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Metrics for network comparison 
using egonet feature distributions
Carlo Piccardi 

Identifying networks with similar characteristics in a given ensemble, or detecting pattern 
discontinuities in a temporal sequence of networks, are two examples of tasks that require an 
effective metric capable of quantifying network (dis)similarity. Here we propose a method based on 
a global portrait of graph properties built by processing local nodes features. More precisely, a set of 
dissimilarity measures is defined by elaborating the distributions, over the network, of a few egonet 
features, namely the degree, the clustering coefficient, and the egonet persistence. The method, 
which does not require the alignment of the two networks being compared, exploits the statistics 
of the three features to define one- or multi-dimensional distribution functions, which are then 
compared to define a distance between the networks. The effectiveness of the method is evaluated 
using a standard classification test, i.e., recognizing the graphs originating from the same synthetic 
model. Overall, the proposed distances have performances comparable to the best state-of-the-art 
techniques (graphlet-based methods) with similar computational requirements. Given its simplicity 
and flexibility, the method is proposed as a viable approach for network comparison tasks.

Comparing networks, i.e., quantifying the similarities or differences between graphs, has become a problem of 
fundamental importance given the impressive growth of available data and, consequently, of network models 
used. Relevant examples can be found in virtually every application area, from biology to economics, from trans-
portation systems to social media (see, e.g., Refs.1–7 for a small sample of the literature). When analyzing a set 
of networks, the typical tasks are, for example, clustering, i.e., the partitioning of the set to identify groups with 
similar characteristics; or detecting pattern discontinuities, when time-stamped data (i.e., temporal networks) 
are available.

To compare two networks, a measure of their dissimilarity has to be defined. A huge number of different 
approaches have been proposed, some with general applicability and others related to specific domains. They 
are all aimed at finding a valid compromise between effectiveness, interpretability, and computational efficiency 
(see Refs.8–10 for surveys). In this paper, we propose an approach to quantify the dissimilarity between two net-
works, which falls under the domain of alignment-free methods. No matching between nodes is necessary and 
practically any pair of graphs (even with different sizes, densities, or from different fields of application) can be 
compared. In this way, we try to capture the difference in the global structure, rather than the discrepancies in 
the neighborhood of each specific node.

The simplest and most direct approach to compare two graphs without alignment is to compare global (scalar) 
network indicators such as clustering coefficient, diameter, or average path length11–13. Of course, similar values 
of global statistics do not necessarily imply similar network structures (e.g., Ref.1), and indeed the performance of 
this approach becomes poor when networks with subtle differences have to be discriminated. Other approaches 
are based on comparing more complex global network features. For example, spectral methods define a dis-
tance between two graphs based on the dissimilarity of the spectra of their adjacency or Laplacian matrix14,15. 
The Portrait Divergence method defines a distance by comparing the “portrait” of the two graphs, i.e., a matrix 
encoding the distribution of shortest-path lengths16.

The class of alignment-free methods that generally provides the best performance in classification tasks (i.e., 
recognizing networks generated by the same model) is the one based on graphlets, which are small induced 
subgraphs (typically no larger than 5 nodes, for limiting the computational effort). Graphlet-based network 
distances are based on counting graphlets: the most advanced methods take into account the automorphism 
orbits11,12, i.e., differentiate the roles of the nodes in each graphlet. The counts of the graphlets can be organized in 
several ways: the Graphlet Correlation Distance (GCD) is based on the comparison of the Graphlet Correlation 
Matrices of the two graphs, which summarize the distribution of the different types of graphlets in the network 
and the roles played by nodes in each graphlet. Other graphlet-based methods are NetDis3, in which graphlets 
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are counted in 2-step ego-networks, rather than in the whole network, and Grafene13, which applies principal 
component analysis to graphlet counts to improve efficiency.

In this paper, we propose an alignment-free method that is based on the distribution, in the network, of a 
few indicators that locally describe the neighborhood of the nodes. By neighborhood we mean the 1-step ego-
network, or egonet (hence the name EgoDist, abbreviation for ego-distances, for the distances proposed here), 
while the indicators we consider are the (normalized) degree, the clustering coefficient, and the egonet persistence 
(see the next Section for definitions), which describe in increasing detail the connectivity patterns inside and 
outside the egonet. The statistics of the three indicators can be used, in different combinations, to define a dis-
tribution function in 1, 2, or 3 dimensions, which is taken as a synthesis of the network properties. The distance 
between two networks is then defined as the distance between the corresponding distributions. Thus, similarly 
to graphlet-based techniques, the local graph structure around each node is summarized by a low-dimensional 
vector of features, whose statistics are then used as a global network descriptor. However, the features we use are 
pretty basic and lend themselves to quick computation.

The effectiveness of the proposed ego-distances is evaluated by means of a standard clustering exercise11,12: a 
large number of test networks are synthetically generated with seven randomized models, parameterized with 
different sizes and densities. The proposed ego-distances are then used for classification, that is, to discriminate 
pairs of graphs originating from the same model from those originating from different models, with size and 
density acting as confounding factors. The results of the experiments show that the proposed ego-distances 
perform comparably to the best graphlet-based distance (Graphlet Correlation Distance GCD11) – with similar 
computational requirements – despite the challenging experimental environment created by the subtle topologi-
cal differences between the network models in the pool.

Methods: network distance
Let us consider a network of size N (number of nodes) undirected and unweighted, therefore completely 
described by the N × N  adjacency matrix A, with Aij = 1 if i and j are connected by an edge, and Aij = 0 
otherwise. If we denote by L = 1

2

∑N
i,j=1 Aij the number of edges, then the density of the network is given by 

ρ = 2L
N(N−1)

 . Given node i, its degree mi =
∑N

j=1 Aij is the number of neighbors, and its egonet is the induced 
graph identified by the node set Ei = {i} ∪ {j|Aij = 1} , i.e., the union of node i and all its neighbors, for a total 
of |Ei| = mi + 1 nodes.

Three scalar quantities, all taking values in [0, 1] , can be used to characterize the egonet Ei : the normalized 
degree, the clustering coefficient, and the egonet persistence.

Normalized degree.  For a graph with node degrees ranging in mmin ≤ mi ≤ mmax , we define the normal-
ized degree di as

where we have assumed mmin  = mmax . We compute the normalized degree distribution by discretizing the inter-
val 0 ≤ di ≤ 1 with step � (then r = 1/� is the number of intervals) and by directly calculating the discrete 
distribution function Pd(h) (i.e., the normalized histogram) by counting the proportion of di ’s in each interval. 
Using the indicator function ( 1Sx = 1 if x ∈ S and zero otherwise), we can write:

with values di = 1 conventionally counted in the last interval h = r . Figure 1 (left panel) shows examples of 
Pd distributions for networks generated by three different—and well known—models, with the same size N 
and density ρ . It is preferable to use the cumulative distribution function (cdf) Qd(h) =

∑h
k=1 Pd(k) , which is 

numerically more stable for small N. Given the two graphs G′ and G′′ , we can define the distance between them 
as the (Euclidean) distance between the two respective cdf ’s Q′

d and Q′′
d:

(1)di =
mi −mmin

mmax −mmin

,

(2)Pd(h) =
1

N

N
∑

i=1

1[(h−1)�,h�)di , h = 1, 2, . . . , r,
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Figure 1.   Distribution of normalized degree (left), clustering coefficient (center), and egonet persistence 
(right) for three networks of different type: Erdős–Rényi (ER), Barabasi–Albert (SFBA), and Geometric (GEO) 
( N = 1000 , ρ = 0.01 , � = 0.05).
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Notice that the above quantity—as well as the analogous ones defined in the following—is well defined even 
when G′ and G′′ have different size, provided that the cdf ’s are calculated with the same step �.

Clustering coefficient.  The (local) clustering coefficient is defined, for a node i with mi > 1 neighbors con-
nected by ei edges, by

while we set ci = 0 if mi ≤ 1 . The global (i.e., averaged across all nodes) clustering coefficient C = 1
N

∑N
i=1 ci 

was used as a metric to compare networks: the distance between two graphs with clustering coefficients C′ and 
C′′ is simply given by

The simplicity of this approach makes it very attractive: its performance—for example, in classification tasks—is 
quite good and, in any case, it is the best when compared with the use of other “simple” network indicators11,12.

Here we want to demonstrate that the performance in using the clustering coefficient can be improved by 
exploiting the distribution of ci ’s over the entire network, which is obviously much more informative than just the 
global value C. As we did above for di , we discretize the interval 0 ≤ ci ≤ 1 and compute the distribution function 
Pc(h) (i.e., the normalized histogram) by counting the proportion of ci ’s in each interval. Figure 1 (central panel) 
shows that Pc(h) has a good ability to differentiate the three analyzed networks: ER has practically all zero values 
for ci’s, SFBA has a small number of nonzero (but low) values, while the pdf of GEO has its mass concentrated 
around 0.5. Given two graphs G′ and G′′ , we can define their distance as:

that is, as the (Euclidean) distance between the corresponding cdf ’s Qc(h) =
∑h

k=1 Pc(k).

Egonet persistence.  The egonet persistence pi is defined as the persistence probability17,18 of the egonet Ei , 
i.e., the probability that a random walker, located in any of the nodes of Ei at step t, remains in any node of Ei at 
step t + 1 . For an undirected and unweighted network, it can be proved17 that this quantity is equal to

where mint
j  (resp. mext

j  ) denotes the internal (resp. external) degree of node j, i.e., the number of its neighbors 
internal (resp. external) to Ei (we conventionally set pi = 0 when Ei = {i} , i.e., i is an isolated node). As above, 
we discretize the interval 0 ≤ pi ≤ 1 and we compute the distribution function Pp(h) by counting the proportion 
of pi ’s in each interval.

While the clustering coefficient ci only captures the connectivity within the egonet, pi measures the balance 
between internal and external connectivity, as exemplified in Fig. 2, i.e., it quantifies the proportion of edges that 
the nodes of the egonet direct into the egonet itself, rather than to external nodes. Therefore the two indicators, in 
general, carry independent information, as emerges from Fig. 1, which shows three examples of the distribution 
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Figure 2.   In the egonet Ei , the degree mi depends only on the connectivity of node i (left); the clustering 
coefficient ci describes the connectivity between the neighbors of i (center); the egonet persistence pi captures 
the balance between internal and external connectivity of Ei (right), as it quantifies the proportion of edges that 
the nodes of the egonet direct into the egonet itself.
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Pp(h) for networks generated by different models, and is further demonstrated in Fig. 3, where 2-dimensional 
scatter plots are shown for the same three networks.

Given the two graphs G′ and G′′ , we define their distance as:

i.e., as the (Euclidean) distance between the corresponding cdf ’s Qp(h) =
∑h

k=1 Pp(k).

Multi‑dimensional distributions and distances.  So far we introduced three graph-to-graph distances, 
respectively Dd , Dc , and Dp , each based on a single indicator. Since normalized degree, clustering coefficient, and 
egonet persistence carry in general independent information, it is obviously possible to combine them to define 
more complex metrics. A simple solution would be to add them:

or, more in general, to combine them linearly (this would require, however, properly adjusting the parameters 
of the linear combination).

A more general approach is inspired by the plots in Fig. 3, which clearly show that different network models 
give rise to different distributions of the two-dimensional variable (ci , pi) . Therefore, we define the two-dimen-
sional discrete distribution function Pc,p(h, k) as the normalized 2D histogram:

with values ci = 1 (resp. pi = 1 ) conventionally counted in the last interval h = r (resp. k = r ). Given the two 
graphs G′ and G′′ , we define their distance as

that is, the Frobenius norm of the difference between their cdf ’s Qc,p(h, k) =
∑h

i=1

∑k
j=1 Pc,p(i, j) . Of course, in 

the same way as we did in (10), (11), we can define two more 2D measures, namely Dd,c(G
′,G′′) , based on the 

two-dimensional variable (di , ci) , and Dd,p(G
′,G′′) , based on the pair (di , pi).

Finally, a distance measure that fully exploits all the available information is obtained by considering the 
multivariate distribution of the three-dimensional variable (di , ci , pi) , which captures the different patterns origi-
nating from the different network models (Fig. 4). This requires partitioning the set [0, 1]3 into r3 discretization 
cubes, computing the three-dimensional discrete distribution function Pd,c,p(h, k, n) as:

and defining the network distance between G′ and G′′ as

(8)Dp(G
′,G′′) =

[

r
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Q′
p(h)− Q′′

p (h)
)2

]
1
2

,
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′,G′′),
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1

N
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Figure 3.   Scatter plots of clustering coefficient and egonet persistence for the three networks in Fig. 1. The x, 
y-coordinates of each point are the features of a network node.
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where Qd,c,p(h, k, n) =
∑h

i=1

∑k
j=1

∑n
l=1 Pd,c,p(i, j, l) is the cdf.

In the following, we will generically indicate with ego-distances the graph-to-graph measures introduced in 
this section and based on the statistics of the egonet indicators: Dd , Dc , Dp , Dsum (1D distances), Dc,p , Dd,c , Dd,p 
(2D), and Dd,c,p (3D).

Results
Classification of synthetic networks.  To have a fair evaluation of the efficacy of the ego-distances 
proposed above, we reproduce the experimental setup described in Refs.11,12 by generating synthetic networks 
from the same seven models used therein (see the section Materials for details and references): Erdős-Rényi 
model (ER); ER degree distribution preserving model (ERDD); Barabási-Albert scale-free preferential attach-
ment model (SFBA); scale-free gene duplication and divergence model (SFGD); geometric random graph model 
(GEO); geometric model with gene duplication (GEOGD); stickiness-index based model (STICKY). For each 
model, we generate networks with size N = 1000 , 2000, and 4000, and density ρ = 0.004 , 0.01, and 0.02, for a 
total of 7× 3× 3 = 63 combinations model/size/density. For each combination, we randomly generate 10 net-
work instances, so that the experimental setup includes 630 networks.

It should be noted that most of the above network models do not necessarily produce a connected network 
(SFBA and ERDD are the only exceptions - see the section Materials for details). For example, at ρ = 0.004 
most of the networks in our sample are not connected. However, the proposed measures present no problems 
in managing non connected networks. In particular, the three proposed egonet features are well defined also 
for isolated nodes: they all assume zero value, thus shaping the distributions of the features in such a way as to 
suitably characterize the network.

For each pair of networks, we compute the ego-distances defined above, using discretization step � = 0.01 
(the results are largely insensitive to this parameter thanks to the use of cdf ’s). We also consider DCglobal

 (eq. 
(5)), which is an easy-to-calculate distance based on a global network feature. Finally, to have a challenging 
comparison, we compute the Graphlet Correlation Distance GCD11 ( DGCD11)11,12, which is considered one of 
the most effective distances10.

The goal of the classification task is to recognize when two networks come from the same model. For this 
purpose, the performance of each distance is evaluated in the usual Precision/Recall framework: two networks 
form an actual positive pair if they are generated by the same model, an actual negative pair otherwise. To be 
effective for correct classification, the distance between two networks generated by the same model should be 
much smaller than the distance between two networks originating from different models. Given a distance D and 
a threshold ε > 0 , a network pair is a predicted positive sample if D < ε , a predicted negative sample otherwise. 
Then Precision and Recall are given, for each ε , by Pε = tp/(tp+ fp) and Rε = tp/(tp+ fn) , where tp, fp, and fn 
are, respectively, the number of true positive, false positive, and false negative network pairs. The Precision/Recall 
curve provides a graphical representation of the simultaneous evolution of P and R with ε , and the area under 
the curve (denoted by AUPR, i.e., Area Under the Precision/Recall curve, 0 ≤ AUPR ≤ 1 ) is a quantity that sum-
marizes the performance of each distance, with the limit AUPR = 1 obtained in the ideal case19,20.

As clearly highlighted in Ref.12, an ideal distance should be able to recognize networks generated by the same 
model without being confused by possible differences in size and density, but only being influenced by structural 
differences in the topology—a very challenging task. On the other hand, a distance can be considered good, 
though not ideal, when it is able to perform the above task at least when the networks are of the same size and 
density. For this reason, we also systematically evaluate the performance of each distance on a subset of network 
pairs, namely those (possibly) generated by different models but having the same size and density.

We start by limiting the analysis to just three network models, namely ER, GEO, and SFBA. In the previous 
section, their characteristics were compared in Figs. 1, 3, and 4, showing that each model has some peculiari-
ties—in terms of the adopted egonet features—which differentiate it from the other two. Thus we expect that 
the proposed ego-distances are able to correctly classify the network model: Table 1 shows that this is indeed 
the case for all ego-distances if size and density are the same, but also the same happens for most ego-distances 
when networks are of different size and/or density. In other words, for this simplified task the egonet features are 

Figure 4.   Scatter plots of normalized degree, clustering coefficient, and egonet persistence for the three 
networks of Fig. 1. The x,y,z-coordinates of each point (colored dots) are the egonet features of a network node. 
The gray dots are the projection onto the horizontal plane and are shown for readability only.
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sufficiently differentiated that most combinations of two or three cdf ’s will distinguish the three models perfectly. 
As an example, we report in Fig. 5 the distance matrix relating to Dd,c,p , which highlights the clear separation 
between the different models.

Much more challenging is the task of recognizing the correct model when there are subtle topological differ-
ences, as in the case where all seven models are in the pool: the results are summarized in Table 2 (upper part). 
In terms of AUPR, all the proposed ego-distances outperform GDC11 when sizes/densities are mixed. On the 
other hand, GCD11 achieves much better results in the simpler task of coupling networks of the same size/density.

The performance of ego-distances further improves if we restrict the computation of the cdf ’s of di , ci , pi to a 
sub-range of [0, 1]. Indeed, if we analyze the quadratic error terms (Q′

∗(h)− Q′′
∗(h))

2 which form the core of the 
distances (3), (6), (8) and draw their dependence on h = 1, 2, . . . , r covering the interval [0, 1], we see (Fig. 6) 
that the differences between networks vanish as the upper bound is approached – not surprising, since di , ci , pi 
rarely take values close to 1. Therefore, by restricting the computation to the range where the above terms are 
significant, we increase their sensitivity and, as a by-product, reduce the computational effort. For this purpose, 
we define a cap value 0 < T ≤ 1 (i.e., a maximum value) as the upper limit for computing the cdf differences: in 
(3), (6), (8), all sums remain extended to h = 1, 2, . . . , r , but now r = T/� instead of r = 1/�.

Table 2 (lower part) and Fig. 7 show the results obtained with cap value T = 0.5 . Compared to the case T = 1 , 
the AUPR values do not vary remarkably when all sizes/densities are mixed, while they increase significantly 
when comparing networks with the same size/density. The Precision/Recall curves of Fig. 7 (left panel) show 
that the ego-distances obtain qualitatively similar behavior, with Dd,c,p maintaining the largest Precision at very 
small Recall values, and Dd,c and Dsum yielding the best compromise at large Recall values, as evidenced by the 
largest F1 value (we remind that F1 = 2PR/(P + R) is the harmonic mean of Precision and Recall). On the other 
hand, when the comparison is restricted to networks with the same size/density, Fig. 7 (right panel) confirms 

Table 1.   AUPR (Area Under the Precision/Recall curve) value for the classification of ER, GEO, and SFBA 
networks, for the ego-distances defined in the section “Methods” and for the Graphlet Correlation Distance 
GCD1111. The best-ranked distances are highlighted in bold italic.

Distance All sizes/densities Same size/density

D 0.781 0.873

C 0.808 0.997

P 0.777 1

SUM 0.993 1

C,P 0.827 1

D,C 1 1

D,P 0.993 1

D,C,P 0.999 1

Cglobal 0.782 0.994

GCD11 0.649 0.995
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Figure 5.   Distance matrix Dd,c,p between the networks ER, GEO, and SFBA (3 models × 3 sizes × 3 densities 
× 10 replications = 270 networks): the different models are clearly separated, regardless of the different 
combinations of size/distances.
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that the Graphlet Correlation Distance DGCD11 remains overall superior, although some ego-distances are able 
to achieve comparable F1 values.

We now summarize the above results, in order to provide guidance on which of the proposed ego-distances 
to adopt. We observe that our results depend on the experimental dataset, which is rich and diversified but, 
obviously, does not include all possible network structures: any conclusion must therefore be evaluated with 
caution. In general, the AUPR (Table 2) should be the primary selection criterion, as it represents the average 
precision across all possible recall values. Not surprisingly, AUPR highlights the superiority of 2D and 3D meas-
ures, which exploit more information than 1D measures. In most cases, Dd,c,p performs best (or nearly so) and 
should therefore be considered the preferred metric - an expected result, since it uses the most information in 
the most structured form, that is, building 3D distributions. Furthermore, the Precision/Recall curves of Fig. 7 
show that Dd,c,p keeps large Precision for Recall→ 0 (left side of the curve); has a monotone and sufficiently 
regular behavior; and grants a rather large Precision even for Recall→ 1 (right side of the curve). As we will see 
in the next section (Computational requirements), however, Dd,c,p is the most computationally expensive of the 
ego-distances. If its use is prohibitive in a specific application, Dd,c , Dd,p are valid alternatives, as shown in Table 2.

Table 2.   AUPR (Area Under the Precision/Recall curve) value for the classification of all network models, for 
the distances defined in the section “Methods” and for the Graphlet Correlation Distance GCD1111. The best-
ranked distances are highlighted in bold italic.

Distance All sizes/densities Same size/density

Cap value T = 1

D 0.542 0.579

C 0.436 0.609

P 0.379 0.631

SUM 0.564 0.666

C,P 0.457 0.669

D,C 0.631 0.653

D,P 0.593 0.673

D,C,P 0.613 0.702

Cap value T = 0.5

D 0.554 0.581

C 0.442 0.646

P 0.450 0.693

SUM 0.596 0.692

C,P 0.496 0.774

D,C 0.628 0.743

D,P 0.617 0.775

D,C,P 0.571 0.798

Cglobal 0.389 0.516

GCD11 0.422 0.863
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Figure 6.   The quadratic errors 
∑

(Q′
∗(h)− Q′′

∗(h))
2 as a function of the bin index h = 1, 2, . . . , r ( r = 1/� , 

� = 0.01 , ∗ = d, c, p ). The sum is extended to the pairs of networks formed by pairing 7 networks, one for each 
model, in all possible combinations ( N = 1000 , ρ = 0.01).
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Computational requirements.  The same pool of synthetic networks, previously used to evaluate the 
classification capabilities of the proposed ego-distances, was also exploited to empirically test their computa-
tional requirements. A theoretically-based prediction is quite difficult, given the mixed sequence of operations 
involved in each ego-distance, namely the computation of one or more egonet features, of the cdf ’s, and of their 
Euclidean distance. The first task (computing the egonet features), however, is definitely dominant for medium 
to large networks. In general terms, assuming that checking the connection of a node pair (i, j) requires a fixed 
time, then computing the degree of a node requires time O(N), which becomes O(N2) for all N nodes. For the 
clustering coefficient (Eq. (4)), checking connections between the neighbors of a node of degree mi requires 
O(m2

i ) operations, which is O(N2) is the worst case and therefore O(N3) for the whole network. Analogously for 
the egonet persistence (Eq. (7)): in the numerator we check the (mi + 1)2 possible connections internal to Ei , 
while in the denominator the (mi + 1)N possible connections of the nodes of Ei with all nodes of the network: 
both terms are O(N2) in the worst case, which leads to a complexity O(N3) for all N nodes. On the other hand, 
the computational complexity of Graphlet Correlation Distance GCD11 is O(Nm3

max)
12,21. However, typical net-

works are often far from the worst case and therefore the computational requirements are milder.
To get an empirical estimate of the computational requirements of the ego-distances, we run experiments for 

all nine combinations of size ( N = 1000 , 2000, and 4000) and density ( ρ = 0.004 , 0.01, and 0.02) used above: 
for each pair (N , ρ) , we compute the 70× 69/2 = 2415 distances between all possible pairs of the 70 networks 
having the prescribed size and density (recall that we have 7 network models and 10 replicas for each model), 
and we add up the time required for the computation. Finally, we have an aggregated time for each pair (N , ρ) , 
which is obtained from models with mixed characteristics and thus is representative of the average computational 
requirements of the distance used.

Figure 8 shows the results of the above experiments. First of all, we must mention that the time needed to 
compute the three ego-distances Dd , Dc , and Dp (omitted in the figure) increases from the first to the last, as one 
would expect, with the first almost negligible compared to the others. This is why it clearly emerges from the 
figure that, for fixed N and ρ , Dd,c and Dd,p (in that order) are the fastest to compute, followed by Dc,p , which is 
based on the two most expensive features, and by Dsum and Dd,c,p , which require all three features (the figure 
shows that the latter is the slowest of the ego-distances, due to the need to elaborate 3D distributions). All ego-
distances are faster than GCD11 anyway (at least in our implementation, see section Materials below for details). 
The three panels in the first row of Fig. 8 show, for all ρ values, a computation time approximately increasing as 
t ∝ Nα , with α between 1.89 and 2.93. GCD11 scales more favorably in this regard, with α ranging from 1.33 
to 1.99. The plots showing the dependence on ρ (second row of the figure) confirm the ranking between the 
distances in terms of computation time.

Example of application: European air transportation network.  We demonstrate the use of the ego-
distances introduced above on data describing the European air transportation network. The dataset includes 
37 networks, corresponding to airlines, each with 448 nodes (only the connected component of each network 
is considered, formed by airports connected by flights of the corresponding airline), representing European 
airports (the complete lists of airports and airlines can be found in Refs.10,22).
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Figure 7.   Precision/Recall curves obtained by clustering the complete set of networks (7 models × 3 sizes × 3 
densities × 10 replications = 630 networks) with five ego-distances defined in section “Methods” ( Dsum , Dc,p , 
Dd,c , Dd,p , Dd,c,p ) with cap value T = 0.5 , and with Graphlet Correlation Distance GCD11 (for readability, we 
omit the curves of Dd , Dc , Dp ). For each Recall/Precision point, the F1 value is specified by the dotted contour 
line. Left: the performance is assessed by mixing sizes/densities; Right: only networks with same size/density are 
compared.
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To show how ego-distances can be used flexibly to spot specific network (dis)similarities, we compute and 
compare the results of the two most simplest distances introduced above, namely Dc and Dd . Figure 9 (top row) 
shows the dendrograms summarizing the results of the hierarchical cluster analysis based on these two distances. 
In the same figure, the bottom row shows the graphs of five of the networks analyzed, related to five distinct 
airlines. Despite the apparent dissimilarity of the graphs, the two distances reveal that some of the networks 
have similar characteristics.

For example, networks #9 (KLM) and #31 (Czech Airlines) are at zero distance according to Dc : they are both 
pure stars and, as such, all nodes have zero clustering coefficient. But they are also very similar according to Dd , 
as can be read from the right dendrogram in Fig. 9. Indeed, the normalized degree distribution is in both cases 
concentrated on the two extremes 0 and 1, corresponding respectively to the minimum and maximum degree, 
with slightly different values due to the unequal number of nodes in the two cases.
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Figure 8.   Computation time as a function of the network size N at fixed density ρ (first row), and as a function 
of ρ at fixed N (second row), for five ego-distances defined in section “Methods” ( Dsum , Dc,p , Dd,c , Dd,p , Dd,c,p , 
with � = 0.01 , T = 1 ) and for the Graphlet Correlation Distance GCD11. Each point is the aggregated time of 
computing the 70× 69/2 = 2415 distances between all possible pairs of the 70 networks having the prescribed 
size and density (7 network models × 10 replications).
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Despite the different topology, network #4 (British Airways) also has Dc = 0 from #9 and #31: although the 
former is not a pure star, it too does not contain triangles and therefore also in this case all nodes have zero 
clustering coefficient. But network #4 is quite close to #9 and #31 also in terms of Dd because, once again, the 
degree is concentrated in the extreme values (the leaves and the two hubs), with very few exceptions of nodes 
with degree 2.

As a final example, consider networks #1 (Lufthansa) and #35 (Wideroe). Although they differ in size and 
topology, their common trait is the abundance of triangles resulting in similar distributions of the clustering 
coefficient. Indeed, the dendrogram based on Dc places the two networks at a short distance - and at the maxi-
mum possible distance from the pure stars #4, #9, #31. On the other hand, even if similar in terms of Dc , the 
dendrogram based on Dd reveals that networks #1 and #35 are the furthest possible, in the analyzed dataset, in 
terms of degree distribution, a result that could be guessed, to some extent, by looking at the two graphs.

Example of application: Mobility networks during COVID‑19 lockdown.  When a sequence of 
time-stamped networks is available, a typical task is to quantify the (dis)similarity between the graphs to identify 
anomalous instants in their time evolution. Below we briefly show the results of the analysis of the sequence of 
mobility networks between Italian cities, estimated from the digital traces of over 4 million individuals23 across 
the 2020 lockdown period caused by the COVID-19 pandemic.

The dataset includes 32 networks, each of which aggregates the mobility of individuals over a week. The first 
week begins on February 24, when the first infected individuals had just been detected in Northern Italy and 
only restrictions on local mobility around the affected cities were imposed. The full lockdown started on March 
9 (https://​en.​wikip​edia.​org/​wiki/​COVID-​19_​lockd​owns_​in_​Italy) and has been gradually lifted since May 4. 
The period covered by the dataset ends in early October. Each network describes the flow of individuals among 
approximately 3000 municipalities. We binarize the networks by neglecting weights, thus preserving only the 
structure, with the aim of analyzing the evolution of the mobility backbone over time. Recall that ego-distances 
are alignment-free measures, so the focus is on the evolution of the network structure, rather than on the vari-
ation of specific flows from city to city.

The results using Dc,p are summarized in Fig. 10 (similar results are obtained with other ego-distances). Panels 
(a)–(b) clearly highlight the strong anomaly of the network structure during the lockdown period. Interestingly, 
although the nationwide measures (including the mobility block) had been in place since March 9, the plots 
show that it took a couple of weeks to reach the maximum deviation from the unperturbed situation (it was 
only on March 21 that it was decided to close all unnecessary businesses and industries), and that such a regime 
lasted for a rather short period. In fact, the return to normal regime begins a couple of weeks before May 4, when 
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Figure 10.   (a) The Dc,p distance matrix among the 32 Italian weekly mobility networks during the COVID-19 
lockdown period in 2020: the date on the axes is the first day of the corresponding week. (b) The first row of the 
distance matrix Dc,p , i.e., the distance of each mobility network from the week 1 network. (c–d) Boxplots of the 
distribution of the clustering coefficient (c) and egonet persistence (d). The boxes range from the 25th to the 
75th percentile, the point being the median value.
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intra-regional mobility was allowed. After that date, the mobility network returns to be very similar to that of 
the pre-COVID period. Incidentally, panel (b) reports, during the summer period, small alterations in mobility 
in the days close to Republic Day (June 2) and during the central weeks of August, the traditional holiday weeks.

Panels (c)-(d) show how the structural variation of the network is captured by the two ego-features included 
in Dc,p . Due to the interruption of many mobility corridors, the median of the clustering coefficient drastically 
drops (remains at zero for many weeks), and the entire distribution is strongly compressed. Less evident is the 
impact on the egonet persistence, whose median does not vary much: the distribution, however, becomes wider 
during the weeks of lockdown, because a number of egonets become more cohesive due to the interruption of 
external connections (see Fig. 2).

Concluding remarks
This work introduced a family of alignment-free network-to-network dissimilarity measures (EgoDist), based 
on the comparison of the distributions, on the network, of a few features that locally characterize the egonets: 
the degree, the clustering coefficient, and the egonet persistence. The dissimilarity between two graphs is defined 
as the distance between the corresponding distributions (one-dimensional or multi-dimensional). The ability 
of the proposed measures to discriminate networks with subtly different characteristics was evaluated by means 
of a standard experimental setup. Overall, EgoDist measures perform comparably to graphlet-based measures, 
with similar computational requirements.

The method has several possible generalizations. On the one hand, the extension to weighted and/or 
directed networks is conceptually immediate, since all the egonet features adopted here have their relevant 
generalizations17,24. On the other hand, the set of node features can be increased by using, for example, the 
distribution of any centrality indicator of nodes25–27, instead of, or in addition to, the quantities used here (this 
however implies loosening the assumption of using only egonet features). Incidentally, this opens up the problem 
of finding the (minimum) set of indicators that achieves the “best” network classification.

It goes without saying that all of the above generalizations imply a significant increase in computational 
requirements. In this regard, to keep the method scalable to large-scale networks one could exploit paralleliza-
tion techniques (the computation of egonet features can be completely parallelized) but also devise sampling 
techniques, i.e., compute the distributions of the egonet features on a sample of nodes rather than across the 
entire network. This obviously requires the use of graph sampling techniques28, whose effect on the performance 
of the proposed approach should be thoroughly evaluated.

Materials
Network models.  Below we summarize the description of the algorithms for the generation of the seven 
synthetic network models used for the evaluation experiments: to have comparable results, they are the same 
used by11,12. In all cases, the network is defined by the size N (number of nodes) and the density ρ = 2L

N(N−1)
 , 

where L is number of edges. Notice that the average degree mavg =
2L
N  can be expressed as mavg = ρ(N − 1).

ER (Erdős-Rényi model) Each node pair (i, j) is connected with probability ρ25,29.
SFBA (Barabási-Albert scale-free preferential attachment model) We define η =

ρN
2

 , which is mavg

2
 for large 

N, and note that η assumes integer values for all the pairs (N , ρ) used in the article. We initialize the network 
with a clique (complete graph) of η + 1 nodes, then add one node at a time until we reach the prescribed size 
N. Each added node must connect its η edges to η target nodes, which are randomly selected with probability 
proportional to their degree in the current network (preferential attachment30,31).

ERDD (ER degree distribution preserving model) An SFBA network is first created with the prescribed N , ρ 
(see above), then all edges are shuffled while preserving the individual degree of each node (degree-preserving 
randomization25,32).

STICKY (stickiness-index based model) An SFBA network is first created with the prescribed N , ρ (see 
above), thus defining the degree sequence m1,m2, . . . ,mN : then all edges are removed. Finally, each pair of nodes 
(i, j) is connected with probability mimj

∑

h mh

33.
SFGD (scale-free gene duplication and divergence model) We initialize the network with a seed of 2 con-

nected nodes, then add one node at a time until we reach the prescribed size N. For each node i to be added, an 
existing node j is selected uniformly at random, and i is connected to all neighbors of j. Furthermore, the pair 
(i, j) is connected with probability 0.5. Then, we consider all nodes h that are common neighbors of i and j and, 
with probability q, remove either the edge (h, i) or (h, j) (with random selection). The value of q is iteratively 
adjusted to reach the prescribed density ρ (on average over the 10 network replications)34.

GEO (geometric random graph model) The N nodes are thought of as points in the unit cube, whose 3D 
coordinates are selected uniformly at random. Then the nodes (i, j) are connected if and only if their Euclidean 
distance is smaller than a given r, the value of which is iteratively adjusted to reach the prescribed density ρ (on 
average over the 10 network replications)35.

GEOGD (geometric model with gene duplication) The N nodes are thought of as points in the unit cube. 
Given a prescribed r > 0 , we initialize the set of nodes with 2 nodes at a much shorter Euclidean distance than 
r, then we add one node at a time until we reach the prescribed size N. For each node i to be added, an existing 
node j is selected uniformly at random, and i is placed in the unit cube at a random position within distance 
2r from j. After all N nodes have been placed, each pair (i, j) is connected by an edge if and only if (i, j) are at 
smaller Euclidean distance than r, the value of which is iteratively adjusted to reach the prescribed density ρ (on 
average over the 10 network replications)36.
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Measuring computation time.  The computation times shown in Fig. 8 were obtained on a desktop PC 
with Intel i7 CPU at 2.90GHz using Matlab R2021b. To limit possible confounding factors, the times reported 
refer only to the computation of the distances between the 2415 network pairs, as described in section Computa-
tional requirements, i.e., all data loading and organization are ignored. For the EgoDist measurement we used the 
code available at https://​picca​rdi.​facul​ty.​polimi.​it/​highl​ights.​html, which implements all the distances proposed 
in this paper. For Graphlet Correlation Distance GCD11 we used the MNA Matlab interface for ORCA​21, avail-
able at https://​github.​com/​muell​sen/​MNA/​tree/​master/​Graph​letCo​mputa​tion.

Code and data availability
The Matlab code of the function EgoDist, implementing the computation of the ego-distances, and the files of 
the synthetic networks used for the classification task are available at https://​picca​rdi.​facul​ty.​polimi.​it/​highl​ights.​
html. The data of the European air transportation network are available at http://​compl​ex.​unizar.​es/​~atnmu​ltipl​
ex/. The mobility network data were kindly provided by the authors of Ref.23.
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