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ABSTRACT
After decades of being mainly confined to theoretical research,
Quantum Computing is now becoming a useful tool for solving
realistic problems. This work aims to experimentally explore the
feasibility of using currently available quantum computers, based
on the Quantum Annealing paradigm, to build a recommender
system exploiting community detection. Community detection, by
partitioning users and items into densely connected clusters, can
boost the accuracy of non-personalized recommendation by assum-
ing that users within each community share similar tastes. However,
community detection is a computationally expensive process. The
recent availability of Quantum Annealers as cloud-based devices,
constitutes a new and promising direction to explore community
detection, although effectively leveraging this new technology is a
long-term path that still requires advancements in both hardware
and algorithms. This work aims to begin this path by assessing the
quality of community detection formulated as a Quadratic Uncon-
strained Binary Optimization problem on a real recommendation
scenario. Results on several datasets show that the quantum solver
is able to detect communities of comparable quality with respect to
classical solvers, but with better speedup, and the non-personalized
recommendation models built on top of these communities exhibit
improved recommendation quality. The takeaway is that quantum
computing, although in its early stages of maturity and applicabil-
ity, shows promise in its ability to support new recommendation
models and to bring improved scalability as technology evolves.

CCS CONCEPTS
• Information systems→Recommender systems; •Computer
systems organization→ Quantum computing.
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1 INTRODUCTION
Since the development of the first recommender systems, the size
and complexity of the recommendation tasks have grown substan-
tially and now include a multitude of data sources [22, 25, 32, 41].
This has been both an opportunity, opening many directions of
research and development of new techniques, but also bringing
important scalability constraints for the practical applicability of
recommender systems to large scale domains. The growing need
for higher computational power has brought the development of
new architectures specialized for specific tasks, such as tensor units
for linear algebra and GPUs for neural models.

Quantum computing is a new and emerging technology that
promises to substantially accelerate several problems, that are diffi-
cult to solve with traditional approaches, by leveraging new compu-
tational paradigms made possible by quantum-mechanical phenom-
ena. Among the existing paradigms, this paper focuses on Quantum
Annealing (QA), which uses a special-purpose device able to sample
low-energy solutions for optimization problems. Available quantum
annealers have the highest number of qubits compared to other ar-
chitectures, and are powerful enough to solve small but interesting
machine learning and classification problems [27].

The aim of this work is to conduct an exploratory study of this
cutting-edge technology that aims to assess whether it can be ap-
plied in practice to a relevant problem for the recommender systems
field which is known to be computationally difficult, community
detection. The goal of effectively leveraging the potential of quan-
tum computing is indeed a long and complex journey which brings
together challenges in hardware development but also in under-
standing how to use it, which tasks fit well the hardware capabilities
and how we can integrate it into successful applications. To this
end, a further goal of this work is to increase the awareness of
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the community about this new technology which is more accessi-
ble than its reputation might suggest. In this work we present a
simple but effective way of using community detection to boost
the quality of already available recommendation models. Although
the experimental analysis is still limited by the constraints of this
innovative technology, the results are promising and open sev-
eral research questions and possible applications. In particular, this
paper addresses the following research questions:

RQ1: Can community detection boost the recommendations
quality of non-personalized recommendation models?

RQ2: Can quantum annealing be used to rapidly find useful
communities?

2 QUANTUM ANNEALING FOR
OPTIMIZATION PROBLEMS

Quantum computing is a new computational paradigm that aims to
leverage quantum-mechanical phenomena in order to significantly
accelerate the solution of certain problems that are difficult to solve
on traditional computers [26]. This paper will focus on Quantum
Annealers, which are special-purpose devices, also called Quantum
Processing Units (QPU) that can be used to solve optimization
problems. In particular, the D-Wave Advantage QPU is accessible
on the cloud1, and has 5640 qubits, where every qubit is connected
to 15 others [7].

A quantum annealer operates by representing the optimization
problem in terms of the energy landscape of a physical system,
which will represent the quality of a specific solution: better so-
lutions have lower energy. The device operates by starting from
an initial default configuration with an easy-to-obtain quantum
state, and then carefully introduces the components of the problem
one desires to solve. At the end of this evolution, or annealing, the
qubits have reached a state that minimizes the overall system’s
energy and therefore are in an optimal solution. There are several
steps to consider when using a QPU:

Problem Formulation. The QPU requires the optimization prob-
lem to be formulated as a Quadratic Unconstrained Binary Opti-
mization (QUBO) problem, which is defined as follows:

min
x ∈{0,1}m

y = xTQx (1)

where y is the energy of the system, x ∈ {0, 1}m is a vector ofm
binary variables and Q is anm ×m symmetric matrix that defines
the function to optimize. Two variables xi and x j are said to be
connected if the corresponding Qi j element in the Q matrix is non-
zero. Note that the QUBO formulation does not allow to impose
hard constraints, which are instead represented as penalties. Several
QUBO formulations for important problems exist such as graph
partitioning [5, 38], Support Vector Machines [40], Restricted Boltz-
mann Machines [1, 2], Feature Selection [16] and optimization for
resource allocation [10]. QA has also been applied to collaborative
filtering hybrid recommender systems [29] and the personalization
of the user interface [12]. Note that while QA requires to represent
problems as a QUBO, QUBO problems can be solved also with tradi-
tional solvers that do not require quantum computing, see Section
4.2.
1https://www.dwavesys.com/solutions-and-products/cloud-platform/

Problem Embedding. Once the problem is formulated as a QUBO,
it can be programmed on the QPU. This step is called minor em-
bedding [11] and requires to bridge the gap that exists between
the mathematical formulation of a specific QUBO problem (the Q
matrix) and an actual physical device. There are usually two types
of factors to account for: the number of qubits (which limits the size
of theQ matrix) and the physical connections between them (which
limits the non-zero elements in the Q matrix). The original QUBO
problem is thus transformed in an equivalent one that accounts for
the limited physical connections between qubits. The embedding
process often inflates the number of qubits needed (up to a square
factor for a fully connected model), and may lower the quality of
the solution if the qubits that represent the same variable do not
behave coherently.

Submitting the Problem. The QPU is available on the cloud as
part of a computing-as-a-service platform. The QUBO problem,
with the corresponding embedding, can be sent to the quantum
computer via APIs.

Sampling Solutions. As previously mentioned, the device oper-
ates by evolving a physical system from an initial default configu-
ration to another that depends on the problem one wishes to solve.
This annealing phase lasts only a very short amount of time and is
usually repeated many times to increase the likelihood of sampling
a good solution. It is common to sample a large number of solutions,
102 − 104, with each individual annealing lasting between 1− 100µs .

3 COMMUNITY DETECTION
In the study of real-world networks, a commonly found property
is the tendency of certain nodes to form groups (or communities)
that are more densely connected internally than with the rest of the
network [39]. Community detection is particularly of interest in ap-
plied scenarios, as discovering these communities allows to identify
nodes that share salient feature, and effectively act as meta-nodes
of the graph. Among many applications, community detection has
been used, for example, to discover friendship relations in social
networks [14], to identify functional groups in metabolic networks
[19], to extract research topics from citation networks [34], etc.

In the realm of Recommender Systems, a recent review by Gas-
paretti et al. [18], has shown how recommender engines based on
collaborative filtering can be enhanced by using community detec-
tion. Since these systems rely on the feedback from each individual
user, in the form of positive or negative interactions expressed by
the user on items, the resulting interaction matrix is often sparse,
and traditional collaborative filtering-based methods do not always
have a way to estimate preference between users or items. Instead,
by leveraging the community groups, preferences and interests of
the community’s users are assumed as approximations of the target
user’s profile [35]. One of the challenges in performing community
detection for Recommender Systems, is that the user-item interac-
tion graph is bipartite – there are two sets of independent nodes
that interact only with one another. In this scenario, nodes of the
same set (i.e., users, items) have only second-order connections, via
a node of the other set, and it is in fact an open research question
whether it is better to cluster the users and items separately, or to
consider the entire graph as a whole [33, 37].
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Another problem that needs to be faced when dealing with com-
munities lies in its definition: a community is a loose concept, bound
to the domain of the application of interest, and relative to the topol-
ogy of the underlined network. This issue has been historically
addressed with the introduction of modularity, a function that mea-
sures the quality of a partition as compared to a null model – i.e.,
a random graph – of similar structure [31]. Community detection
thus becomes a matter of maximizing modularity by evaluating this
function on the different communities that can be formed. However,
in general this process can be a daunting task, as it is in fact an
NP-Complete problem [8], and one often resorts to efficient approx-
imate methods. Several greedy methods, such as the Louvain [6]
and Leiden [36] algorithm, have been employed extensively in prac-
tice, although they introduce a trade-off between quality and time
feasibility of the detection [23]. On the other hand, Monte-Carlo
approaches, such as simulated annealing, can effectively implement
an iterative sampling, which allows to analyze graphs up to 10000
nodes [17].

Inspired by simulated annealing, early-available quantum anneal-
ing devices were tested on small graphs, and it was shown that they
were able to reach comparable quality to classical methods [28]. Re-
cently, the availability of newer quantum annealers via cloud-based
services, has allowed to performmodularity maximization on larger
graphs, by leveraging a hybrid quantum-classical evaluation library
[42, 43]. Although far from conclusive, this recent experiment high-
lights some prospects in employing a quantum-annealing-based
community detection, in order to tackle both the scalability and
solution quality problem. Further research will be needed to assess
the possible improvements offered by this technology, as quantum
annealers improve in qubit number and connectivity.

3.1 Community Detection as a QUBO Problem
The task of community detection is formulated as an optimization
problem, with the objective of finding the communities that maxi-
mize the modularity. First, recall the mathematical formulation of
modularity, as introduced by Newman [30]:

Q =
1
2m

∑
i, j

Mi jδ (ci , c j ), Mi j = Ai j − Pi j , (2)

whereAi j is the adjacencymatrix of the graph, Pi j is the real-valued
probability matrix generated from the null configuration model,
Mi j is the modularity matrix, ci , c j are communities that host the
nodes i, j, and δ is a Kronecker delta, which evaluates to 1 if both i
and j belong to the same community, and to 0 otherwise.

In order to generate the modularity matrix in bipartite networks,
two different techniques can be employed: bipartite modularity [4],
which uses a null model that forbids connection among nodes of
the same type, and weighted projection modularity [13], which uses
the usual modularity formulation evaluated on a new network,
generated by connecting two nodes only if, in the original network,
both share a connection with the same node of the other set. As
described by Negre et al. [28], the obtained modularity matrix is
effectively the Q matrix of Eq. (1), up to a normalization factor
that accounts for the total number of connectionsm. The energy
function to be minimized is thus simply:H = − 1

mxxxTMxxx .

4 EXPERIMENTAL PIPELINE
Only user-item interaction data is used for the experiments, without
any side information. These interactions are randomly split into
two sets, training and testing, with respectively 90% and 10% of the
interactions. Then, recursive community detection is performed,
using the training set’s interaction data to build the QUBO problem.
Solutions for the problem are searched with classical, quantum or
hybrid samplers. Each iteration divides every community found in
the previous iteration (or the starting set) into two new commu-
nities. The QPU is used only starting from the iteration in which
the community have become sufficiently small to fit the hardware.
For each community found, a popularity-based recommender is
used to make recommendations based solely on the community’s
user interactions. Every item’s score is computed as the number
of users that interacted with it. The highest scoring items for each
community are recommended to the users of that community. Rec-
ommendations are then evaluated on the testing set with both
accuracy (Precision, MAP, NDCG) and beyond-accuracy (item cov-
erage) metrics, with a cutoff of 10. We provide the source code to
reproduce our experiments in a publicly available repository.2

4.1 Datasets
For the experiments in this work, 8 datasets were used: Movie-
Lens100K (943 users, 1682 items) and MovieLens1M (6040 users,
3883 items) [21]; The MovieLens (2113 users, 10109 items) and
LastFM (1890 users, 18022 items) datasets from the HetRec 2011
Workshop [9]; FilmTrust (1483 users, 2071 items), another movie
rating dataset [20]; Frappe (932 users, 4082 items), a real world mo-
bile app recommendation dataset [3]; CiteULike, a scientific paper
recommendation dataset, in its -a (5551 users, 16980 items) and -t
(7929 users, 25975 items) versions [24]. Notice that all these datasets
have interaction graphs of around 2500 up to 34000 total nodes,
which makes them suitable for the current available quantum an-
nealer devices. The cost of accessing quantum computing resources
prevented us from using larger datasets.

4.2 QUBO Optimizers
In order to search for solutions to a QUBO problem it is possible
not only to use a quantum annealer, but also classical and hybrid
solutions. In this work, five different optimizers are used: Steepest
Descent (SD), a greedy optimizer which iteratively performs the
variable flip that causes the highest drop in solution energy; Simu-
lated Annealing (SA), a metaheuristic which stochastically performs
local search, accepting worsening solution candidates in order to
avoid local minima; Tabu Search (TS), a metaheuristic which per-
forms local search accepting worsening solution candidates, when
no improving ones are available, but prevents visiting already ex-
plored solutions; D-Wave Advantage QPU (QA), the latest available
quantum annealer by D-Wave, accessible on the cloud and pro-
grammable as explained in Section 2; D-Wave Leap Hybrid (HA), a
quantum-classical hybrid optimizer accessible on the cloud, it per-
forms optimization on the entire problem with classical algorithms,
while decomposing it into smaller sub-problems solved with QA.

2https://github.com/qcpolimi/RecSys22_CommunityDetectionQuantumComputing
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Figure 1: The figure shows for each dataset how recommendation accuracy (NDCG) at a cutoff of 10 varies when recommending
with a community-informed popularity-based algorithm, w.r.t. to the baseline (dashed line), a standard popularity-based algo-
rithm. Communities are found solving the bipartite modularity QUBO with D-Wave Leap Hybrid (or SA for the CiteULike-a
and -t datasets).

5 RESULTS AND DISCUSSION
From the results, one thing in particular is made clear with the
proposed experiments. As a community-informed recommender
system, the popularity-based algorithm benefits from the user’s
subdivision in communities consistently in all datasets. Figure 1,
shows how NDCG varies with the community detection iterations
found with the D-Wave Leap Hybrid optimizer on all the datasets -
except the CiteULike-a and -t datasets, where Simulated Annealing
was used because of resource constraints - w.r.t. the baseline, which
is a standard popularity-based recommender using all the users’
data. It emerges clearly that community detection is always able
to improve the recommendation quality, to varying extent. Most
datasets exhibit a common behavior where the recommendation
increases up until a certain number of communities and then starts
to decrease. In other cases, see for example the CiteULike-a and
-t datasets, the quality steadily improves without stabilizing, indi-
cating that further improvements may be attainable by using even
more fine-grained communities. Only in one case, FilmTrust, the
recommendation quality decreases with the iterations.

Let’s now focus on MovieLens1M results, shown in Table 1 for
community detection with both modularity formulations solved
with D-Wave Leap Hybrid and the D-Wave Advantage QPU from
suitable iterations. It can be seen that the item coverage steadily
increases with the iterations. This diversification in recommen-
dations improves precision and NDCG up to around 60-70% w.r.t.
the baseline, depending on modularity formulation. An interesting
observation can be made about iteration 7, where communities
found with bipartite modularity fail in further improving the rec-
ommendations, while communities found with weighted projection
modularity obtain the best overall results on this dataset. This may

be due to the smaller size of the problem needed to be solved at
the same iteration for weighted projection w.r.t. to bipartite mod-
ularity. Looking at the QA optimizer, communities it found led to
a comparable accuracy to the ones at the same iteration with HA,
using bipartite modularity.

Going even more in-depth into how community detection con-
tributes to popularity-based recommendations, Figure 2 shows how
NDCG varies in each community w.r.t. the baseline. In these plots
it is clearly visible how some communities are improving the rec-
ommendation accuracy, even by a lot, while others do not influence
much or result in slightly worse quality. Comparing the two figures
it is evident that weighted projection modularity leads to better
communities w.r.t. to the bipartite one. This is also valid for Movie-
Lens100K, MovieLens HetRec 2011 and FilmTrust, while it is not
for the other datasets, where the two formulations are comparable
(CiteULike-a, LastFM HetRec 2011) or worse (CiteULike-t, Frappe).
Another very interesting aspect that the figures show is that some
communities in intermediate iterations lead to higher accuracy
when further divided, while others may lead to comparable or even
worse quality. This opens up the possibility of building a recom-
mender system not based on the communities of a specific iteration,
but of a combination of communities taken from different iterations.
However, this was not in the scope of this paper and is considered
as future work.

6 CONCLUSIONS AND FUTURE DIRECTIONS
This work presents an exploratory study that assesses the feasibility
of applying quantum annealing for community detection, in order
to boost the quality of non-personalized recommendation models.
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Table 1: Recommendation results on MovieLens1M of a community-informed popularity-based algorithm with communities
found with both the bipartite and weighted projection modularity formulations solved with D-Wave Leap Hybrid and Quan-
tum Annealing from suitable iterations. Accuracy metrics are computed with a cutoff at 10.

N C Bipartite Modularity Weighted Projection Modularity
Precision MAP NDCG I Cov. Precision MAP NDCG I Cov.

Baseline - - 0.1072 0.0586 0.1109 0.0234 0.1072 0.0586 0.1109 0.0234

D-Wave
Leap Hybrid

1 2 0.1169 0.0673 0.1228 0.0348 0.1223 0.0734 0.1295 0.0337
2 4 0.1288 0.0753 0.1389 0.0531 0.1299 0.0775 0.1390 0.0500
3 8 0.1401 0.0840 0.1499 0.0788 0.1471 0.0885 0.1528 0.0688
4 16 0.1515 0.0903 0.1600 0.1154 0.1561 0.0948 0.1671 0.0917
5 32 0.1579 0.0952 0.1662 0.1561 0.1657 0.0998 0.1772 0.1254
6 64 0.1603 0.0957 0.1684 0.2004 0.1703 0.1011 0.1821 0.1476
7 128 0.1548 0.0895 0.1621 0.2320 0.1724 0.1000 0.1837 0.1808
8 256 0.1468 0.0810 0.1532 0.2599 - - - -
9 512 0.1305 0.0684 0.1357 0.2552 - - - -

Quantum
Annealing

7 128 0.1554 0.0895 0.1616 0.2354 - - - -
8 256 0.1469 0.0810 0.1513 0.2658 - - - -
9 512 0.1309 0.0688 0.1351 0.2627 - - - -
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Figure 2: The figure summarizes how the recommendation quality within a single community changes as the iterations
progress. Communities are found using the D-Wave Leap Hybrid optimizer for both bipartite and weighted projection modu-
larity on theMovieLens1M dataset. The circle at the center represents the recommendation qualitymeasured by using a single
community, i.e., the original dataset. Each successive circle around it represents an iteration and it is divided in 2n parts each
representing a community, with n the iteration number. Color represents the percentual ratio between the NDCG value of the
community divided by the NDCG value obtained when using the full dataset to train the model. Darker red values indicate
higher recommendation quality (also denoted by the + annotation), while darker blue indicate lower (also denoted by the −

annotation).

The results show that leveraging user communities allows to im-
prove both the recommendation quality and beyond-accuracy and
that different communities benefit to different extent, some of them
achieving substantial improvements. Furthermore, it is possible to
leverage currently available quantum annealing to effectively tackle
the community detection problem. Overall, these results open sev-
eral research questions related to possible applications of quantum
annealing to relevant problems in this field. First, studying how
this finding generalizes to personalized recommendation models
and if different families, i.e., matrix factorization, KNN, neural, may
benefit in different ways. Second, exploring different formulations

of the community detection problem to assess whether they may
provide communities better suited for the recommender system
domain. Third, developing more advanced strategies to fine-tune
the recommendations for users of specific communities and build
hybrid methods that exploit communities, for example to combine
community detection with the personalization of the user interface
[12, 15]. Finally, as the quantum annealing technology improves
and matures, it will be possible to experiment on larger and more
complex datasets to the point where the promise of improved scal-
ability may mean community detection techniques will become
feasible to apply to a wider extent.
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