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Abstract—This “Journal-Never-Presented” paper summarizes
our recent survey paper published at ACM Computing Sur-
veys [23] on software fault tolerance in real-time systems.

I. MOTIVATION AND BACKGROUND

In hard real-time systems, ensuring both temporal and logi-
cal requirements is essential. Typically, correctness is verified
through scheduling analysis for temporal requirements and for-
mal verification or extensive testing for logical requirements.
However, hardware faults can still jeopardize system integrity,
even with a flawless design.

To achieve dependability, hardware solutions like redun-
dancy are commonly employed. Alternatively, software tech-
niques, collectively known as Software-Implemented Hard-
ware Fault Tolerance (SIFT) [29], can be used. SIFT solutions
are cost-effective, making them valuable for Commercial Off-
The-Shelf (COTS) hardware, which may lack strict fault
tolerance designs [21].

The trend toward smaller, more powerful hardware com-
ponents poses challenges. Increased fault rates and complex
features like multi-core architectures make it harder to guar-
antee temporal requirements. The key challenge is computing
the Worst-Case Execution Time [6].

II. RELATIONSHIP WITH MIXED CRITICALITY

Motivated by the impact of fault tolerance on real-time
performance, this paper explores the intersection of fault tol-
erance algorithms and real-time scheduling. While numerous
fault-tolerant solutions and scheduling algorithms exist, the
relationship between scheduling decisions and fault tolerance
is underexplored. There is significant potential for research in
fault-tolerant mixed-criticality (MC) real-time systems [3], an
emerging and promising direction.

In our interpretation of MC, HI-criticality tasks are allowed
to “fail” in timing sense by overrunning their LO-criticality
WCET, due to an underestimation of it. Such concept of toler-
ating temporal faults (such as how to apply fault tolerance and
graceful degradation, making the system robust and resilient,
e.g., in [4]), is orthogonal to the topics in our paper, where
we instead focus on hardware faults and SIFT.

III. MAJOR CONTRIBUTIONS

The goal of the journal paper is to survey the intersection of
fault tolerance approaches and real-time scheduling algorithms
and, particularly, on the identification of open problems. In
particular, the survey paper made the following contributions:
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Fig. 1. The four main software fault recovery approaches. In (a), (b), and (c)
the symbol τ (k)i,j represents the j-th job of the i-th task, and k identifies the
redundancy or re-execution job. Instead, in (d), τi,j,k is the k-th part of the
job τi,j : In the depicted example, the job τ1,1 is composed of three parts.

• We introduced basic related concepts and provided a
background of real-time modeling. E.g., Figure 1 depicts
software fault recovery approaches.

• We reviewed the current literature on (hard) real-time
scheduling analyses and techniques when fault tolerance,
in particular SIFT, is considered. E.g., Figure 2 uses Venn
diagram to summarize existing work according to the
used fault tolerance mechanism(s).

• We proposed a dangerous failure model as well as tran-
sient and permanent hardware fault rates (and they are
independent of each other). We pointed out the relation-
ship between such failure model and Bernoulli processes,
and presented formulas for deriving the probability of
observing a fault in a single time unit, as well as the
probability of a fault to occur in a given job.

• With the proposed fault model(s), we outlined the current
challenges and future possible research directions for
fault-tolerant real-time systems in the following seven
categories: (1) The impact of scheduling decisions on
fault tolerance; (2) Scheduling analysis of fault tolerance
approaches; (3) Mixed-criticality and fault tolerance; (4)
The effect of power management techniques; and (5) The
implementation of the Operating System and scheduler;
(6) Exploiting probabilistic information; (7) Other aspects
such as (k,n)-failure model, approximate computing, and
security issues such as malicious faults.
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Fig. 2. State-of-the-art papers classified via fault tolerance technique.
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