
MALIBOO: When Machine Learning meets
Bayesian Optimization

Bruno Guindani
Department of Electronics,

Information and Bioengineering
Politecnico di Milano

Milano, Italy
bruno.guindani@polimi.it

Danilo Ardagna
Department of Electronics,

Information and Bioengineering
Politecnico di Milano

Milano, Italy
danilo.ardagna@polimi.it

Alessandra Guglielmi
Department of Mathematics

Politecnico di Milano
Milano, Italy

alessandra.guglielmi@polimi.it

Abstract—Bayesian Optimization (BO) is an efficient method
for finding optimal cloud computing configurations for several
types of applications. On the other hand, Machine Learning (ML)
methods can provide useful knowledge about the application at
hand thanks to their predicting capabilities. In this paper, we
propose a hybrid algorithm that is based on BO and integrates
elements from ML techniques, to find the optimal configuration of
time-constrained recurring jobs executed in cloud environments.
The algorithm is tested by considering edge computing and
Apache Spark big data applications. The results we achieve show
that this algorithm reduces the amount of unfeasible executions
up to 2-3 times with respect to state-of-the-art techniques.

Index Terms—Cloud computing, Bayesian optimization, Black-
box optimization, Machine learning

I. INTRODUCTION

Cloud computing environments are widely employed in
several industries since they allow to easily adjust the allocated
resources (CPU, memory, disk, network, etc) to match the
needs of the software application of interest. However, the
configuration of such environments is in the charge of the
cloud end user. A poor choice of software and/or virtual
hardware settings can lead to huge additional costs for them,
and such costs could have been prevented if a more suitable
configuration had been chosen [1]–[3]. For instance, the aver-
age configuration costs of big data applications can be more
than three times as much as the optimal one, and up to 10
times in the worst case [1]. This is especially true for recurring
cloud jobs, i.e., applications that need to be executed multiple
times, where additional cost of suboptimal configurations piles
up over time.

It is also of paramount importance that the execution of a
cloud application complies with given time deadlines, either
coming from the cloud provider as part of its business model
(e.g., providing several performance targets/Service Level Ob-
jectives), or by the cloud end users’ needs. Configuration of
cloud jobs can heavily impact their running time [2]–[4], for
better or for worse, and a poor choice of parameters may
lead to an out-of-time execution. However, as a consequence

The European Commission has partially funded this work under the Horizon
2020 Grant Agreement number 956137 LIGATE: LIgand Generator and
portable drug discovery platform AT Exascale, as part of the European High-
Performance Computing (EuroHPC) Joint Undertaking program.

of the diverse behavior and resource requirements of cloud
jobs, choosing the best configuration for a broad spectrum of
applications is a challenging task.

Bayesian Optimization (BO) has recently gained notoriety
as a powerful tool to solve global optimization problems in
which expensive, black-box functions are involved [1], [3],
[5]–[10]. BO is a sequential design strategy that requires few
steps to get sufficiently close to the true optimum, while
requiring no derivative information on the optimized function.
Most commonly, it is initialized by choosing and evaluating
a small handful of starting points, then fitting a Gaussian
Process model using these points. The fitted model provides
an estimate of both the function value at each point and the
uncertainty around the estimate. BO then iteratively chooses
new points at which to evaluate the function in a such a way to
balance exploration (large uncertainty) and exploitation (large
expected value) [5], [8].

Machine Learning (ML) models are another popular tool
in the world of Information and Communications Technology
(ICT) systems. Their remarkable predicting capabilities can
assist the user in accurately predicting resource usage, execu-
tion times, etc. Indeed, previous work [11]–[17] has shown that
ML models are usually able to predict these target quantities
with very small validation error.

This paper proposes MALIBOO (MAchine Learning In
Bayesian OptimizatiOn), a tool integrating BO algorithms with
ML techniques with the goal to minimize the execution costs
of recurring time-constrained cloud computing jobs.

Our approach is validated in a number of scenarios of
interest, including edge computing applications and big data
analytics. The proposed BO algorithm variants reduce both the
unfeasible executions and the percentage of unfeasible costs
up to 2-3 times with respect to state-of-the art techniques.

This paper is organized as follows. Section II surveys the
state of the art for both BO and ML techniques, discussing the
fields they have been applied to. In Section III, we formalize
the problem of optimal cloud configuration at hand. Section IV
presents an overview of BO and explains its key components.
Our contributions involving the integration of ML into BO are
detailed in Section V. Finally, we present results for experi-
mental validation of our proposed algorithm in Section VI,

and some conclusive comments follow in Section VII.

II. RELATED WORK

In this work, we introduce a new algorithm to find optimal
cloud configurations when job execution is subject to time
constraints. Our main contribution is integrating information
coming from ML models in an algorithm based on BO. In this
section, we review the state of the art for these techniques, with
particular focus on their application to ICT systems in a cloud
computing setting. In particular, we examine BO literature in
Section II-A and ML literature in Section II-B.

A. Bayesian Optimization

This work builds on previous results found in [1], in which
the CherryPick system is applied to optimize the execution
of Apache Spark big data applications in cloud computing
systems. CherryPick exploits pure constrained BO to find
optimal cloud configurations.
Another instance of BO being applied to cloud computing
is the RAMBO framework presented in [18]. The authors
are interested in cloud applications composed of hundreds
of microservices, and they use multi-objective BO to obtain
optimal resource allocation for these microservices. On the
other hand, [19] introduces the IMGPO algorithm, which uses
hierarchical domain partitioning to select points for BO to
sample. The PROTOCOL algorithm is proposed in [20] as a
parallel extension to IMGPO, and it is used to find optimal
settings for the equipment used in experimental protocols
taking place in cloud laboratories. Finally, [9] presents Google
Vizier, a Google-internal framework to conduct black-box
optimization of physical and software systems on the com-
pany’s servers. Their default optimization algorithm exploits
BO based on Batched Gaussian Process Bandits.

In general, BO has been widely studied for a number of
black-box optimization problems [3], [5], [8], [10], ranging
from energy minimization for molecule simulation [21] to
laser-plasma accelerated electron beams [22]. The topic of
constrained BO also has received attention, including works
on unknown and/or black-box constraints [6], [23]–[25].

B. Machine Learning

Our work is motivated by the belief that ML techniques
can lend their predicting capabilities to BO to further improve
its effectiveness. ML has been widely applied to predict the
performance of ICT systems, such as big data applications,
training of deep learning models, and Functions as a Service
(FaaS) systems. Overall, results found in literature are promis-
ing in showing the usefulness of ML in the context of cloud
computing configuration. For instance, [12] examines the
performance of several ML models in carrying out predictions
of execution times of Apache Spark cloud jobs with different
types of workloads. Their results outperform models used by
the original creators of Spark. Furthermore, [15] proposes a
ML-based prediction platform for Spark SQL queries and ML
applications, which exploits features related to each stage of
the Spark application, as well as previous knowledge of the

application profile. The design of the Hemingway framework
[16] embeds the Ernest model and is specialized in the
modeling and identification of optimal cluster configuration
for Spark MLlib based applications. Authors of [13] employ
several ML models alongside anomaly detection to properly
configure a cloud-based Internet of Things (IoT) device man-
ager while respecting Quality of Service (QoS) constraints.
Another recent work, [11] explores performance prediction of
training times of GPU-deployed neural networks starting from
software and hardware cloud configuration specifications, by
using ML techniques and feature selection methods. Similarly,
[14] compares some popular ML techniques applied to a
workload prediction analysis on HTTP servers, showing that
these techniques all achieve good predicting capabilities. [17]
uses ML models to observe and predict the evolution over time
of the performance of systems at the Infrastructure as a Service
(IaaS) cloud level. Finally, the Schedulix framework proposed
in [26] uses linear regression to estimate execution latencies
of serverless application in a public cloud FaaS setting.

Recent ML works involving BO include [27]–[30]. In
particular, [27] presents the Paprika scheduler, which is
able to co-optimize hardware and software configurations for
Spark workloads. This process uses a BO-based algorithm
integrated with ML elements, namely feature selection via
Lasso regression. Their model is one of the closest ones
to our research quest, but it requires offline training before
deployment, which may be not always available, especially for
recently released software. Furthermore, its exploitation of ML
is arguably limited in scope, since it is only used to choose
among the existing features without any regression strategy
being involved. Authors of [28] and [29] propose the SVM-
CBO algorithm exploiting ML to find optimal configurations
in a constrained setting, for instance when deploying Deep
Neural Networks to tiny, micro-controller based systems. Their
algorithm consists of two phases. The first phase approximates
the feasible domain via a Support Vector Machine regression
model, while in the second phase, pure BO is applied to
the approximated domain found by ML. This approach is
arguably inefficient in exploiting the iteration budget, since it
handles separately the domain approximation and optimization
phases. Finally, [30] introduces the Lynceus framework to
optimize data analysis and ML jobs on cloud platforms that
are constrained by time deadlines. It exploits BO using an
unconventional Decision Tree bagging ensemble as its prior
distribution to model probability of respecting the constraints.

III. PROBLEM OVERVIEW

Our goal is to find the optimal cloud configuration for
running an application in a cloud cluster, while abiding by a
given time deadline. We are particularly interested in recurring
applications, which constitute up to 40% of the total amount
of analytic jobs [1], [31]–[33]. Picking a good configuration
for a recurring job holds utmost importance, because the total
extra costs caused by a poor configuration accumulate over
time. The recurring setting also allows to amortize the cost of

a tuning campaign, since the up-front cost is outweighed by
the savings in the long run.

We consider the mathematical formulation for our con-
strained, noisy global optimization problem similarly to [1].
Let x ∈ A denote the d-dimensional vector representing a
configuration for the cloud job, with A ⊂ Rd being the domain
of all possible configurations. The vector x can include,
e.g., the buffer size, the memory type (SSD vs HDD), other
application-specific parameters (algorithm iterations, number
of simulated molecules), and, in particular, the number of total
cores (possibly available on multiple homogeneous VMs) used
for the job. The objective function to be minimized is the total
cost f(x) = P (x)T (x), where T (x) is the unknown execution
time and P (x) is a known, deterministic function representing
the price per time unit of configuration x. We also assume
the constraint T (x) ≤ Tmax, where Tmax is a given time
threshold. Hence the problem is to find:

min
x∈A

f(x) = P (x)T (x) + ε

with ε ∼ N (0, η2)

s.t. T (x) ≤ Tmax,

(1)

where ε is a noise term with unknown variance η2, which is
estimated by log-marginal-likelihood maximization. In an ICT
setting, the noise term proves necessary in order to account for
the intrinsic variability of an application execution time, even
when it is run multiple times with the same configuration. This
variability is typically produced by external causes such as
access to underlying physical resources or network congestion.
In this paper, we assume the deterministic price function P (x)
as being proportional to the number of virtual machines or
cores used by the application job, which is always included
in the cloud configuration vector x. Other choices of the price
function are possible.

IV. BAYESIAN OPTIMIZATION BACKGROUND

Within the setting described in Section III, BO is an
efficient method because it approximates the minimum of
a given black-box objective function f(·) by using as few
iterations as possible. Namely, we want to find x̂ where
x̂ = argminx∈A f(x). Strong assumptions on f(·) or on the
minimization domain A are not required, and BO algorithms
are derivative-free. For these reasons, BO is often used to
optimize expensive black-box objective functions [1], [3], [5]–
[10], that is, functions for which little to no information is
available, and whose evaluation has significant time, resource,
and/or monetary costs. This is exactly the situation at hand
with cloud performance optimization, where running many
experiments in an attempt to find the optimal configuration
would defeat the main purpose of decreasing overall costs
for applications maintenance and execution, especially for
recurring jobs.

We now give a brief overview on the main tools used
by BO. In particular, we shall explain the peculiarities of
Gaussian processes, posterior distributions (Section IV-A),

and acquisition functions (Section IV-B) in a BO context.
Lastly, we summarize this overview in Section IV-C.

A. Prior and posterior distributions, Gaussian Process
The core idea of BO comes from the Bayesian approach

to statistics, in which values taken by f(·) are treated as
random variables, and a prior distribution represents the a-
priori information on the modeled phenomenon – in the
case of BO, information on the location of the minimum of
f(·). The prior distribution is then iteratively updated with
information coming from the observed data, obtaining the
posterior distribution.

In this context, the Gaussian process (GP) [34] is the
preferred choice for the prior for f(·). For any x ∈ A, this
prior assigns to the value of f(x) a Gaussian probability
distribution which depends on x:

f(x) ∼ πx(·) = N (µ0(x), σ
2
0(x, x)). (2)

Functions µ0(·) and σ2
0(·, ·) are called mean and kernel func-

tions, respectively, and they are the GP model hyperparame-
ters. These functions serve as the “initial guesses” on values
of f(·) and its uncertainty, from which the BO algorithm
starts and which will later be updated with observed values. A
constant mean function µ0(·) ≡ µ0 is often adopted, whereas
the choice of the kernel is more delicate, since it influences the
smoothness of the process. Commonly used kernels include the
squared exponential or Radial Basis Function and the Matérn
kernel [34]. The former gives the GP an excessively large
degree of smoothness which is unrealistic in many practical
scenarios. Therefore, in this work we assume µ0(·) ≡ µ0 and
we use the Matérn kernel [5] with smoothness parameter ν:

σ2
0(x, x

′) :=
1

2ν−1Γ(ν)

(√
2ν∥x− x′∥

)ν

Kν

(√
2ν∥x− x′∥

)
,

where Γ(·) and Kν(·) are the gamma function and the modi-
fied Bessel function [35], respectively.

We now examine the posterior distributions for these hy-
perparameters. Let H = {(x1, f(x1)), . . . , (xn, f(xn))} be
the history of n past observations, which we also indicate as
Hn when emphasizing its cardinality. Specifically, observation
i consists of the configuration vector xi and the associated
evaluation of the objective function f(xi). Having observed
values in H , one can compute the posterior distribution of
each f(x), starting from the prior distribution in Eq. (2) and
taking these observations into account. The posterior is the
conditional distribution of f(x) given Hn, which, in this case,
is a Gaussian distribution with mean µn(·) and variance σ2

n(·):
f(x)|Hn ∼ πx(·|Hn) = N (µn(x), σ

2
n(x)). (3)

Note the conditioning symbol | in Eq. (3). The posterior mean
and variance can be computed in closed form by well-known
properties of GPs [5]:

µn(x) = µ0(x) + σ2
0(x, x1:n)

T σ2
0(x1:n, x1:n)

−1·
·
(
f(x1:n)− µ0(x1:n)

)
,

(4)

σ2
n(x) = σ2

0(x, x)− σ2
0(x, x1:n)

T σ2
0(x1:n, x1:n)

−1·
· σ2

0(x, x1:n).
(5)

In Eqq. (4) and (5), σ2
0(x, x1:n) indicates the column

vector of values of the σ2
0(·, ·) function applied to pairs

(x, x1), . . . , (x, xn), and similarly for f(x1:n) and µ0(x1:n).
Analogously, σ2

0(x1:n, x1:n) is the matrix of values of
σ2
0(xi, xj) with i, j = 1, . . . , n.
Given a configuration x, after n evaluations, this probabilis-

tic model allows us to attribute both the current pointwise
estimate of f(x) and a measure of uncertainty on such
estimate, represented by µn(x) and σ2

n(x) respectively.

B. Acquisition function

In the previous section, we described how BO models the
objective function at iteration n. We now move on to explain
how BO chooses the next iteration point xn+1 based on such
model.
At each step, BO formulates a proxy problem – the maxi-
mization of the acquisition function g(x), which depends on
the GP model at the current algorithm iteration and measures
the utility of evaluating the objective function f(x) in a given
configuration x. This function is optimized at each round of the
iterative algorithm, instead of directly optimizing the objective
function itself. In fact, the acquisition function is available in
closed form and it is inexpensive to evaluate. Therefore, fast
heuristics are available to solve this proxy problem, even using
derivative information about the acquisition function [5].
Being a measure of utility, the acquisition function takes on
larger values in points in which the algorithm should choose
to evaluate the objective function, in order to get the most
information about the location of the optimum. This means
that the acquisition function must strike a delicate balance –
the exploration-exploitation trade-off. On one side, we have
points to which large uncertainty is attached, for instance
because they lie in a region of the domain which has not been
explored yet. Choosing such points to evaluate the objective
f(·) is appealing, especially early on in the optimization
procedure, because this would allow a massive decrease of
the overall uncertainty, i.e., an increase of the amount of
available information about the optimum. On the other hand,
the algorithm does seek to find the optimum of the objective
function, therefore it should also choose to evaluate points
which most likely (according to the GP model) give small
values of f(·). This is done by exploiting the information
already available on the location of the optimum, especially
in the late iterations of the algorithm.

In this paper, we consider the Expected Improvement acqui-
sition function and its constrained extensions. The Expected
Improvement (EI) over the best value f∗

n found by the opti-
mization process so far is:

EIn(x) := Eπx(·|Hn)[max(f∗
n − f(x), 0)]

with f∗
n = min

i≤n
f(xi).

(6)

The expectation is taken under the current posterior distri-
bution π(· |Hn) of f(x), given history Hn. Eq. (6) means
that we maximize the expected value of the improvement over
the current best point f∗

n, based on the information collected

so far (i.e., the points in the history Hn). We consider a
generalization of EI to the constrained optimization setting –
the Expected Improvement with Constraints (EIC) acquisition
function [7], which accounts for the probability of a point
respecting the constraints:

EICn(x) := EIn(x) · Pπx(·|Hn)

(
T (x) ≤ Tmax

)
= EIn(x) · Pπx(·|Hn)

(
f(x) ≤ P (x)Tmax

)
,

(7)

In the last equality, we write the constraint T (x) ≤ Tmax as a
function of f(x) = P (x)T (x) since the GP prior is placed on
f(·), not on T (·). The EIC in Eq. (7) is the same acquisition
function used in CherryPick [1].

C. Summary of Bayesian Optimization

The procedure for a BO algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Generic Bayesian Optimization algorithm
1: choose n0 initial points
2: evaluate f(·) in the initial points, add all evaluations to

history H
3: for iterations n = 1 : N do
4: update the current posterior distribution of the GP

model with data in H
5: find point xn+1 which maximizes the acquisition func-

tion g(·) under the current model
6: evaluate f(xn+1), add performed evaluation to H
7: end for
8: return estimated optimum x̂

In step 1, a small number n0 of initial points are selected,
usually 3 to 10, in order to initialize the algorithm. These
points should be chosen so as to cover the maximum domain
area possible, for instance using a Latin hypercube design [36],
which maximizes the distance among those points. We then
evaluate these points, i.e., we run the application with the given
initial configurations, recording the points and their evaluations
(step 2). After that, we enter the algorithm loop, where we
update the posterior distribution (step 4), choose the next point
xn+1 by maximizing the acquisition function (step 5), and
evaluate it (step 6). The algorithm stops when the iteration
budget N runs out.

Fig. 1 presents a visual summary on how BO works. In
the top panel, the solid gray line represents the true objective
function f(·) to be minimized. We also plot the GP estimates
produced by f(·), in terms of its mean function (dashed
blue line) and 95% confidence intervals (light blue area).
The three red dots represent sampled points, which have
smaller uncertainties attached to them with respect to all other
domain points (note that utility in such points is still greater
than zero if accounting for noise in observations of f(·)).
As previously explained (see Section IV-A), the GP model
attaches a Gaussian probabilistic estimate to f(x), for each x.
In the top panel of Fig. 1, the Gaussian curve in light grey
represents this estimate when x = 2.51. In the bottom panel
of the figure, we plot instead the values of the acquisition

Fig. 1. Bayesian Optimization after 3 iterations.

function for each value of x. The crossed red point is the one
which has been selected to be evaluated in the next round,
since it has the largest expected utility among all points in the
domain.

V. ENCODING INFORMATION FROM MACHINE LEARNING
IN BAYESIAN OPTIMIZATION

Our main contribution is the integration of ML techniques
into the BO framework. ML methods can prove to be useful
additions to optimization problems because of their predicting
capabilities. This is especially true in a setting where evalu-
ating the objective function f(·) is expensive, and therefore
a cheap estimation of values of f(·) can make up for the
scarcity of direct information on them. In our case, it can be
used to convey information about the violation of constraints,
by guiding the search towards points x ∈ A which most likely
will respect constraint limits. This is appreciated by the BO
algorithm in the cloud configuration setting. Indeed, our goal
is ultimately to find optimal (or near-optimal) configurations
which are also feasible, i.e., points x with T (x) ≤ Tmax;
unfeasible points represent a waste of resources and compu-
tational time in a recurring job setting, providing additional
unnecessary costs.
The use of ML models is also motivated by their great
accuracy in predicting execution times of the applications
at hand. Besides the promising results on the matter in the
literature [11]–[17], [26], our preliminary analysis shows good
prediction capabilities on the target applications, as we shall
see in Section VI-B. The idea of BO incorporating information
which is independent of its GP model was first considered in
[37].

A. Novel acqusition functions

The core contribution of MALIBOO is integrating the ac-
quisition function (described in Section IV-B) with information
coming from ML models. Let T̂ (x) be a generic predicting
function for T (x), that is, a function which outputs a predic-
tion on the execution time of a cloud job given configuration
x. In our case, T̂ (·) is a ML regression model trained on all
data collected so far by the BO algorithm, as explained in the
previous sections. First and foremost, note that using a model
that predicts execution time given configuration x is equivalent

to using one predicting the total cost, since they only differ
by a known, deterministic constant, i.e., the configuration price
P (x) (see Eq. (1)).
We propose several novel acquisition functions which incorpo-
rate the information coming from T̂ (·) into the BO algorithm:
A) gA(x) = EIC(x): the original Expected Improvement

with Constraints acquisition function, used by CherryPick
[1], which we use as baseline;

B) gB(x) = gA(x) · exp(−k T̂ (x)), the latter term being a
[0, 1]-valued weight for gA, and called a nascent minima
distribution function [38]. This function serves the pur-
pose of turning T̂ (x) into an acquisition-like function,
that is, giving values closer to 1 the smaller the predicted
execution time T̂ (x) is (therefore being a desirable point),
and closer to 0 if such prediction is large;

C) gC(x) = gA(x) ·I{T̂ (x)≤Tmax}, with I being the indicator
function: the acquisition function is set to zero, i.e., the
search is outright prevented, in areas where the predicted
execution time violates the threshold Tmax, at least in the
current algorithm iteration. Basically, we use the model
T̂ (x) to approximate the feasible domain at the current
iteration;

D) gD(x) = gA(x) · exp(−k T̂ (x)) · I{T̂ (x)≤Tmax}: the
combination of cases B and C.

Note that the original definition of the nascent minima dis-
tribution functions (used in variants B and D) includes the
normalization constant 1/Ck as a multiplicative factor, with
Ck =

∫
A exp(−k T̂ (w)) dw > 0, as described in [38].

However, this value is independent of x, therefore we can
omit it when maximizing the acquisition function in x.

B. Proposed algorithm

We summarize the complete procedure in Algorithm 2.
MALIBOO is based on BO (see Algorithm 1), but it integrates

Algorithm 2 MALIBOO algorithm
1: choose n0 initial points
2: evaluate f(·) in the initial points, add all evaluations to

history H
3: for iterations n = 1 : N do
4: update the current posterior distribution of the GP

model with data in H
5: if If g(·) ̸= gA(·) then
6: train model T̂ (·) with data in H , to be used in g(·)

7: end if
8: find point xn+1 which maximizes the acquisition func-

tion g(·) under the current model
9: evaluate f(xn+1), add performed evaluation to H

10: update memory queue with xn+1

11: if stopping criteria are met then
12: terminate the algorithm
13: end if
14: end for
15: return estimated optimum x̂ = argminx∈H f(x)

elements from ML techniques. We use a first-in-first-out
memory queue for discrete features to prevent exploration
of already visited values, inspired by the taboo search meta-
heuristic methods [39]. In this memory queue, we save the last
q configuration vectors visited by the algorithm. Configura-
tions currently in the queue are excluded from being selected
again until they have shifted out of the queue, i.e., after q
iterations.
Similarly to regular BO, at each round, we maximize (see
Algorithm 2, step 8) one of the acquisition functions presented
in Section V-A, which incorporates the ML model trained
at step 6. Then, we evaluate the newly chosen configuration
(step 9) as usual, and we update the aforementioned memory
queue (step 10). The algorithm continues until the evaluated
running time at the current iteration is sufficiently close to the
time threshold: T (xn) ∈ [αTmax, Tmax], with α ∈ (0, 1)
(step 12). Our goal is to obtain a configuration that is compli-
ant with the time threshold, but also uses as few resources as
possible. Generally speaking, using more resources results in a
lower execution time – meaning that a time which is just under
the threshold likely consumes the least amount of resources for
that configuration to be feasible. After termination, it is likely
that we have found the true optimal configuration because of
the convergence properties of the BO algorithm. Afterwards,
we execute subsequent runs using such optimal or near-optimal
configuration.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results for validat-
ing MALIBOO. In Section VI-A, we describe the applications
and cloud settings we consider, as well as the algorithm
parameters we use in Section VI-B. The results themselves
are explored in detail in Sections VI-C and VI-D.

A. Experiment setting

We test the MALIBOO algorithm on four different scenar-
ios, which act as representatives of different workload types
which are relevant to cloud systems. The first three scenarios
involve the Apache Spark big data analytics framework [40],
while in the fourth one the Stereomatch edge computing
application [41] is used. Big data applications are often run
on cloud servers because they offer easy access to powerful
analysis frameworks such as Apache Spark. On the other hand,
an edge computing application such as Stereomatch represents
a emerging access pattern to cloud resources, in which data
is collected at the IoT layer, but are processed in the cloud,
possibly partially.

We now describe the three Spark applications, which are
being optimized on the number x of parallel cores used to run
them (x is therefore one-dimensional):

• Query26 is an interactive query from the TPC-DS indus-
try benchmark1, and represents SQL-like tasks. We exe-
cute it with input datasets I of varying size, specifically
250 GB, 750 GB, and 1000 GB.

1http://www.tpc.org/tpcds

• Kmeans is a well-known ML clustering technique, and
a typical example of an iterative task. We execute it on
Spark-Bench2 by providing it as input datasets I with 100
features (columns) and varying size (rows): 5, 10, 15, and
20 million.

• SparkDL Transfer Learning3 is a big data analytic tool
which applies transfer learning to Deep Learning appli-
cations, through the ML Pipelines from Spark MLlib. In
this paper, we consider an image binary classification task
with input datasets I containing 1000, 1500, and 2500
images.

Spark experiments are conducted on two different computing
environments: the Microsoft Azure public cloud and a private
IBM Power8 cluster. In particular, Query26 and SparkDL are
executed on Microsoft Azure using the HDInsight service with
workers based on 6 D13v2 virtual machines (VMs), each with
8 CPU cores and 56 GB of memory. Instead, Kmeans is run on
an IBM Power8 deployment that includes 4 VMs, each with 12
cores and 58 GB of RAM, for a total of 48 CPU cores available
for Spark workers, plus a master node with 4 cores and 48 GB
of RAM. These two systems are representatives of different
computing environments. The Microsoft Azure public cloud
is potentially affected by resource contention, and application
execution times might experience more variability as a result.
Whereas, the private IBM Power8 cluster is fully dedicated
to our experiments without any other concurrent activity, i.e.,
with no resource contention.

For all three Spark applications, we perform one separate
experiment for each input dataset I , for a total of 10 ex-
periments. Moreover, for each of these applications, we also
carry out one extrapolation experiment. In particular, we fix
the largest input dataset I available for each application (1000
GB, 20 million rows, and 2500 images respectively), but we
give additional profiling data to the ML model T̂ (·) estimating
the performance (see Section V-A). These additional profiling
data consist of all previous runs with smaller input datasets I
(250-750 GB, 5-10-15 million rows, and 1000-1500 images re-
spectively) and are used in the training phase of the regression
model T̂ (·), in addition to the points in history H collected by
BO (see Algorithm 2, step 6). In fact, in a big data setting, it is
often required to run data analysis tasks or prediction models
on datasets with increasing size. Moreover, if the extrapolation
model is accurate on large input datasets, when using smaller
input datasets, this allows to save on exploratory runs with
the larger datasets, since the latter are usually much more
expensive. We also note that, according to preliminary analysis
in [12], ML models show good extrapolation capabilities on
the applications of interest.

The fourth scenario we consider for validation uses Stereo-
match [41], an image-processing edge computing application
that computes the disparity value between a pair of stereo
images (i.e., coming from the same scene but observed by
two cameras), which can then be used to calculate the depth

2https://codait.github.io/spark-bench
3https://github.com/databricks/spark-deep-learning

of objects in that scene. This application uses adaptive-shape
local support windows for each pixel, based on color similarity.
In this case, x consists of four independent parameters which
influence its execution time: number of parallel threads, color
similarity confidence, granularity of the disparity hypotheses to
be tested, and length of the arm of the support windows. This
is a much larger parameter space than the other experiments, in
which we have a mono-dimensional optimization problem on
the number of cores only. This application is executed with
a fixed input dataset I containing 40 pairs of images, on a
Virtual Machine (VM) on a private 32-core server with 64
GB of memory and Ubuntu 20.04. The underlying physical
node of this server has two AMD EPYC 7282 processors,
with 16 cores and 32 threads, and clock speed 2.8 GHz. Since
we use a single input dataset for Stereomatch, we perform a
single experiment with it. The total number of experiments we
perform across all four scenarios is therefore 14, including the
three extrapolation experiments.

We run MALIBOO from an Ubuntu 20.04 machine with 16
GB RAM for 30 maximum iterations for each experiment, or
60 in the Stereomatch scenario because of the larger search
space. Besides the execution time of the job, the computation
time for a single algorithm iteration is about 1.5 seconds,
with a maximum of 5 seconds for late iterations (in which
larger ML models are being trained), and up to 10 seconds
for extrapolation experiments.

B. Algorithm settings

We compare the four algorithm variants (A-D, see Sec-
tion V-A) in all 14 experiments concerning the four applica-
tions described in the previous section. For each experiment,
we use the same initial configurations and time thresholds.
In particular, for each experiment, we choose n0 = 3 initial
configurations and repeat the experiments with different time
thresholds Tmax. Specifically, for each experiment, we choose
a grid of 10 evenly spaced thresholds. This represents an in-
creasingly difficult optimization problem as the time threshold
gets smaller, since the feasible domain keeps shrinking.

We use a Ridge linear regression model as the predicting
function T̂ (·) described in Section V-A. We also give the
model some additional features derived from the ones in
x, namely the inverse of the number of parallel cores, its
logarithm (which encodes the cost of reducing operations
in parallel frameworks, see [42]), and the pairwise products
of all involved features. This ML model is computationally
cheap, and performs better in predicting the performance of
the applications of interest when compared to other alternative
methods (see the analysis reported in [12]). In particular,
we measure its predicting accuracy by computing the Mean
Absolute Percentage Error (MAPE) of the model:

MAPE(y, ŷ) =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ ,
where y is the vector of true values and ŷ is the vector of
predicted values by the ML model. According to our analysis

on the full profiling datasets, the test-set MAPE of the chosen
model is almost always lower than 9%. Even when just a small
handful of training points is available, errors are mostly within
20%. As for the GP hyperparameters, we choose a constant
mean function and a Matérn kernel, as described in Section IV,
with smoothness parameter ν = 5/2. We choose k = 2 as the
exponential term used in variants B and D (see Section V-A),
q = 10 as the length of the memory queue, and α = 0.9
as the lower bound parameter for the stopping criterion (see
Section V-B).

We now compare our proposed algorithm variants (B-D)
with variant A, which uses the same acquisition function as
CherryPick [1] (see also Section IV-B), in terms of number
of unfeasible runs and their cumulative costs. After that, we
will describe the results of the extrapolation analysis (see
Section VI-D), in which we feed the ML models with profiling
data with smaller input datasets. For each of these scenarios,
we also show the percentage error of the ML models.

C. Numerical results

The first four rows of Table I summarize the average
results on the applications described in Section VI-A, over
the varying input data sizes and time thresholds. In particu-
lar, we report: the number of executions which selected an
unfeasible configuration; the percentage of costs (the f(x)
in Eq. (1)) coming from unfeasible configurations over the
total amount of costs; and the average cost among feasible
configurations, normalized over the cost of variant A. For

TABLE I
MEASURED METRICS FOR VARIANTS A-D OF THE PROPOSED ALGORITHM

scenario var. A var. B var. C var. D
Query26

unfeasible runs 11.23 4.34 4.11 4.31
ratio of unfeasible costs 0.36 0.14 0.13 0.14

mean feasible cost 1.00 0.87 0.87 0.88
Kmeans

unfeasible runs 10.52 5.74 5.93 5.96
ratio of unfeasible costs 0.34 0.20 0.21 0.21

mean feasible cost 1.00 1.00 1.01 1.00
SparkDL

unfeasible runs 11.65 5.29 5.14 5.24
ratio of unfeasible costs 0.32 0.16 0.15 0.16

mean feasible cost 1.00 0.83 0.87 0.79
Stereomatch

unfeasible runs 18.87 13.83 10.83 8.70
ratio of unfeasible costs 0.27 0.22 0.17 0.15

mean feasible cost 1.00 0.78 0.86 0.69
Query26-extrapolation

unfeasible runs 3.57 4.64 4.64 4.86
ratio of unfeasible costs 0.11 0.15 0.15 0.15

mean feasible cost 1.00 0.83 0.83 0.83
Kmeans-extrapolation

unfeasible runs 10.00 5.00 5.00 5.00
ratio of unfeasible costs 0.33 0.17 0.17 0.17

mean feasible cost 1.00 1.33 1.40 1.32
SparkDL-extrapolation

unfeasible runs 12.75 8.62 6.29 5.57
ratio of unfeasible costs 0.35 0.27 0.19 0.16

mean feasible cost 1.00 0.98 0.83 1.13

the Query26 application, our algorithm variants reduce the

unfeasible executions and the ratio of unfeasible costs 2 to
3 times with respect to pure BO (variant A). The average cost
of a feasible configuration is also reduced. On average, in the
three Spark applications we see an average improvement of
2.2 times on the number of unfeasible runs and 2 times on the
total unfeasible cost. The cost of feasible runs improves by
10% on average, and it is always at least competitive with
variant A in the worst case. As for the multi-dimensional
case with the Stereomatch application, results are in line with
the other three scenarios, with the average improvement on
feasible costs further improving to about 25%.

A representative example for a run of our proposed algo-
rithm is displayed in Fig. 2, which represents the Query26
scenario. In the left panel, we represent the number of cores

Fig. 2. Query26: comparison of pure BO (variant A) with variants B-D.

chosen at each algorithm iteration. The green horizontal line
is the true optimum of the constrained optimization problem,
which we identified by inspection through an exhaustive
profiling of the application. The vertical, dashed red line
indicates the run at which the stopping criterion kicks in,
and after which we stick to the best configuration found
so far by the algorithm. In the center panel, a rectangle
represents a single run, with its sides being the execution time
of the job (horizontal side) and the number of cores (vertical
side). Therefore, the area of a rectangle is proportional to
the execution cost f(x) for that particular run (see Eq. (1)).

We highlight in red the rectangles corresponding to unfeasible
configurations. Finally, the signed percentage errors of the ML
model for the execution time are displayed in the right panel.
In particular, at each iteration, the model is trained with all
data from previous iterations (i.e., ones in the history H), and
the error is evaluated on the new configuration chosen by the
algorithm. We see that after one initial run with large error,
our ML models quickly converge to errors very close to zero.
The spike at the first iteration is explained by the fact that the
BO algorithm is still in the exploration phase, and selects a
configuration with a large number of cores since that region
of the domain is still unexplored. This also means that the
ML model struggles in the first iteration, since it was trained
with data with small amounts of cores. After that, the ML
model has accumulated enough information to achieve good
predicting capabilities, even with a small amount of training
data points. As was shown in Table I, from Fig. 2, it is clear
that our algorithm drastically reduces the number of unfeasible
runs (from 10 to only 1-2) while still achieving the optimum.
We show a similar plot for the Kmeans application in Fig. 3.
Note that, despite the ML model being less accurate on

Fig. 3. Kmeans: comparison of pure BO (variant A) with variants B-D.

the Kmeans application when compared to other workloads
(about 20% MAPE error on before convergence, compared
to less than 9% for Query26), results are still in line with
the other cases. Overall, our algorithm variants converge to

an optimal or feasible near-optimal (i.e., one more or one
less than the optimum) number of cores within the given
iteration budget over 54% of the times, usually before the
10th execution. Variant A (i.e., pure constrained BO) achieves
a similar percentage in the Query26 and Kmeans experiments,
but fails to converge to a feasible near-optimal configuration
in all experiments involving the SparkDL and Stereomatch
applications.

D. Extrapolation runs with additional data

We also perform extrapolation experiments with the three
Apache Spark applications: Query26, Kmeans, and SparkDL.
We recall that these experiments correspond to the usual need
to run the same big data analysis on datasets of increasing
size, and are performed by providing additional profiling data
from smaller datasets to the ML model in the training phase
(see Section VI-A).
A representative extrapolation result is shown on the right
side of Fig. 4, while the left side reports the corresponding
case with “vanilla” algorithms, without additional training data
being fed to the ML models. (Variant A is identical on both
sides, since vanilla BO does not use any ML model.) One
can immediately notice the lack of the initial spike in the
error diagrams of variants B-D, owing to the fact that the
ML model is trained with more data points from the very
beginning. Thanks to the aforementioned good extrapolation
capabilities (see [12] for additional discussion), the ML model
is therefore able to accurately predict the execution time, even
when it is presented with a point from a region that the BO
algorithm has not explored yet. Results of all runs averaged
on the varying time thresholds are collected in the lower part
of Table I.

In general, the algorithm with additional data has a more
aggressive search behavior, trading off a small amount of un-
feasible runs (2 at most) for a lower average cost of individual
runs (6 to 26%). This is explained by the additional data
making the trained ML model more accurate: the model guides
the domain exploration of BO towards more promising points,
either because of their lower predicted execution time (variant
B), their predicted feasibility (variant C), or both (variant D).
These points are thus more likely to be on the boundary of
the feasibility region of the optimization problem, where the
value of the objective function is close to the optimum, but also
where we have a higher risk of slipping out of the feasibility
region. The extrapolation version of MALIBOO is therefore
best suited for the user with a lower risk aversion.

In conclusion, each of our algorithm variants (B-D) out-
performs the constrained vanilla BO technique in [1] (here
represented by variant A) with respect to the number of
unfeasible runs and the total amount of unfeasible costs (2
to 3 times less), as well as the average cost of the unfeasible
configuration (13 to 22% less).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented MALIBOO, a tool combin-
ing a BO algorithm with ML techniques, to find the optimal

configuration for a recurring job running on a cloud server,
under a given time threshold. Results on tested edge computing
and big data analysis applications show that our algorithm
significantly reduces the amount of unfeasible executions with
respect to a pure BO approach, as well as reducing the average
cost of the configuration. Overall, each of our algorithm
variants outperforms the state-of-the-art BO technique used
as benchmark.

We plan on testing the hybrid algorithm implemented
by MALIBOO on other application domains, e.g., High-
Performance Computing systems and AI applications, while
also considering acquisition functions suitable for a parallel
exploration of alternative configurations.

REFERENCES

[1] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in NSDI Proc., 2017.

[2] L. Wang, L. Yang, Y. Yu, W. Wang, B. Li, X. Sun, J. He, and
L. Zhang, “Morphling: Fast, near-optimal auto-configuration for cloud-
native model serving,” in ACM SoCC Proc., 2021.

[3] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Arrow: Low-level
augmented Bayesian optimization for finding the best cloud vm,” in
ICDCS Proc., 2018.

[4] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff
in distributed deep learning: A systematic study,” in ICDM Proc., 2016.

[5] P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv:1807.02811
preprint, 2018.

[6] T. Pourmohamad and H. K. Lee, “Bayesian optimization via barrier
functions,” Journal of Computational and Graphical Statistics, vol. 31,
no. 1, pp. 74–83, 2022.

[7] M. Schonlau, W. J. Welch, and D. R. Jones, “Global versus local
search in constrained optimization of computer models,” Lecture Notes-
Monograph Series, pp. 11–25, 1998.

[8] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
IEEE Proc., vol. 104, no. 1, 2015.

[9] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in SIGKDD
Proc., 2017.

[10] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” NIPS Proc., 2012.

[11] M. Lattuada, E. Gianniti, D. Ardagna, and L. Zhang, “Performance
prediction of deep learning applications training in gpu as a service
systems,” Cluster Computing, vol. 25, no. 2, pp. 1279–1302, 2022.

[12] A. Maros, F. Murai, A. P. C. da Silva, J. M. Almeida, M. Lattuada,
E. Gianniti, M. Hosseini, and D. Ardagna, “Machine learning for
performance prediction of spark cloud applications,” in IEEE CLOUD
Proc., 2019.

[13] P. Nawrocki and P. Osypanka, “Cloud resource demand prediction using
machine learning in the context of qos parameters,” Journal of Grid
Computing, vol. 19, no. 2, pp. 1–20, 2021.

[14] D. F. Kirchoff, M. Xavier, J. Mastella, and C. A. De Rose, “A
preliminary study of machine learning workload prediction techniques
for cloud applications,” in Euromicro PDP Proc., 2019.

[15] S. Mustafa, I. Elghandour, and M. A. Ismail, “A machine learning
approach for predicting execution time of spark jobs,” Alexandria
engineering journal, vol. 57, no. 4, pp. 3767–3778, 2018.

[16] X. Pan, S. Venkataraman, Z. Tai, and J. Gonzalez, “Hemingway:
Modeling distributed optimization algorithms,” NIPS Proc., 2016.

[17] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung, “Towards an autonomic
auto-scaling prediction system for cloud resource provisioning,” in
SEAMS Proc., 2015.

[18] Q. Li, B. Li, P. Mercati, R. Illikkal, C. Tai, M. Kishinevsky, and
C. Kozyrakis, “Rambo: Resource allocation for microservices using
Bayesian optimization,” IEEE Computer Architecture Letters, vol. 20,
no. 1, pp. 46–49, 2021.

[19] K. Kawaguchi, L. P. Kaelbling, and T. Lozano-Pérez, “Bayesian opti-
mization with exponential convergence,” NIPS Proc., 2015.

Fig. 4. Comparison between runs without additional data (left) and ones with additional extrapolation data (right).

[20] T. S. Frisby, Z. Gong, and C. J. Langmead, “Asynchronous parallel
Bayesian optimization for ai-driven cloud laboratories,” Bioinformatics,
vol. 37, no. Supplement 1, pp. i451–i459, 2021.

[21] L. Fang, E. Makkonen, M. Todorovic, P. Rinke, and X. Chen, “Efficient
amino acid conformer search with Bayesian optimization,” Journal of
chemical theory and computation, vol. 17, no. 3, pp. 1955–1966, 2021.

[22] S. Jalas, M. Kirchen, P. Messner, P. Winkler, L. Hübner, J. Dirkwinkel,
M. Schnepp, R. Lehe, and A. R. Maier, “Bayesian optimization of a
laser-plasma accelerator,” Physical review letters, vol. 126, no. 10, p.
104801, 2021.

[23] S. Ariafar, J. Coll-Font, D. H. Brooks, and J. G. Dy, “Admmbo: Bayesian
optimization with unknown constraints using admm,” J. Mach. Learn.
Res., vol. 20, no. 123, pp. 1–26, 2019.

[24] B. Letham, B. Karrer, G. Ottoni, and E. Bakshy, “Constrained Bayesian
optimization with noisy experiments,” Bayesian Analysis, vol. 14, pp.
495–519, 2019.

[25] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with
unknown constraints,” UAI Proc., 2014.

[26] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid
cloud scheduling for cost-efficient execution of serverless applications,”
in IEEE CLOUD Proc., 2020.

[27] Y. Ding, A. Pervaiz, S. Krishnan, and H. Hoffmann, “Bayesian learning
for hardware and software configuration co-optimization,” TR-2020-13
University of Chicago, 2020.

[28] A. Candelieri and F. Archetti, “Sequential model based optimization with
black-box constraints: Feasibility determination via machine learning,”
in AIP Proc., vol. 2070, no. 1, 2019.

[29] R. Perego, A. Candelieri, F. Archetti, and D. Pau, “Tuning deep neural
network’s hyperparameters constrained to deployability on tiny systems,”
in ICANN Proc. Springer, 2020.

[30] M. Casimiro, D. Didona, P. Romano, L. Rodrigues, W. Zwaenepoel,
and D. Garlan, “Lynceus: Cost-efficient tuning and provisioning of data
analytic jobs,” in ICDCS Proc., 2020.

[31] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,
“Reoptimizing data parallel computing,” in NSDI Proc., 2012.

[32] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: guaranteed job latency in data parallel clusters,” in EuroSys
Proc., 2012.

[33] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. Goiri, and
R. Bianchini, “History-based harvesting of spare cycles and storage in
large-scale datacenters,” in OSDI Proc., 2016.

[34] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[35] M. Abramowitz, “Handbook of mathematical functions,” US Department
of Commerce, vol. 10, p. 375, 1972.

[36] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global optimization,
vol. 13, no. 4, pp. 455–492, 1998.

[37] P. Hennig and C. J. Schuler, “Entropy search for information-efficient
global optimization,” JMLR, vol. 13, no. 6, 2012.

[38] X. Luo, “Minima distribution for global optimization,”
arXiv:1812.03457 preprint, 2018.

[39] D. Cvijović and J. Klinowski, “Taboo search: An approach to the
multiple-minima problem for continuous functions,” in Handbook of
global optimization. Springer, 2002, pp. 387–406.

[40] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: a unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, 2016.

[41] E. Paone, G. Palermo, V. Zaccaria, C. Silvano, D. Melpignano, G. Hau-
gou, and T. Lepley, “An exploration methodology for a customizable
opencl stereo-matching application targeted to an industrial multi-cluster
architecture,” in CODES Proc., 2012.

[42] P. Pacheco, An introduction to parallel programming. Elsevier, 2011.

