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Abstract

We apply the Proper Orthogonal Decomposition (POD) method for the efficient sim-
ulation of several scenarios undergone by Micro-Electro-Mechanical-Systems, involving
nonlinearites of geometric and electrostatic nature. The former type of nonlinearity, as-
sociated to the large displacements of the devices, leads to polynomial terms up to cubic
order that are reduced through exact projection onto a low-dimensional subspace spanned
by the Proper Orthogonal Modes (POMs). On the contrary, electrostatic nonlinearities
are modeled resorting to precomputed manifolds in terms of the amplitudes of the elec-
trically active POMs. We extensively test the reliability of the assumed linear trial space
in challenging applications focusing on resonators, micromirrors and arches also display-
ing internal resonances. We discuss several options to generate the matrix of snapshots
using both classical time marching schemes and more advanced Harmonic Balance (HB)
approaches. Furthermore, we propose a comparison between the periodic orbits com-
puted with POD and the invariant manifold approximated with Direct Parametrization
approaches, further stressing the reliability of the technique and its remarkable predictive
capabilities, e.g., in terms of estimation of the frequency response function of selected
output quantities of interest.

1 Introduction

Although model order reduction methods for structures experiencing large-amplitude vibra-
tions with geometric nonlinearities have been investigated for a long time [1, 2, 3, 4], they have
been only recently applied to the analysis of Micro-Electro-Mechanical Systems (MEMS), a
class of devices with profound and increasing impact in the consumer and automotive market
[5, 6]. MEMS structures are generally actuated near resonance and are subjected to relatively
large transformations. These effects are strongly enhanced by the fact that MEMS are mono-
lithic devices often packaged in near-vacuum, thus limiting dissipation to negligible levels.
As a consequence, they show highly nonlinear dynamical features that are rarely observed
at the macro scale, ranging from jump phenomena [7], to bifurcations of solutions [8] (e.g.
bistability [9]), internal resonances and saturation effects [10, 11, 12, 13], self-induced para-
metric amplification [14] and frequency combs [15, 16]. Furthermore, the nonlinear properties
of MEMS can be tailored to yield performance that would not be accessible operating in the
linear regime [17]. Accurate and predictive modeling needs to account for all these aspects.
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However, relying on Full Order Models (FOMs) for the numerical simulation of the struc-
tural behavior of MEMS poses severe computational challenges that have been only partially
solved so far. Generally, one is interested primarily in the steady-state periodic response of
MEMS as a function of the actuation intensity and frequency, i.e., the so-called Frequency
Response Function (FRF) of selected output quantities of interest like, e.g., the maximum
midspan deflection of a beam, or the rotation amplitude of a micromirror. Moreover, the
actuation can be electrostatic, piezoelectric, or magnetic, according to the considered appli-
cations, hence introducing additional sources of nonlinearity. Finally, because of the large
quality factors involved, ultimately leading to long transients, time marching schemes are
hardly computationally affordable. Recent advancements on the topic have enabled FOMs
simulations within reasonable computational times [18, 19]. Geometrical and inertial non-
linearities can be modeled using Harmonic Balance (HB) approaches or shooting techniques,
which directly compute the periodic response. However, these approaches entail huge compu-
tational costs when applied to large Finite Element Method (FEM) models of MEMS. This
motivates the interest in developing rapid and reliable Reduced Order Models (ROMs) that
ensure a fast and accurate estimation of the FRF of structures within time spans that are
compatible with industrial design requirements.

A large family of ROMs, which we can refer to as linear ROMs, gathers Galerkin projec-
tions onto low-dimensional linear subspaces. One of the simplest options is to use a selection of
linear eigenmodes and resort to procedures like the STiffness Evaluation Procedure (STEP),
first introduced in [20] to compute coupling coefficients. However, as recently highlighted
in [21, 22], its application to 3D FEM models is critical since it is mandatory to explicitly
include all the coupled high frequency (e.g. axial, lateral contraction) linear modes which
are usually difficult to identify and costly to compute. This issue has been overcome by the
Implicit Condensation (IC) approach, which has been successfully applied to MEMS only re-
cently [5, 6, 23, 24]. In this case, a small subset of linear eigenmodes, known as master modes,
is defined to span a stress manifold that statically condenses all the contributions of high
frequency modes. However, when inertia nonlinearities play a major role or the frequencies of
the slave modes are not well separated from the master ones, the method fails. Another linear
ROM relies on Proper Orthogonal Decomposition (POD) [2, 25, 26], which this contribution
focuses on. In this case, basis functions are computed in a data-driven manner, performing
the singular value decomposition of a matrix of FOM solutions computed over time, and for
suitably sampled parameter values; thanks to SVD, the most relevant contributions to explain
the solution variability across the time span and the parameter space are selected, resorting to
an energy measure. Later, a Galerkin projection onto the POD subspace allows us to generate
a low-dimensional ROM, which we refer to as POD-Galerkin ROM. In this contribution, we
show how this approach can overcome the limitations shown by other linear methods.

An alternative to linear ROMs is provided by a different class of methods, which we
can refer to as nonlinear ROMs. Among them, a further classification can be proposed
with respect to the assumptions used in their derivation. Modal Derivatives and the related
Quadratic Manifold approach [27, 28, 29, 30] try to define spaces of nonlinear basis functions
with the key idea of taking into account the amplitude dependence of mode shapes and
eigenfrequencies. However, these functions are assumed to be velocity independent, ultimately
introducing model limitations similar to the IC approach.

On the other hand, truly nonlinear reduction methods start by defining a nonlinear rela-
tionship between the original coordinates and those of the reduced dynamics, hence providing
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a more accurate treatment of the nonlinear trajectories and faster convergence with fewer mas-
ter modes. This class of methods resorts to the concept of Nonlinear Normal Mode (NNM),
whose study began with the pioneering work by Rosenberg [31]. In his work, the NNM was
defined as a synchronous vibration of the system. This concept has been later generalized by
the notion of invariant manifold [32, 33, 34, 35] and spectral submanifold [36, 37]. While the
numerical computation of NNMs for large-scale FEM models has been tackled, e.g., in [38],
the generation of ROMs based on the concept of NNM has been addressed so far for small
systems with few degrees of freedom (dofs) and only in very recent contributions [39, 40] the
technique has been applied to complex structures involving inertia and geometrical nonlinear-
ities. However, its extension to multiphysics (e.g. electromechanics) has not been addressed
yet, and poses severe computational challenges.

Early applications of POD [41, 2, 42] to elastic structures with distributed nonlinearities
have put in evidence its optimality in the sense that it minimizes the average distance between
the original signal and its reduced linear representation. Indeed, the linear nature of a POD-
Galerkin approach can be considered as an advantage since few manipulations are needed
to construct the ROM. Nevertheless, it also represents a drawback, because a single, global
linear subspace might not be able in principle to describe the nonlinear invariant manifolds [43]
which characterize mechanical structures. While applications of POD to MEMS [44, 45] have
been so far mainly limited to linear mechanics, beam theory and optimization problems, in
this contribution we focus on the application of POD to highly nonlinear problems, showing
its accuracy and computational efficiency. In particular, different sources of nonlinearities
are considered, dealing with large rotations, internal resonances (i.e. nonlinear coupling)
and electrostatic forcing. The POD-Galerkin ROM is validated against FOM solutions, and
its generalization capabilities over the space of parameters are assessed. In particular, the
ROM dynamics is solved by resorting to numerical continuation and bifurcation analysis
tools, which give an insight onto the underlying dynamics – being this latter usually difficult
to access in the FOM case because of the high computational cost required. The POD-
Galerkin ROM solution is also studied from the perspective of invariant manifold theory. In
particular, we compare the periodic orbits obtained from the POD-Galerkin ROM and the
invariant manifold approximated with the Direct Parametrization (DP) approach [40] applied
to the corresponding FEM system, providing a detailed analysis unprecedented for large Finite
Element Models.

The structure of the paper is as follows. After a short description of the POD-Galerkin
framework in Section 2, we focus on a series of applications to MEMS modeled with the
FEM, ranging from simple beam resonators to complex micromirrors and to arches displaying
internal resonances, which put a strain on known techniques for geometrical nonlinearities.
In the examples, we discuss the physical rationale behind the POD modeling capabilities,
resorting to comparisons with the results from Direct Parametrization. We finally show that
the POD-Galerkin ROM yields great promise also on coupled multiphysics applications where
few or no alternatives are available.

2 Formulation

Let us consider the framework of structures subjected to large transformations and small
strains. This is the operating range of most microsystems since they are often actuated at
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resonance and large aspect ratios allow reaching large displacements within the linear elastic
range of the material. In this framework, the Saint Venant-Kirchhoff constitutive model [46]
is the most appropriate choice, and is given by

S = A : E, (1)

where S is the second Piola-Kirchhoff strain tensor, A the fourth-order elasticity tensor and
E the Green-Lagrangian Strain tensor:

E =
1

2

(
∇d +∇Td +∇Td · ∇d

)
; (2)

here we denote by d the displacement field and by ∇(·) the (material) gradient defined with
respect to the reference configuration. The weak form of the linear momentum conservation
law is: ∫

Ω0

ρ0d̈·w dΩ0 +

∫
Ω0

P[d] :∇Tw dΩ0 =∫
Ω0

ρ0F·w dΩ0 +

∫
ST

f ·w dS0, ∀w ∈ H1
0 (Ω0),

(3)

where the integrals are expressed in the reference configuration Ω0 and �̇ denotes the time
derivative. Here ρ0 denotes the initial density, P[d] = (1 +∇d) · S the first Piola-Kirchhoff
stress tensor, F the body forces per unit mass, f the surface tractions prescribed on the surface
ST and w the test velocity selected in H1

0 (Ω0), i.e. the space of functions with finite energy
that vanish on the portion SU ⊂ ∂Ω0 where Dirichlet boundary conditions are prescribed.
In our applications we assume that vanishing displacements are enforced on SU . Within the
present context, it is worth stressing that eq.(3) exactly accounts for geometric (elastic and
inertia) nonlinearities, e.g., large rotations or nonlinear mode coupling.

The spatial discretization of eq.(3), e.g. by means of finite elements, also including a
Rayleigh model damping term, yields to a system of coupled nonlinear differential equations
of the following form:

MD̈ + CḊ + KD + G(D,D) + H(D,D,D) = F(D,β, ω, t), t ∈ (0, T ) (4)

where the vector D ∈ Rn collects all unknown displacement nodal values, M ∈ Rn×n is
the mass matrix, C = ω0/QM the Rayleigh model mass proportional damping matrix –
considering a reference eigenfrequency ω0 and a quality factor Q – and F ∈ Rn the nodal
force vector which depends on the actuation intensity parameters β, the angular frequency of
the actuation ω and in general also on D, e.g. in electromechanical applications. The internal
force vector has been exactly decomposed in linear, quadratic, and cubic power terms of the
displacement: K ∈ Rn×n is the stiffness matrix related to the linearized system, while G ∈ Rn

and H ∈ Rn are vectors given by monomials of second and third order, respectively. We stress
that the components of these vectors can be expressed using an indicial notation

Gi =

n∑
j,k=1

GijkDjDk, Hi =

n∑
j,k,l=1

HijklDjDkDl, i = 1, . . . , n.

Equation (4) represents our high-fidelity, FOM which depends on the input parameters
ω,β. The FOM can be solved in different ways and in the present work we consider two
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alternatives: a time marching scheme, i.e. a nonlinear Newmark algorithm, and an HB solver
as developed in [19]. It should be recalled that in resonating MEMS an important output of
interest is the FRF in which a selected quantity, like the midspan deflection of a beam or the
rotation of a micromirror, is plotted versus ω for different β. Indeed, the focus is on frequency
stability for the following main reason: resonators operate close to a reference frequency where
the behavior should be predictable. For instance, in micromirrors the stability of the motion
is required to guarantee the performance during the line scanning process and predicting
correctly the hardening and softening behavior is of paramount importance. As a consequence
we are interested in the steady state response of the device. This is the direct output of HB
approaches which express the solution as the sum of Fourier series. However, HB solvers
are not standard in commercial codes and might not be easily accessible. Moreover, their
cost rapidly increases with the size of the Fourier basis thus requiring dedicated computing
facilities. On the contrary, time marching schemes are always available, but transients before
reaching the steady state condition are often prohibitively long due to the large quality factors
of MEMS. As a consequence the choice of the solver is in general a trade-off which strongly
depends on the application at hand. Several examples are commented in Section 3 where
details on the simulation settings are provided.

2.1 Reduced order modeling through POD

The first step in the construction of a POD-Galerkin ROM requires to generate a matrix
X ∈ Rn×m, whose m columns collect snapshots of the FOM solutions, obtained for different
values of the parameters ω,β. If the FOM is solved by means of an HB approach, the snapshots
for a given frequency are taken at regular intervals over one single period of the steady
state response by reconstructing the displacement field starting from the Fourier coefficients.
Otherwise, if time marching schemes are employed, several alternatives are indeed available
according to whether snapshots are taken in a condition close to the steady state or not. The
influence of these choices is extensively investigated in Section 3.

Next, the Singular Value Decomposition (SVD) of the matrix X is computed,

X = UΣVT

where the columns of the orthonormal matrix U ∈ Rm×m are the left singular vectors, often
called Proper Orthogonal Modes (POMs) in the literature [2, 25, 26]; the columns of the
orthonormal matrix V ∈ Rn×n are the right singular vectors. The diagonal elements of
Σ ∈ Rm×n are the singular values of the matrix X and are conventionally ordered from the
largest to the smallest. In particular, the rank of X is equal to the number of nonzero singular
values, and the optimal rank-p approximation X̃ of X, in a least squares sense, is given by
the rank-p SVD truncation

X̃ =

p∑
i=1

σiUiV
T
i

in which σi is the i-th singular value contained in the diagonal of Σ, Ui is the i-th column
of U and Vi is the i-th column of V. See, e.g., [25] for further details. The SVD of X
provides important insight into the energy distribution of the snapshots where the energy of
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X is defined via the Frobenius norm:

ε(X) = ‖X‖2F =
n∑

i=1

m∑
j=1

x2
ij =

min(m,n)∑
k=1

σ2
k.

The POD approach selects the first p most energetic POMs to build the POD-Galerkin ROM
approximation:

D ≈
p∑

i=1

QiUi (5)

where Qi are the ROM generalized coordinates. Hence, the POD-Galerkin approximation of
D in (5) is given by a linear combination of POD modes, and the resulting trial subspace is
optimal in the sense that it captures the highest possible energy content among all possible
linear subspaces for any prescribed dimension p. Furthermore, the error in the snapshots
approximation is related to the sum of the square of the singular values associated to the
nonretained modes [25].

Once the linear trial POD subspace has been obtained, projecting the FOM (4) onto
the POD subspace yields the structural dynamics geometric POD-Galerkin ROM, under the
form of a p-dimensional nonlinear ODE system, whose solution provides the dynamics of the
generalized coordinates:

MPODQ̈ + CPODQ̇ + KPODQ + GPOD(Q,Q)

+ HPOD(Q,Q,Q) = FPOD(Q,β, ω, t), t ∈ (0, T )
(6)

where
MPOD = UTMU, CPOD = UTCU, KPOD = UTKU,

FPOD = UTF, GPOD
i = gPOD

ijk QjQk, HPOD
i = hPOD

ijkl QjQkQl,

with MPOD,CPOD,KPOD ∈ Rp×p. The computation of the vectors GPOD and HPOD entails
O(p3) and O(p4) terms, respectively. Note that the coefficients gPOD

ijk and hPOD
ijkl can be pre-

computed, and that the reduced problem can be assembled efficiently thanks to its polynomial
nature, thus avoiding the use of hyper-reduction techniques such as the (discrete) empirical
interpolation method [47, 48, 49].

2.2 Solution of the Reduced Order Model

One of the greatest benefits of generating a POD-Galerkin ROM as the one in eq.(6) is the
possibility to compute directly periodic solutions and trace the full FRF, with both stable
and unstable branches, by resorting to continuation codes either based on HB techniques or
collocation approaches. Some well-known packages, suitable for small scale problems, are
available in the literature. One of the most relevant examples is Auto07p [50], a package that
uses collocation methods in FORTRAN to perform numerical continuation and bifurcation anal-
ysis. Among other tools we can mention Manlab, a Matlab package that uses HB method and
Asymptotic Numerical Method [51, 52]; Nvlib that also exploits HB methods [53]; COCO that
implements collocation methods and algorithms for bifurcation detection [54]. Another excel-
lent package able to perform the continuation of ODEs is BifurcationKit [55], an emerging
toolkit for Julia language that provides continuation methods for ODEs and PDEs. These
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packages usually provide the ability to distinguish between stable and unstable branches, lo-
cate bifurcation points and follow alternative branches of the solution. We highlight that the
same versatility is difficult to achieve with a FOM. Indeed, even if a HB formulation with
continuation has been recently proposed in [18, 19] for large scale problems, computing times
are not compatible with their application at the design or prototyping levels.

In this work, we compute solutions with Manlab, which has an impressive capability to
perform accurate bifurcation analysis and to exploit the Asymptotic Expansion Method [56]
by ensuring a good balance between computational time and accuracy, provided that the
problem can be re-written in quadratic form.

2.3 POMs and reconstruction vectors in NNM

An important feature of an effective ROM is the capability to identify an invariant subspace
for the system dynamics, i.e. trajectories initiated along the subspace remain within the
subspace itself in the full order solution. In linear systems each mode defines an invariant
plane in the phase space, hence linear projection methods as the modal decomposition pro-
vide an excellent tool for generating ROMs. On the other hand, in presence of geometric
nonlinearities, invariance of modal subspaces is not guaranteed as underlined in past works,
for instance by Amabili and Touzé [43] and Haller [57]. Indeed, the invariant manifold tan-
gent at the origin to a given modal subspace is a curved hypersurface that requires nonlinear
projection methods. In this framework, the parametrization method initially formulated by
Haro and De la Lave [58, 59, 60] was recently applied to large scale finite element systems
of mechanical structures [39, 40, 61] thanks to the Direct Parametrization approach. The
fundamental idea of this class of methods is to parametrize the dynamics of the system along
the invariant manifold associated to one of its eigenfunctions. This requires the introduction
of a nonlinear change of coordinates between nodal displacements and the parametrization
coordinates. Using the formulation proposed in [39], the nonlinear coordinates change for a
single master-mode reduction in an undamped mechanical system is expressed as:

D =φmR+ âR2 + b̂S2 + ĉR3 + ûRS2 +O(|R,S|4), (7)

where φm denotes the eigenmode associated to the master mode. Here â, b̂, ĉ, and û are
higher order reconstruction vectors used to map the parametrization coordinates R and S to
the physical displacement D. The reconstruction vectors in eq.(7) apply a correction with
respect to a simple modal decomposition approach by accounting for the coupling between
master and slave modes. As shown by Buza [57], the projection of the eigenfunctions of
the system along quadratic reconstruction vectors provides a solid framework to identify the
modes that better describe the curvature of the invariant manifold. This last result is the
natural extension of what remarked by Amabili and Touzé [43] where the trial space identified
by POD was interpreted as the best linear approximation of the nonlinear normal mode. The
consequence is that, in order to properly build a ROM relying on methods such as POD, one
needs to introduce also bases that allow a correct approximation of the manifold curvature.
This is highlighted in the results section, where qualitative changes in the predicted structural
response are obtained by adding PODs with apparent negligible energy contribution, however
showing a high curvature related to the invariant manifold of the system. This effect can also
be observed in their shape, which resembles that of the reconstruction vectors provided by
the DP.

7



3 Purely mechanical applications

Four mechanical benchmark cases are here proposed to discuss the accuracy of POD-Galerkin
ROMs: a doubly clamped beam, two micromirrors and a shallow arch. In all cases, FEM
meshes are made of wedge quadratic elements (“extruded” isoparametric elements with 15
nodes). For each example we report in A the computation time required by the FOM, the
offline and the online stages of the ROM.

3.1 Doubly clamped beam

Let us consider a doubly clamped beam of length L = 1000µm with a rectangular cross-section
of dimensions 10µm×24µm , as depicted in Fig.1.

L

B

H

Figure 1: Geometry and mesh of the doubly clamped beam, front view and cross-section

This academic example simulates realistic MEMS resonators like those analysed in [6].
A rather coarse mesh with 2607 nodes has been employed. Indeed, this example is used
to discuss extensively the features of the ROM and every result is compared with reference
FOM solutions that are affordable only with relatively coarse meshes. The beam is made of
isotropic polysilicon [62], with density ρ = 2330 Kg/m3, Young modulus E = 167 GPa and
Poisson coefficient ν = 0.22. We select a fixed quality factor Q = 50. The device vibrates
according to its first bending mode at f0 = 87141 Hz. The first five eigenfrequencies are
reported in Table 1.

Eigenmode 1 2 3 4 5

Frequency [kHz] 87.141 208.45 240.03 470.10 572.18

Table 1: Doubly clamped beam: eigenfrequencies

The external excitation is provided by a body load proportional to the first eigenmode
F = Mφ1β cos(ωt) with β load multiplier.

The training data can be generated with different methods and a variable number of
snapshots. Since we aim at modeling the steady-state response of the system, HB solutions
are the ideal candidates to generate representative data. In a first application, we consider a
training dataset computed with HB and β = 0.5µN and consisting of a total of 500 snapshots
generated from one period of 10 frequency samples along the FRF, represented by the violet
circle markers in Figure 4c.

First, we address the convergence with respect to the number of POMs retained in the
subspace. The POD method usually adopts the relative energy as a convergence measure to
select the space dimension. The relative energy content of each POM is depicted in Figure 2a.
It is worth stressing that the first POM represents 99.995 % of the energy and the second
POM contains only 0.0035 % of the energy. To test the convergence of the ROM, we consider
seven different subspaces with 1,2,3,4,6,8 and 10 POMs, respectively. The resulting ROMs
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Figure 2: Doubly clamped beam: convergence with respect to the number of POMs retained in the
ROM. Figure a): relative energy content of POMs. Figure b): FRF computed with each ROM subspace
considered. Figures c) and d): enlarged views of the resonance peak and the internal resonance
interaction region, respectively.

are tested on β = 0.5µN (i.e. the same forcing level seen during the training stage) and
β = 0.75µN. The resulting FRFs are plotted in Figure 2b. We notice that trial spaces with
less than 3 POMs are inadequate to describe the dynamics, while richer spaces provide a very
good accuracy. It should be remarked also that increasing the number of POMs a mild 1:5
internal resonance is evidenced, as predicted by the high-fidelity FOM (see Figure 4d).

Next, keeping 6 POMs in the trial space, a choice that guarantees a good balance between
efficiency and accuracy, the ROM is tested on different forcing levels β = 0.25, 0.375, 0.45, 0.5, 0.625, 0.75µN.
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Figure 3: Doubly clamped beam: FRFs computed with the ROMs with 6 POMs compared with the
FOM solution. The blue line denotes the training curve, while the red ones are solutions computed
for different levels of the forcing. The cross markers represent the FOM solutions

The results are reported in Figure 3, always compared to the solutions of the HB-FOM. The
two families of simulations are almost exactly superimposed, hence proving the high predictive
capability of POD, well beyond the training range. Also the correct evolution of the unstable
branch is reproduced, from mildly to strongly hardening at increasing actuation levels.

Nevertheless, HB solutions might not be accessible in general (e.g. in commercial codes),
or might be too costly to generate. In these cases time-marching methods are the only option
available to generate snapshots. To highlight the possible differences with HB-FOM solutions
in this simple and small example, we consider four datasets computed with time marching
methods and β = 0.5µN: 1) 1242 snapshots generated from a response close to the steady
state (SS) at 2 different frequencies; 2) 6210 snapshots generated from a response close to SS
at 10 different frequencies (including the ones of set 1); 3) 12420 snapshots generated from a
response close to SS at 20 different frequencies (including the ones of set 2); 4) 1000 snapshots
generated from a fully transient (TR) response at one single frequency.

The sampling points and plots of the time marching datasets are reported in Figures 4a,
4b and 4c. The corresponding ROMs with 6 POMs are displayed in Figure 4d. We notice
that all the solutions are almost exactly superposed and the localized 1:5 internal resonance
is the only portion of the FRFs where minor differences can be appreciated (Figure 4f). In
particular, the capability of the technique to predict steady state solutions starting from fully
transient data (case 4) is impressive and very promising for MEMS applications where large
quality factors generally prevent time marching schemes from reaching steady state conditions
within reasonable time frames.
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Figure 4: Doubly clamped beam. Comparison between training with time-marching or HB snapshots.
Figure a): time histories of the midspan displacement corresponding to the snapshots set collected
close to Steady State (SS). The frequency is swept upwards and the data are collected after a fixed
number of time steps. The time histories are simulated sequentially and jumps denote a change of
the forcing frequency. Figure b): time history of the midspan displacement corresponding to the
snapshot set collected in a transient (TR) case. Figure c): sampling frequencies of the datasets HB,
SS and TR. The SS datasets differ due to the number of frequencies sampled. Figure d) presents the
FRFs computed with the ROMs. Figure e) and f): close-up of the resonance peak and of the internal
resonance region.
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Figure 5: Doubly clamped beam. Comparison between the POD subspace bases and DP. Figure a)
shows the parametrization up to cubic order and the third eigenmode. Figure b): first three POMs.
Figure c): invariant manifold computed with DP (green surface) and orbits computed with POD (black
lines). The manifold is defined in the phase space composed by the first eigenmode displacement and
velocity and the fourth eigenmode displacement.

3.1.1 Connection with modal methods and DP

As put in evidence in Figure 3, a major improvement comes from the inclusion of the third
POM. The first three POMs are represented in Figure 5b. The difference between the trial
spaces with 2 and 3 POMs is not easy to appreciate through a direct application of the
energy criterion. From a physical perspective, the first two POMs closely resemble the first
and the second symmetric bending modes, while the third POM is related to high frequency
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axial/contraction modes.
In linear methods based on modal subspaces, see e.g. [21, 22], it is now acknowledged that

this type of modes must be imperatively included in the selected subspace to guarantee con-
vergence, but they are difficult to identify a priori. These modes indeed provide an important
correction to the stress field that cures the over-hardening typical of linear techniques. The
automatic identification of such a contribution can be considered as a major benefit of the
POD over modal techniques.

Considering now the parametrization methods discussed in Section 2.3, the reconstruction
vectors of eq.(7) are plotted in Figure 5a. We start noticing the striking analogy between the
first eigenmode φ1, the quadratic displacement-dependent term â, the cubic displacement-
dependent term ĉ and the first three POMs.

Next, in Figure 5 the manifold of the DP is compared with orbits computed through POD
by considering the phase space composed by the projection of the displacement and velocity
on the first eigenmode and the projection of the displacement on the fourth eigenmode.
The ROM solution lies almost perfectly on the approximated manifold, thus showing that the
subspace computed with data-driven methods converges to the one computed with asymptotic
expansions.

3.2 Micromirrors

Scanning micromirrors are witnessing explosive growth in recent years due to successful appli-
cations ranging from pico projectors for Augmented Reality (AR) lenses [63], to 3D scanners
for Light Detection and Ranging (LiDAR) application. In this section we address two mi-
cromirrors with different nonlinear behavior. These devices are intrinsically nonlinear due
to inertia effects associated with large rotations, and they present a frequency-amplitude de-
pendence which might be either hardening or softening according to the specific layout. The
correct quantitative prediction of nonlinear effects is a tough benchmark for any FOM or
ROM. Recently, the authors have developed a large scale HB approach in [19] for the analysis
of piezo mirrors which is here utilized as FOM to generate snapshots. It is worth stressing
that classical ROM techniques like the Implicit Condensation [5] and Modal Derivatives [27]
fail to provide the required accuracy.

3.2.1 Micromirror 1

An optical image of the first micromirror, fabricated by STMicroelectronics [19, 64], is pre-
sented in Figure 6a. The top view is reported in Figure 6b. The reference FOM is built
considering only half of the structure to exploit symmetry as illustrated in Figure 6c. The
central circular reflecting surface is directly attached to the substrate with two short torsional
beams (springs), while the rotation of the mirror is induced by trapezoidal beams which are
connected to the mirror through folded compliant springs. The beams are actuated by piezo-
patches, i.e. PZT layers with a thickness of 2µm appearing in Figure 6b as light brown areas.
The mirror disk has a diameter of 3000µm and the lower surface has been reinforced with a
curvilinear support in order to minimize the dynamic deformation of the mirror itself.

The mirror is made of single crystal silicon with [100] orientation [65] and the first five
eigenfrequencies are reported in Table 2.

The quality factor is set to Q = 100. In our investigation, for the sake of simplicity,
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a) b)

c)

Figure 6: Micromirror 1. Figure a): photo of the real device. Figure b): top view of the layout.
Piezoelectric patches are in light brown and the numbers characterize the actuation scheme [19, 64].
Figure c): first torsional mode. The eigenmode consists of a rotation of the micromirror plate as shown
by the color-map of the displacement magnitude.

Eigenmode 1 2 3 4 5

Frequency [kHz] 2.258 7.238 23.378 23.426 56.046

Table 2: Micromirror 1: eigenfrequencies

we replace the piezoelectric actuation with a body force proportional to the first eigenmode
F(t) = Mφ1β cos(ωt) with β load multiplier. The FEM model in this benchmark contains a
total of 15341 nodes.

In the training stage, in which the FOM has been solved with an HB approach, 5000
snapshots have been generated from frequency samples uniformly distributed over the FRF
setting β = 0.3µN. Even if a POD-Galerkin ROM with 1 or 2 POMs collects more than
99.99% of the energy content (see Figure 7a), the trial space should contain at least the first 6
POMs to achieve convergence. Nevertheless the ROM with 6 POMs displays a small resonance
effect close to ω = 0.0142 that is eliminated by using 8 POMs. This can be appreciated from
Figure 7b where several FRFs have been computed with an increasing number of POMs.

For the subsequent analyses, a trial space with 8 POMs is retained. Different levels of
the forcing have been tested as illustrated in Figure 8 showing that an excellent agreement
is achieved together with a remarkable predictive capability. Only few curves are validated
against the corresponding FOM solution because of the prohibitive computational cost en-
tailed by the HB-FOM model.

Similarly to the doubly clamped beam, some remarks concerning the POD subspace are
worth stressing. The first 3 POMs are depicted in Figure 9. From a physical point of view, the
first POM corresponds to the linear torsional eigenmode, while the second one corresponds
to a contraction of the mirror plate that applies a correction to the linearized torsion. Indeed
a linearized rotation, when extended to large angles, induces a non physical stretch of the
structure. The higher order POMs correspond to the membrane and axial deformation of the
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Figure 7: Micromirror 1: convergence of the ROM. Figure a): energy of each POM. Figure b): FRF
for the ROMs including an increasing number of POM. The POD is tested on the training set. The
ROM simulations progressively converge to the correct FOM solution. With 6 POMs a small resonance
effect occurs close to ω = 0.0142[rad/µs] that is eliminated by further increasing the number of POMs

deformable springs and beams.
Considering the parametrization of the DP, in Figure 9a we also plot the reconstruction

vectors of eq.(7). Apart from the obvious correspondence between the linearized mode and the
first POM, we notice a strong correspondence between â and the second POM and between
ĉ and a combination of the third and the fourth POMs.

Finally, Figure 9c presents the solution manifold in a phase space composed by the pro-
jection of the displacement and velocity on the first eigenmode and of the displacement on
the second eigenmode. The manifold obtained with the DP (continuous green surface) and
the orbits obtained through the POD-Galerkin ROM are nearly superimposed as remarked
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Figure 8: Micromirror 1: FRFs computed with the ROMs with 10 POMs compared with the FOM
solution. The red continuous lines represent the ROM solutions computed in conditions different from
the training data, the blue one marks the training condition curve. The cross markers represent the
FOM solutions

also in the previous example. The strong connections between the POD and the DP emerge
hence as a distinctive feature of the POD approach.

3.2.2 Micromirror 2

The second mirror addressed, also fabricated by ST Microelectronics, is illustrated in Fig-
ure 10. In this case the mirror is suspended to a gimbal rather than being directly attached to
the substrate with torsional springs. As a consequence, its nonlinear behavior turns softening.

The frequency of the torsional mode is 29271 Hz and the quality factor has been set
to Q = 1000. The first 5 eigenfrequencies are listed in Table 3. Also in this application,
we replace the piezoelectric actuation method with a body force proportional to the third
eigenmode F(t) = Mφ3β cos(ωt) with β load multiplier.

Eigenmode 1 2 3 4 5

Frequency [kHz] 11.080 18.533 29.271 41.667 68.848

Table 3: Micromirror 2: eigenfrequencies

This benchmark, which looks rather similar to the previous one, turns into a tough chal-
lenge for simulation approaches, mainly because the torsional mode is not the lowest-frequency
one (it is the third) and is not well separated from the other modes. Indeed, in this case
even the DP technique requires a high order expansion and the quadratic formulation in [40]
fails. The POD, on the contrary, performs indistinctly well. The training stage is performed
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Figure 9: Micromirror 1: comparison between the POD subspace bases and DP. Figure a):
parametrization up to cubic order and the second eigenmode. Figure b): first three POMs. Fig-
ure 3): invariant manifold computed with DP (green surface) and orbits computed with POD (black
lines). The manifold is defined in the phase space composed by the first eigenmode displacement and
velocity and the second eigenmode displacement

considering β = 2.5µN and generating a total of 2000 snapshots. The distribution of the
frequency samples on the FRF computed with the HB-FOM is presented in Figure 11a, while
Figure 11b collects the associated POMs. Testing different ROMs built with an increasing
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Figure 10: Micromirror 2. Figure a): optical picture of the micromirror. Figure b): top view of the
layout. Piezoelectric patches are in light brown and the numbers characterize the actuation scheme
[19, 64]. Figure c): third (torsional) eigenmode that is actuated during operations.

number of bases we obtain the results displayed in Figure 11c. The convergence of the sub-
space is consistent with the increasing number of POMs, and this can be appreciated from
the enlarged views in Figures 11d and 11e.

A good balance between subspace dimension and accuracy is given by the subspace
spanned by 10 POMs on which we perform a more extensive testing stage varying, as usual,
the force multiplier β = 1, 1.5, 2, 2.5, 3µN. The results plotted in Figure 12 show again the
highly predictive capability of the POD-Galerkin ROM.

3.3 Shallow arch with internal resonance

In recent years several occurrences of complex nonlinear phenomena have been documented
experimentally in MEMS, mainly due to their large quality factors Q. Internal resonances
(IRs) play an important role in triggering more complex motions and facilitate energy transfer
between modes. Often IRs are strongly linked to the stability of the associated periodic
response and quasi-periodic regimes might arise as a consequence of Neimark-Sacker (NS)
bifurcations [66]. The numerical prediction of such phenomena requires an accurate stability
analysis which cannot be performed at a reasonable cost using FOMs, while can be much
more conveniently run on small ROMs using dedicated continuation tools, as discussed in
Section 2.2.

For these reasons we include among our benchmarks a shallow double-arch with a constant
radius of curvature. The layout, inspired by the one proposed for a bistable structure in [67],
has been suitably designed so as to trigger a 1:2 IR. The arch geometry and mesh are illustrated
in Figure 13. The mesh considered consists of quadratic wedge elements and contains 1971
nodes.

The device is made of polycrystalline silicon with density ρ = 2330 kg/m3 and a lin-
ear elastic Saint-Venant Kirchhoff constitutive model is assumed, with Young modulus E =
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Figure 11: Micromirror 2: convergence of the ROM. Figure a): points of the FOM FRF utilized
in the training phase to generate the snapshots. Figure b): energy content of each POM. Figure c):
FRFs resulting from each ROM built with a increasing number of POMs. The POD is tested on the
training set and on a second higher forcing level.

167000 MPa and Poisson coefficient ν = 0.22 [68]. The first six eigenfrequencies of the mod-
elled structure are reported in Table 4.

Eigenmode 1 2 3 4 5 6

Frequency [kHz] 434.16 525.97 603.91 667.59 756.95 863.67

Table 4: First six eigenfrequencies of the MEMS arch
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Figure 12: Micromirror 2: FRFs computed with the ROMs and 8 POMs compared with the FOM
solution. The red continuous lines denote the test ROM solutions, while the blue one refers to the
training data. The cross markers represent the FOM solutions
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a)

sb)

Figure 13: Shallow arch. Figure a): 3D view of the FEM model. Figure b): front view and main
dimensions. B = 20µm, H = 5µm, L = 530µm, rise=13.4µm, s = 10µm.

The quality factor has been set to Q = 500 and the actuation is provided by a body force
proportional to the first eigenmode F(t) = Mφ1β cos(ωt) with β load multiplier.

In order to further stress the versatility of the POD-Galerkin ROM, we opt for time march-
ing methods to simulate the FOM and generate the training dataset. Moreover, snapshots
have been collected during the transient phase, far from steady-state conditions, according to
the following strategy. The forcing level has been fixed to β = 0.2µN and a sequence of four
frequencies have been analyzed with a Newmark implicit solver in a downward sweep. For
each frequency, 100 cycles are simulated and a total of 20000 snapshots are collected. Initial
conditions for the global analysis are homogeneous and the final state computed for each
frequency yields the initial conditions for the next one. It is worth stressing that, given the
Q value at hand, after 100 cycles the system is still fully in a transient phase. The frequency
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Figure 14: Convergence of the hyper ROM on the MEMS arch. Figure a): energy content of each
POM. Figure b): frequency points sampled with time marching methods on the FEM model compared
with the FOM FRF achieved with HB method. The solution are far from the Steady State regime and
thus depart from the HB solution. Figure c): Time history of each frequency value. Figure d: FRFs
resulting from each ROM built with a increasing number of POMs. The POD is tested on the training
set and on a second higher forcing level.

points and the time series of the mid-span deflection of the arch are collected in Figures 14b
and 14c, respectively. The maximum amplitudes, denoted by yellow triangles in Figure 14b,
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are indeed quite far from the steady state solutions predicted by the HB FEM.
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Figure 15: Shallow arch: FRFs computed with the ROM (8 POMs) compared with the FOM
solutions. The red continuous lines are ROM solutions computed in the test phase, the blue one
marking the training curve. The crosses denote the FOM solutions, while the star markers indicate the
bifurcation points. The green and purple stars stand for Saddle-Node and Neimark-Sacker bifurcation
points, respectively

The SVD computed on the snapshot matrix yields the energy distribution of Figure 14a.
Also in this case, although it appears that the energy is almost totally focused in the first
two POMs, the convergence analysis presented in Figure 14d shows that at least 4 POMs are
required and a good convergence is achieved starting with 6 POMs. In the following, we will
consider a trial space collecting the first 8 POMs.

The chosen ROM is now tested considering different forcing levels and the corresponding
FRFs are plotted in Figure 15, together with the HB-FOM solutions. The model correctly
reproduces the complex pattern of the 1:2 IR, as demonstrated by the shape of the frequency
response displaying the two characteristic peaks. As recalled, a key feature of the ROM is
the possibility to apply the bifurcation analysis tools discussed in Section 2.2 which yield the
results of Figure 15. Two different classes of bifurcation points can be identified: saddle-node
bifurcations, that split the FRF between unstable and stable branches, and Neimark-Sacker
bifurcations that separate stable periodic and quasi-periodic regions. Quasi-periodicity is a
dynamic condition where the external excitation frequency of the system is paired with an
incommensurate smaller frequency that modulates the amplitude of the response (see [66] for
further details). For a given FRF, in the region within the two Neimark-Sacker bifurcations
only quasi-periodic, and eventually almost chaotic, solutions [66] are physically meaningful.
This challenging benchmark shows that an excellent quality of the ROM can be achieved even
with a fast training phase based on fully transient data.
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4 Electromechanical coupled problems

While previous benchmarks have addressed purely mechanical problems with geometrical
nonlinearities, the interest in generating an optimal linear trial space goes beyond these ap-
plications. In MEMS applications, multiple sources of additional nonlinearities come from the
actuation mechanism and the most typical example is provided by electrostatic forces that
depend in an intrinsically nonlinear manner on the displacement field.

In most contributions addressing both geometric and electrostatic effects (see e.g. [69, 70]
for clamped-clamped beams) analytical approaches or simplified structural theories are uti-
lized, although their application to real MEMS often leads to results that are only qualita-
tively correct or need careful device-dependent calibration. General numerical approaches are
needed as MEMS might have complicated features that can be hardly reduced to simple mod-
els. However, a coupled electromechanical FOM able to simulate complex 3D structures is
not a standard tool even for the most advanced commercial codes and generating snapshots of
the FOM solution often comes with a computational cost that may be unsuitable for practical
applications.

Most importantly, a major difficulty of the POD is associated with the evaluation of the
vector of nonlinear nodal electrostatic forces (EF). Popular data-driven algorithms like the
Discrete Empirical Interpolation Method (DEIM) [71, 72] provide an optimal reconstruction
of the full nonlinear vector starting from a collection of snapshots of the nonlinear forces.
However, the DEIM is based on the assumption that few selected entries of the vector can be
computed at a low cost independently of the others, while in electromechanical problems, the
generation of the nonlinear vector of nodal forces has only a marginal cost with respect to
the solution phase of the electrical sub-problem, be it solved with iterative integral equation
approaches or with FE techniques. The development of a fast algorithm to circumvent this
obstacle is still an open issue.

On the contrary, a simplified way to account for EFs through POD-based models can
be done by exploiting the same approach successfully applied with the implicit condensation
method in [6].

We assume that the trial space defined from snapshots given by the mechanical simulations
is sufficiently rich and able to represent the displacement field also for the fully coupled
problem. This assumption is reasonable when the perturbation of the invariant manifold
induced by the electrostatic couplings is moderate and will in general put an upper bound to
the admissible EFs, i.e. on the bias voltages imposed on the electrodes. Since the electrostatic
problem is quasi-static, the EFs depend only on the instantaneous values of the Qi. This
implies that, in a training stage, the F vector in eq.(4) due to EFs can be computed with
the FOM and projected on the POD subspace to generate FPOD in eq.(6) for any given
combination of the weights Qi of the POMs. The manifold of the electrostatic forces is thus
pre-computed only at discrete points in preselected admissible ranges and is later interpolated
between knots when queried during the integration of the ROM. Moreover, many POMs (like
the “axial” POM in Figure 5 or high frequency bending POMs) have negligible effects on the
EFs and can be disregarded so that EFs will depend on pe electrically active POMs, with
pe � p typically.

As a benchmark problem, we focus on a clamped-clamped beam meshed with quadratic
elements and a total of 10920 nodes. The dimensions of the beam are L = 1000 µm , H =
10 µm , B = 24 µm . An electrode is placed in front of the beam with a gap of g = 5 µm and
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Figure 16: Electromechanical problem. Figure a) Clamped clamped beam used for electromechanical
simulation side and front view. Figure b) FRF used as reference for the reduction. The frequency
samples used to generate the POMs are marked with circles. Figure c) fist six POMs given by the
FOM snapshots.

the voltage bias VDC +VAC cosωt is imposed between the electrode and the beam (see Figure
16a). The quality factor has been set to Q = 10929. The FOM utilized for the electrostatic
problem is a Boundary Element Code (BEM) based on integral equations accelerated with
Fast Multipoles and a total of 71844 unknowns. The code resorts to an iterative solver and
its use in a fully coupled solution would have a prohibitive cost.

The ROM is trained with mechanical HB-FEM simulations setting Q=10929 and applying
a body load proportional to the first eigenmode F(t) = Mφ1β cos(ωt) with β = 0.0005. A
total of 1850 snapshots have been collected on 37 sample frequencies identified by circles on
the FOM solution of Figure 16b. The first 6 mechanical POMs, used to build the ROM, are
depicted in Figure 16c.

Consistently with the previous assumptions we can consider that only the first POM will
contribute significantly to EFs (i.e. pe = 1). Thus, a series of electrostatic analyses are run
imposing displacement fields proportional to the first POM D ≈ U1Q1 covering a range
of 1.1µm for the midspan displacement over a gap of 5µm . The EFs are projected on the
POMs yielding the equivalent forces expressed in µm. These forces are scaled by the applied
potentials VDC and VAC and are modelled with a cubic polynomial as:

FPOD
i (Q1, VDC , VAC , ω, t) =

=
(
V 2
DCε0 + 2VDCVACε0 cos(ωt)

) (
α

(i)
0 + α

(i)
1 Q1 + α

(i)
2 Q2

1 + α
(i)
3 Q3

1

)
(8)

where α
(i)
j are coefficients of order j associated to the force projected on the i-th POM and ε0 is

the vacuum permittivity. In the example considered we neglect the components proportional
to V 2

AC (since typically VAC � VDC , see e.g. [6, 23]). The coefficients for the first 6 POMs
are collected in Table 5.

In order to provide a validation of the ROM proposed we resort to the commercial soft-
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POM 1 2 3 4 5 6

α
(i)
0 6.8638 -0.9609 3.2838 1.9965 0.2274 2.5945

α
(i)
1 0.0469 -0.0039 2.86 · 10−5 −3.31 · 10−5 0.0021 0.099

α
(i)
2 2 · 10−4 −1 · 10−5 −6 · 10−5 1 · 10−5 1 · 10−5 3 · 10−4

α
(i)
3 1 · 10−6 −7 · 10−8 −5 · 10−7 1 · 10−7 5 · 10−8 1 · 10−7

Table 5: Electromechanical problem: coefficients of the polynomial modeling eq.(8)

ware MEMS+ [73], which can perform electromechanical coupled simulations with structural
elements. The model is built with 4 Timoshenko nonlinear beams with 4 nodes and the elec-
trostatics is modelled with the method of conformal mappings. This simulation approach,
though not general, is expected to be accurate for the simple MEMS tested.

Eigenmode 1 2 3 4 5

FEM model [kHz] 87.087 208.244 239.880 469.792 571.281

MEMS+ [kHz] 86.971 208.085 239.755 472.008 571.302

Table 6: Electromechanical problem: comparison between the eigenfrequencies given by the FEM
model and MEMS+

We performed several simulations considering different combinations of VDC and VAC

giving similar peak amplitudes: VDC = 1V , VAC = 1V ; VDC = 20V , VAC = 0.05V ; VDC =
40V , VAC = 0.025V ; VDC = 60V and VAC = 0.0166V .

The results are summarized in Figure 17a collecting plots of the midspan deflection versus
the actuation frequency. The curves are normalized with respect to the mechanical eigenfre-
quency of the lowest eigenmode. The FRFs display a shift of the resonant frequency towards
the left induced by the expected electrostatic negative stiffness effect. The enlarged views
in Figure 17b, 17c and 17d focus on specific frequency ranges for an improved comparison
between the two classes of results. Another relevant effect induced by EFs is given by a
softening contribution that mitigates the hardening of the response for increasing VDC . To
better highlight this latter effect, in Figure 17e we superpose the various FRFs by filtering
the mentioned shift and the static component of the displacement.

A very good agreement is achieved between the two simulation approaches concerning the
shift and the overall nonlinearity evolution. However, as expected, for the largest values of
VDC a quantitative mismatch appears especially on the peak values. Indeed, as previously
remarked, in the presence of large EFs the mechanical POMs might not guarantee an accurate
representation of mechanical displacements. The fact that this disagreement occurs only
at very large voltages unusual in MEMS application is however a strong validation of the
proposed approach.

5 Conclusions

We have investigated various applications of POD-Galerkin ROMs for the sake of efficiently
simulating MEMS devices. In particular, we have demonstrated how POD, despite being a
linear reduction technique, can tackle very efficiently and accurately highly nonlinear features
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Figure 17: Electromechanical problem. Figure a): FRFs computed at four different voltage bias and
comparison with the MEMS+ results. Figure b) c) d): enlarged views of the FRFs computed with
the ROM. Figure e): FRFs superposed filtering the shift and showing the mitigation of the hardening
effect

common in MEMS applications: large rotations, and large geometrical transformations in
general, internal resonances and electrostatic nonlinearities. Geometrical nonlinearities, lead-
ing to polynomial terms up to cubic order, have been reduced through an exact projection
onto the subspace spanned by the POMs, while electrostatics has been modeled resorting to
precomputed manifolds in terms of the amplitudes of the electrically active POMs.

We have tested extensively the reliability of the assumed linear trial space in challenging
applications focusing on resonators, micromirrors and arches also displaying internal reso-
nances. We have discussed several options to generate the matrix of snapshots using both
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classical time marching schemes and more advanced Harmonic Balance approaches. It has
been shown that the method is robust and that a POD-Galerkin ROM can be trained also
with transient time simulations far from steady state conditions. This might indeed be the
only viable option in many applications, considering the cost and complexity of HB methods
and the large quality factors typical of MEMS that prevent reaching steady state conditions
with time-marching schemes.

In order to provide a deeper insight into the POD approach, we have also shown the
similarity of the POMs extracted with the reconstruction vectors of the DP approach that
relies on the invariant manifold theory and verified that the trajectories predicted by the
POD-Galerkin ROM perfectly lie on the manifolds of the DP. This result further strengthens
the interpretation of the POMs as the best linear approximation of the Nonlinear Normal
Modes in the least square sense [43].

Another relevant feature of a POD-Galerkin ROM is that is allows to apply continuation
methods and stability analysis of the dynamic solution, usually infeasible in FOM analyses.
This provides the possibility to compute directly periodic solutions, trace the full FRF with
both stable and unstable branches, and locate bifurcation points by resorting to continuation
codes available in the literature.

The whole set of challenging benchmarks developed seems to suggest a high potentiality,
possibly so far underestimated, of the POD for this specific class of applications and stresses
the reliability of the technique and its strong predictive ability.
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A Analysis of computational performances

In this Appendix we discuss the computational performances of the FOM and of the offline-
online stages of the ROM for the mechanical examples of Section 3. These data further stress
the efficiency of the ROM and provide the trend of the achieved speed-up.

The comparison between the cost of the FOM and of the online stage of the ROM is
reported in Table 7, while an analysis of the offline stage is reported in Table 8. All the
simulations have been run on a workstation with AMD Ryzen 5 1600 Six-Core Processor 3.20
GHz with 64 GB RAM. For HB methods the computational time only includes the calculation
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of the harmonic components and it does not account for the reconstruction of the time history
over the period, while for time-marching methods the cost of all the steps of the time history
is provided.

Application FOM-m TFOM [106 s] p Tonline[s] TFOM/Tonline

C-C Beam HB (9) 0.21 6 42 5023

C-C Beam TM-SS (50) 1.35 6 42 32143

Micromirror 1 HB (5) 0.44 8 452 969

Micromirror 2 HB (7) 0.2 10 220 918

Arch HB (9) 0.12 8 250 480

Arch TM-SS (50) 9 8 250 36000

Table 7: Cost of the FOM and of the online stage of the ROM considering 1000 frequency instances
for a fixed forcing level

In Table 7 the FOM-m column specifies the solution technique used for the full order
model according to the conventions introduced in Section 3. Within brackets we provide
the number of time steps in one period for time marching methods (TM) or the number of
harmonic components for HB methods. TFOM is the average computing time required to
obtain a FOM solution for 1000 frequencies and a single forcing level, which is equivalent to a
finely sampled FRF with continuation methods. The p column provides the number of POMs
used in the reduction. Tonline is the average time required to compute the ROM solution for
1000 frequencies and a single forcing level. The last column provides the speed-up defined
in this case as the ration between TFOM and Tonline. Indeed, when the offline cost is not an
issue and one is mainly interested in the online phase, this is the most important performance
indicator. One comment is worth stressing concerning the FOM solved with time marching
methods. It appears that the time marching approach is not suitable for MEMS applications
when the steady state regime is needed, as is the case herein. Indeed this is due to the large
quality factors Q typical of MEMS. For the C-C beam and the arch resonator we consider
that the steady state is reached after 6Q periods and, despite the fact that the Q factors
considered are unrealistically small, the computing cost explodes.

Application FOM-m #ω m Tsnap[s] Toffline[s]
TFOM

Tonline+Toffline

C-C Beam HB (9) 10 500 2110 2 301 90

C-C Beam TM-SS (50) 2 1242 720 770 259

C-C Beam TM-SS (50) 10 6210 3600 4014 52

C-C Beam TM-SS (50) 20 12420 7200 8206 25

C-C Beam TM-TR (100) 1 1000 90 137 1178

Micromirror 1 HB (5) 50 5000 3026 25526 16

Micromirror 2 HB (7) 40 2000 208 8538 23

Arch TM (50) 4 20000 484 2214 48

Table 8: Analysis of the offline stage

In Table 8 we focus on the contrary on the offline stage and provide a second possible
measure of speed-up. As before, the FOM-m column specifies the solution technique utilized

33



for the full order model. #ω is the number of frequency instances used in the training and
m is the total number of snapshots used in the SVD (including both frequency and forcing
variations). The Tsnap column provides the time required to compute the snapshots with
the FOM. Toffline is the sum of Tsnap, of the time required to perform the SVD decomposition
(package used ARPACK in FORTRAN) and of the cost of the projection onto the ROM subspace.
Finally we report a second possible speed measure TFOM/(Tonline + Toffline) that includes also
the impact of Toffline. The TFOM and the Tonline are the one in Table 7, HB method is considered
in TFOM. This alternative speed measure, shows that Toffline represents a significant part of
the computational effort, nevertheless the ROM is still convenient. The time spent in the
offline stage may overcome the gain achieved in the online stage when few parameter queries
are simulated with the ROM. However in MEMS applications, considering all the features
mentioned in this work (e.g high Q factor, large models, multiple parameters to span etc.)
the computation gain is always much greater than 1.

Let us consider the C-C beam case where we compare the offline cost of four different
conditions: HB FOM, 5,10 and 20 frequency samples with snapshots taken close to steady state
(SS, see Figure 4a) and one frequency with transient time series (TR, see Figure 4b) generated
with TM methods. This highlights that TM methods represent an appealing alternative as a
limited number of snapshots sampled in a fully transient state still allows to identify a proper
subspace, as pointed out in Section 3.1.
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