 1, we solve the coupled
problem with Algorithm 2, and we compare the average pressure gradient between the first and the second
compartments with the average pressure gradient obtained by the Poiseuille flow model used to estimate the
parameters of the model. The intramural network is shown in Figure 8 and the estimation of the parameters
of the coupled problem leads the values reported in Table 1.

Figure 8: Intramural network generated inside the domain ΩM (the cylinder ΩC is on the left). Test I.

In Figure 9a we show the results of the simulation for t = 0.25s (peak value of inlet velocity). We observe
a pressure gradient going from the domain ΩC to the domain ΩM , according to the direction of the flow
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Table 1: Estimated parameters of the coupled problem. Test I.

β1,2 [(Pa · s)−1] β2,3 [(Pa · s)−1] α [cm3 · (Pa · s)−1] K1 [cm2 · (Pa · s)−1] K2 [cm2 · (Pa · s)−1]

2.60 · 10−6 3.62 · 10−6 2.98 · 10−6 5.85 · 10−5 8.40 · 10−6

imposed at the inlet surface.

(a) (b)

Figure 9: (a) Pressure solution at the peak value of inlet flow rate (t = 0.25) (the legend is the same for pC , pM,1, pM,2, pM,3);
(b) inlet flow rate Qin and the outlet flow rate Qout . Test I.

In Figure 9b we report the inlet flow rate Qin and the outlet flow rate Qout = γ(pM,3 − pveins). We notice
that the two profiles are in excellent agreement, so we can conclude that the mass conservation is respected.

Finally, the jump of the average-in-space pressure obtained by the Poiseuille solution between inlet and
outlet of the intramural vessels and computed using (6) is compared in Table 2 with the jump of average-
in-space pressures between the first and the second compartments in the multi-compartment Darcy model.
The difference is about 1.4%. We conclude that the estimation of the parameters in the multi-compartment
Darcy model, which is based only on the first and second compartments, is consistent and accurate.

Table 2: Jump of average-in-space pressures between compartments 1 and 2 estimated by the Poiseuille solution and in the
multi-compartment Darcy model (t = 0.25). Test I.

∆P12 [mmHg ]

Poiseuille 25.02

multi-compartment Darcy 24.66

4.2. Test II: Realistic geometry

4.2.1. Simulation set up and parameter estimation

In the second numerical test, we apply the proposed multi-physics computational model to a realistic 3D 
human heart geometry. To this purpose the geometries of the computational domains ΩC and ΩM , describing 
the arterial epicardial vessels and the myocardium of the left and right ventricles are defined starting from 
the 3D Human Heart Model provided by Zygote [1] (see Figure 10). We remark that similar input data 
for the morphology of both the ventricles and the coronaries could be reconstructed by clinical data, for 
example CTA. The corresponding computational meshes are composed by 417,969 tetrahedral elements for 
ΩC and 365,142 tetrahedral elements for ΩM .
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Figure 10: Computational domains ΩC and ΩM . Test II.

Following the procedure described in Sect. 2.4.1, we performed the partitioning of the domain ΩM and
we obtained 17 perfusion regions, starting from 17 outflow sections. The results are shown in Figure 11.

Figure 11: Perfusion regions obtained in the domain ΩM . Test II.

The surrogate intramural network generated by means of Algorithm 1 inside these perfusion regions is 
composed by 71,179 vessels (see Figure 12) and the parameter estimated by using this network are shown in 
Figure 13. Its morphology seems very similar to a coronary network, see for example the network generated

icein [65]. Not that in this figure, for visualization purposes, we have plotted the global conductance

function α =
∑

j α
jχΩj

M
and the global porosity function φ =

∑3
i=1

∑
j φ

j
iχΩj

M
obtained as sum over the three

compartments.
Introducing the average-in-space porosity φM =

∑N
i=1 φi , φi =

∑J
j=1 φ

j
iVΩj

M
/VΩM

, from these results we

obtain φM = 0.095, a value in accordance with the literature [35].
At the inlet sections Γin,β , with β = l , r , of the epicardial vessels, we prescribe the following flow rate
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Figure 12: Intramural vascular network generated inside the domain ΩM . Test II.

Figure 13: Parameters estimated inside ΩM . Test II.

condition:

ρ

∫
Γin,β

uC · ndγ = Qin,β , β = l , r ,

where Qin,l = 0.57Qin, Qin,r = 0.43Qin and Qin being the inlet coronary flow rate with a physiological profile
shown in Figure 14 [52]. The subdivision of Qin in Qin,l and Qin,r accounts for percentage of volume perfused
by each branch.

4.2.2. Comparison between implicit and explicit strategies for Algorithm 2

The aim of this section is twofold. First, we want to investigate whether the explicit version of Algorithm
2 (obtained by performing just 1 iteration per time step) is usable for applications, i.e. if it is stable and
accurate with respect to the implicit version. Secondly, we want to quantify the convergence properties of
the implicit version, i.e. the average number of iterations needed to converge.

Regarding the first aim, we first notice that the explicit version of Algorithm 2 is stable and produces
meaningful results. Moreover, in Figure 15 we plot for three different time steps the coronary pressure pC

and an average (over the three compartments) myocardial pressure pM , defined as follows:

pM =

∑3
i=1 φipM,i

φM
,
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Figure 14: Total physiological inlet coronary flow rate. Test II.

where φi and φM are the average porosities defined above.

Figure 15: Pressure field for t = 0.06, t = 0.44 and t = 0.70 (the legend is the same for pC and pM). Test II.

We notice an excellent agreement between the solutions obtained by the two strategies, apart from the
systole in the coronaries, where slight differences could be noticed which however disappear in the following
instants.

To better evaluate the differences between implicit and the explicit strategies (that is the error of the
explicit strategy with respect to the implicit one), we compute at each time step the relative differences
diffpC and diffpM in the L2 norms for the pressure solutions, see Figure 16. Regarding the coronary pressure,
the error is bigger in the first half of the heartbeat (mean percentage equal to 8.4%) where the flow rate
experiences significant variations, whereas it is quite negligible in the second half of the period (mean
percentage equal to 0.47%). Instead, for the myocardial pressure the error is always negligible, being at
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most equal to 0.05%.

Figure 16: Relative differences in L2 norm between explicit and implicit strategies of Algorithm 2. Left: coronary pressure;
Right: myocardial pressure. Test II.

In Figure 17 we report the number of iterations needed by the implicit iterative strategy. We observe that
the number of iterations strongly depends on the instant of the heartbeat: during the first part of the heart
cycle, when the flow features large variations, the number of iterations is quite high, up to 7, whereas in
the second part, when the flow is almost constant, the number of iterations significantly decreases (average
along all the heartbeat equal to 3.3 iterations). This is in accordance with the trend of the explicit algorithm
error discussed above.

Figure 17: Number of iterations needed by the implicit strategy to reach convergence. Test II.

We conclude that the explicit version of Algorithm 2 is an effective alternative to the implicit one since
it allows to reduce the computational effort (1 vs 3.3 iterations per time step). However, it produces an
error for the coronary pressure which could be significant for some applications (average error 4% along all
the heartbeat). Thus, if one needs a better accuracy, then the implicit method should be preferred.

4.2.3. Analysis of the pressure and flow fields

We discuss in what follows the physiological significance of the results. We refer to the implicit solution
since from the accuracy point of view is our gold-standard.

23



From Figure 15 we notice that the pressure in both ΩC and ΩM is in the physiological range. This is
also highlighted by Figure 18 where we plot the average-in-space pressure profiles in the three compartments
of the multi-compartment Darcy model. Notice also that, unlike the first and the second compartments,
in the third compartment the pressure profile is subject to a damping effect due to the sink term. This is
consistent with the loss of pulsatility inside the capillary vessels.

Figure 18: Average-in-space pressure profiles in the three compartments of the multi-compartment Darcy model. Left: pM,1; 
Middle: pM,2; Right: pM,3. Test II.

In Figure 19 we plot the flow rate entering in the third compartment, normalized over 100 ml of tissue. 
This is the amount of blood entering in the myocardial tissue, which is computed as:

Q2,3 = β2,3(pM,2 − pM,3) ∗ 60s/min ∗ 100ml ,

where the factor 60s/min is used to express the perfusion rate in minutes. From these results, it is possible 
to notice an heterogeneous distribution of perfusion rate inside the domain ΩM due to the heterogeneity of 
the parameters and consequently to the different resistance of the vessels inside each perfusion region.

Computing an average-in-space perfusion rate at t = 0.44 s (when the inlet velocity is maximum in 
time), we obtain about 62 ml/min /100ml , which is less than the physiological perfusion rate which is about 
130 ml/min /100ml [46]. However, locally, our model is able to recover physiological values (see Figure 19). 
We believe that this discrepancy can be mitigated when we will extend model of the coronary tree with 
the action of transversal branches and the corresponding outlets. Indeed, this improvement of the model 
will allow to increase the inlet flow rate and accordingly the average perfusion rate. With a more detailed 
coronary reconstruction and including transversal vessels, it will be also possible to obtain more homogeneous 
parameters for the multi-compartment Darcy model and significant values of perfusion in all the myocardium. 
This issue is under study for future investigations.

4.3. Test III: Preliminary comparison with clinical data

We present here a very preliminary result about the comparison of the perfusion obtained with the 
proposed model and a Myocardial Blood Flow (MBF) map of an healthy person obtained by stress myocardial 
computed tomography perfusion (stress-CTP) at Centro Cardiologico Monzino, Milan, Italy. STRESS-CTP is 
an effective strategy to perform the diagnosis of coronary artery disease [22, 50] and allows to measure the 
myocardial perfusion highlighting the regions scarcely perfused.

The reconstruction of the geometry has been performed by means of VMTK [4] and MITK (http://
www.mitk.org/wiki/MITK) starting from CTA, and a computational mesh has been built with the novel 
semi-automatic meshing tool proposed in [24]. The same computational parameters and settings of test II have 
been considered, apart from an increased value of the input flow rate (5 times the one used in test II) to 
account for the stress conditions, the time step which was ∆t = 0.001 s and an augmented value of β2,3 in the 
septum to compensate a lack of reconstructed coronaries in this region due to insufficient image resolution.

In Figure 20 we show a comparison between computed perfusion rate and measured MBF at the peak 
instant. For the latter, we plotted the average value in each computed perfusion region. We observe a
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Figure 19: Perfusion rate into the third compartment at t = 0.06 s, t = 0.44 s and t = 0.70 s. Test II.

very good general agreement between the two distributions. In particular, some perfusion regions are well 
predicted in terms of perfusion by our model, whereas in other ones the computational model underestimated 
the measured perfusion. A more extensive set of test cases about the feasibility of the proposed mathematical 
framework is currently under examination in order to move towards a validation of our proposed model.

Figure 20: Comparison between perfusion rate at the peak instant in the third compartment computed by the model (left) and 
MBF measured by STRESS-CTP (right). Test III.

5. Conclusions, limitations and perspectives

We developed a multi-physics model for the cardiac perfusion. This is based on coupling the 3D Navier-
Stokes equations for the epicardial coronaries and a multi-compartment Darcy model for the intramural 
vessels. To estimate the parameters in the latter model, we proposed an algorithm to generate an intramural 
vascular network starting from the epicardial coronaries. We also addressed the numerical solution of this 
coupled problem, by proposing a splitting algorithm and a suitable preconditioner for the multi-compartment
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Darcy model. The application of our framework to a realistic human heart including both the ventricles lead 
to accurate results for the pressures and for the local perfusion rate, which agreed with the physiological 
values. An advantage of the proposed model is that it can be set up using only in-vivo clinical images, such 
as a CT scan of heart, in particular CT angiography. Indeed, the geometry of both epicardial coronaries and 
ventricles can be reconstructed from this kind of medical images. Conversely, for the best of our knowledge, 
more accurate multi-compartment perfusion models, previously proposed in [41, 35, 15, 42], need detailed 
information on microvascular structure that is only available from ex-vivo data.

Several limitations affect the present study.
First, we are aware that a mismatch between the anatomical and physiological assessments is unavoidable 

[6] and that it is necessary to impose physiological flow constraints to the whole network to ensure realistic 
geometric reconstruction [49].

Second, we neglected the heart movement, despite the well know dynamic myocardium-vessel interac-
tion. This is a significant limitation since changes of resistances in the intramural vessels due to the heart 
contraction and relaxation affect the perfusion rate. To overcome this limitation, we have prescribed the 
flow rate at the coronary inflow. The inclusion of the heart movement by means of a multi-compartment 
poro-mechanics model is under investigation. This extension of the model should allow us to prescribe the 
pressure at the coronary inflow and the right perfusion rate should be obtained directly by the model.

A third limitation consists in the absence of transversal vessels arising from the main coronaries. The 
inclusion of such vessels should allow us to obtain more homogeneous parameters for the multi-compartment 
Darcy model and a more uniform perfusion for the healthy case. This limit was partially compensated by 
our inclusion of all vessels, including the smallest capillaries, by means of the Darcy model based on the fact 
that the blood flow in the myocardium is supplied in outside-in fashion, from the large epicardial coronary 
arteries to the myocardial and endocardial vessels [29].

Finally, we mention the absence of any anatomical and physiological criteria in the intramural network 
generation algorithm. In this first work, for the sake of simplicity, we preferred to use a pure geometric 
criterion to determine the angle, based on the barycenter of subvolumes and the Murray law. However, the use 
of anatomical and physiological criteria to generate the network would represent an important step to improve 
the results. The inclusion of such criteria in our framework is currently under study.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European 
Union’s Horizon 2020 research and innovation programme (grant agreement No 740132, iHEART - An 
Integrated Heart Model for the simulation of the cardiac function, P.I. Prof. A. Quarteroni).

26



References

[1] Zygote solid 3d heart generation ii developement report. Technical report, Zygote Media Group Inc., 2014.
[2] P. Agger, S. Lakshminrusimha, C. Laustsen, S. Gugino, J. R. Frandsen, M. Smerup, R. H. Anderson, V. Hjortdal, and

R. H. Steinhorn. The myocardial architecture changes in persistent pulmonary hypertension of the newborn in an ovine
animal model. Pediatric Research, 79(4):565–574, apr 2016.

[3] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N.
Wells. The fenics project version 1.5. Archive of Numerical Software, 3(100), 2015.

[4] L. Antiga, M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework
for patient-specific computational hemodynamics. Medical & Biological Engineering & Computing, 46(11):1097, 2008.

[5] S. Badia, F. Nobile, and C. Vergara. Fluid-structure partitioned procedures based on Robin transmission conditions. J.
Comput. Physics, 227:7027–7051, 2008.

[6] Y. G. Bae, S. T. Hwang, H. Han, S. M. Kim, H. Kim, I. Park, J. M. Lee, Y. Moon, and J. Choi. Non-invasive coro-
nary physiology based on computational analysis of intracoronary transluminal attenuation gradient. Scientific reports,
8(1):4692, 2018.

[7] J. D. Bayer, R. C. Blake, G. Plank, and N. A. Trayanova. A novel rule-based algorithm for assigning myocardial fiber
orientation to computational heart models. Annals of Biomedical Engineering, 40(10):2243–2254, Oct 2012.

[8] L. Berger, R. Bordas, K. Burrowes, V. Grau, S. Tavener, and D. Kay. A poroelastic model coupled to a fluid network with
applications in lung modelling. International Journal for Numerical Methods in Biomedical Engineering, 32(1):n/a–n/a,
jul 2015.
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[10] P.J. Blanco, R.A. Feijòo, and S.A. Urquiza. A unified variational approach for coupling 3d-1d models and its blood flow
applications. Comput. Methods Appl. Mech. Engrg., 196:4391–4410, 2007.

[11] P. Boettler, P. Claus, L. Herborts, M. McLaughlin, J. D’Hooge, B. Bijnens, S. Y. Ho, D. Kececioglu, and G. R. Sutherland.
New aspects of the ventricular septum and its function: An echocardiographic study. Heart, 91(10):1343–1348, 2005.

[12] D. Caruso, M. Eid, U.J. Schoepf, K.N. Jin, A. Varga-Szemes, C. Tesche, S. Mangold, A. Spandorfer, A. Laghi, and C.N.
De Cecco. Dynamic CT myocardial perfusion imaging. European Journal of Radiology, 85(10):1893–1899, 2016.

[13] D. Chapelle, J. F. Gerbeau, J. Sainte-Marie, and I. E. Vignon-Clementel. A poroelastic model valid in large strains with
applications to perfusion in cardiac modeling. Computational Mechanics, 46(1):91–101, 2010.

[14] W.M. Chilian, S.M. Layne, E.C. Klausner, C.L. Eastham, and M.L. Marcus. Redistribution of coronary microvascular
resistance produced by dipyridamole. American Journal of Physiology - Heart and Circulatory Physiology, 256(2):25/2,
1989.

[15] A. N. Cookson, J. Lee, C. Michler, R. Chabiniok, E. Hyde, D. A. Nordsletten, M. Sinclair, M. Siebes, and N. P. Smith. A
novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics.
Journal of Biomechanics, 45(5):850–855, 2012.

[16] C. Dapogny and P. Frey. Computation of the signed distance function to a discrete contour on adapted triangulation.
Calcolo, 49(3):193–219, jan 2012.

[17] C. Daviller, T. Grenier, H. Ratiney, M. Sdika, P. Croisille, and M. Viallon. Automatic myocardial ischemic lesion detection
on magnetic resonance perfusion weighted imaging prior perfusion quantification: A pre-modeling strategy. Computers in
Biology and Medicine, 110(April):108–119, 2019.

[18] S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni. Fluid-structure algorithms based on Steklov-Poincaré oper-
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