
Mechanical Systems and Signal Processing 222 (2025) 111762

A
0
(

T
m
r
C
D

A

C

K
M
R
S
T
P
E

1

e

o
c
s
a

p
t

t

h
R

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

otal harmonic distortion estimation in piezoelectric
icro-electro-mechanical-system loudspeakers via a FEM-assisted

educed-order-model
hiara Gazzola, Alberto Corigliano, Valentina Zega ∗

epartment of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy

R T I C L E I N F O

ommunicated by X. Jing

eywords:
EMS loudspeaker
educed Order Model (ROM)
ound Pressure Level (SPL)
otal Harmonic Distortion (THD)
iezoelectric material
quivalent circuit

A B S T R A C T

Piezoelectric micro-electro-mechanical-system (MEMS) loudspeakers are attracting growing
research interest in the last years due to the increasing interest towards miniaturization required
by new wireless audio devices. Finite Element Models (FEM) and Lumped Element Models
(LEM) able to accurately simulate their linear response have been recently proposed in the
literature. However, a nonlinear model suitable to predict the Total Harmonic Distortion (THD)
of these devices is to date still missing. In this work, we present a FEM-assisted lumped-
parameters equivalent circuit for THD estimation which accounts for geometric nonlinearities
and piezoelectric hysteresis. The loudspeaker nonlinear electro-mechanical domain is simulated
through a Reduced Order Model (ROM) which considers as basis function the pre-stressed
undamped actuated mode of the device computed via FEM, to account for loudspeaker
diaphragms of arbitrarily complex geometry. Parameters of the acoustical circuit are computed
through analytical formulas. The good matching between numerical predictions and experi-
mental results, carried out on a piezoelectric MEMS loudspeaker prototype for in-ear condition,
demonstrates the accuracy of the proposed tool.

. Introduction

Loudspeakers are multiphysics transducers able to convert an electrical signal to a corresponding sound pressure by typically
xploiting the mechanical deformation of a physical diaphragm.

The increased global demand for miniaturization of portable audio devices without impairing performances such as sound quality
r battery life, is making MEMS microspeakers an attracting research topic [1–4] thanks to their intrinsic small dimensions, on-
hip integrability and cost-efficiency in mass production. Traditional microspeakers based on electrodynamic or balanced armature
chemes offer instead limited incremental improvements towards the market requirements for modern devices to become smaller
nd lighter.

In the last years, several MEMS speakers have been proposed for free-field [5–8] and in-ear applications [9–13]. The most
romising solutions are relative to the latter configuration, being the deflections of the mechanical diaphragm required to reach a
arget Sound Pressure Level (SPL) order of magnitude smaller with respect to the free-field case.

Among the different possible actuating principles exploitable in MEMS speakers, the piezoelectric one has been recognized as
he most promising due to the relatively high driving force achievable at low actuation voltages [5,11–15].
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Fig. 1. (a) Schematic view of the reference piezoelectric MEMS loudspeaker, together with a close-up view of the folded springs (in blue) connecting the
trapezoidal plates hosting the PZT material (in green) with the central piston (in violet) (b) SEM image of the fabricated device.

Multiphysics Finite Element Models (FEM) have been recently proposed to accurately predict the linear response of piezoelectric
MEMS loudspeakers [16]. They usually result in high computational costs that cannot be afforded if real-time design optimization
must be performed. On the other side, Lumped Element Models (LEM) [17] rely on the representation of spatially distributed
physical systems through a set of lumped elements and are emerging as a powerful tool for a fast prediction of MEMS loudspeakers
responses [5,18,19]. LEM are suitable for MEMS loudspeakers modelling for a twofold reason. Firstly, the underlying hypothesis,
that the device’s length scale is much smaller than the wavelength of the governing physical phenomenon, is fully satisfied across
nearly the entire audible frequency range. Secondly, the mechanical diaphragm of MEMS loudspeakers is often designed to behave as
a single-degree-of-freedom oscillator [5,11,12,16,20–22]. Combined lumped parameter and reduced-order finite element modelling
have been also recently proposed to estimate sound radiation from multiple speakers [23].

In this work, we want to make a step further in terms of piezoelectric microspeakers modelling. Our goal is to predict not only
the linear response, but also the Total Harmonic Distortion (THD) of a typical piezoelectric MEMS speaker. The THD is the indicator
usually adopted to evaluate the linearity of a loudspeaker, being defined as the ratio between the sum of the effective values of
the sound pressure higher harmonic components and the effective value of the first harmonic. Several sources of nonlinearities
can cause distortion in a loudspeaker output pressure, coming both from the signal processing (e.g. amplifier saturation, transistor
nonlinearities) and the transduction. The latter is usually more relevant and can be ascribed to the speaker mechanical structure
(mechanical nonlinearities of the moving diaphragm) and to the nonlinearities of the transduction principle, like piezoelectric
hysteresis or magnetic saturation in electromagnetic drivers [24].

Predicting Total Harmonic Distortion (THD) is crucial for enhancing sound fidelity in piezoelectric microspeakers, especially
given the unavoidable nonlinear effects. However, a comprehensive nonlinear model for these devices is still lacking.

Different techniques, e.g. state space models, port-Hamiltonian systems, Hammerstein models and power series, have been indeed
proposed so far to model the nonlinearities of classical macroscale [24–35] and microscale [36–42] electrodynamic speakers, but
only very recently, nonlinear models able to predict the THD of MEMS speakers appeared in the literature for the first time. In
2022, for instance, Monsalve et al. [27] proposed a large-signal equivalent circuit to model the THD of asymmetric electrostatic
transducers and compared the results of the proposed lumped model with the numerical and experimental data published by [43].
To the Authors’ best knowledge, the first and only work related to the THD prediction of piezoelectric microspeakers appeared in
2021. In [44], it was proposed a state-space model able to account for the nonlinear mechanical stiffness, transduction coefficient
and capacitance of a cantilever-based PZT loudspeaker. The piezoelectric hysteresis was however not included in the model and
this lead to a quite significant underestimation of the THD [45].

In this work, we propose a FEM assisted nonlinear LEM accounting for geometric nonlinearities and piezoelectric hysteresis and
we demonstrate a good agreement between predictions and experimental results obtained on the device previously published in [9].

The paper is organized as follows: the reference piezoelectric microspeaker design exploited to validate the proposed procedure is
presented in Section 2, the electro-mechano-acoustic nonlinear model is detailed in Section 3, while numerical results are reported in
Section 4 and compared with experiments in Section 5. Finally, in Section 6, conclusions are drawn together with future perspectives.

2. Reference loudspeaker

The MEMS loudspeaker recently proposed in Gazzola et al. [9] is here employed as reference structure. A schematic view and a
Scanning Electron Microscope (SEM) image of the device are reported in Figs. 1(a) and 1(b), respectively. The moving mechanical
structure of the proposed device is composed by four trapezoidal actuators connected to a central squared piston through properly
sized folded elastic springs and it is anchored to the substrate through an external silicon frame. Ten μm-width air-gaps separate the
different mechanical components. The total footprint of the device, comprising the 350 μm wide external frame, is 4.5×4.5 mm2.
The first electro-mechanical vibration mode occurs at 10.9 kHz.
2
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Fig. 2. (a) General block diagram representing the different physical domains involved in the functioning of a loudspeaker. (b) Flowchart illustrating the
proposed procedure for the modelling of the nonlinear response of piezoelectric MEMS loudspeaker. The nonlinear electro-mechanical domain is reduced to a
one-degree-of-freedom system, solved in time domain. The time dependent loudspeaker velocity is decomposed in Fourier series retaining 𝑛 harmonic components.
The latter, upon multiplication by the speaker effective area, are used as coupling variables to the 𝑛 linear equivalent circuits representing the acoustic domain
for in-ear condition (the IEC 60318-4 ear simulator is reported in violet). The THD is then computed from the 𝑛 output pressures at the ear simulator microphone,
obtained at the poles of the capacitor 𝐶5.

3. Nonlinear model

The general block diagram representing the different physical domains involved in the functioning of a piezoelectric loudspeaker
is reported in Fig. 2(a). The input electrical signal 𝑉𝑖𝑛 is transformed into the output sound pressure 𝑝𝑜𝑢𝑡 through two energy
transformations: from electrical domain to mechanical domain and from mechanical domain to acoustical domain. In particular, the
input electrical signal 𝑉𝑖𝑛 is converted into a mechanical force 𝐹𝑖𝑛 through the selected transduction mechanism, i.e. piezoelectricity,
and the force 𝐹𝑖𝑛 is converted into the velocity 𝑣 of the mechanical component via the mechanical impedance, representing the
frequency dependent response of the mechanical oscillator. Mechanical vibrations finally induce a perturbation of the surrounding
air with a consequent generation of sound pressure.

The fundamental hypotheses assumed in the proposed model is that of one-way coupling between the electrical domain and the
mechanical domain and between the mechanical domain and the acoustic domain, i.e. the electrical current induced by the direct
piezoelectric effect (𝑖𝑚 in Fig. 2(a)) and the acoustic load (𝐹𝑎 in Fig. 2(a)) are neglected. The first assumption have been proved to
be accurate for thin-film piezoelectric actuators [19,46–49] for which the one-way piezoelectric constitutive law can be employed.
The effect of the acoustic load on the loudspeaker velocity will be discussed in Section 4.

Fig. 2(b) describes the main steps of the THD model here proposed. The basic idea is that the electro-mechanical domain, which
contains the main sources of nonlinearities, is solved in time domain, while the acoustic domain is considered as linear and works
3
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in the frequency domain. More in details, the electro-mechanical domain is simulated through a Reduced Order Model (ROM)
which considers as basis function the pre-stressed undamped actuated mode of the device, solved in time in terms of loudspeaker
displacement and velocity in the whole audible range. At each forcing frequency, the loudspeaker velocity is decomposed in Fourier
series retaining 𝑛 harmonic components that, upon multiplication by the speaker effective area, are used as coupling variables to
the 𝑛 linear equivalent circuits representing the acoustic domain for in-ear condition (the IEC 60318-4 ear simulator is reported in
violet in Fig. 2(b)). The THD is finally computed from the 𝑛 output pressures evaluated at the ear simulator microphone.

3.1. Electro-mechanical modelling

In this subsection, the equations governing the electro-mechanical problem are reported considering their strong and weak form
fashion. How the dimensionality of the nonlinear model is reduced to a one-degree-of-freedom system is then explained. The resulting
ROM is defined as FEM-assisted as its coefficients are numerically computed via FEM, to account for loudspeaker diaphragm of
arbitrarily complex geometries.

3.1.1. Piezoelectric modelling
Ferroelectric materials, and in particular Lead Zirconate Titanate (PZT), thin films are largely employed in MEMS devices thanks

to their high piezoelectric coefficients that allow to achieve relatively high actuation forces with a reduced footprint. The main
feature of ferroelectric materials is the existence of a spontaneous polarization and the capability to re-orient it under an applied
external electric field. Such property results in a polarization versus electric field hysteresis loop which is usually unwanted in
MEMS devices because of its nonlinear nature. To limit such phenomenon, the piezoelectric actuation is often performed by adding
an offset equal to half the input dynamics, thus avoiding the change of sign of the electric field. Despite such precaution, it has been
demonstrated that ferroelectric materials hysteretical behaviour represents one of the major source of total harmonic distortion in
PZT-actuated MEMS loudspeakers [9,44] and must be then carefully modelled.

A lot of research work has been already done in the literature to simulate the hysteretical behaviour of ferroelectric materials
by exploiting different approaches and considering different scales of the problem [50–58]. In this contribution, the P2-formulation
presented by Frangi et al. [46,47] for the nonlinear modelling of micro-mirrors actuated by piezoelectric thin-films is considered.
It relies on a direct experimental measurement of the polarization field evolution and to the estimation of its effects on stresses and
equilibrium resorting to some basic principles of the Landau–Devonshire theory of ferroelectric materials [54,59–61]. The choice to
resort to a direct measurement of the polarization field is dictated by the wide variability of the hysteresis cycles of multi-grain sol–
gel deposited thin films that can be hardly quantified and simulated [62], being strongly dependent on defects and small variations
in the production technology. It is worth noting that the above formulation implicitly assumes an average uniform polarization of
the thin film.

The polarization field 𝒑 induces inelastic strains 𝑬𝒑 such that the De Saint Venant–Kirchhoff constitutive law for large
transformations and small strains reads:

𝑺 =  ∶ (𝑬 − 𝑬𝑷 ) + 𝑺𝟎 =  ∶ 𝑬[𝒖] − 𝑺𝒑[𝒑] + 𝑺𝟎, (1)

where 𝑺 is the second Piola–Kirchhoff stress tensor, 𝑺𝟎 are pre-stresses induced by the fabrication process, 𝑬 = 𝑠𝑦𝑚(∇𝒖)+ 1
2
∇𝑇 𝒖 ⋅∇𝒖

s the Green Lagrange strain tensor, being u the displacement field and ∇ the gradient operator.  is the fourth order elasticity
ensor and 𝑺𝒑 are the inelastic stresses induced by the polarization field 𝒑.

According to the Landau–Devonshire theory of ferroelectric materials, inelastic strains induced by the polarization field can be
xpressed as:

𝑬𝒑 =  ∶ (𝒑⊗ 𝒑), (2)

eing  the fourth-order electrostrictive tensor.
The dynamic response of the system is defined by the conservation of linear momentum expressed with respect to the reference

onfiguration 𝛺0:

𝜌0𝒖̈ − ∇ ⋅ 𝑷 = 𝟎, 𝛺0 × 𝑡 ∈ (𝑡0, 𝑇𝑒] (3)

eing the right hand side null since body forces are here neglected. 𝜌0 is the material density, 𝑷 is the first Piola–Kirchhoff stress
ensor and ̈(⋅) is the second partial derivative with respect to time. All quantities are defined over the time span from 𝑡0 to 𝑇𝑒.
oundary and initial conditions for Eq. (3) are:

𝑷 ⋅ 𝒏 = 𝟎 on 𝜕𝛺𝑁
0 × 𝑡 ∈ (𝑡0, 𝑇𝑒] (4)

𝒖 = 𝟎 on 𝜕𝛺𝐷
0 × 𝑡 ∈ (𝑡0, 𝑇𝑒] (5)

𝒖 = 𝒖𝟎 in 𝛺0 × 𝑡 = 𝑡0 (6)

𝒖̇ = 𝒖̇𝟎 in 𝛺0 × 𝑡 = 𝑡0. (7)

y adopting a Voigt notation which orders tensor components in an array according to the sequence of indices (11, 22, 33, 23, 31,
2), and under the assumption of cubic symmetry [46,47] which reduces 𝑄𝑖𝑗 to 𝑄11, 𝑄12 and 𝑄44, 𝑬𝒑 can be expressed as:

𝑝 2 2 2
4

𝐸1 = 𝑄11𝑝1 +𝑄12(𝑝2 + 𝑝3) (8)
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2 = 𝑄11𝑝

2
2 +𝑄12(𝑝21 + 𝑝23)

𝐸𝑝
3 = 𝑄11𝑝

2
3 +𝑄12(𝑝21 + 𝑝22)

𝐸𝑝
4 = 𝑄44𝑝2𝑝3

𝐸𝑝
5 = 𝑄44𝑝3𝑝1

𝐸𝑝
6 = 𝑄44𝑝1𝑝2.

oreover, the electric field generated upon the application of a voltage difference 𝑉 across the thin piezoelectric film thickness ℎ
riented along direction 3, can be expressed as 𝑬 = 𝐸 𝒆𝟑 = −(𝑉 ∕ℎ) 𝒆𝟑 and a similar expression holds for the film polarization, i.e.
= 𝑝 𝒆𝟑. As a consequence, the inelastic strain components of Eq. (8), reduce to:

𝐸𝑝
1 = 𝐸𝑝

2 = 𝑄12𝑝
2 (9)

𝐸𝑝
3 = 𝑄11𝑝

2

𝐸𝑝
4 = 𝐸𝑝

5 = 𝐸𝑝
6 = 0.

Under the hypothesis of transversal isotropy, the stress components of the piezoelectric thin film read:

𝑆𝑝
1 = 𝑆𝑝

2 = (𝐴11𝑄12 + 𝐴12𝑄12 + 𝐴13𝑄11)𝑝2 = 𝛼1𝑝
2 (10)

𝑆𝑝
3 = (𝐴33𝑄11 + 2𝐴13𝑄12)𝑝2 = 𝛼3𝑝

2.

3.1.2. Weak formulation of motion
By exploiting the virtual work principle in the material form, the restricted weak formulation of the equations of motion can be

obtained:

∫𝛺0

𝜌0𝒖̈ ⋅ 𝒖̃ 𝑑𝛺0 + ∫𝛺0

𝑷 ∶ ∇𝑇 𝒖̃ 𝑑𝛺0 = 0 ∀𝒖̃ ∈ 𝐶𝑢(0), (11)

where 𝒖̃ is a suitable test function belonging to the space 𝐶𝑢(0) of functions that vanish on the boundary where Dirichlet boundary
conditions are prescribed. By inserting the constitutive law in Eq. (11), it is obtained:

∫𝛺0

𝜌0𝒖̈ ⋅ 𝒖̃ 𝑑𝛺0 + ∫𝛺0

𝑬 ∶  ∶ 𝛿𝑬 𝑑𝛺0 = ∫𝛺𝑝

(𝑺𝑝 − 𝑺𝟎) ∶ 𝛿𝑬 𝑑𝛺0 ∀𝒖̃ ∈ 𝐶𝑢(0), (12)

where 𝛺𝑝 is the piezoelectric domain and 𝛿𝑬 = 𝑠𝑦𝑚(∇𝒖̃) + 𝑠𝑦𝑚(∇𝑇 𝒖 ⋅ ∇𝒖̃). The term ∫𝛺0
𝑬 ∶  ∶ 𝛿𝑬 𝑑𝛺0 describes geometric

nonlinearities in terms of the unknown displacement field. By expanding Eq. (12), we obtain:

∫𝛺0

𝜌0𝒖̈ ⋅ 𝒖̃ 𝑑𝛺0 + ∫𝛺0

𝑠𝑦𝑚(∇𝒖) ∶  ∶ 𝑠𝑦𝑚(∇𝒖̃) 𝑑𝛺0+

∫𝛺0

𝑠𝑦𝑚(∇𝒖) ∶  ∶ 𝑠𝑦𝑚(∇𝑇 𝒖̃ ⋅ ∇𝒖) 𝑑𝛺0+

1
2 ∫𝛺0

𝑠𝑦𝑚(∇𝒖̃) ∶  ∶ 𝑠𝑦𝑚(∇𝑇 𝒖 ⋅ ∇𝒖) 𝑑𝛺0+

1
2 ∫𝛺0

𝑠𝑦𝑚(∇𝑇 𝒖 ⋅ ∇𝒖) ∶  ∶ 𝑠𝑦𝑚(∇𝑇 𝒖̃ ⋅ ∇𝒖) 𝑑𝛺0 =

∫𝛺𝑝

(𝑺𝑝 − 𝑺0) ∶ 𝑠𝑦𝑚(∇𝒖̃) 𝑑𝛺𝑝 + ∫𝛺𝑝

(𝑺𝑝 − 𝑺0) ∶ 𝑠𝑦𝑚(∇𝑇 𝒖 ⋅ ∇𝒖̃) 𝑑𝛺𝑝. (13)

Considering the left-hand-side, the first term represents the virtual work of inertia forces. The right-hand-side represents
the virtual work of external forces due to the piezoelectric actuation. Upon addition of Rayleigh damping proportional to the
mass matrix, the numerical solution of Eq. (13) can be obtained through a finite element space discretization with nodal shape
functions [47] that leads to the time-dependent differential equations:

𝑴𝑼̈ +
𝜔0
𝑄

𝑴𝑼̇ + 𝑭 (𝑼 ) = 𝑭 𝒊𝒏(𝑡) +𝑲 𝒊𝒏(𝑡)𝑼 , (14)

where 𝑴 represents the mass matrix, 𝑄 the quality factor, 𝜔0 the natural frequency, 𝑭 (𝑼 ) the nonlinear elastic force, 𝑭 𝒊𝒏 the forcing
term and 𝑲 𝒊𝒏 the stiffness matrix induced by the time-dependent piezoelectric force and fabrication pre-stresses. It is worth noting
hat the chosen unipolar polarization histories generate polarization oscillations around a nonzero average value which has the same
ffect as a large pre-stress on the structure.

If T-periodic piezoelectric excitations are considered, it is possible to write:

𝑭 𝒊𝒏(𝑡) = 𝑭̄ 𝒊𝒏 + 𝑭 𝒑(𝑡) (15a)

𝑲 𝒊𝒏(𝑡) = 𝑲̄ 𝒊𝒏 +𝑲𝒑(𝑡), (15b)

where:

𝑭̄ 𝒊𝒏 = 1 𝑇
𝑭 𝒊𝒏(𝑡) 𝑑𝑡, (16a)
5

𝑇 ∫0
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0
𝑲 𝒊𝒏(𝑡) 𝑑𝑡. (16b)

Eq. (14) then becomes:

𝑴𝑼̈ +
𝜔0
𝑄

𝑴𝑼̇ + (𝑲 − 𝑲̄ 𝒊𝒏)𝑼 + 𝑭𝑵𝑳(𝑼 ) − 𝑭̄ 𝒊𝒏 = 𝑭 𝑝, (17)

where the time dependent piezoelectric stiffness 𝑲𝒑(𝑡) has been neglected according to what demonstrated in [47] and 𝑭 (𝑼 ) =
𝑲𝑼 + 𝑭𝑵𝑳(𝑼 ) with 𝑲 linear mechanical stiffness matrix.

The unknown displacement field 𝑼 can then be decomposed in:

𝑼 (𝑡) = 𝑼 𝟎 + 𝑼̃ (𝑡) (18)

being 𝑼 𝟎 the initial static configuration and 𝑼̃ (𝑡) its time dependent evolution. According to Eq. (17), the static problem that needs
to be solved for 𝑼 𝟎 reads:

(𝑲 − 𝑲̄ 𝒊𝒏)𝑼 𝟎 + 𝑭𝑵𝑳(𝑼 𝟎) − 𝑭̄ 𝒊𝒏 = 𝟎. (19)

while the dynamic equations governing the nonlinear vibrations around the static position are:

𝑴 ̈̃𝑼 +
𝜔0
𝑄

𝑴 ̇̃𝑼 + 𝑭 (𝑼̃ ) = 𝑭 𝑝. (20)

.1.3. Reduced order model
The full-order nonlinear model derived in the previous section is extremely computationally expensive and cannot be solved if

esign optimization must be performed. It is then here manipulated in order to make it exploitable for the LEM approach we want
o employ in the following to estimate in a fast and effective way the MEMS loudspeaker THD.

The main idea is to derive a one-degree-of-freedom model able to reproduce the nonlinear electro-mechanical dynamic response
f the MEMS loudspeaker. To do so, the pre-stressed undamped actuated mode of the structure, adimensionalized with unit maximum
isplacement, is chosen as test function 𝜱. Physical displacement, velocity and acceleration then read:

𝒖̃(𝒙) = 𝜱(𝒙) (21)

𝒖(𝒙, 𝑡) = 𝜱(𝒙)𝑞(𝑡) (22)

𝒖̇(𝒙, 𝑡) = 𝜱(𝒙)𝑞̇(𝑡) (23)

𝒖̈(𝒙, 𝒕) = 𝜱(𝒙)𝑞(𝑡), (24)

here 𝑞(𝑡) represents the modal coordinate that we will consider in the following as the system one degree of freedom. Note that,
iven the chosen adimensionalization of the eigenvector, it coincides with the maximum out-of-plane displacement of the MEMS
oudspeaker diaphragm 𝑤.

According to this assumption, the inertia term of Eq. (20) can be rewritten as:

𝑀𝑚𝑞(𝑡) = ∫𝛺
𝜱𝑇 𝜌𝜱 𝑑𝛺 𝑞(𝑡) (25)

rom which the modal mass 𝑀𝑚 can be identified, while the damping term of the reduced order model reads 𝑀𝑚
𝜔0
𝑄 𝑞̇.

The piezoelectric force 𝑭 𝑝 can be also written in an explicit way considering the only non-zero components of inelastic stresses
see Eq. (10)) as:

𝑟𝑃 𝑝
2(𝑉 (𝑡)) = ∫𝛺𝑝

[𝛼1(𝜀1[𝜱] + 𝜀2[𝜱]) + 𝛼3𝜀3[𝜱]] 𝑑𝛺𝑝 𝑝
2(𝑉 (𝑡)), (26)

where 𝜀𝑖 =
𝜕𝑢𝑖
𝜕𝑥𝑖

represent the standard components of the small strain tensor and 𝑟𝑃 the participating piezoelectric coefficient.
To numerically compute the loudspeaker pre-stressed mechanical mode, a modal analysis that considers as reference configu-

ration the pre-deflected shape of the speaker induced by fabrication process pre-stresses and by the applied Direct Current (DC)
voltage, is performed in COMSOL Multiphysics® v6.1, as illustrated in Fig. 3. In practical terms, the quantities extracted from the
numerical eigenfrequency study in COMSOL Multiphysics® are the first eigenvector 𝜱, the corresponding eigenvalue 𝜔2

0, the strain
components 𝜀1(𝜱), 𝜀2(𝜱) and 𝜀3(𝜱), and the integral quantities 𝑀𝑚 and 𝑟𝑃 .

The implicit static condensation technique [63,64], recently tailored for MEMS applications [65,66], is finally applied to reduce
the dimensions of the nonlinear elastic term 𝑭 (𝑼 ). The above mentioned technique relies on the evaluation of the nonlinear elastic
force by statically forcing the structure with body forces 𝐹 proportional to 𝜱: 𝐹 = 𝜌0𝛽𝜱(𝒙).

A series of numerical static non-linear analyses are run spanning the 𝛽 space and computing the corresponding modal coordinate,
thus identifying the 𝑞(𝛽) relation that can be easily numerically inverted through fitting procedures (Fig. 3):

2 3
6

𝛽(𝑞) = 𝑘1𝑞 + 𝑘2𝑞 + 𝑘3𝑞 . (27)
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Fig. 3. Flowchart of the ROM parameters extraction from a pre-stressed modal analysis and a nonlinear static analysis computed via FEM in COMSOL
Multiphysics® v6.1. The ROM model is then solved in terms of loudspeaker displacement and velocity in MATLAB R2022a, through the MATCONT package [67].

The corresponding one-degree-of-freedom equation describing the nonlinear vibrations of the loudspeaker around the static
configuration 𝑼 𝟎 can be written as:

𝑞(𝑡) +
𝜔0
𝑄

𝑞̇(𝑡) + 𝛽(𝑞(𝑡)) =
𝑟𝑃 𝑝2(𝑡)
𝑀𝑚

(28)

and solved in terms of loudspeaker displacement and velocity through periodic orbits numerical continuation tools, like e.g. the
MATCONT package [67].

3.2. Coupling with acoustics

The acoustic domain can be modelled through a linear equivalent circuit. In this work, the circuit reported in Fig. 2(b) for the
case of radiation in an IEC 60318-4 ear simulator is considered. The interested reader can refer to [9] for the parameters values
and its full derivation.

We here focus on the coupling between such linear model, which works in the frequency domain, with the nonlinear
electro-mechanical one derived in the previous section.

Firstly, the nonlinear time-dependent velocity 𝑞̇ = 𝑣 is decomposed in Fourier series retaining 𝑛 harmonic components:

𝑞̇(𝑡) = 𝑣(𝑡) =
𝑛
∑

𝑖=1
𝑣𝑖(𝑓 )𝑒𝑗𝑖𝜔𝑡, (29a)

𝑣𝑖(𝑓 ) =
2
𝑇 ∫

𝑇

0
𝑣(𝑡)𝑒−𝑗𝑖𝜔𝑡. (29b)

Secondly, each velocity harmonic component 𝑣𝑖, upon multiplication by the speaker effective area, is imposed as current source to
each of the 𝑛 equivalent circuits working at circular frequencies 𝜔𝑖 = 𝑖𝜔, 𝑖 = 1,… , 𝑛.

The equivalent acoustic impedance 𝑍𝑎 can be derived from the reported equivalent network:

𝑍𝑎 =
1

1
𝑅𝑠

+ 1
1

𝑗𝜔𝑖𝐶𝑏𝑐
+𝑍𝑒𝑠

, (30)

where 𝑍𝑒𝑠 represents the ear simulator input impedance, which can be expressed as:

𝑍𝑒𝑠 = 𝑗𝜔𝑖𝐿1 +
1

1
𝑍1

+ 1
𝑍2

+ 1

𝑗𝜔𝑖𝐿3 +
1

1 + 1 + 1

, (31)
7
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Fig. 4. (a) Nonlinear load multiplier 𝛽 versus maximum out-of-plane displacement 𝑤 numerically computed for the case without pre-stresses induced by the
fabrication process and DC voltage (light blue line) and including them (orange line). The reference linear cases (dotted lines) are also reported for the sake
of clarity. The static initial deformed shape (𝛽 = 0) is reported in the inset. (b) Frequency response function in terms of diaphragm displacement numerically
computed under a linear piezoelectric forcing term and for a Q = 10 (see Appendix) when pre-stresses are considered (yellow solid line) and neglected (light
blue solid line).

with 𝑍1 = 𝑅1 +
1

𝑗𝜔𝑖𝐶1
, 𝑍2 = 𝑗𝜔𝑖𝐿2 +

1
𝑗𝜔𝑖𝐶2

+𝑅2, 𝑍3 = 𝑅3 +
1

𝑗𝜔𝑖𝐶3
, 𝑍4 = 𝑗𝜔𝑖𝐿4 +

1
𝑗𝜔𝑖𝐶4

+𝑅4 and 𝑍5 = 𝑗𝜔𝑖𝐿5 +
1

𝑗𝜔𝑖𝐶5
. The transfer

function 𝑇𝑎 = 𝑝𝑜𝑢𝑡,𝑖∕𝑝𝑖𝑛,𝑖 can be written as:

𝑇𝑎 =
𝑍𝑒𝑠

1
𝑗𝜔𝑖𝐶𝑏𝑐

+𝑍𝑒𝑠

𝑇𝑒𝑠, (32)

where 𝑇𝑒𝑠 is the ear simulator transfer function which reads:

𝑇𝑒𝑠 =
𝑍𝑒𝑠 − 𝑗𝜔𝑖𝐿1

𝑍𝑒𝑠

1
1
𝑍3

+ 1
𝑍4

+ 1
𝑍5

𝑗𝜔𝑖𝐿3 +
1

1
𝑍3

+ 1
𝑍4

+ 1
𝑍5

1
𝑗𝜔𝑖𝐶5𝑍5

. (33)

The output pressures 𝑝𝑜𝑢𝑡,𝑖 is then retrieved from the velocity 𝑣𝑖 and the transfer function 𝑇𝑎 as:

𝑝 = 𝑇 𝑝 = 𝑇 𝑄 𝑍 = 𝑇 𝑆 𝑣 𝑍 , (34)
8
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and the THD is finally computed through:

𝑇𝐻𝐷% =

√

∑𝑛
𝑖=2 𝑝

2
𝑜𝑢𝑡,𝑖

𝑝𝑜𝑢𝑡,1
⋅ 100. (35)

4. Numerical results

The proposed nonlinear reduced model is here employed to compute the response of the reference MEMS loudspeaker presented
in Section 2.

Firstly, the load multiplier 𝛽 is computed according to the implicit static condensation method explained in Section 3.1.3 for
different values of the diaphragm out-of-plane maximum displacement 𝑤 by running a set of nonlinear static analyses in COMSOL
Multiphysics® v6.1. In Fig. 4(a), the numerically computed 𝛽(𝑤) curve is reported for both the linear (L in Fig. 4(a)) and nonlinear
(NL in Fig. 4(a)) cases in presence and in absence of fabrication induced pre-stresses (PS in Fig. 4(a)) and Direct Current (DC)
voltage pre-deflection (DC in Fig. 4(a)). FEM results are reported in dots, while cubic interpolation curves are reported in continuous
lines. The identified mechanical stiffness nonlinear coefficients (Eq. (27)) are reported in Appendix. As expected, in presence of a
diaphragm pre-deflection, the 𝛽 = 0 condition corresponds to a non-zero displacement of the MEMS loudspeaker (see inset of
Fig. 4(a)).

To better underline the effect of geometric nonlinearities on the MEMS loudspeaker dynamic response, we report in Fig. 4(b),
the frequency response function computed by integrating Eq. (28) under the four above mentioned conditions, i.e. L, L DC+PS, NL
and NL DC+PS and for Q = 10 (see Appendix). The latter has been tuned in [19] to match the experimental SPL peak amplitude at
the speaker resonance frequency.

Note that the piezoelectric forcing term is here considered according to the piezoelectric linear formulation [19] in order to
decouple the nonlinear sources and then simplify the physical interpretation of the results. From Fig. 4(b) it is clear that geometric
nonlinearities are hardening in nature and that pre-stresses and DC pre-deflections cause a shift of the natural frequency towards
higher values. Moreover, it is worth noting that a 3𝑓 ≅ 𝑓1 peak appears as a consequence of the cubic geometric nonlinear term and
a 2𝑓 ≅ 𝑓1 peak arises because of the symmetry breakdown caused by the deformed initial configuration, i.e. quadratic nonlinearities.

The P2-formulation, described in Section 3.1.1, is then considered in the definition of the piezoelectric forcing term in order to
provide a complete electro-mechanical MEMS loudspeaker frequency response prediction. In particular, to derive the piezoelectric
terms of Eq. (28), the experimental unipolar hysteresis loop (Fig. 5(a) left) measured at 30 V on the reference speaker fabricated by
STMicroelectronics is experimentally measured with the set-up described in [68]. The corresponding periodic polarization history,
decomposed in Fourier series retaining five harmonics, is also derived and reported on the right side of Fig. 5(a) for the sake of
clarity. In Fig. 5(b), the frequency response function numerically computed in terms of diaphragm displacement for Q = 10 (see
Appendix) through Eq. (28), is reported under three different conditions: (i) linear piezoelectric formulation and no geometric
nonlinearities (dotted orange line), (ii) P2-formulation and no geometric nonlinearities (dotted violet line) and (iii) P2-formulation
and geometric nonlinearities (solid violet line). As expected from the nonlinear content of the polarization curves reported in
Fig. 5(a), subharmonics peaks appear at 5𝑓 ≅ 𝑓1, 4𝑓 ≅ 𝑓1, 3𝑓 ≅ 𝑓1 and 2𝑓 ≅ 𝑓1.

To complete the numerical prediction of the MEMS loudspeaker nonlinear response, we here introduce the coupling with the
acoustic domain. Note that, the above mentioned harmonics coming from the electro-mechanical nonlinear model, i.e. polarization
curve that introduces a five-harmonics forcing term and geometric nonlinearities which introduce quadratic and cubic terms in the
mechanical stiffness of the one-degree-of-freedom model, are fully transferred to the linear acoustic domain. Peaks at 𝑓1∕2, 𝑓1∕3,
𝑓1∕4 and 𝑓1∕5 are then expected in the MEMS loudspeaker acoustic response.

In Fig. 6 the frequency response function computed in terms of diaphragm out-of-plane displacement is reported for the device
under study coupled with the coupler and a 1 cm3 back chamber. To support the hypothesis done in Section 3.2, i.e. negligible
acoustic load effect on the speaker dynamic response, we report in Fig. 6 the two curves computed by considering and neglecting
such contribution. The acoustic load adds an additional damping at resonance and a small shift in terms of loudspeaker resonance
frequency. However, for the device under study, such discrepancies can be considered negligible and the chosen hypothesis fully
satisfied as also demonstrated in Fig. 6(b) where the SPL curve is reported by considering and not considering the acoustic load.

The computed THD is finally reported in Fig. 7 under different hypotheses: (i) geometric nonlinearities and linear piezoelectric
formulation, (ii) P2-formulation for piezoelectricity and no geometric nonlinearities and (iii) P2-formulation for piezoelectricity and
geometric nonlinearities. From Fig. 7, it is clear that the piezoelectric hysteretical behaviour is the major source of THD.

5. Experimental results

To validate the proposed nonlinear reduced order model, acoustic tests are performed for in-ear conditions on the reference
MEMS loudspeaker fabricated by STMicroelectronics.

In particular, as shown in Fig. 8(a), the device is mounted on a custom Printed Circuit Board (PCB) and coupled with an ABS
(Acrylonitrile Butadiene Styrene) thermoplastic package made by a 1 cm3 back chamber and a 1 mm high front adapter properly
shaped to connect the speaker with the ear simulator. The employed experimental set-up, schematized in Fig. 8(b), includes the

1 ′′. DC and AC
9

anechoic chamber G.R.A.S. AL0030-S2, the ear simulator G.R.A.S. RA0402 and the microphone G.R.A.S. 46 BD 4
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Fig. 5. (a) Unipolar experimental hysteresis loop at 30 V (left) and corresponding periodic polarization history, decomposed in Fourier series retaining five
harmonics (right) (b) Displacement FRF considering the nonlinear piezoelectric forcing term only (dotted violet line) and the nonlinear piezoelectric forcing term
plus geometric nonlinearities (solid violet line). The reference FRF considering the standard linear piezoelectricity is reported with dotted orange line for the
sake of clarity.

signals needed for the diaphragm actuation and conversion of the microphone signal into SPL data, are finally generated through
the Audio Analyzer (APx525).

Experimental SPL and THD curves measured on six nominally identical prototypes are reported in Fig. 9 for an AC voltage of
30 Vpp and a bias voltage of 12.5 VDC. The mean experimental value is reported with a red solid line, while the standard deviation
is indicated by the pink shaded area. The acquisition is stopped at 10 kHz to avoid the break-up of the prototypes.

Note that, as anticipated in Section 3.1.1, to limit piezoelectric domains re-orientation and hence hysteresis, AC voltage amplitude
should be equal to twice the DC voltage during the device actuation, thus avoiding electric field sign changes. Here, the AC and DC
voltages amplitudes do not exactly satisfy such requirement due to experimental set-up limitations. However, despite the proposed
working condition is not optimal for the maximization of the loudspeaker performances in terms of THD, it does not compromise
the main goal of this work which is to prove the predictability of the proposed nonlinear reduced order model.

The experimental SPL results of Fig. 9(a) have been already analysed and compared with the linear model in [19]. The good
agreement between the two curve is here confirmed, as expected. In Fig. 9(b), experimental THD curves are instead compared
with numerical predictions obtained through the proposed nonlinear reduced order model for the first time. The subharmonics
peaks position are correctly captured along with the level in the quasi-static region, thus demonstrating a very good predictability
of the proposed model. The discrepancy in the THD level at subharmonics frequencies can be partially justified by the employed
10
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Fig. 6. (a) Linear FRF by considering the acoustic load (solid blue line) due to the ear simulator and a back chamber of 1 cm3 and by neglecting it (dotted
orange line). The corresponding SPL is reported in subfigure (b).

Fig. 7. THD contributions of geometric nonlinearities (solid orange line), nonlinear piezoelectric force (dashed violet line) and considering both the nonlinear
effects (solid violet line).
11
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Fig. 8. (a) Device under test coupled with the ear simulator. A close-up view of the fabricated loudspeaker mounted on a custom PCB and coupled with the
package for in-ear acoustic tests is also reported. (b) Acoustic measurement set-up composed of the ear simulator G.R.A.S. RA0402 and the microphone G.R.A.S.
46 BD 1∕4′′. The Audio Analyzer (APx525) allows to generate DC and AC signals for the MEMS actuation and to convert the microphone signal into SPL data.

hypothesis on the one-way electro-mechanics vs. acoustics coupling, which results in neglecting the damping contribution coming
from the acoustic load (see Fig. 6).

6. Conclusions

A nonlinear model able to predict the THD of a piezoelectric MEMS loudspeaker has been presented and experimentally validated.
To the Authors best knowledge, it is the first model proposed in the literature including both the effect of geometric nonlinearities
and piezoelectric hysteresis able to reproduce the THD response of a MEMS piezoelectric loudspeaker.

Despite being presented and validated for in-ear conditions, it can be straightforwardly applied for the THD prediction for
free-field conditions, by simply replacing the acoustic equivalent circuit with the one representing the radiation in an unbounded
domain [69]. Moreover, the versatility of the proposed approach lies in the FEM assisted extraction of the electro-mechanical
parameters that allows to accurately model loudspeaker diaphragms of arbitrarily complex geometry.

Future work will be addressed to the implementation of the two-way coupling between the electro-mechanical and the acoustic
domains. The acoustic load coming for example from small back chambers can indeed have a definitively not negligible influence
on the loudspeaker frequency response. Moreover, a more detailed estimation of the system damping is needed in order to make
the proposed nonlinear model universal for every MEMS loudspeaker.
12
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Fig. 9. Comparison between numerical (violet curves) and experimental (mean value in red and standard deviation in pink shaded areas) (a) SPL and (b) THD
frequency spectra at 30 Vpp. The acquisition is stopped at 10 kHz to avoid the break-up of the prototypes.
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ppendix

Parameters employed in the Reduced Order Model presented in this work are reported in Table 1.
Table 1
Parameters of electro-mechanical ROM.

Parameter Value Unit

Mm 9.94 ⋅ 10−8 kg
Q 10 –
k1 5.55 ⋅ 109 s−2

k2 −3.04 ⋅ 1013 m−1 s−2

k3 3.24 ⋅ 1017 m−2 s−2

rP 0.612 N m4 C−2
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