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Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide, characterized by aggressive behavior, high relapse
rate, and rapid progression. The cornerstone of OC treatment is cytoreductive surgery, targeting the removal of all detectable
tumor lesions wherever feasible. In instances of widespread disease or significant perioperative morbidity risk, patients may
initially receive neoadjuvant chemotherapy aimed at reducing the tumor’s volume prior to surgical intervention. The pivotal
decision between surgery and chemotherapy poses a significant therapeutic challenge in OC management. Our contribution
is to develop an artificial intelligence-based model to support this critical decision by predicting Tumor Resectability (TR)
from preoperative Computed Tomography (CT) images at the time of diagnosis.
Our study aims to develop a 3D Convolutional Neural Network capable of predicting TR in a cohort of 650 with advanced
stage epithelial patients with OC who underwent surgery at the European Institute of Oncology (IEO, Milan, Italy). The
model processes preoperative CT scans of the Thorax, Abdomen, and Pelvis to deliver a binary prediction: TR=0 indicates a
tumor completely resected, while TR=1 indicates the presence of residual tumor after cytoreductive surgery. We design and
train our model from the ground up, achieving as preliminary results an accuracy of 65%.
As far as we are aware, this is the first attempt to leverage deep learning for assessing TR in OC patients based on preoperative
CT scans. Our model represents a non-invasive and preoperative tool with the potential to facilitate clinical decision making
in the era of individualized and precision medicine.
The work is part of the project Under-XAI: understanding ovarian cancer initiation and progression through explainable AI.
Project code: PNRR-MAD-2022-12376574.
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1. Introduction
Ovarian Cancer (OC) is the most lethal gynaecologic ma-
lignancy worldwide, ranking as the fifth deadliest cancer
among women and accounting for approximately 13000
deaths in 2023 in the United States [1].
According to guidelines, suspected OC patients firstly
undergo pelvic ultrasound, Computed Tomography of
the Thorax, Abdomen and Pelvis (CT TAP) and CA125
measurement for staging purposes. Depending on the
CT TAP results and clinical assessment, clinicians eval-
uate the tumor resectability. Patients likely to achieve
complete tumor resection undergo primary debulking
surgery followed by adjuvant chemotherapy. Otherwise,
they receive neoadjuvant chemotherapy, followed by in-
terval debulking surgery and adjuvant chemotherapy.
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Although most patients initially respond positively to
this standard of care, it is estimated that 70% of patients
will experience a relapse. Surgical intervention aims at
achieving complete tumor resection; however, it often
results to be either aggressive, leading to severe postop-
erative complications, or ineffective, resulting in incom-
plete tumor removal and an associated twofold increase
in the risk of death, with the latter scenario occurring in
approximately 40% of cases [2].
The challenge in clinical practice is accurately predicting
the success of cytoreductive surgery, critical due to the
severe consequences of misjudgment, such as unneces-
sary invasive procedures causing significant periopera-
tive complications and emotional distress. The complex-
ity of predicting surgical outcomes is heightened by the
varied and distinct presentations of OC - four clinical
cases are shown in Figure 1 - making it difficult to assess
tumor resectability from diagnostic imaging. Advance-
ments in this area are crucial to minimize unnecessary
surgeries and tailor treatments to patient-specific needs.
Nowadays radiomics, a computational tool for extracting
high-dimensional features frommedical images, becomes
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Figure 1: In these CT scans, 4 different patients with OC are
depicted, each presenting unique diagnostic challenges. The
first patient’s scan identifies a discrete retroperitoneal lymph
nodemeasuring 8.5mm. The second patient has a conspicuous
omental cake, which is considerably larger at 29.2 mm. For
the third patient, a 13.3 mm nodule is present. Lastly, the
fourth patient’s scan shows peritoneal thickening of 10.5 mm,
raising concerns about potential peritoneal carcinomatosis.
Each case demonstrates the diverse presentations of OC and
the inherent challenges in predicting TR preoperatively.

part of personalized oncology treatments, driven by ad-
vancements in Machine Learning (ML)[3]. However, ML
requires appropriate selection among the numerous ra-
diomic features extracted from images [4] [5].
Deep Learning (DL) has shown promising results in au-
tomatically and directly detecting valuable features from
medical imaging [6], boosting the progress of computer
vision in the medical field [7] [8], and demonstrating su-
perior performance in comparison to hand-crafted image
features [9].
In this paper, a 3D CNN was designed to perform bi-
nary TR classification of patients with OC. Specifically,
what emerged from literature research was the absence
of robust radiological indexes to select patients for total
surgical resection. Hence, our primary contribution was
the implementation of a non-invasive and preoperative
DL model to assess whether an upfront patient could be a
suitable candidate for debulking surgery, when achieving
a total resection appears feasible, or the patient might
be recommended to undergo neoadjuvant chemotherapy
before proceeding to interval surgery, when a complete
resection seems unlikely. Therefore, the proposed model
might potentially assist radiologists and gynecologists to
assess TR and guide therapeutic strategies for patients
with OC.

2. Related Work
Artificial Intelligence (AI) has been demonstrated to en-
hance the effectiveness of tumor detection, classification,
and treatment monitoring in cancer imaging.The integra-
tion of radiomics and DL enabled the extraction of image
features and information, which might be imperceptible
to the human subjective evaluations, yielding to promis-
ing medical applications [10].
In the context of OC, several noteworthy studies have
been conducted.
In the domain of radiomics and ML domain, Lu et al.[11]
proposed an approach to predict two-year overall sur-
vival in 364 epithelial OC patients. In this study, 657
quantitative descriptors were extracted from preopera-
tive CT images, upon which the ML algorithm Radiomic
Prognostic Vector was developed. The latter accurately
identified the 5% of patients with a median overall sur-
vival of less than 2 years, demonstrating significant im-
provement over established prognostic methods. Crispin-
Ortuzar et al. [12] addressed the challenge of predicting
neoadjuvant chemotherapy (NACT) response of 72 high-
grade serous OC (HGSOC) affected patients, presenting
an ensemble ML model that, integrating baseline clinical,
blood-based, and radiomic biomarkers from primary and
metastatic lesions, predicted changes in total disease vol-
ume. Validation on internal and external cohorts showed
that the model significantly improved prediction accu-
racy compared to the clinical model, highlighting the
potential of radiomics in enhancing treatment response
predictions.
On the front of DL, Jan et al.[10] developed an AI ensem-
ble model combing radiomics, DL and clinical features
from CT images to distinguish between benign and ma-
lignant OC. With 149 patients and 185 tumors, the model
achieved 82% accuracy, 89% specificity, and 68% sensitiv-
ity. Compared to junior radiologists, the model exhibited
higher accuracy and specificity while maintaining com-
parable sensitivity. Wang et al.[7] proposed a DL method
to predict 3-year recurrence in 245 high-grade serous OC
patients from preoperative CT images. The DL network,
trained on 8917 CT images, extracts a 16-dimensional
DL feature used to predict the outcome probability. The
model achieved AUC values of 0.772 and 0.825 for high
and low recurrence risk, exhibiting stronger prognos-
tic value compared to clinical characteristics. Zheng et
al.[13] proposed a Vit-based DL model for predicting
overall survival in 734 high-grade serous OC patients
using preoperative CT images. Analyzing 734 patients,
the dataset was split into training (n = 550) and valida-
tion (n = 184) cohorts. The model demonstrated robust
performance with AUC = 0.822 in the training cohort of
550 patients and AUC = 0.823 in the validation cohort
of 184 women. Lei et al. [14] developed a DL model
for predicting platinum sensitivity in 93 patients with



epithelial OC using contrast-enhanced magnetic reso-
nance imaging (MRI). A pre-trained CNN were used and
1,024 features were automatically extracted from MRI
sequences to predict platinum sensitivity.The model per-
formed Area Under the Curve (AUC) of 0.97 and 0.98 in
training and validation cohorts.
Among the 20 research papers examining OC in [15], 11
primarily aimed at classifying between benign, malig-
nant, and/or borderline tumors. Two of these studies
focused on resistance to platinum-based chemotherapy,
with one extending its analysis to differentiate between
high and low risks of disease survival and platinum treat-
ment resistance [16], [17]. Additional studies targeted
various classification objectives, such as differentiating
HGSC from non-HGSC [18], classifying epithelial OC
into type I or II [19], and identifying OC as recurrent or
nonrecurrent [20]. The majority of these studies were
single-center initiatives, with a sample size ranging from
a minimum of 6 patients to a maximum of 758 patients.
However, to the best of our knowledge, this is the first
attempt to predict TR exploiting a DL-based model in
OC.

3. Methodology
3.0.1. Dataset

TAP CT images with different manufacturers (GE Med-
ical Systems, Siemens, Philips, Toshiba, Hitachi) of 650
patients with OC treated between 2016 and 2022 were
retrospectively collected at the European Institute of On-
cology (IEO) in Milan, Italy. In this study, the TAP CT
contrast enhanced portal-venous phase acquired at the
moment of diagnosis was considered. The CTs in our
dataset were meticulously manually annotated by 5 ex-
pert gynecologist for the purpose of classification. This
involved a thorough examination of elecronic medical
records, resulting in the assignment of TR = 0 and TR =
1 labels. TR=0 means complete tumor resection with no
residual tumor, and the TR=1 means no-complete tumor
resection with residual tumor. In our dataset, clinicians
annotated 446 cases with TR=0 and 204 cases with TR=1.
During the development of the model, all data were fully
anonymized to ensure the utmost privacy and data pro-
tection.
The inclusion and exclusion criteria for the study are
illustrated in Table 1.

3.0.2. Image pre-processing

We performed images preprocessing techniques in
Python 3.11. The following steps were performed:

1. Step #1: Segmentation and Region of Interest
(ROI) selection. Identifying the ROI most affected
by OC in CT images is a fundamental first step,

Table 1
Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Epithelial OC CT slice thickness > 5 mm
Advanced stage (III-IV) No consent to research

CT acquired before treatment No CT or data available
Age ≥ 18 years

and therefore requires segmentation in the
preprocessing phase. To address the limitations
associated with manual segmentation, including
potential bias, time-intensive procedures, and the
scarcity of annotated data, we implement auto-
matic segmentation using TotalSegmentator [21].
TotalSegmentator is a DL segmentation model
which automatically and robustly segments all
major anatomical structures in body CT images.
Each organ is associated with a label, which
allowed to set the upper and lower bounds of
the ROI as ischiopubic rami of the pelvis and left
and right hemidiaphragm cupola, respectively.
Afterwards, each image was cropped along the
z-axis according to the interval selected.
The selection of the ROI derived from the fact
that, compared to other tumors, OC metastasis
occurs most frequently in the omentum or
peritoneum, reporting almost 70% of patients
with OC presented peritoneal cavity metastasis
at the time of diagnosis.

2. Step #2: Additional standard preprocessing. Im-
ages pixels intensity was normalized between 0
and 1. Images were resized from the original di-
mension of 512 x 512 x n, with n varying among
patients, to 128 x 128 x 128, where 128 was the
average n.

The aforementioned preprocessing steps are illustrated
in Figure 2.

3.0.3. Model architecture

For the classification task of predicting the binary clinical
outcome TR from 3D TAP CT images, we designed a 3D
CNNmodel. The architecture of themodel comprises two
fundamental components: a CNN-based Features Extrac-
tor (FE) and a feed-forward fully connected classifier. The
FE is composed by a sequence of 7 convolutional blocks,
each consisting of the following layers: a convolutional
layer which increases the number of input channels, fol-
lowed by a Rectified Linear Unit (ReLU) activation layer,
a 3D batch normalization layer, another convolutional
layer, which preserves the number of input feature maps,
and a max-pooling layer which halves the spatial dimen-



Figure 2: Preprocessing steps of TAP CT of patients with OC.

sions of the input. The FE takes as input preprocessed 3D
TAP CT images with spatial dimensions of 128 x 128 x 128
and number of channels of 1, and returns a final vector of
512 extracted features. The feature vector is the input of
the classifier, designed as a sequential model with linear
layers interleaved with ReLU activation functions and
Dropout layers, each having a dropout probability of 0.3.
The overall architecture is shown in Figure 3.
The model combines the 3D CNN’s ability to extract
useful features from input 3D TAP CT images with the
classifier’s power to discriminate to predict the correct
class.
We designed and trained our model from scratch, for the
binary target task of TR classification in patients with
OC.

4. Experiment description
We split our dataset into a training and validation set,
with respectively 457 and 153 patients, and we evaluate
our results on an external cohort of 40 patients.
We configured a batch size 𝐵 = 8, employing Binary
Cross Entropy (BCE) as a loss function, formulated as:

BCE( ̂𝑦 , 𝑦) = − 1
𝐵

𝐵
∑
𝑖=1

[𝑦𝑖 ⋅ log( ̂𝑦𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − ̂𝑦𝑖)]

where 𝑦 is the model output and ̂𝑦 is the target variable.
The learning rate was set to be 0.0001, with a 0.1 multi-
plication every 30 epochs. Optimization was performed
using the Adam algorithm, and the maximum training
epoch was set to 200. The entire training procedure was
executed on a single NVIDIA A100 GPU with 40GB of
memory.
In this study, we employed a 5-fold cross-validation
method to assess the performance of different model
on different dataset splits based on the accuracy on the

validation sets. We then proceeded to retrain this model
using the best hyperparameters as found by the cross-
validation. After retraining, we evaluated its perfor-
mance on a separate test set to confirm its effectiveness
and generalization capabilities.

5. Results and Discussion
In figure 4, we report the confusion matrix. We obtained
an accuracy value of 0.65 on a testing external cohort of 40
patients, where the class TR=0were 20 and the class TR=1
were 20. From the results, the model correctly predicted
the positive cases (class TR = 0) with an accuracy of 0.75
and the negative cases (class TR = 1) with an accuracy
of 0.55. The overall accuracy of 0.65 suggests moderate
general correctness, but indicate that the model had still
difficulty in correctly discriminate the classes.

6. Conclusions
In this paper, we delved into the power of DL models
for the classification of TR in patients with OC, utilizing
3D TAP CT scans. TR is a pivotal diagnostic factor in-
fluencing clinical treatment decisions, that would highly
improve the management of OC patients if accurately
predicted at diagnosis. Leveraging the capabilities of DL
in the medical domain, we extend its use to address this
challenge in OC. Our methodology involves employing
a 3D CCN model for binary TR classification, aiming to
aid clinical decision in OC care.
Previous studies have already involved and introduced
DL in the context OC, but to the best of our knowledge,
this is the first attempt to harness the potential of DL for
specifically predicting TR. Indeed, one of the noteworthy
challenges in this attempt is the absence of radiological
indexes to inform total surgical tumor resection decisions.
Our main contribution is to address this gap, introducing
a DL model as a non-invasive preoperative tool to facili-
tate clinical decision making.
In conclusion, it is important to recognize the limita-
tions of our study, notably the potential for enhanced
model generalization and performance by expanding the
patient cohort, and considering alternative neural net-
work architectures, such as Vision Transformer based
models. We should broaden the application of our DL
approach to predict other key diagnostic factors in OC,
such as platinum sensitivity, overall survival, and surgical
complications. Finally, the integration of explainability
techniques should be essential for interpreting the model
decisions, fostering trust, and promoting wider clinical
use.



Figure 3: The model architecture consists of two main components: a CNN-based Features Extractor (FE) and a feed-forward
fully connected classifier. The Features Extractor includes 7 convolutional blocks. Each convolutional block is composed
by a convolutional layer to increase the number of input channels, followed by ReLU activation, 3D batch normalization,
another convolutional layer which does not change the number of input feature maps, and max-pooling which halves the
spatial dimensions. The FE outputs a final 512-features vector. The classifier is a sequential model of linear layers with ReLU
activations and Dropout layers (dropout probability: 0.3) which process the feature vector and returns the final probability to
belong either to class TR=0 or to class TR=1.

Figure 4: Confusion matrix evaluating our model’s perfor-
mances on a testing external cohort of 40 patients. The model
correctly predicted the positive cases (class TR = 0) with an
accuracy of 0.75 and the negative cases (class TR = 1) with an
accuracy of 0.55. The model shows an overall accuracy of 0.65.
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