Reachable domain analysis for analytical design of end-of-life disposal

Xiaodong Lu, Prof. Camilla Colombo
Politecnico di Milano
New Frontiers of Celestial Mechanics: theory and applications
• Background and motivations
• Modelling of the long-term evolution of s/c
• Phase space structure of orbital elements
• Post-mission disposal
• Conclusion and future work
Background and motivation

- Number of debris increases
- Earth’s orbit region becomes crowded

- Necessities of mitigation measures
 - Post-mission disposal, largest contribution
 - ...

- Trade-off of mitigation measures
 - Space environment improvements
 - Feasibility and cost

- Post-mission disposal
 - Technically feasible
 - Economical in the sense of fuel consumption

 • ESA’S Annual Space Environment Report, April 2022
Background and motivation

- Aim: end-of-life disposal design techniques leveraging perturbations to decrease the fuel consumption during the disposal
 - Follow the natural evolution of the s/c orbit
 - Enhance the natural perturbations by manoeuvres
 - Impulsive
 - Continuous
 - semi-analytical models of s/c dynamics
 - Hamiltonian formalism
 - Phase space structure of orbital elements
Modelling of the long-term evolution of s/c

Semi-analytical dynamics model based on averaging technique

- Lagrange planetary equations
 \[
 \begin{align*}
 \frac{da}{dt} &= \frac{2}{na} \frac{\partial R}{\partial M} \\
 \frac{dc}{dt} &= -\frac{b}{na^3c} \frac{\partial R}{\partial \omega} + \frac{b^2}{na^4} \frac{\partial R}{\partial M} \\
 \frac{di}{dt} &= -\frac{1}{nab\sin i} \frac{\partial R}{\partial \Omega} + \frac{b}{nab\sin i} \frac{\partial R}{\partial \omega} \\
 \frac{d\Omega}{dt} &= \frac{nab\sin i \frac{\partial \Omega}{\partial i}}{\cos i} \\
 \frac{d\omega}{dt} &= -\frac{\cos i}{nab\sin i} \frac{\partial \omega}{\partial i} + \frac{b}{nab\sin i} \frac{\partial R}{\partial \omega} \\
 \frac{dM}{dt} &= n - \frac{2}{na} \frac{\partial R}{\partial a} - \frac{nab^2}{na^4} \frac{\partial R}{\partial e}
 \end{align*}
\]

- Filtering out the short period effects
 \[\bar{F}(\alpha) = \frac{1}{T} \int_{t_0}^{t_0+T} F(\alpha)dt = \frac{1}{2\pi} \int_0^{2\pi} F(\alpha)dM.\]

- Possible reference frame choices:
 - Equatorial
 - Lunar plane
 - Ecliptic

- Single average, over period of s/c
 - \(J_2\) perturbation
 \[\bar{R}_{J_2} = \frac{\mu J_2 R_0^2}{4a^3\eta^3} (2 - 3\sin^2 i).\]
 - Third-body attraction
 \[\bar{R}_{3b} = \sum_{l \geq 2} \frac{\mu_3}{r_3^l} \left(\frac{a}{r_3} \right)^l F_l(A, B, e).\]

- Double average, over period of the third body
 \[\bar{\bar{R}}_{3b} = \sum_{l \geq 2} \frac{\mu_3 a^l}{\eta_3^l} \sum_k (F_{l,k} \cos k\omega_3 + G_{l,k} \sin k\omega_3).

- Total disturbing potential
 \[\bar{R} = \bar{R}_{J_2} + \bar{R}_{\text{Moon}} + \bar{R}_{\text{Sun}}\]

- Single-averaged
 \[\bar{R} = \bar{R}_{J_2} + \bar{R}_{\text{Moon}} + \bar{R}_{\text{Sun}}\]

- Double-averaged
 \[\bar{R} = \bar{R}_{J_2} + \bar{R}_{\text{Moon}} + \bar{R}_{\text{Sun}}\]
Modelling of the long-term evolution of s/c

- Model for lunar and solar ephemerides

- Sun: circular Earth’s orbit

- Moon:
 - Vallado, 2013
 - Simplified model used in double-averaged dynamics
 - Constant semimajor, eccentricity, inclination referred to the ecliptic
 - Linear regression of the lunar node
 - Linear advance of the lunar perigee
Modelling of the long-term evolution of s/c

- Validation of the model
- INTEGRAL
 - [87736 km, 0.824, 53 deg, 102 deg, 302 deg, 83 deg]
 - From 13-Nov-2002, propagate for 50 years
 - Including J2, and lunisolar perturbations

- Gauss and Cartesian
 - Exact force model for third body attraction

- Lagrange, single-averaged and double-averaged
 - Truncated up to 4th order of the Legendre form
Phase space structure of orbital elements

- Double-averaged elements referred to Moon plane

- Constructing the phase space maps
 - Propagate the orbital elements using double averaged equations
 - Transfer to the orbital elements referred to the equatorial plane to those referred to the Moon plane
 - Construct the $e - \omega - i$ maps
Phase space structure of orbital elements

- $e - \omega - i$ map, double-averaged elements referred to Moon plane

- Lunar perturbation only
 - Layer structure for different (e, i) pairs
 - Corresponding to Kozai parameter, $\Theta = (1 - e^2) \cos^2 i$
 - integral corresponding to the z-component of the angular momentum
 - Smaller Θ, libration regime
 - Large variations for e, ω, i
 - Libration centre at $\omega = 90$ deg
 - Θ increases
 - Libration centre move towards lower eccentricity and lower inclination
 - Higher Θ, rotation regime
 - Almost no libration centre
 - Rotating apsidal line
 - Variation of a, ω only cause movement within the same layer of the phase portrait

- Kozai Y. “Secular perturbations of asteroids with high inclination and eccentricity”, 1962
Phase space structure of orbital elements

- $e - \omega - i$ map, double-averaged elements referred to the Moon plane

- Lunisolar perturbations
 - Slightly deviate from the case with only lunar perturbation
 - Libration regime
 - Similar to lunar case
 - Periodic
 - Rotation regime
 - Quasi-periodic
 - Due to small inclination of the lunar orbit with respect to the ecliptic, $i_{\text{Moon}} = 5.145$ deg

- J_2 and lunisolar perturbations
 - Deviate from the lunisolar case
Post-mission disposal

Possible re-entry solution aided by natural perturbations

- Post-mission disposal for s/c in HEO
 - INTEGRAL
 - Targeting a re-entry

Phase space structure provide possible solutions for re-entry.

- Give an initial impulsive manoeuvre
- \(\textit{kep} = \textit{kep}_0 + \Delta \textit{kep} \)
- \(\Delta \textit{kep} = \text{Gauss’ equations}(\textit{kep}_0, \Delta \textit{v}) \)
- \(\Delta \textit{v} = |\Delta \textit{v}| \begin{bmatrix} \cos \alpha \cos \beta \\ \sin \alpha \cos \beta \\ \sin \beta \end{bmatrix} \), in TNH frame
- Propagate for 50 years using double averaged dynamics
- Maximal eccentricity

Criterion for re-entry

- Perigee height \(h_p \leq 100 \text{ km} \)
- Critical eccentricity \(e_{\text{crit}} = 1 - \frac{R_\oplus + h_p}{a} \)
- \(e_{\text{max}} \geq e_{\text{crit}} \), possible to re-enter

- Colombo, C., End-of-life re-entry for highly elliptical orbits: the INTEGRAL mission, 2014
- Scala F., Analytical design of end-of-life disposal manoeuvre for Highly Elliptical Orbits under the influence of the third body’s attraction and planet’s oblateness”, 2018
Post-mission disposal

- Possible re-entry solution aided by natural perturbations
- Grid search for possible manoeuvre for INTEGRAL’s re-entry
- Initial Keplerian elements of INTEGRAL
 - [81120 km, 0.8977, 55.8956 deg, 109.4648 deg, 293.0959 deg, 0 deg]
 - Date = [2020 12 8]
- 1st search
 - $||\Delta v|| = 100\sim150$ m/s
 - $\alpha = 0\sim180$ deg, $\beta = 0\sim90$ deg
 - Possible solutions lay in the cone with axis T
 - Either increase or decrease the velocity along the tangential axis
- 2nd search
 - $||\Delta v|| = 110$ m/s
 - $\alpha = 0\sim30$ 150~180 deg, $\beta = 0\sim30$ deg
Post-mission disposal

- Possible re-entry solution aided by natural perturbations

- Summary of the results
 - successful re-entry manoeuvres lie in the cone of the tangential direction
 - most effective: T or -T direction

- In the phase space
 - Get the lowest perigee height
 - Increase the maximal eccentricity within 50 years
 - Move the evolution of elements to another layer of the phase portrait, corresponding to different values of the Kozai parameter
 - Change inclination, hard and consuming more fuel
 - Change eccentricity, feasible, along the tangential direction

- Possible re-entry solution aided by natural perturbations

 - Colombo, C., End-of-life re-entry for highly elliptical orbits: the INTEGRAL mission, 2014
 - Scala F., Analytical design of end-of-life disposal manoeuvre for Highly Elliptical Orbits under the influence of the third body’s attraction and planet’s oblateness”, 2018

\[\Delta v = 100 \text{ m/s}, \beta = 0 \text{ deg} \]
Conclusion

• Implemented the averaged dynamics for s/c under J_2 and lunisolar perturbations
• Constructed and analysed the phase space structure of Keplerian elements
 ‒ Especially $e - \omega - i$ maps
• Post-mission disposal analysis targeting an atmospheric re-entry
• Serve as preliminary work for future optimisations

Future work

• Optimisation of the enhancing manoeuvre for the post-mission disposal
• Analytical design of the post-mission disposal using the phase space structure
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 679086 – COMPASS).

Xiaodong Lu acknowledges the support of China Scholarship Council.

Reachable domain analysis for analytical design of end-of-life disposal

Xiaodong Lu, Prof. Camilla Colombo
Politecnico di Milano