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POLY SLICE MONOGENIC FUNCTIONS, CAUCHY FORMULAS

AND THE PS-FUNCTIONAL CALCULUS
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Abstract. Since 2006 the theory of slice hyperholomorphic functions and the related spectral theory on
the S-spectrum have had a very fast development. This new spectral theory based on the S-spectrum has
applications, for example, in the formulation of quaternionic quantum mechanics, in Schur analysis and
in fractional diffusion problems. In this paper we introduce and study the theory of poly slice monogenic
functions, also proving some Cauchy type integral formulas. Then we introduce the associated functional
calculus, called PS-functional calculus, which is the polyanalytic version of the S-functional calculus and
which is based on the notion of S-spectrum. We study some different formulations of the calculus and we
prove some of its properties, among which the product rules.
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1. Introduction

The theory of polyanalytic functions is an interesting topic in complex analysis. It extends the concept of
holomorphic functions to nullsolutions of higher order powers of the Cauchy-Riemann operator. Precisely,
n-analytic or polyanalytic functions are nullsolutions of the n-power of the Cauchy-Riemann operator. They
were introduced in 1908 by Kolossov see [43] to study elasticity problems. This stream of research was
then continued by his student Muskhelishvili and led to the book [47]. A rather complete introduction to
polyanalytic functions is in [14, 15]. In more recent times this class of functions was studied by various authors
and with no pretense of completeness we mention the works of Abreu, Agranovsky, Begehr, Feichtinger,
Vasilevski [1, 2, 3, 16, 50] and the references therein. Some famous Hilbert spaces of holomorphic functions
that were extended to the setting of polyanalytic functions are the Bergman and Fock spaces, see for example
[5, 6, 14] and the references therein.

Polyanalytic functions are important not only from the theoretical point of view, but also in the theory
of signals since they allow to encode n independent analytic functions into a single polyanalytic one using
a special decomposition. This idea is similar to the problem of multiplexing signals. This is related to the
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construction of the polyanalytic Segal-Bargmann transform mapping L2(R) onto the poly-Fock space, see
[5].

In quantum mechanics polyanalytic functions are relevant for the study of the Landau levels associated to
Schrödinger operators, see [5, 13]. They were used also in [4] to study sampling and interpolation problems
on Fock spaces using time frequency analysis techniques such as short-time Fourier transform (STFT) or
Gabor transforms. This allows to extend Bargmann theory to the polyanalytic setting using Gabor analysis.

The theory of slice hyperholomorphic functions started its full development from the beginning of this
century [27, 38]. It has had a quite fast developments due to several authors and the main results, regarding
the quaternionic setting, are contained in the books [10, 24, 36, 37] and the references therein, while for the
Clifford algebra setting we refer the interested reader to the book [30] and its bibliography. Nowadays the
function theory has expanded in several directions but it is in operators theory where it has found its most
profound applications and several monographs have been published in the last decade [9, 10, 22, 23, 30]. The
slice monogenic functions were introduced in [25, 26, 27, 28, 29] also in collaboration with D. C. Struppa,
and in this paper we generalize this class of functions to the poly analytic setting.

In order to state our results we need to explain the context in which we work and to highlight the
importance of this branch of operator theory which is called quaternionic and Clifford operator theory. First
of all we point out that the appropriate definition of the quaternionic spectrum for a quaternionic linear
operator has been open problem at least since the paper [19] of G. Birkhoff, J. von Neumann, in 1936 on
the logic of quantum mechanics, where the authors showed that quantum mechanics can be formulated also
on quaternions. Moreover, consider a generalization of the gradient operators such as

T = ia(x1, x2, x3)∂x1
+ jb(x1, x2, x3)∂x2

+ kc(x1, x2, x3)∂x3

where a, b and c are given real valued functions of the variables (x1, x2, x3) ∈ R3, and i,j,k are the imaginary
units of the quaternions. It is very interesting to observe that the spectral theory for vector operators like
the gradient operator ∇, or its generalizations such as the operator T defined above, has been unclear since
long time, even before 1936.

Regarding the quaternionic spectral theorem we observe that some attempts have been done after the
paper of G. Birkhoff, J. von Neumann, but all the approaches suffered of the lack of an appropriate notion
of quaternionic spectrum. The turning point came in 2006 when it was introduced the S-spectrum and the
S-functional calculus which are a cornerstone of quaternionic and Clifford operator theory. The S-spectrum
was identified by purely hypercomplex analysis techniques and not on physical considerations, as it is widely
explained in the introduction of [23].

The spectral theorem for quaternionic normal operators based on the S-spectrum was finally proved in
2015 by Alpay, Colombo and Kimsey and published in 2016, see [7]. This theorem is the most important tool
for the formulation of quaternionic quantum mechanics and more recently there have been several efforts
to study the perturbations of quaternionic normal operators in [20], moreover, the theory of quaternionic
spectral operators has been developed in [33]. The theory of characteristic operator function has started its
development in this setting not too long ago and the main advances can be found in the book [9].

There are several applications of the spectral theory on the S-spectrum to fractional diffusion and frac-
tional evolution problems because it is possible to define the fractional powers of vector operators so that
we can generate fractional Fourier laws, see [22]. With this strategy we are able to write the fractional heat
equation modifying just the Fourier’s law and preserving the conservation of energy law.

Among the most developed areas in the slice hyperholomorphic setting there is the theory of slice hy-
perholomorphic reproducing kernel Hilbert spaces and more in general quaternionic Schur analysis has been
largely investigated in the last decade. The material is spread over several papers, but the interested reader
can find several results in the book [10] and in the references therein.

The importance of hypercomplex analysis in operators theory is not limited just to the slice hypercomplex
setting. In fact, using the classical theory of monogenic functions, see [34, 35, 40], A. Mc Intosh and
his collaborators [42, 44] developed the monogenic functional calculus, which is based on the notion of
monogenic spectrum. This monogenic calculus contains as particular cases the Weyl functional calculus
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and the Taylor functional calculus for commuting operators, see the book [45]. In harmonic analysis, the
monogenic functional calculus plays a crucial role as shown in the book [48] and the references therein.
Moreover, the monogenic function theory has applications in boundary value problems [41], and in Clifford
wavelets, singular integrals, and Hardy spaces as one can see in the book [46].

To complete this short introduction on the hypercomplex spectral theories we recall that there is a link
between the slice hyperholomorphic functions and the monogenic functions via the Fueter-Sce-Qian extension
theorem and that there is a link between the two spectral theories. This link is the so-called F -functional
calculus that generates a version of the monogenic functional calculus using the notion of S-spectrum, see
[32]. We recall that also the Radon transform is a bridge between the monogenic and generalized slice
monogenic functions, see [21].

This introductory part explains how the results of this paper have to be seen in the framework of hyper-
holomorphic function theories and the associated spectral theories.

In fact, here we extend the slice monogenic function theory and its S-functional calculus to the poly slice
monogenic setting, namely to the set of (suitable) functions in the kernel of the Mth-power of the Cauchy-
Riemann operator. The quaternionic counterpart of the function theory started with the recent works
[11, 12], while the corresponding functional calculus is introduced in this paper for the first time. In fact,
in this paper we begin a systematic study of the function theory, also proving the Cauchy formulas. These
formulas can be written using different Cauchy kernels which extend the one in the complex case. However,
the noncommutative context requires suitable techniques in order to prove the results. Furthermore, the
components of the kernels in their poly slice monogenic decomposition have different behavior at infinity.

Then, we define the so-called PS-functional calculus. It is the poly slice monogenic version of the S-
functional calculus and it coincides with it when the order is 1. This calculus is based on the S-spectrum,
see Definition 5.2, and it applies to (n+ 1)-tuples of noncommuting operators (T0, T1, ..., Tn) written as the
paravector operator T = T0 + T1e1 + ... + Tnen, where e1, ..., en are the units of the Clifford algebra Rn.
The quaternionic case is obviously a particular case. We prove several results and a crucial tool is given
by suitable modified S-resolvent operators for which we could also prove the resolvent equations. For some
results, like the product rules we assumed commutativity of the components of the operators.

The contents of the paper are organized as follows. In Section 2 we recall some preliminary results on the
theory of slice monogenic functions. In Section 3 we develop the theory of poly slice monogenic functions
and we show some properties. In particular, we prove a slice monogenic integral representation of poly slice
monogenic functions that will be used for a representation of the PS-functional calculus. In Section 4 we
prove the Cauchy formulas and we define a product of poly slice monogenic functions. In Section 5 we give
the formulations of the PS-functional calculus via the PS-resolvent operators and the poly slice monogenic
Cauchy formula. In Section 6 we define and study the formulations of the PS-functional calculus via some
suitably modified S-resolvent operators. In Section 7 we show the equivalence of the two definitions of the
PS-functional calculus and we prove the product rules.

2. Preliminary material

In this section we recall some preliminary material useful to extend the theory of polyanalytic functions
to the slice monogenic setting. The classical polyanalytic functions are those functions f : Ω ⊆ C → C of
class CM (Ω), for M ∈ N, such that

∂i
M
f(z) = 0, for all z = u+ iv ∈ Ω, i =

√
−1

where

∂i
M

=
1

2M
(∂u + i∂v)

M . (1)

A Cauchy-type formula for polyanalytic functions appeared for the first time in Théodoresco’s doctoral
thesis [49] and recalled in the paper [15]:

Theorem 2.1 ([15], Theorem 1.3). If a function f is polyanalytic of order M in a closed domain G bounded
by a rectifiable closed contour Γ, then the value of f at any point z of the domain G is expressed, using values
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of the function itself and its formal derivatives at points t of the boundary Γ, by the formula

f(z) =
1

2πi

M−1
∑

ℓ=0

∫

Γ

1

ℓ!(t− z)
(z̄ − t̄)ℓ

∂ℓf

∂t̄ℓ
dt. (2)

The formula contains a finite sum in which appear the kernels

πℓ(z, t) =
1

ℓ!(t− z)
(z̄ − t̄)ℓ, ℓ = 0, ...,M − 1.

Another polyanalytic Cauchy formula is given by

f(z) =

∫

∂Ω

M−1
∑

ℓ=0

(−2)ℓLℓ(w − z) dw ∂i
ℓ
f(w),

where ∂Ω is the boundary of the smooth bounded domain Ω in C, the infinitesimal arc length is denoted by
dw, and we have set

Lℓ(z) :=
1

2πi z

(Re(z))ℓ

ℓ!
, ℓ = 0, ...,M − 1.

We observe that when we define ∂i
M

in (1) without the prefactor 1/2M , then in the Cauchy formula the
coefficients (−2)ℓ have to be replaced by (−1)ℓ.

In the quaternionic setting or, more in general, in the Clifford algebra setting, one can extend the notion
of holomorphic functions by considering functions in the kernel of a generalized Cauchy-Riemann operator,
thus obtaining the so-called regular or monogenic functions, or of its n-power, thus obtaining poly-regular
functions or poly-monogenic functions, see [17, 18].

We now recall the main definitions on Clifford algebras and the main facts on slice monogenic functions
that are necessary to introduce and develop the theory of poly slice monogenic functions. Let Rn be the real
Clifford algebra over n imaginary units e1, . . . , en satisfying the relations eℓem + emeℓ = 0, ℓ 6= m, e2ℓ = −1.
An element in the Clifford algebra will be denoted by

∑

A eAxA where A = {ℓ1 . . . ℓr} ∈ P{1, 2, . . . , n}, ℓ1 <
. . . < ℓr is a multi-index and eA = eℓ1eℓ2 . . . eℓr , e∅ = 1. An element (x0, x1, . . . , xn) ∈ R

n+1 will be identified
with the element x = x0 + x = x0 +

∑n

ℓ=1 xℓeℓ ∈ Rn called paravector and the real part x0 of x will also
be denoted by Re(x). The norm of x ∈ Rn+1 is defined as |x|2 = x20 + x21 + . . .+ x2n. The conjugate of x is
defined by x̄ = x0 − x = x0 −

∑n

ℓ=1 xℓeℓ. We denote by S the sphere

S = {x = e1x1 + . . .+ enxn | x21 + . . .+ x2n = 1};
for j ∈ S we obviously have j2 = −1. Given an element x = x0 + x ∈ Rn+1 we put jx = x/|x| if x 6= 0, and
given an element x ∈ Rn+1. The set

[x] := {y ∈ R
n+1 : y = x0 + j|x|, j ∈ S}

is an (n − 1)-dimensional sphere in Rn+1. The vector space R + jR passing through 1 and j ∈ S will be
denoted by Cj and an element belonging to Cj will be indicated by u + jv, for u, v ∈ R. With an abuse of
notation we will write x ∈ Rn+1. Thus, if U ⊆ Rn+1 is an open set, a function f : U ⊆ Rn+1 → Rn can be
interpreted as a function of the paravector x.

In this paper we use the definition of poly slice monogenic functions that is the generalization of slice
monogenic functions in the spirit of the Fueter-Sce-Qian mapping theorem, see [32]. This definition is the
most appropriate for operator theory and the reason is widely explained in several papers and in the books
[22, 23]. The corresponding function theory in real alternative algebras is developed in [39]. The same
definition will be used for poly slice monogenic functions in the next section.

Definition 2.2. Let U ⊆ Rn+1. We say that U is axially symmetric if [x] ∈ U for every x ∈ U .

Definition 2.3 (Slice monogenic functions). Let U ⊆ R
n+1 be an axially symmetric open set and let

U = {(u, v) ∈ R2 : u+ Sv ⊂ U}. A function f : U → Rn is called a left slice function, if it is of the form

f(x) = f0(u, v) + jf1(u, v) for x = u+ jv ∈ U
4



with the two functions f0, f1 : U → Rn that satisfy the compatibility conditions

f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v). (3)

If in addition f0 and f1 are C1 and satisfy the Cauchy-Riemann equations

∂uf0(u, v)− ∂vf1(u, v)) = 0

∂vf0(u, v) + ∂uf1(u, v)) = 0
(4)

then f is called left slice monogenic. A function f : U → Rn is called a right slice function if it is of the form

f(x) = f0(u, v) + f1(u, v)j for x = u+ jv ∈ U

with the two functions f0, f1 : U → Rn that satisfy (3). If f0 and f1 are C1 and satisfy the Cauchy-Riemann
equations (4) then f is called right slice monogenic.

If f is a left (or right) slice function such that f0 and f1 are real-valued, then f is called intrinsic.
We denote the sets of left, right and intrinsic slice monogenic functions on U by SML(U), SMR(U) and

N (U), respectively.

Remark 2.4. The set N (U) is contained in both SML(U) and SMR(U).

Definition 2.5. We define the notion of j-derivative by means of the operator:

∂j :=
1

2
(∂u − j∂v) .

For consistency, we will denote by

∂j =
1

2
(∂u + j∂v)

the Cauchy- Riemann operator associated with the complex plane Cj, for j ∈ S.

Using the notations we have just introduced, the condition of left slice monogenicity will be expressed, in
short, by ∂jf = 0. Right slice monogenicity will be expressed, with an abuse of notation, by f∂j = 0.

Definition 2.6. Let U be an open set in R
n+1 and let f : U → Rn be a slice monogenic function. Its slice

derivative ∂S is defined as

∂S(f) =

{

∂j(f)(x) x = u+ jv, v 6= 0
∂uf(u) u ∈ R.

(5)

Lemma 2.7 (Splitting Lemma). Let U ⊆ Rn+1 be an axially symmetric open set and let f ∈ SML(U). For
every j = j1 ∈ S let j2, . . . , jn be a completion to a basis of Rn satisfying the defining relations jrjs + jsjr =
−2δrs. Then there exist 2n−1 holomorphic functions FA : U ∩ Cj → Cj such that for every z = u + jv we
have

fj(z) =

n−1
∑

|A|=0

FA(z)jA, jA = ji1 . . . jis ,

where A = i1 . . . is is a subset of {2, . . . , n}, with i1 < . . . < is, or, when |A| = 0, j∅ = 1. When f ∈ SMR(U),
then the splitting lemma becomes

fj(z) =
n−1
∑

|A|=0

jAFA(z), jA = ji1 . . . jis .

The following formula is an immediate consequence of the definition of slice functions, see [39].

Theorem 2.8 (The Structure Formula or Representation Formula). Let U ⊆ R
n+1 be an axially symmetric

open set.
(I) Let f ∈ SML(U). Then, for any vector x = u+ jxv ∈ U , the following formula holds:

f(x) =
1

2

[

1− jjx

]

f(u+ jv) +
1

2

[

1 + jjx

]

f(u− jv), for all u+ jv ∈ U, j ∈ S. (6)

(II) Let f ∈ SMR(U). Then, for any vector x = u+ jxv ∈ U , the following formula holds:

f(x) =
1

2
f(u+ jv)

[

1− jjx

]

+
1

2
f(u− jv)

[

1 + jjx

]

, for all u+ jv ∈ U, j ∈ S. (7)
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Remark 2.9. Using the representation formula we can write the slice monogenic Cauchy kernels in terms of
the complex Cauchy kernel. For example for S−1

L (s, x) we have

S−1
L (s, x) =

1

2

[

1− jxj
] 1

s− z
+

1

2

[

1 + jxj
] 1

s− z

where we set x = u+ jxv, z = u+ jv, s = s0 + js1, and where j is the imaginary unit of the complex plane
Cj.

For slice monogenic functions we have two equivalent ways to write the Cauchy kernels.

Proposition 2.10. If x, s ∈ Rn+1 with x 6∈ [s], then

−(x2 − 2xRe(s) + |s|2)−1(x− s) = (s− q̄)(s2 − 2Re(x)s+ |x|2)−1 (8)

and

(s2 − 2Re(x)s+ |x|2)−1(s− x̄) = −(x− s̄)(x2 − 2Re(s)x + |s|2)−1. (9)

So we can give the following definition to distinguish the two representations of the Cauchy kernels.

Definition 2.11. Let x, s ∈ Rn+1 with x 6∈ [s].

• We say that S−1
L (s, x) is written in the form I if

S−1
L (s, x) := −(x2 − 2Re(s)x+ |s|2)−1(x− s).

• We say that S−1
L (s, x) is written in the form II if

S−1
L (s, x) := (s− x̄)(s2 − 2Re(x)s + |x|2)−1.

• We say that S−1
R (s, x) is written in the form I if

S−1
R (s, x) := −(x− s̄)(x2 − 2Re(s)x+ |s|2)−1.

• We say that S−1
R (s, x) is written in the form II if

S−1
R (s, x) := (s2 − 2Re(x)s+ |x|2)−1(s− x̄).

Lemma 2.12. Let x, s ∈ Rn+1 with s /∈ [x]. The left slice monogenic Cauchy kernel S−1
L (s, x) is left slice

monogenic in x and right slice monogenic in s. The right slice monogenic Cauchy kernel S−1
R (s, x) is left

slice monogenic in s and right slice monogenic in x.

Definition 2.13 (Slice Cauchy domain). An axially symmetric open set U ⊂ Rn+1 is called a slice Cauchy
domain, if U ∩ Cj is a Cauchy domain in Cj for any j ∈ S. More precisely, U is a slice Cauchy domain if,
for any j ∈ S, the boundary ∂(U ∩ Cj) of U ∩ Cj is the union a finite number of non-intersecting piecewise
continuously differentiable Jordan curves in Cj.

Theorem 2.14 (Cauchy formulas). Let U ⊂ Rn+1 be a slice Cauchy domain, let j ∈ S and set dsj = ds(−j).

If f is a (left) slice monogenic function on a set that contains U then

f(x) =
1

2π

∫

∂(U∩Cj)

S−1
L (s, x) dsj f(s), for any x ∈ U. (10)

If f is a right slice monogenic function on a set that contains U , then

f(x) =
1

2π

∫

∂(U∩Cj)

f(s) dsj S
−1
R (s, x), for any x ∈ U. (11)

These integrals depend neither on U nor on the imaginary unit j ∈ S.

Theorem 2.15 (Cauchy formulas on unbounded slice Cauchy domains). Let U ⊂ Rn+1 be an unbounded
slice Cauchy domain and let j ∈ S. If f ∈ SML(U) and f(∞) := lim|x|→∞ f(x) exists and is finite, then

f(x) = f(∞) +
1

2π

∫

∂(U∩Cj)

S−1
L (s, x) dsj f(s) for any x ∈ U.

If f ∈ SMR(U) and f(∞) := lim|x|→∞ f(x) exists and is finite, then

f(x) = f(∞) +
1

2π

∫

∂(U∩Cj)

f(s) dsj S
−1
R (s, x) for any x ∈ U.
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3. Poly slice monogenic functions

We can now give the definition of poly slice monogenic functions and develop the corresponding function
theory, which will be used to define the PS-functional calculus. This definition is the monogenic counterpart
of Definition 3.17 in [11].

Definition 3.1 (Poly slice monogenic functions). Let M ∈ N and denote by CM (U) the set of continuously
differentiable functions with all their derivatives up to orderM on an axially symmetric open set U ⊆ Rn+1.
We let U = {(u, v) ∈ R2 : u + Sv ⊂ U}. A function F : U → Rn is called a left slice function, if it is of the
form

F (x) = F0(u, v) + jF1(u, v) for x = u+ jv ∈ U

with the two functions F0, F1 : U → Rn that satisfy the compatibility condition

F0(u,−v) = F0(u, v), F1(u,−v) = −F1(u, v). (12)

If in addition F0 and F1 are in CM (U) and satisfy the poly Cauchy-Riemann equations of order M ∈ N

1

2M
(∂u + j∂v)

M (F0(u, v) + jF1(u, v)) = 0, for all j ∈ S (13)

then F is called left poly slice monogenic function of order M ∈ N. A function F : U → Rn is called a right
slice function if it is of the form

F (x) = F0(u, v) + F1(u, v)j for x = u+ jv ∈ U

with two functions F0, F1 : U → Rn+1 that satisfy (12). If in addition F0 and F1 are in CM (U) and satisfy
the poly Cauchy-Riemann equations of order M ∈ N

(F0(u, v) + F1(u, v)j)
1

2M
(∂u + j∂v)

M = 0, for all j ∈ S (14)

then F is called right poly slice monogenic of order M ∈ N. We will denote by PSM
L (U) and PSM

R (U) the
set of left and right poly slice monogenic functions on the open set U , respectively.

If F is a left (or right) slice function such that F0 and F1 are real-valued, then F is called intrinsic. By

PNM (U) we denote the set of poly intrinsic slice monogenic functions.

Remark 3.2. For the definition of slice monogenic functions we required that the pair (f0, f1) satisfies the
Cauchy-Riemann system. In the case of poly slice monogenic functions we follow the same idea by observing
that (for functions F of class CM (U))

1

2M
(∂u + j∂v)

MF =

M
∑

k=0

(

M

k

)

(∂u)
M−k

(∂v)
k
jkF =

M
∑

k=0

(

M

k

)

DM−k,kj
kF

where DM−k,k = (∂u)
M−k

(∂v)
k
. Due to the arbitrarity of j, the condition that F is left poly slice monogenic

translates into a system of two differential equations of order M for the pair (F0, F1) of Rn-valued functions
(which reduces to the Cauchy-Riemann system when M = 1):





M
∑

k=0(mod 4)

(

M

k

)

DM−k,k −
M
∑

k=2(mod 4)

(

M

k

)

DM−k,k



F0(u, v)

+



−
M
∑

k=1(mod 4)

(

M

k

)

DM−k,k +

M
∑

k=3(mod 4)

(

M

k

)

DM−k,k



F1(u, v) = 0,

(15)





M
∑

k=1(mod 4)

(

M

k

)

DM−k,k −
M
∑

k=3(mod 4)

(

M

k

)

DM−k,k



F0(u, v)

+





M
∑

k=0(mod 4)

(

M

k

)

DM−k,k −
M
∑

k=2(mod 4)

(

M

k

)

DM−k,k



F1(u, v) = 0.
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With obvious meaning of the symbols, we have

D1F0(u, v)− D2F1(u, v) = 0

D2F0(u, v) + D1F1(u, v) = 0

However, since this system is rather complicated to write, we prefer to use the above Definition 3.1.

We point out that the definition of poly slice monogenic functions extends to functions with values in a
Clifford Banach module in a very natural way. As in the quaternionic case, one can give the very useful
definition of (strong) slice monogenicity, see [10] for vector-valued functions.

Definition 3.3 (Poly slice monogenic functions vector-valued). Let U ⊆ Rn+1 be an axially symmetric open
set and let

U = {(u, v) ∈ R
2 : u+ Sv ⊂ U}.

A function f : U → XL with values in a left Clifford Banach module XL is called a left slice function, if is
of the form

F (x) = F0(u, v) + jF1(u, v) for x = u+ jv ∈ U

with two functions F0, F1 : U → XL that satisfy the compatibility condition (12). If in addition F0 and F1

are in CM (U) and satisfy the poly Cauchy-Riemann equations (13), then F is called (strongly) left poly slice
monogenic.

A function f : U → XR with values in a right Clifford-Banach module is called a right slice function if it
is of the form

F (x) = F0(u, v) + F1(u, v)j for x = u+ jv ∈ U

with two functions F0, F1 : U → XR that satisfy the compatibility condition (12). If in addition F0 and F1

are in CM (U) and satisfy the poly Cauchy-Riemann equations (14), then f is called (strongly) right poly slice
monogenic.

We have the following proposition.

Proposition 3.4. Let M ∈ N and let F ∈ PSM
L (U) (resp. PSM

R (U) or PNM (U)). Then F ∈ PSM+M ′

L (U)

(resp. PSM+M ′

R (U) or PNM+M ′

(U)) for all M ′ ∈ N.

Proof. It is a direct consequences of the definition. �

Remark 3.5. The restriction of a function F to the complex plane Cj is denoted by Fj.

Theorem 3.6 (Poly splitting lemma and poly decomposition). Let U ⊆ Rn+1 be an axially symmetric open
set.

(Ia) (Poly splitting lemma). Let F ∈ PSM
L (U). Then, for every j = j1 ∈ S let j2, . . . , jn be a completion

to a basis of Rn satisfying the defining relations jrjs + jsjr = −2δrs. Then, there exist 2n−1 polyanalytic
functions FA : U ∩Cj → Cj such that, for every z = u+ jv, we have

Fj(z) =

n−1
∑

|A|=0

FA(z)jA, jA = ji1 . . . jis ,

where A = i1 . . . is is a subset of {2, . . . , n}, with i1 < . . . < is, or, when |A| = 0, j∅ = 1.

(Ib) (Poly decomposition). The function F ∈ PSM
L (U) if and only if there exist uniquely determined

functions f0, ..., fM−1 ∈ SML(U) such that, for fM−1 6= 0, we have the following decomposition

F (x) =

M−1
∑

k=0

xkfk(x), ∀x ∈ U. (16)

(IIa) Let F ∈ PSM
R (U) . Then, for every j1, . . . , jn ∈ S as above there exist 2n−1 polyanalytic functions

FA : U ∩ Cj → Cj such that, for every z = u+ jv, we have

Fj(z) =

n−1
∑

|A|=0

jAFA(z), jA = ji1 . . . jis ,

where A = i1 . . . is is a subset of {2, . . . , n}, with i1 < . . . < is, or, when |A| = 0, j∅ = 1.
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(IIb) The function F ∈ PSM
R (U) if and only if there exist uniquely determined functions f0, ..., fM−1 ∈

SMR(U) such that, for fM−1 6= 0, we have the following decomposition

F (x) =

M−1
∑

k=0

fk(x)x
k, ∀x ∈ U. (17)

Proof. We consider the case (Ia) and (Ib) since the other ones follows with similar arguments.

Step (Ia). For every j = j1 ∈ S let j2, . . . , jn be a completion to a basis of Rn satisfying the defining
relations jrjs + jsjr = −2δrs. Then there exist 2n−1 functions FA : U ∩ Cj → Cj such that for every
z = u+ jv

Fj(z) =
n−1
∑

|A|=0

FA(z)jA, jA = ji1 . . . jis ,

where Fj(z) is the restriction to U ∩ Cj, and A = i1 . . . is is a subset of {2, . . . , n}, with i1 < . . . < is, or,
when |A| = 0, j∅ = 1.

But since F is a left poly slice monogenic function, the functions FA(z) are complex polyanalytic functions
of order M .

Step (Ib). We show that the function F (x) defined in (16) is poly slice monogenic. First of all, we
note that F is a slice function since it is the sum of slice functions. Then, by the definition of poly slice
monogenicity and the product rule, we have that

1

2M
(∂u + j∂v)

MF (u + jv) =

M−1
∑

k=0

1

2M
(∂u + j∂v)

M
(

(u − jv)kfk(u+ jv)
)

= 0.

Viceversa, let us assume that F (x) = F (u+ jv) = F0(u, v) + jF1(u, v) is a left poly slice monogenic function
of orderM , i.e. the pair (F0, F1) is an even-odd pair satisfying (15). By fixing a basis e1, . . . , en of Rn we can
write Fi =

∑n

|A|=0 Fi,AeA, i = 0, 1 where the functions Fi,A are real-valued, and by the linear independence

of the basis elements eA, the system (15) can be rewritten in terms of the 2n real components Fi,A of Fi,
i = 0, 1. Thus if F (u+jv) = F0(u, v)+jF1(u, v) is left poly slice monogenic, each function FA = F0,A+jF1,A

is a slice function and polyanalytic. By the classical result applied to the Cj-valued function FA, we have

FA(u+ jv) =
M−1
∑

k=0

(u − jv)kfk,A(u + jv)

where the functions fk,A are Cj-valued, satisfy the Cauchy-Riemann system and are even-odd in the variables
u, v by direct verification. We thus obtain

F (u+ jv) =

n
∑

|A|=0

FA(u+ jv)eA =

n
∑

|A|=0

M−1
∑

k=0

(u − jv)kfk,A(u+ jv)eA

=

M−1
∑

k=0

(u− jv)kfk(u + jv)

where we set fk =
∑n

|A|=0 fk,AeA. The functions fk are evidently left slice monogenic and this concludes

the proof. �

Definition 3.7. The functions f0, ..., fM−1 ∈ SML(U) that appear in Theorem 3.6 in the poly decomposi-
tion (Ib)

F (x) =
M−1
∑

k=0

xkfk(x), ∀x ∈ U,

are called the (left monogenic) components of the left poly slice monogenic function F . Similarly, we will
call the functions f0, ..., fM−1 ∈ SMR(U) in (IIb) the components of the right poly slice monogenic function
F .
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Assumption 3.8. In the sequel, when dealing with a function F in PSM
L (U) or PSM

R (U), we always assume
that F is written via its poly decomposition.

Proposition 3.9. Let U ⊆ R
n+1 be an axially symmetric domain and let M ∈ N. Then we have:

(I) F ∈ PSM
L (U) is intrinsic if and only if all its left slice monogenic components are also intrinsic.

(II) F ∈ PSM
R (U) is intrinsic if and only if all its right slice monogenic components are also intrinsic.

Proof. We prove (I). We use the poly decomposition in Theorem 3.6 to write

F (x) =

M−1
∑

k=0

xkfk(x),

where fk are the left slice monogenic components for all k = 0, ..,M − 1. First, we observe that if all the
functions fk are intrinsic, then F will preserve any complex plane U ∩Cj that is to say that F (U ∩Cj) ⊆ Cj,
so it is intrinsic.

For the converse, let us assume that F = F0 + jF1 is intrinsic so that F0, F1 are real valued. This means
that in the decomposition F =

∑n

|A|=0(F0,A + jF1,A)eA there is only the term corresponding to e∅ = 1 and

expanding in the form F (u + jv) =
∑M−1

k=0 (u − jv)kfk(u + jv) the functions fk are Cj-valued, see the proof
of Theorem 3.6 (Ib), and so they take Cj into itself and so they are intrinsic. �

Remark 3.10. (I) Observe that since fk(x) is slice monogenic, for ℓ, k ∈ N, for k ≥ ℓ, we have that

∂j
ℓ(

xkfk(x)
)

= ∂j
ℓ(

xk
)

fk(x) = k(k − 1)(k − 2) . . . (k − ℓ+ 1)xk−ℓfk(x) =
k!

(k − ℓ)!
xk−ℓfk(x),

and ∂j
ℓ(

xkfk(x)
)

= 0, for k < ℓ.
(II) Similarly, for ℓ, k ∈ N, for k ≥ ℓ, we have

(

fk(x)x
k
)

∂j
ℓ
= fk(x)

(

xk
)

∂j
ℓ
= k(k − 1)(k − 2) . . . (k − ℓ+ 1)fk(x)x

k−ℓ =
k!

(k − ℓ)!
fk(x)x

k−ℓ,

and
(

fk(x)x
k
)

∂j
ℓ
= 0, for k < ℓ.

The next result was already proved for quaternions, we revise its proof in more details here for the sake
of completeness.

Proposition 3.11. Let U ⊆ Rn+1 be an axially symmetric open set and M ∈ N. Then, denoting by Fg or
gF the pointwise product, we have the following statements.

(Ia) Let F ∈ PNM (U) and g ∈ SML(U). Then, Fg belongs to PMM
L (U).

(Ib) Let F ∈ PMM
L (U) and g ∈ N (U). Then, gF belongs to PMM

L (U).

(IIa) Let F ∈ PNM (U) and g ∈ SMR(U). Then, gF belongs to PMM
R (U).

(IIb) Let F ∈ PMM
R (U) and g ∈ N (U). Then, Fg belongs to PMM

R (U).

(III) Let F ∈ PNM (U) and g ∈ N (U). Then, gF = Fg belongs to PNM (U).

Proof. We prove just step (Ia). In much the same way we can prove the other points. So we assume that

F ∈ PNM (U), g ∈ SML(U) and j ∈ S and we set x = u+ jv. We will prove that

∂j
M
(Fg)(u+ vj) = 0. (18)

Indeed, first we note that since F is intrinsic, we have F (U ∩ Cj) ⊂ Cj. In particular, by the Leibniz rule,
the equality

∂j(Fg)(u+ jv) = F∂j(g)(u + vj) + ∂j(F )g(u+ vj)

holds. We note that since F is poly slice monogenic of order M and g is slice monogenic we have ∂j(g) =

0 and ∂j(F ) 6= 0. Thus, we obtain

∂j(Fg)(u+ jv) = ∂j(F )g(u+ vj).

Then, since F is intrinsic we can use the Leibniz rule M times and get

∂j
M
(Fg)(u+ jv) = ∂j

M−1
(F )∂j(g)(u + vj) + ∂j

M
(F )g(u+ vj).
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Therefore, it follows that the formula (18) holds since F ∈ PNM (U) and g ∈ SML(U). Hence, the pointwise
product Fg is poly slice monogenic of order M on U .

�

Using the explicit poly decomposition of a given poly slice monogenic function F of order M , see As-
sumption 3.8, we can give it an integral representation using the Cauchy formula for the slice monogenic
components {fk(x)}k=0,...,M−1.

Corollary 3.12 (Slice monogenic integral representation of poly slice monogenic functions). Let U ⊆ Rn+1

be a slice Cauchy domain. Let j ∈ S and set dsj = ds(−j).

(I) If F is a (left) poly slice monogenic function of order M on a set that contains U then

F (x) =
1

2π

∫

∂(U∩Cj)

M−1
∑

k=0

xkS−1
L (s, x) dsj fk(s), for any x ∈ U. (19)

(II) If F is a right slice monogenic function on a set that contains U , then

F (x) =
1

2π

∫

∂(U∩Cj)

M−1
∑

k=0

fk(s) dsj S
−1
R (s, x)xk, for any x ∈ U. (20)

The integrals in (19) and (20) depend neither on U nor on the imaginary unit j ∈ S.

Proof. We consider the case (19) since (20) can be obtained with similar considerations. So (19) follows by
replacing the Cauchy formula for the slice monogenic components {fk(x)}k=0,...,M−1 given by

fk(x) =
1

2π

∫

∂(U∩Cj)

S−1
L (s, x) dsj fk(s), for any x ∈ U

into the poly decomposition formula F (x) =

M−1
∑

k=0

xkfk(x). �

Similarly we can prove the case of unbounded domains.

Theorem 3.13 (Slice monogenic integral representation of poly slice monogenic functions on unbounded
slice Cauchy domains). Let U ⊂ Rn+1 be an unbounded slice Cauchy domain and let j ∈ S. Let F ∈ PSL(U)
with poly slice decomposition

F (x) =

M−1
∑

k=0

xkfk(x)

and the components fk ∈ SML(U) are such that the limits lim|x|→∞ fk(x) = fk(∞) exist and are finite for
all k = 0, ...,M − 1. Then, we have

F (x) =

M−1
∑

k=0

xkfk(∞) +
1

2π

∫

∂(U∩Cj)

M−1
∑

k=0

xkS−1
L (s, x) dsj fk(s) for any x ∈ U.

Let F ∈ PSR(U) with poly slice decomposition

F (x) =

M−1
∑

k=0

fk(x)x
k

and the components fk ∈ SMR(U) are such that the limits lim|x|→∞ fk(x) = fk(∞) exist and are finite for
all k = 0, ...,M − 1. Then, we have

F (x) =

M−1
∑

k=0

fk(∞)xk +
1

2π

∫

∂(U∩Cj)

M−1
∑

k=0

f(s) dsj S
−1
R (s, x)xk for any x ∈ U.

Remark 3.14. Observe that we have two possibilities to write the Cauchy kernels, using the form I or the
form II.
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The following result is a direct consequence of the form of the slice function, i.e.,

F (x) = F0(u, v) + jF1(u, v) for x = u+ jv ∈ U

with the two functions F0, F1 : U → Rn that satisfy the compatibility condition (see the definition of poly
slice monogenic functions). We recall it for the reader’s convenience.

Theorem 3.15 (Poly Structure (or Poly Representation) Formula). Let U ⊆ Rn+1 be an axially symmetric
domain.

(I) Let F ∈ PSM
L (U). Then, for any vector x = u+ jxv ∈ U , the following formula holds:

F (x) =
1

2

[

1− jxj
]

F (u+ jv) +
1

2

[

1 + jxj
]

F (u− jv), for all u+ jv ∈ U, j ∈ S. (21)

(II) Let F ∈ PSM
R (U). Then, for any vector x = u+ jxv ∈ U , the following formula holds:

F (x) =
1

2
F (u+ jv)

[

1− jxj
]

+
1

2
F (u− jv)

[

1 + jxj
]

, for all u+ jv ∈ U, j ∈ S. (22)

In the following we use the notation Rn+1 = Rn+1 ∪ {∞}. Then, we first recall the Runge’s theorem for
slice monogenic functions which was proved in [31]. We refer to this paper also for the terminology.

Theorem 3.16. Let K be an axially symmetric compact set in Rn+1, and let A be a set having a point in
each connected component of Rn+1 \K. For any axially symmetric open set U ⊃ K, for every f ∈ SML(U)
and for every ε > 0 there exists a rational function r whose poles are spheres in A such that

|f(x)− r(x)| < ε,

for all x ∈ K. Similar considerations hold for every f ∈ SMR(U).

Now, we are going to use Theorem 3.16 to prove the poly slice monogenic counterpart of the Runge’s
theorem. First, we give the definition of poly slice monogenic rational function.

Definition 3.17. We say that a left poly slice monogenic function R(x) is rational if the left slice monogenic
components rk(x) in the decomposition

R(x) =

M−1
∑

k=0

xkrk(x), ∀x ∈ U (23)

are rational. We say that a right poly slice monogenic function R(x) is rational if the right slice monogenic
components rk(x) in the decomposition

R(x) =
M−1
∑

k=0

rk(x)x
k, ∀x ∈ U (24)

are rational.

Theorem 3.18 (Poly slice Runge’s theorem). Let M ∈ N. Let K be an axially symmetric compact set in

Rn+1, and let A be a set having a point in each connected component of Rn+1 \K. For any axially symmetric

domain U ⊃ K, for every F ∈ PSM
L (U) and for every ε > 0 there exists a left poly rational function R

whose poles are spheres in A such that
|F (x)−R(x)| < ε,

for all x ∈ K. The same approximation holds for F ∈ PSM
R (U). In the case F is intrinsic the rational

functions R are also intrinsic.

Proof. We show just the case when F ∈ PSM
L (U), the other statements follows in much the same way. We

note that K is a compact, in particular K is bounded so that it is contained in some ball centered at the
origin, i.e., K ⊂ B(0, ρ), for some ρ > 0. Furthermore, since F is poly slice monogenic of order M on the
domain U , we know the validity of the poly decomposition (Ib) in Theorem 3.6 with all {fk}0≤k≤M−1 that
are slice monogenic functions on U and fM−1 6= 0. In particular, since K is contained in U , we also have

F (x) =
M−1
∑

k=0

xkfk(x), ∀x ∈ K. (25)
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Then, we can apply the Runge’s theorem 3.16 on each slice monogenic function fk. Thus, for all k =
0, ...,M − 1, we know that, for every ε > 0, there exist a rational function rk whose poles are spheres in A
such that

|fk(x) − rk(x)| < ε

(

1
∑M−1

j=0 ρj

)

, (26)

for every x ∈ K. Now, we consider the poly slice monogenic rational function given by

R(x) =

M−1
∑

k=0

xkrk(x), ∀x ∈ U.

Let ε > 0. Then, we have

|F (x)−R(x)| =
∣

∣

∣

∣

∣

M−1
∑

k=0

xk(fk(x)− rk(x)

∣

∣

∣

∣

∣

≤
M−1
∑

k=0

|x|k|fk(x) − rk(x)|,

for every x ∈ K. Therefore, we apply the inequality (26) to each slice monogenic component and get

|F (x) −R(x)| < ε
∑M−1

k=0 ρk

(

M−1
∑

k=0

|x|k
)

, (27)

for every x ∈ K. However, we know that K ⊂ B(0, ρ). So we have |x| ≤ ρ, for any x ∈ K. In particular,
this shows that

M−1
∑

k=0

|x|k ≤
M−1
∑

k=0

ρk,

for every x ∈ K. Therefore, inserting this fact in the inequality (27) we obtain that |F (x) − R(x)| < ε, for
every x ∈ K. �

4. Cauchy formulas and product of poly slice monogenic functions

In this section we develop the Cauchy formulas for poly slice monogenic functions. These will be used in
the next section to define the PS-functional calculus for noncommuting operators.

Lemma 4.1 (Poly Cauchy integral formula). Let U ⊆ Rn+1 be a slice Cauchy domain, assume that F ∈
PSM

L (U) and G ∈ PSM
R (U) for some M ∈ N. Then we have

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−1)ℓG(s)∂
M−ℓ−1

j dsj ∂
ℓ

jF (s) = 0, (28)

where dsj = ds(−j) and ∂j :=
1
2 (∂u + j∂v) for j ∈ S.

Proof. By writing G =
∑n

|A|=0 eAGA, F =
∑n

|A|=0 FAeA, see the proof of Theorem 3.6, (Ib), the result

follows from the analogue theorem for polyanalytic functions of a complex variable. �

4.1. Cauchy formulas with kernels PℓS
−1
L and PℓS

−1
R . The poly slice monogenic Cauchy kernel are

described in the next result:

Definition 4.2 (Cauchy kernels PℓS
−1
L and PℓS

−1
R ). Let ℓ ∈ N. We define the left poly slice monogenic

Cauchy kernels PℓS
−1
L and PℓS

−1
R of order ℓ+ 1 by

PℓS
−1
L (s, x) : =

(Re(s− x))ℓ

ℓ!
S−1
L (s, x)

= − (Re(s− x))ℓ

ℓ!
(x2 − 2Re(s)x+ |s|2)−1(x− s), s 6∈ [x]
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and right poly slice monogenic Cauchy kernels of order ℓ is defined by

PℓS
−1
R (s, x) : =

(Re(s− x))ℓ

ℓ!
S−1
R,ℓ(s, x)

= − (Re(s− x))ℓ

ℓ!
(x− s̄)(x2 − 2Re(s)x+ |s|2)−1, s 6∈ [x].

Remark 4.3. Observe that, in both cases, we have used the slice monogenic Cauchy kernels written in form I
so that the PS-functional calculus will work for paravector operators with noncommuting components. For
the function theory it is also possible to use slice monogenic Cauchy kernels written in form II, but in this
case to define the PS-functional calculus we are limited to commuting operators.

Lemma 4.4. Let ℓ ∈ N and let x, s ∈ Rn+1 with s /∈ [x]. The kernel PℓS
−1
L (s, x) is left poly slice monogenic

in x and right poly slice monogenic in s of order ℓ + 1. The kernel PℓS
−1
R (s, x) is left poly slice monogenic

in s and right poly slice monogenic in x of order ℓ+ 1.

Proof. For ℓ ∈ N. For all s, x ∈ Rn+1, we set

Pℓ(s, x) =
(Re(s− x))ℓ

ℓ!
.

Then, Pℓ(s, x) is a slice function, intrinsic and poly slice monogenic of order ℓ+1 with respect to the variables
x and s. By a direct computation, for s /∈ [x], the product Pℓ(s, x)S

−1
L (s, x) is left poly slice monogenic in x

and right poly slice monogenic in s of order ℓ+ 1. Using similar arguments we treat Pℓ(s, x)S
−1
R (s, x). �

Theorem 4.5 (The poly slice Cauchy formulas with kernels PℓS
−1
L and PℓS

−1
R ). Let U ⊂ Rn+1 be a slice

Cauchy domain. For j ∈ S set dsj = ds(−j) and ∂j :=
1
2 (∂u + j∂v).

(I) If F is a left poly slice monogenic function on a set that contains U then

F (x) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓPℓS
−1
L (s, x) dsj ∂j

ℓ
F (s), for any x ∈ U. (29)

(II) If F is a right poly slice monogenic function on a set that contains U , then

F (x) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓF (s)∂j
ℓ
dsj PℓS

−1
R (s, x), for any x ∈ U. (30)

The integrals (29) and (30) depend neither on U nor on the imaginary unit j ∈ S.

Proof. Consider (I). It is a consequence of the Lemma 4.1 and of Theorem 3.15. We now use the poly

splitting lemma (Ia). Let F ∈ PSM
L (U), and for every j = j1 ∈ S let j2, . . . , jn be a completion to a basis

of Rn satisfying the defining relations jrjs + jsjr = −2δrs. Then there exist 2n−1 polyanalytic functions
FA : U ∩ Cj → Cj such that, for every z = u+ jv, we have

Fj(z) =
n−1
∑

|A|=0

FA(z)jA, jA = ji1 . . . jis ,

where A = i1 . . . is is a subset of {2, . . . , n}, with i1 < . . . < is, or, when |A| = 0, j∅ = 1. So we can write

FA(z) =

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
1

2πj

1

(s− z)

(Re(s− z))ℓ

ℓ!
ds∂j

ℓFA(s), z ∈ U ∩ Cj

and also

Fj(z) =
n−1
∑

|A|=0

FA(z)jA =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
1

s− z

(Re(s− z))ℓ

ℓ!
dsj ∂j

ℓ
n−1
∑

|A|=0

FA(s)jA, z ∈ U ∩ Cj.

Thus we can write Fj(z) and Fj(z) as

Fj(z) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
1

s− z

(Re(s− z))ℓ

ℓ!
dsj ∂j

ℓ
F (s), z ∈ U ∩ Cj,
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and

Fj(z) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
1

s− z

(Re(s− z))ℓ

ℓ!
dsj ∂j

ℓ
F (s), z ∈ U ∩ Cj,

where we set x = u+ jxv, z = u+ jv, s = s0 + js1, and where j is the imaginary unit of the complex plane
Cj on which we integrate. Now we use the poly monogenic representation formulas and the two Cauchy
formulas for Fj(z) and Fj(z) on the complex plane Cj. Specifically, we use

F (x) =
1

2

[

1− jxj
]

Fj(z) +
1

2

[

1 + jxj
]

Fj(z)

so we have

F (x) =
1

2

[

1− jxj
] 1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
1

s− z

(Re(s− z))ℓ

ℓ!
dsj ∂j

ℓ
F (s)

+
1

2

[

1 + jxj
] 1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
1

s− z

(Re(s− z))ℓ

ℓ!
dsj ∂j

ℓ
F (s),

and also

F (x) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
1

2

[

1− jxj
] 1

s− z

(Re(s− z))ℓ

ℓ!
dsj ∂j

ℓ
F (s)

+
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
1

2

[

1 + jxj
] 1

s− z

(Re(s− z))ℓ

ℓ!
dsj ∂j

ℓ
F (s).

Finally we get

F (x) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓ
(Re(s− x))ℓ

ℓ!
S−1
L (s, x) dsj ∂j

ℓ
F (s)

where we have replaced the poly slice monogenic Cauchy kernel

(Re(s− x))ℓ

ℓ!
S−1
L (s, x) =

1

2

[

1− jxj
] (Re(s− z))ℓ

ℓ!

1

s− z
+

1

2

[

1 + jxj
] (Re(s− z))ℓ

ℓ!

1

s− z

written via the poly slice monogenic representation formula. �

Definition 4.6. We say that a poly slice monogenic function is poly slice monogenic function at infinity if
its slice monogenic components are slice monogenic at infinity.

Theorem 4.7 (Poly slice monogenic Cauchy formulas on unbounded slice Cauchy domains with kernels
PℓS

−1
L and PℓS

−1
R ). Let U ⊂ Rn+1 be an unbounded slice Cauchy. For j ∈ S set dsj = ds(−j) and ∂j :=

1
2 (∂u + j∂v).

(I)Let F ∈ PSL(U) with poly slice decomposition

F (x) =

M−1
∑

k=0

xkfk(x)

and the components fk ∈ SML(U) are such that the limits lim|x|→∞ fk(x) = fk(∞) exist and are finite for
all k = 0, ...,M − 1. Then, we have

F (x) =
M−1
∑

k=0

xkfk(∞) +
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓPℓS
−1
L (s, x) dsj ∂j

ℓ
F (s) for any x ∈ U.

(II) Let F ∈ PSR(U) with poly slice decomposition

F (x) =
M−1
∑

k=0

fk(x)x
k
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and the components fk ∈ SMR(U) are such that the limits lim|x|→∞ fk(x) = fk(∞) exist and are finite for
all k = 0, ...,M − 1. Then we have

F (x) =

M−1
∑

k=0

fk(∞)xk +
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓF (s)∂j
ℓ
dsj PℓS

−1
R (s, x) for any x ∈ U.

Proof. Let us consider (I). For sufficiently large r > 0 , the set Ur := U ∩ Br(0) is a bounded slice Cauchy
domain with x ∈ Ur and H \ Ur ⊂ U . By Theorem 4.5

F (x) =
1

2π

∫

∂(Ur∩Cj)

M−1
∑

ℓ=0

(−2)ℓPℓS
−1
L (s, x) dsj ∂j

ℓ
F (s)

=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

(−2)ℓPℓS
−1
L (s, x) dsj ∂j

ℓ
F (s)

+
1

2π

∫

∂(Br(0)∩Cj)

M−1
∑

ℓ=0

(−2)ℓPℓS
−1
L (s, x) dsj ∂j

ℓ
F (s), for any x ∈ U.

The Cauchy theorem for poly slice monogenic functions implies that we can vary r without changing the
value of the second integral. Letting r tend to infinity, we find that the monogenic components converge to
fk(∞) and we obtain the statement, since

lim
r→∞

1

2π

∫

∂(Br(0)∩Cj)

M−1
∑

ℓ=0

(−2)ℓPℓS
−1
L (s, x) dsj ∂j

ℓ
F (s) =

M−1
∑

k=0

xkfk(∞).

�

Remark 4.8. There is a more direct proof of the Cauchy formulas with the Cauchy kernels PℓS
−1
L and PℓS

−1
R .

In fact, the integrals

Jk(x) :=
1

2π

∫

∂(U∩Cj)

k−1
∑

ℓ=0

(−2)ℓPℓS
−1
L (s, x) dsj ∂j

ℓ
F (s)

can be computed directly. As an example consider k = 2.

J2(x) =
1

2π

∫

∂(U∩Cj)

S−1
L (s, x) dsj

(

sf1(s) + f0(s)
)

+
1

2π

∫

∂(U∩Cj)

(−2)(Re(s)− x0)S
−1
L (s, x) dsj f1(s)

using the relation S−1
L (s, x)s− xS−1

L (s, x) = 1 and the Cauchy theorem we get

J2(x) =
1

2π
x

∫

∂(U∩Cj)

S−1
L (s, x) dsj f1(s) +

1

2π

∫

∂(U∩Cj)

S−1
L (s, x) dsj f0(s)

so we obtain J2(x) = xf1(x) + f0(x).

4.2. Cauchy formulas with kernels ΠℓS
−1
L and ΠℓS

−1
R . As one may easily compute, the components of

PℓS
−1
L (and of PℓS

−1
R ) in the poly slice monogenic decomposition do not have a finite limit for |x| → ∞, for

every fixed s and so they are not poly slice monogenic at infinity. Thus we introduce other kernels whose
components are poly slice monogenic at infinity.

Definition 4.9 (The Cauchy kernels ΠℓS
−1
L and ΠℓS

−1
R ). Let ℓ ∈ N. We define the left poly slice monogenic

Cauchy kernels of order ℓ+ 1 by

ΠℓS
−1
L (s, x) : =

1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

xkS−1
L (s, x)(−s)ℓ−k

= − 1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

xk(x2 − 2Re(s)x+ |s|2)−1(x− s)(−s)ℓ−k, s 6∈ [x]
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and right poly slice monogenic Cauchy kernels of order ℓ+ 1 is defined by

ΠℓS
−1
R (s, x) : =

1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

(−s)ℓ−kS−1
R (s, x)xk

= − 1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

(−s)ℓ−k(x− s̄)(x2 − 2Re(s)x+ |s|2)−1xk, s 6∈ [x].

Lemma 4.10. Let ℓ ∈ N and let x, s ∈ Rn+1 with s /∈ [x]. The kernel ΠℓS
−1
L (s, x) is left poly slice monogenic

in x and right poly slice monogenic in s of order ℓ + 1. The kernel ΠℓS
−1
R (s, x) is left poly slice monogenic

in s and right poly slice monogenic in x of order ℓ+ 1.

Proof. Consider the kernel ΠℓS
−1
L (s, x). The statement is a direct consequence of the definition of poly slice

monogenicity and of the poly decomposition of poly slice monogenic functions. In fact, ΠℓS
−1
L (s, x) is of the

form

ΠℓS
−1
L (s, x) =

ℓ
∑

k=0

ψℓ(s, x)s
ℓ−k

where the components

ψℓ(s, x) :=
1

ℓ!

(

ℓ

k

)

xkS−1
L (s, x)(−1)ℓ−k

are right poly slice monogenic function in the variable s for s /∈ [x]. The order ℓ+1 is clear from the definition.
To see that the kernel ΠℓS

−1
L (s, x) is left poly slice monogenic in x it is more convenient to write S−1

L (s, x) in

the form II and reasoning in a similar way. The case of ΠℓS
−1
R (s, x) follows with similar considerations. �

Lemma 4.11. For s /∈ [x] the kernel ΠℓS
−1
L (s, x) is the unique left (resp. right) poly slice monogenic

extension in x (resp. s) of the kernel πℓ(z, s) =
1
ℓ! (z̄ − s̄)ℓ(s − z)−1, z, s ∈ Cj, for z 6= s. Analogously, for

s /∈ [x], the kernel ΠℓS
−1
R (s, x) is the unique right (resp. left) poly slice monogenic extension in x (resp. s)

of the kernel πℓ(z, s) =
1
ℓ! (z̄ − s̄)ℓ(s− z)−1, z, s ∈ Cj, z 6= s.

Proof. When x = z ∈ Cj it is evident that the restriction of ΠℓS
−1
L (s, x) to Cj is πℓ(z, s). Since ΠℓS

−1
L (s, x) =

1
ℓ!

∑ℓ
k=0

(

ℓ
k

)

xkS−1
L (s, x)(−s)ℓ−k and its slice monogenic components are unique, the assertion follows. �

Theorem 4.12 (Cauchy formulas with the kernels ΠℓS
−1
L and ΠℓS

−1
R ). Let U ⊂ Rn+1 be a slice Cauchy

domain. For j ∈ S set dsj = ds(−j) and ∂j :=
1
2 (∂u + j∂v).

(I) If F is a left poly slice monogenic function on a set that contains U then

F (x) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, x) dsj ∂j

ℓ
F (s), for any x ∈ U. (31)

(II) If F is a right poly slice monogenic function on a set that contains U , then

F (x) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

F (s)∂j
ℓ
dsj ΠℓS

−1
R (s, x), for any x ∈ U. (32)

The integrals (29) and (30) depend neither on U nor on the imaginary unit j ∈ S.

Proof. It follows in much the same way as the case of the poly slice Cauchy formulas with kernels PℓS
−1
L and

PℓS
−1
R (see Theorem 4.5) using the poly splitting lemmas by taking x, s ∈ Cj. Then the assertion follows by

the poly representation formula, the polyanalytic Cauchy kernel πℓ used by Théodoresco see (2) and Lemma
4.11.

�

Theorem 4.13 (Poly slice monogenic Cauchy formulas on unbounded slice Cauchy domains). Let U ⊂ Rn+1

be an unbounded slice Cauchy. For j ∈ S set dsj = ds(−j) and ∂j :=
1
2 (∂u + j∂v).
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(I) Let F ∈ PSL(U) with poly slice decomposition

F (x) =

M−1
∑

k=0

xkfk(x)

and the components fk ∈ SML(U) are such that the limits lim|x|→∞ fk(x) = fk(∞) exist and are finite for
all k = 0, ...,M − 1. Then, we have

F (x) =

M−1
∑

k=0

xkfk(∞) +
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, x) dsj ∂j

ℓ
F (s) for any x ∈ U.

(II) Let F ∈ PSR(U) with poly slice decomposition

F (x) =

M−1
∑

k=0

fk(x)x
k

and the components fk ∈ SMR(U) are such that the limits lim|x|→∞ fk(x) = fk(∞) exist and are finite for
all k = 0, ...,M − 1. Then we have

F (x) =

M−1
∑

k=0

fk(∞)xk +
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

F (s)∂j
ℓ
dsj ΠℓS

−1
R (s, x) for any x ∈ U.

Proof. Consider (I). Recall that we assume the components fk ∈ SML(U) of F ∈ PSR(U) are such that
the limits lim|x|→∞ fk(x) = fk(∞) exist and are finite for all k = 0, ...,M − 1. For sufficiently large r > 0 ,

the set Ur := U ∩Br(0) is a bounded slice Cauchy domain with x ∈ Ur and Rn+1 \ Ur ⊂ U . By 4.5

F (x) =
1

2π

∫

∂(Ur∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, x) dsj ∂j

ℓ
F (s)

=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, x) dsj ∂j

ℓ
F (s)

+
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, x) dsj ∂j

ℓ
F (s), for any x ∈ U.

The Cauchy theorem for poly slice monogenic functions implies that we can vary r without changing the

value of the second integral. Letting r tend to infinity, we find that it equals
∑M−1

k=0 xkfk(∞) and we obtain
the statement. �

Remark 4.14. Also for the Cauchy formulas with the kernels ΠℓS
−1
L and ΠℓS

−1
R the integrals

Ik(r) :=
1

2π

∫

∂(U∩Cj)

k−1
∑

ℓ=0

ΠℓS
−1
L (s, x) dsj ∂j

ℓ
F (s)

can be computed directly. As an example consider the case k = 2, so we have

I2(x) =
1

2π

∫

∂(U∩Cj)

S−1
L (s, x) dsj

(

sf1(s) + f0(s)
)

+
1

2π

∫

∂(U∩Cj)

(

S−1
L (s, x)(−s) + xS−1

L (s, x)
)

dsj f1(s)

and so we get I2(x) = xf1(x) + f0(x) using the Cauchy formula of slice monogenic functions.
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4.3. Poly ⊛L-product and ⊛R-product. We conclude this section with the product of poly slice mono-
genic functions. We note that given two poly slice monogenic functions F and G of orders N and M , we
can use the poly decomposition formulas to define a natural product. This product take out of the class but
it will be useful for the product rule of the PS-functional calculus.

Definition 4.15 (Poly ⊛L-product and ⊛R-product and pointwise product ). Let U ⊂ Rn+1 be an axially
symmetric open set and M,N ≥ 1.

(I) Let F ∈ PSN
L (U) and G ∈ PSM

L (U) and let

F (x) =

N−1
∑

k=0

xkfk(x) and G(x) =

M−1
∑

k=0

xkgk(x), for all x ∈ U,

be their poly decompositions for f0, ..., fN−1 and g0, ..., gM−1 ∈ SML(U). We defined the poly ⊛L-product
of F and G by:

(F ⊛L G)(x) :=

N+M−2
∑

ℓ=0

xℓ

(

∑

k+h=ℓ

(fk ∗L gh)(x)
)

, (33)

where ∗L is the ∗-product of left slice monogenic functions.
(II) Let F ∈ PSN

R (U) and G ∈ PSM
R (U) and let

F (x) =

N−1
∑

k=0

fk(x)x
k and G(x) =

M−1
∑

k=0

gk(x)x
k, for all x ∈ U,

be their poly decompositions for f0, ..., fN−1 and g0, ..., gM−1 ∈ SMR(U). We defined the poly ⊛R-product
of F and G by:

(F ⊛R G)(x) :=
N+M−2
∑

ℓ=0

(

∑

k+h=ℓ

(fk ∗R gh)(x)
)

xℓ, (34)

where ∗R is the star-product of right slice monogenic functions.
(III) Let F ∈ PNN

L (U) and G ∈ PSM
L (U) and let

F (x) =

N−1
∑

k=0

xkfk(x) and G(x) =

M−1
∑

k=0

xkgk(x), for all x ∈ U,

be their poly decompositions for f0, ..., fN−1 ∈ N (U) and g0, ..., gM−1 ∈ SML(U) . The pointwise product
of F and G is defined by:

(FG)(x) :=
N+M−2
∑

ℓ=0

xℓ

(

∑

k+h=ℓ

(fkgh)(x)

)

. (35)

Similarly we define the pointwise product for F ∈ PSN
R (U) and G ∈ PNM

R (U).

Remark 4.16. It is clear that the pointwise product of two poly slice monogenic functions does not preserve
the poly slice monogenicity, but, as we will see, it does when we consider intrinsic functions.

Theorem 4.17. Let U ∈ Rn+1 be an axially symmetric open set and M,N ≥ 1.
(I) Let F ∈ PSN

L (U) and G ∈ PSM
L (U) and let

(F ⊛L G)(x) :=

N+M−2
∑

ℓ=0

xℓ

(

∑

k+h=ℓ

(fk ∗L gh)(x)
)

, (36)

the poly ⊛L-product of F and G. Then (F ⊛L G) ∈ PSM+N−1
L (U).

(II) Let F ∈ PSN
R (U) and G ∈ PSM

R (U) and let

(F ⊛R G)(x) :=

N+M−2
∑

ℓ=0

(

∑

k+h=ℓ

(fk ∗R gh)(x)
)

xℓ, (37)

be the poly ⊛R-product of F and G. Then (F ⊛R G) ∈ PSM+N−1
R (U).
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Proof. Let us prove (I). With similar computations we get (II). Observe that, in (36), the function

hℓ(x) :=
∑

k+h=ℓ

(fk ∗L gh)(x)

is slice monogenic in U for all ℓ, by definition, so the function

(F ⊛L G)(x) :=

N+M−2
∑

ℓ=0

xℓhℓ(x),

belongs to PSM+N−1
R (U) thanks to the poly decomposition theorem. �

As a consequence of the previous result we have the case of intrinsic functions which will be used for the
product rule for the PS-functional calculus.

Corollary 4.18. Let U ⊆ Rn+1 be an axially symmetric open set and M,N ≥ 1.
(I) Let F ∈ PNN

L (U) and G ∈ PSM
L (U). Then we have

(F ⊛L G)(x) = F (x)G(x) =

N+M−2
∑

ℓ=0

xℓ

(

∑

k+h=ℓ

fk(x)gh(x)

)

, (38)

and FG ∈ PSM+N−1
L (U).

(II) Let F ∈ PSN
R (U) and G ∈ PNM

R (U). Then we have

(F ⊛R G)(x) = F (x)G(x) =

N+M−2
∑

ℓ=0

(

∑

k+h=ℓ

fk(x)gh(x)

)

xℓ, (39)

and FG ∈ PSM+N−1
R (U).

Proof. It is a direct consequence of the product theorem for slice monogenic functions, i.e., it is the case
when the slice monogenic ∗-product becomes the pointwise product. �

5. Formulations of the PS-functional calculus via the ΠS-resolvent operators

In the sequel, we will consider a Banach space V over R with norm ‖ ·‖. It is possible to endow V with an
operation of multiplication by elements of Rn which gives a two-sided module over Rn. A two-sided module
V over Rn is called a Banach module over Rn, if there exists a constant C ≥ 1 such that ‖va‖ ≤ C‖v‖|a|
and ‖av‖ ≤ C|a|‖v‖ for all v ∈ V and a ∈ Rn. By Vn we denote V ⊗ Rn that turns out to be a two-sided
Banach module over Rn. An element in Vn is of the type

∑

A vA ⊗ eA (where A = i1 . . . ir, iℓ ∈ {1, 2, . . . , n},
i1 < . . . < ir is a multi-index). The multiplications of an element v ∈ Vn with a scalar a ∈ Rn are defined by
va =

∑

A vA⊗(eAa) and av =
∑

A vA⊗(aeA). For simplicity, we will write
∑

A vAeA instead of
∑

A vA⊗eA.
Finally, we define ‖v‖2Vn

=
∑

A ‖vA‖2V .
We denote by B(V ) the space of bounded R-homomorphisms of the Banach space V to itself endowed

with the natural norm denoted by ‖ · ‖B(V ). Given TA ∈ B(V ), we can introduce the Clifford operator
T =

∑

A eATA and its action on v =
∑

vBeB ∈ Vn as T (v) =
∑

A,B TA(vB)eAeB. The operator T is a
right-module homomorphism which is a bounded linear map on Vn.
In the sequel, we will consider an important subclass of Clifford operators, the ones of the form T =
T0+

∑n
j=1 ejTj are called paravector operators, where Tj ∈ B(V ) for j = 0, 1, . . . , n. The subset of paravector

operators in B(Vn) will be denoted by B0,1(Vn). For Clifford operators T =
∑

A eATA we define ‖T ‖B(Vn) =
∑

A ‖TA‖B(V ) and in particular when T is a paravector operator we have ‖T ‖B0,1(Vn) =
∑

j ‖Tj‖B(V ). Note

that, in the sequel, we will omit the subscripts B0,1(Vn) or B(Vn) in the norm of an operator. Note also
that ‖TS‖ ≤ ‖T ‖‖S‖, finally we denote by I the identity operator. We recall this crucial result which is
the heart of the spectral theory on the S-spectrum because it shows the notion of S-spectrum and of S-
resolvent operators. The subset of B0,1(Vn) that consists of those paravector operators T = T0 +

∑n

j=1 ejTj

with commuting components T0, ..., Tn will be denoted by BC0,1(Vn). Finally we will use the notation
T = T0 −

∑n

j=1 ejTj .

We recall some facts on the S-functional calculus that we will use in the sequel.
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Theorem 5.1. Let T ∈ B0,1(Vn) and let s ∈ Rn+1 with ‖T ‖ < |s|.
(i) The left S-resolvent series equals

+∞
∑

m=0

Tms−m−1 = −(T 2 − 2Re(s)T + |s|2I)−1(T − sI).

(ii) The right S-resolvent series equals

+∞
∑

m=0

s−m−1Tm = −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1.

Definition 5.2. Let T ∈ B0,1(Vn). For s ∈ Rn+1, we set

Qs(T ) := T 2 − 2Re(s)T + |s|2I.
We define the S-resolvent set ρS(T ) of T as

ρS(T ) := {s ∈ R
n+1 : Qs(T ) is invertible in B(Vn)}

and we define the S-spectrum σS(T ) of T as

σS(T ) := R
n+1 \ ρS(T ).

For s ∈ ρS(T ), the operator Qs(T )
−1 is called the pseudo S-resolvent operator of T at s.

Definition 5.3. Let T ∈ B0,1(Vn). For s ∈ ρS(T ), we define the left S-resolvent operator as

S−1
L (s, T ) = −Qs(T )

−1(T − s I),
and the right S-resolvent operator as

S−1
R (s, T ) = −(T − sI)Qs(T )

−1.

Lemma 5.4. Let T ∈ B0,1(Vn).
(I) The left S-resolvent operator S−1

L (s, T ) is a B(Vn)-valued right-slice mponogenic function of the variable
s on ρS(T ).

(II) The right S-resolvent operator S−1
R (s, T ) is a B(Vn)-valued left-slice monogenic function of the vari-

able s on ρS(T ).

Definition 5.5. For T ∈ B0,1(Vn), we denote by SML(σS(T )), SMR(σS(T )) and N (σS(T )), the set of all
left, right and intrinsic slice monogenic functions with σS(T ) ⊂ U , where U is a slice Cauchy domain such
that U ⊂ dom(f) and dom(f) is the domain of the function f .

Definition 5.6 (The S-functional calculus). Let T ∈ B0,1(Vn) for j ∈ S set dsj = ds(−j). Then we have the
formulations of the S-functional calculus. We define

f(T ) :=
1

2π

∫

∂(U∩Cj)

S−1
L (s, T ) dsj f(s), for all f ∈ SML(σS(T )), (40)

and

f(T ) :=
1

2π

∫

∂(U∩Cj)

F (s) dsj S
−1
R (s, T ), for all f ∈ SMR(σS(T )). (41)

Remark 5.7. The definition of the S-functional calculus is well posed because the integrals (40) and (41)
depend neither on U nor on the imaginary unit j ∈ S. This is also independent of the fact that the components
of the operator T commute or not among themselves.

The S-resolvent equation is useful to prove several properties of the S-functional calculus. So it is natural
to ask if it is possible to obtain an analog of the classical resolvent equation

(λI −A)−1(µI −A)−1 =
(

(λI −A)−1 − (µI −A)−1
)(

µ− λ
)−1

, λ, µ ∈ C \ σ(A), (42)

where A is a complex operator on a Banach space. The generalization to this non commutative setting,
involves both the left and the right S-resolvent operators and the analogue of the term

(

(λI −A)−1 − (µI −
A)−1

)(

µ−λ
)−1

, which is the difference of the resolvent operators (λI−A)−1− (µI−A)−1 multiplied by the
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Cauchy kernel (µ − λ)−1 for the S-functional calculus becomes the difference of the S-resolvent operators
S−1
R (s, T )−S−1

L (p, T ) entangled in a suitable way with the slice monogenic Cauchy kernels. In fact we have:

Theorem 5.8 (The S-resolvent equation, see [8]). Let T ∈ B0,1(Vn) and let s, q ∈ ρS(T ) with q /∈ [s]. Set
Qs(q)

−1 := (q2 − 2Re(s)q + |s|2)−1. Then the equation

S−1
R (s, T )S−1

L (q, T ) =
[(

S−1
R (s, T )− S−1

L (q, T )
)

q − s
(

S−1
R (s, T )− S−1

L (q, T )
)]

Qs(q)
−1 (43)

holds true. Equivalently, it can also be written as

S−1
R (s, T )S−1

L (q, T ) = Qq(s)
−1
[(

S−1
L (q, T )− S−1

R (s, T )
)

q − s
(

S−1
L (q, T )− S−1

R (s, T )
)]

. (44)

The S-resolvent equation is a consequence of the left and the right S-resolvent equations:

Theorem 5.9. Let T ∈ B0,1(Vn) and let s ∈ ρS(T ). The left S-resolvent operator satisfies the left S-resolvent
equation

S−1
L (s, T )s− TS−1

L (s, T ) = I (45)

and the right S-resolvent operator satisfies the right S-resolvent equation

sS−1
R (s, T )− S−1

R (s, T )T = I. (46)

We point out that the equations (45) and (46) cannot be considered the generalizations of the classical
resolvent equation. Only the equations in Theorem 5.8 have the properties of the classical resolvent equation
(42). The product rule is a consequence of the S-resolvent equation.

Theorem 5.10 (Product rule). Let T ∈ B0,1(Vn) and let f ∈ N (σS(T )) and g ∈ SML(σS(T )) or let
f ∈ SMR(σS(T )) and g ∈ N (σS(T )). Then

(fg)(T ) = f(T )g(T ).

In this section we give the formulations of the poly slice monogenic version of the S-functional based on
the poly slice Cauchy formulas. This calculus that will be indicated by PS-functional calculus

Definition 5.11 (The ΠS-resolvent operators ΠℓS
−1
L (s, T ) and ΠℓS

−1
R (s, T )). Let T ∈ B0,1(Vn) and s ∈

ρS(T ). We define the left poly S-resolvent operator (for short ΠS-resolvent operator) of order ℓ + 1, for
ℓ ∈ N as

ΠℓS
−1
L (s, T ) : =

1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

T
k
S−1
L (s, T )(−s)ℓ−k

= − 1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

T
kQs(T )

−1(T − sI)(−s)ℓ−k,

and the right poly S-resolvent operator (for short right ΠS-resolvent operator)

ΠℓS
−1
R (s, T ) : =

1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

(−s)ℓ−kS−1
R (s, T )T

k

= − 1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

(−s)ℓ−k(T − sI)Qs(T )
−1T

k
.

where Qs(T ) := T 2 − 2Re(s)T + |s|2I.

Lemma 5.12. Let T ∈ B0,1(Vn) and let ℓ ∈ N. Then we have:
(I) The poly left S-resolvent ΠℓS

−1
L (s, T ) is a B(Vn)-valued right poly slice monogenic function of the

variable s on ρS(T ) of order ℓ+ 1.
(II) The poly right S-resolvent ΠℓS

−1
R (s, T ) is a B(Vn)-valued left poly slice monogenic function of the

variable s on ρS(T ) of order ℓ+ 1.
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Proof. Consider case (I). It is a direct consequence of the definition because it is of the form

ΠℓS
−1
L (s, T ) =

ℓ
∑

k=0

ψℓ(s, T )s
ℓ−k

where the components

ψℓ(s, T ) :=
1

ℓ!

(

ℓ

k

)

T
k
S−1
L (s, T )(−1)ℓ−k

are right B(Vn)-valued slice monogenic function in the variable s on ρS(T ), recalling that Vn = V ⊗ Rn.
Apply Theorem 3.6 which still holds for function B(Vn)-valued we get the statement. The order ℓ+1 is clear
from the definition. Case (II) follows with the same considerations. �

We can define the left and the right PS-resolvent equations for T ∈ BC0,1(Vn), that is when T has
commuting components. This will have consequences on the product rules.

Definition 5.13. Let M ∈ N and let T ∈ B0,1(Vn). We denote by PSM
L (σS(T )), PSM

R (σS(T )) and

PNM (σS(T )) the set of all left, right and intrinsic poly slice monogenic functions F or orderM , respectively,
with σS(T ) ⊂ U , where U is a slice Cauchy domain such that U ⊂ dom(F ) and dom(F ) is the domain of
the function F .

Using the Cauchy formula of poly slice monogenic functions we give the definition of the PS-functional
calculus.

Definition 5.14 (The PS-functional calculus (I)). Let T ∈ B0,1(Vn), M ∈ N, for j ∈ S, set dsj = ds(−j),

∂j :=
1
2 (∂u + j∂v) let ΠℓS

−1
L (s, T ) and ΠℓS

−1
R (s, T ) be the ΠS-resolvent operators, for ℓ = 0, ...,M − 1. We

define

F (T ) :=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
F (s), for all F ∈ PSM

L (σS(T )), (47)

and

F (T ) :=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

F (s)∂j
ℓ
dsj ΠℓS

−1
R (s, T ), for all F ∈ PSM

R (σS(T )). (48)

The following theorem shows that the definitions of the PS-functional calculus are well posed.

Theorem 5.15. Let T ∈ B0,1(Vn), M ∈ N, for j ∈ S, set dsj = ds(−j), ∂j :=
1
2 (∂u+j∂v) and let ΠℓS

−1
L (s, T )

and ΠℓS
−1
R (s, T ) be the ΠS-resolvent operators, for ℓ = 0, ...,M−1. Then the integrals (47) and (48) depend

neither on U nor on the imaginary unit j ∈ S.

Proof. Recall that we work under Assumption 3.8. The independence of the integrals (47) and (48) from
the open set U is standard. We treat the case of F ∈ PSL(σS(T )), for functions in F ∈ PSR(σS(T )) the
proof is similar with obvious changes. If U ′ 6⊂ U , then O := U ∩ U ′ is a slice Cauchy domain that contains
σS(T ). We can hence find a third slice Cauchy domain U ′′ with σS(T ) ⊂ U ′′ and U ′′ ⊂ O = U ∩ U ′. The
above arguments show that the integrals over the boundaries of all three sets agree.

To show the independence of j ∈ S we choose two units i, j ∈ S and two slice Cauchy domains Uq, Us ⊂
dom(F ) with σS(T ) ⊂ Uq and Uq ⊂ Us. (The subscripts q and s are chosen to indicate the respective
variable of integration in the following computation). We start from the definition of the PS-functional
calculus integrating on ∂(Us ∩ Cj):

F (T ) :=
1

2π

∫

∂(Us∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
F (s),

where F (s) =
∑M−1

k=0 skfk(s). We recall that

∂j
ℓ(

skfk(s)
)

=
k!

(k − ℓ)!
sk−ℓfk(s), for k ≥ ℓ
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and ∂j
ℓ(

skfk(s)
)

= 0, for k < ℓ. So we have that

∂j
ℓ
(

M−1
∑

k=0

skfk(s)
)

=

M−1
∑

k=0

∂j
ℓ
(

skfk(s)
)

=

M−1
∑

k=ℓ

k!

(k − ℓ)!
sk−ℓfk(s),

since for k < ℓ the terms ∂j
ℓ
(

∑M−1
k=0 skfk(s)

)

are zero. Now consider F (T ) written as

F (T ) =
1

2π

∫

∂(Us∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj

M−1
∑

k=ℓ

k!

(k − ℓ)!
sk−ℓfk(s).

We can write it more explicitly (putting a label (ℓ = 1, 2, ....,M − 1) in front of the integrals to identify them
in the sequel) as

F (T ) = (ℓ = 0)
1

2π

∫

∂(Us∩Cj)

Π0S
−1
L (s, T ) dsj

M−1
∑

k=0

skfk(s),

+ (ℓ = 1)
1

2π

∫

∂(Us∩Cj)

Π1S
−1
L (s, T ) dsj

M−1
∑

k=1

k!

(k − 1)!
sk−1fk(s),

+ (ℓ = 2)
1

2π

∫

∂(Us∩Cj)

Π2S
−1
L (s, T ) dsj

M−1
∑

k=2

k!

(k − 2)!
sk−2fk(s),

. . .

+ (ℓ =M − 1)
1

2π

∫

∂(Us∩Cj)

ΠM−1S
−1
L (s, T ) dsj (M − 1)!fM−1(s).

(49)

Now we replace the explicit expressions of the ΠℓS-resolvent operators

Π0S
−1
L (s, T ) = S−1

L (s, T ),

Π1S
−1
L (s, T ) = S−1

L (s, T )(−s) + TS−1
L (s, T ),

Π2S
−1
L (s, T ) =

1

2!

(

S−1
L (s, T )(−s)2 + 2T

1
S−1
L (s, T )(−s) + T

2
S−1
L (s, T )

)

,

. . .

ΠM−1S
−1
L (s, T ) =

1

(M − 1)!

M−1
∑

k=0

(

M − 1

k

)

T
k
S−1
L (s, T )(−s)M−1−k.

(50)

and we get

F (T ) = (ℓ = 0)
1

2π

∫

∂(Us∩Cj)

S−1
L (s, T ) dsj

M−1
∑

k=0

skfk(s),

+ (ℓ = 1)
1

2π

∫

∂(Us∩Cj)

(

S−1
L (s, T )(−s) + TS−1

L (s, T )
)

dsj

M−1
∑

k=1

k!

(k − 1)!
sk−1fk(s),

+ (ℓ = 2)
1

2π

∫

∂(Us∩Cj)

1

2!

(

S−1
L (s, T )(−s)2 + 2T

1
S−1
L (s, T )(−s) + T

2
S−1
L (s, T )

)

dsj

×
M−1
∑

k=2

k!

(k − 2)!
sk−2fk(s)

. . .

+ (ℓ =M − 1)
1

2π

∫

∂(Us∩Cj)

( 1

(M − 1)!

M−1
∑

k=0

(

M − 1

k

)

T
k
S−1
L (s, T )(−s)M−1−k

)

dsj

× (M − 1)!fM−1(s).
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Now in the integral for (ℓ = 0)

J(ℓ=0) :=
1

2π

∫

∂(Us∩Cj)

S−1
L (s, T ) dsj

M−1
∑

k=0

skfk(s)

we separate the term with f0(s) and we write it as

J(ℓ=0) := R0 −
1

2π

∫

∂(Us∩Cj)

S−1
L (s, T ) dsj f0(s)

where R0 contains all the other terms. The terms for (ℓ = 1) are separated as

J(ℓ=1) := R1 +
1

2π

∫

∂(Us∩Cj)

TS−1
L (s, T ) dsj f1(s)

where R1 contains all the other terms. We proceed in the same manner also for (ℓ = 2) and for the rest of
the terms to get

J(ℓ=2) := R2 +
1

2π

∫

∂(Us∩Cj)

T
2
S−1
L (s, T ) dsj f2(s)

. . .

J(ℓ=M−1) := RM−1 +
1

2π

∫

∂(Us∩Cj)

T
M−1

S−1
L (s, T ) dsj fM−1(s).

Finally consider the sum of the terms in
∑M−1

j=0 Rj . It turns out to be zero and this can be seen by gathering

in the sum
∑M−1

j=0 Rj the terms that contain f0, f1 .... fN−1. In each of these sums have the addends that
cancel. This shows that we are left with

F (T ) =
M−1
∑

k=0

T
k 1

2π

∫

∂(Us∩Cj)

S−1
L (s, T ) dsj fk(s).

Repeating the above computation with the imaginary unit i ∈ S on ∂(Uq ∩ Ci) we obtain

F (T ) =

M−1
∑

k=0

T
k 1

2π

∫

∂(Uq∩Ci)

S−1
L (q, T ) dqi fk(q)

but since the S-functional calculus is independent from the imaginary units i and j in S we get the statement.
�

Remark 5.16 (The case M = 3). For the reader’s convenience, in order to understand in which way the
terms in the proof of the previous result combine, we write explicitly the case M = 3. We recall that the
explicit expressions of the ΠℓS-resolvent operators are given in (50) and the function F (s) is of the form

F (s) = s2f2(s) + sf1(s) + f0(s).

So we have

F (T ) :=
1

2π

∫

∂(Us∩Cj)

2
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
(

s2f2(s) + sf1(s) + f0(s)
)

and we split in 3 terms

F (T ) = (ℓ = 0)
1

2π

∫

∂(Us∩Cj)

Π0S
−1
L (s, T ) dsj

(

s2f2(s) + sf1(s) + f0(s)
)

+ (ℓ = 1)
1

2π

∫

∂(Us∩Cj)

Π1S
−1
L (s, T ) dsj

(

2sf2(s) + f1(s)
)

+ (ℓ = 2)
1

2π

∫

∂(Us∩Cj)

Π2S
−1
L (s, T ) dsj

(

2f2(s)
)
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and, replacing the ΠℓS-resolvent operators, the addends become

J(ℓ=0) : =
1

2π

∫

∂(Us∩Cj)

S−1
L (s, T ) dsj

(

s2f2(s) + sf1(s)
)

+
1

2π

∫

∂(Us∩Cj)

S−1
L (s, T ) dsj

(

f0(s)
)

where the last integral gives f0(T ), thanks to the S-functional calculus. Now consider

J(ℓ=1) : =
1

2π

∫

∂(Us∩Cj)

(

S−1
L (s, T )(−s)

)

dsj

(

2sf2(s)
)

+
1

2π

∫

∂(Us∩Cj)

(

S−1
L (s, T )(−s)

)

dsj

(

f1(s)
)

+
1

2π

∫

∂(Us∩Cj)

(

TS−1
L (s, T )

)

dsj

(

2sf2(s)
)

+
1

2π

∫

∂(Us∩Cj)

(

TS−1
L (s, T )

)

dsj

(

f1(s)
)

,

where the last integral gives Tf1(T ). For J(ℓ=2) we have

J(ℓ=2) :=
1

2π

∫

∂(Us∩Cj)

( 1

2!
S−1
L (s, T )(−s)2

)

dsj

(

2f2(s)
)

+
1

2π

∫

∂(Us∩Cj)

( 1

2!
· 2TS−1

L (s, T )(−s)
)

dsj

(

2f2(s)
)

+
1

2π

∫

∂(Us∩Cj)

( 1

2!
T

2
S−1
L (s, T )

)

dsj

(

2f2(s)
)

,

where the last integral give the term T
2
f2(T ). Finally consider all the terms that remain. Observe that all

the terms in the sum with f1 cancel and the terms that contain f2 cancel out as well.

Remark 5.17. To prove that the integrals (47) and (48) do not depend on the imaginary unit j ∈ S we can
also use the poly slice monogenic Cauchy formula. This strategy to show that the PS-functional calculus is
well posed is more similar to the one used for the S-functional calculus. We just give the hints because the
computations are longer with respect to the proof that we have given above. With the same notations on
the domains as in the proof above we observe the following: the set U c

q := Rn+1 \Uq is an unbounded axially

symmetric domain with U c
q ⊂ ρS(T ). The left PS-resolvent operator is right poly slice monogenic on ρS(T )

and at infinity, since

lim
s→∞

S−1
L (s, T ) = lim

s→∞

+∞
∑

n=0

T ns−n−1 = 0

and the left S-resolvent operator is slice monogenic. Now observe that the ΠS-resolvent operator

ΠℓS
−1
L (s, T ) =

1

ℓ!

ℓ
∑

k=0

(

ℓ

k

)

T
k
S−1
L (s, T )(−s)ℓ−k

has operator valued slice monogenic components, and they go to zero, i.e.,

(−1)ℓ−k

ℓ!

(

ℓ

k

)

T
k
S−1
L (s, T ) → 0, for s→ ∞.

So we can represent it with the Cauchy formula for unbounded slice Cauchy domains and it is right poly
slice monogenic on the S-resolvent set ρS(T ). We have

ΠℓS
−1
L (s, T ) =

1

2π

∫

∂(Uc
q∩Ci)

M−1
∑

m=0

ΠℓS
−1
L (q, T )∂i

m
dqi ΠmS

−1
R (q, s)
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because ΠℓS
−1
L (s, T ) is poly slice monogenic up to orderM ≥ ℓ, for any s ∈ U c

q . From S−1
R (q, s) = −S−1

L (s, q)
we find that the Cauchy kernel

ΠmS
−1
R (s, q) =

1

m!

m
∑

k=0

(

m

k

)

(−s)m−kS−1
R (s, q)qk

can be written as

ΠmS
−1
R (q, s) =

1

m!

m
∑

k=0

(

m

k

)

(−q)m−kS−1
R (q, s)sk

= − 1

m!

ℓ
∑

k=0

(

m

k

)

(−q)m−kS−1
L (s, q)sk.

So keeping in mind that ∂(U c
q ∩ Ci) = −∂(Uq ∩ Ci) we have the chain of equalities

F (T ) :=
1

2π

∫

∂(Us∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
F (s)

=
1

2π

∫

∂(Us∩Cj)

M−1
∑

ℓ=0

( 1

2π

∫

∂(Uc
q∩Ci)

M−1
∑

m=0

ΠℓS
−1
L (q, T )∂i

m
dqi ΠmS

−1
R (q, s)

)

dsj ∂j
ℓ
F (s)

=
1

2π

∫

∂(Us∩Cj)

M−1
∑

ℓ=0

( 1

2π

∫

∂(Uq∩Ci)

M−1
∑

m=0

ΠℓS
−1
L (q, T ) ∂i

m
dqi ΠmS

−1
L (s, q)

)

dsj ∂j
ℓ
F (s)

=
1

2π

∫

∂(Uq∩Ci)

M−1
∑

m=0

ΠℓS
−1
L (q, T ) ∂i

m
dqi

( 1

2π

∫

∂(Us∩Cj)

M−1
∑

ℓ=0

ΠmS
−1
L (s, q) dsj ∂j

ℓ
F (s)

)

where we have used Fubini’s theorem and with some very long computations we obtain

F (T ) =
1

2π

∫

∂(Uq∩Ci)

M−1
∑

m=0

ΠmS
−1
L (q, T ) ∂i

m
dqi F (q) =

1

2π

∫

∂(Uq∩Ci)

M−1
∑

m=0

ΠmS
−1
L (q, T ) dqi ∂i

m
F (q).

So we conclude that the poly slice monogenic Cauchy formula gives the independence on the imaginary units
in the sphere S because we chose Uq ⊂ Us. The computations above to show all the cancellations are slightly
more complicated with respect to the one in the prove that we have given above.

We start by proving some basic results related to the PS-functional calculus introduced in Definition 5.14

Proposition 5.18 (Linearity of the PS-functional calculus). Let T ∈ B0,1(Vn) and M ≥ 1. Then, we have

(1) If F,G ∈ PSM
L (σS(T )), then we have:

(F +G)(T ) = F (T ) +G(T ), (Fλ)(T ) = F (T )λ, for all λ ∈ Rn.

(2) If F,G ∈ PSM
R (σS(T )), then we have:

(F +G)(T ) = F (T ) +G(T ), (λF )(T ) = λF (T ), for all λ ∈ Rn.

Proof. This follows directly by construction of the PS-functional calculus in Definition 5.14. �

Remark 5.19. So far, we always made use of the poly decomposition (16) of a function F ∈ PSM
L (U) in terms

of f0, ..., fM−1 ∈ SML(U). When the components are polynomials or power series fℓ(x) for ℓ = 0, ...,M − 1,
then

fℓ(x) =
∞
∑

u=0

xuAℓ,u, with Aℓ,u ∈ Rn, for u ∈ N0, ℓ = 0, ...,M − 1.

So, for fM−1 6= 0, we have the decomposition

F (x) =
M−1
∑

ℓ=0

xℓ
∞
∑

u=0

xuAℓ,u, ∀x ∈ U, (51)
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where U is the set of convergence of all the series fℓ(x), for ℓ = 0, ...,M − 1. Analogous considerations hold
for the right case (17), and we have

F (x) =
M−1
∑

ℓ=0

(

∞
∑

u=0

Aℓ,ux
u
)

xℓ, ∀x ∈ U. (52)

The following theorem shows the compatibility of the PS-functional calculus with the poly slice monogenic
polynomials and series with respect to the slice monogenic components. That is when we consider, for
example, the expansion (51), the PS-functional calculus gives

F (T ) =
M−1
∑

ℓ=0

T
ℓ

∞
∑

u=0

T uAℓ,u,

when F is defined on the S-spectrum of T .

Theorem 5.20. Let T ∈ B0,1(Vn) where we set T = T0−
∑n

j=1 ejTj. Let M ∈ N, for j ∈ S, set dsj = ds(−j)

and ∂j :=
1
2 (∂u + j∂v). Let ΠℓS

−1
L (s, T ) and ΠℓS

−1
R (s, T ) be the ΠS-resolvent operators, for ℓ = 0, ...,M − 1,

and suppose σS(T ) ⊂ U , where U is a slice Cauchy domain.
(I) Then when F is the series expansion in (51) we have

1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
F (s) =

M−1
∑

ℓ=0

T
ℓ

∞
∑

u=0

T uAk,u.

(II) Then when F is the series expansion in (52) we have

1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

F (s)∂j
ℓ
dsj ΠℓS

−1
R (s, T ) =

M−1
∑

ℓ=0

(

∞
∑

u=0

Ak,uT
u
)

T
ℓ
.

Proof. It follows from the definition with some computations. �

Remark 5.21. From Theorem 5.20 we see a first difference with respect to the S-functional calculus for
intrinsic functions. In fact, for the PS-functional calculus it is not enough that F is an intrinsic function to
have that

M−1
∑

ℓ=0

T
ℓ

∞
∑

u=0

T uAk,u =

M−1
∑

ℓ=0

(

∞
∑

u=0

Ak,uT
u
)

T
ℓ

but we have to require that T has commuting components, i.e. T ∈ BC0,1(Vn).

The following theorem is important to prove the product rule.

Theorem 5.22 (The intrinsic PS-functional calculus (I)). Let T ∈ BC0,1(Vn) and set dsj = ds(−j) and

∂j :=
1
2 (∂u + j∂v). Let F ∈ PNM (σS(T )). Let ΠℓS

−1
L (s, T ) and ΠℓS

−1
R (s, T ) be the ΠS-resolvent operators,

for ℓ = 0, ...,M − 1, and suppose σS(T ) ⊂ U , where U is a slice Cauchy domain. Then the left and the right
formulations of the PS-functional calculus define the same operators; i.e., we have

F (T ) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
F (s)

=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

F (s)∂j
ℓ
dsjΠℓS

−1
R (s, T ).

(53)

Proof. It is a consequence of the Theorem 3.18, when we approximate the intrinsic function F by a sequence
of rational functions Fn we have

1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
Fn(s) =

1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

Fn(s)∂j
ℓ
dsj ΠℓS

−1
R (s, T )

for T ∈ BC0,1(Vn) and from the continuity of the PS-functional calculus we get the statement. �
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6. Formulations of the PS-functional calculus via the modified S-resolvent operators

There is an alternative way to define the PS-functional calculus: instead of using the Cauchy formula for
poly slice monogenic functions, we can use the integral representation of slice monogenic function. In order
to apply this strategy we need to define the modified S-resolvent operators and their related modified S-
resolvent equation. As we have seen the PS-resolvent operators are poly slice monogenic, while the modified
S-resolvent operators are slice monogenic.

We define the modified S-resolvent operator series.

Definition 6.1. Let T ∈ B0,1(Vn) and let s ∈ Rn+1 with ‖T ‖ < |s| and B ∈ B(Vn). We call

+∞
∑

m=0

TmBs−m−1, and
+∞
∑

m=0

s−m−1BTm

the modified left (resp. right) S-resolvent operator series expansions.

Theorem 6.2. Let T ∈ B0,1(Vn) and let s ∈ Rn+1 with ‖T ‖ < |s| and let B ∈ B(Vn).
(i) The modified left S-resolvent operator series equals

+∞
∑

m=0

TmBs−m−1 = −(T 2 − 2Re(s)T + |s|2I)−1(TB −Bs).

(ii) The modified right S-resolvent operator series equals

+∞
∑

m=0

s−m−1BTm = −(BT − sB)(T 2 − 2Re(s)T + |s|2I)−1.

Proof. It follows directly from the relations

+∞
∑

m=0

qmBs−1−m = −(q2 − 2Re(s)q + |s|2)−1(qB −Bs), (54)

and
+∞
∑

m=0

s−1−mBqm = −(Bq − sB)(q2 − 2Re(s)q + |s|2)−1, (55)

which hold for s, q ∈ R
n+1 with |q| < |s|, replacing q by T and ‖T ‖ < |s|. See [8] for more details. �

Definition 6.3 (The modified S-resolvent operators). Let T ∈ B0,1(Vn) and let B ∈ B(Vn). For s ∈ ρS(T ),
we define the modified left S-resolvent operator as

S−1
L (s, T ;B) := −Qs(T )

−1(TB −Bs),

and the modified right S-resolvent operator as

S−1
R (s, T ;B) := −(BT − sB)Qs(T )

−1,

where Qs(T ) := T 2 − 2Re(s)T + |s|2I.
Lemma 6.4. Let T ∈ B0,1(Vn) and let B ∈ B(Vn).

(I) The modified left S-resolvent operator S−1
L (s, T ;B) is a B(Vn)-valued right-slice monogenic function

of the variable s on ρS(T ).
(II) The modified right S-resolvent operator S−1

R (s, T ;B) is a B(Vn)-valued left-slice monogenic function
of the variable s on ρS(T ).

Proof. It is can be proved by a direct computation as in the case of the S-resolvent operators. �

Some more interesting relation can be obtained when B ∈ B(Vn) commutes with T and this fact will be
crucial in the sequel.
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Lemma 6.5. Let T ∈ B0,1(Vn) and suppose that B ∈ B(Vn) commutes with T . Let s ∈ ρS(T ). Then we
have

S−1
L (s, T ;B) = BS−1

L (s, T ),

and
S−1
R (s, T ;B) = S−1

R (s, T )B.

Proof. Since TB = BT the statement follows from the fact that (TB −Bs) = B(T − sI) and Qs(T )
−1B =

BQs(T )
−1. �

Theorem 6.6. Let T ∈ B0,1(Vn) and suppose that B ∈ B(Vn) commutes with T . Let s ∈ ρS(T ). The
modified left S-resolvent operator satisfies the modified left S-resolvent equation

S−1
L (s, T ;B)s− TS−1

L (s, T ;B) = BS−1
L (s, T )s− TBS−1

L (s, T ) = B (56)

and the modified right S-resolvent operator satisfies the modified right S-resolvent equation

sS−1
R (s, T ;B)− S−1

R (s, T ;B)T = sS−1
R (s, T )B − S−1

R (s, T )BT = B. (57)

Proof. Since 2Re(s) and |s|2 are real, they commute with the operator T . Therefore

TQs(T ) = Qs(T )T

and in turn
Qs(T )

−1T = TQs(T )
−1.

Thus we have

S−1
L (s, T ;B)s− TS−1

L (s, T ;B) = −Qs(T )
−1(TB − Bs)s+ TQs(T )

−1(TB −Bs)

=Qs(T )
−1 (−(TB −Bs)s+ T (TB −Bs))

=Qs(T )
−1BQs(T ) = B,

where we have used the fact that B and T commute. The modified right S-resolvent equation follows by
similar computations. �

Theorem 6.7 (The modified S-resolvent equation). Let T ∈ B0,1(Vn) and suppose that B ∈ B(Vn) commutes
with T and let s, q ∈ ρS(T ) with q /∈ [s]. Then the equation

S−1
R (s, T )BS−1

L (q, T ) =
[(

S−1
R (s, T )B −BS−1

L (q, T )
)

q − s
(

S−1
R (s, T )B −BS−1

L (q, T )
)]

Qs(q)
−1 (58)

holds true. Equivalently, it can also be written as

S−1
R (s, T )BS−1

L (q, T ) = Qq(s)
−1
[(

BS−1
L (q, T )− S−1

R (s, T )B
)

q − s
(

BS−1
L (q, T )− S−1

R (s, T )B
)]

, (59)

where Qs(q) := q2 − 2Re(s)q + |s|2.
Proof. We show that

S−1
R (s, T )BS−1

L (q, T )Qs(q) =
[(

S−1
R (s, T )B −BS−1

L (q, T )
)

q − s
(

S−1
R (s, T )B −BS−1

L (q, T )
)]

, (60)

which is equivalent to (58). The modified left S-resolvent equation (56) implies

BS−1
L (q, T )q = BTS−1

L (q, T ) +B.

Applying this identity in the third and fifth equality and using the fact the TB = BT :

S−1
R (s, T )BS−1

L (q, T )Qs(q)

= S−1
R (s, T )BS−1

L (q, T )(q2 − 2s0q + |s|2)
= S−1

R (s, T )
[

BS−1
L (q, T )q

]

q − 2s0S
−1
R (s, T )

[

BS−1
L (q, T )q

]

+ |s|2S−1
R (s, T )BS−1

L (q, T )

= S−1
R (s, T )

[

BTS−1
L (q, T ) +B

]

q − 2s0S
−1
R (s, T )

[

BTS−1
L (q, T ) +B

]

+ |s|2S−1
R (s, T )BS−1

L (q, T )

= S−1
R (s, T )T

[

BS−1
L (q, T )q

]

+ S−1
R (s, T )Bq − 2s0S

−1
R (s, T )BTS−1

L (q, T )− 2s0S
−1
R (s, T )B

+ |s|2S−1
R (s, T )BS−1

L (q, T )

= S−1
R (s, T )T

[

BTS−1
L (q, T ) +B

]

+ S−1
R (s, T )Bq − 2s0S

−1
R (s, T )BTS−1

L (q, T )− 2s0S
−1
R (s, T )B

+ |s|2S−1
R (s, T )BS−1

L (q, T ).
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So, the above relation becomes

S−1
R (s, T )BS−1

L (q, T )Qs(q) = S−1
R (s, T )TBTS−1

L (q, T ) + S−1
R (s, T )TB + S−1

R (s, T )Bq

− 2s0S
−1
R (s, T )BTS−1

L (q, T )− 2s0S
−1
R (s, T )B + |s|2S−1

R (s, T )BS−1
L (q, T ).

Now we replace the term S−1
R (s, T )BT by sS−1

R (s, T )B−B, two times, in the above formula using the right
S-resolvent equation (57) written as

S−1
R (s, T )BT = sS−1

R (s, T )B −B.

We get the equality

S−1
R (s, T )BS−1

L (q, T )Qs(q) =
[

S−1
R (s, T )BT

]

TS−1
L (q, T ) +

[

S−1
R (s, T )TB

]

+ S−1
R (s, T )Bq

− 2s0
[

S−1
R (s, T )BT

]

S−1
L (q, T )− 2s0S

−1
R (s, T )B + |s|2S−1

R (s, T )BS−1
L (q, T )

and replacing (57) in the above equation one more time in two places indicated in parenthesis we get

S−1
R (s, T )BS−1

L (q, T )Qs(q) =
[

sS−1
R (s, T )B −B

]

TS−1
L (q, T ) +

[

sS−1
R (s, T )B −B

]

+ S−1
R (s, T )Bq

− 2s0
[

sS−1
R (s, T )B −B

]

S−1
L (q, T )− 2s0S

−1
R (s, T )B + |s|2S−1

R (s, T )BS−1
L (q, T )

so we get

S−1
R (s, T )BS−1

L (q, T )Qs(q) = s
[

S−1
R (s, T )BT

]

S−1
L (q, T )−BTS−1

L (q, T )

+
[

sS−1
R (s, T )B −B

]

+ S−1
R (s, T )Bq

− 2s0
[

sS−1
R (s, T )B −B

]

S−1
L (q, T )− 2s0S

−1
R (s, T )B + |s|2S−1

R (s, T )BS−1
L (q, T ).

Replacing one more time we have

S−1
R (s, T )BS−1

L (q, T )Qs(q) = s
[

sS−1
R (s, T )B −B

]

S−1
L (q, T )

−BTS−1
L (q, T ) +

[

sS−1
R (s, T )B −B

]

+ S−1
R (s, T )Bq

− 2s0
[

sS−1
R (s, T )B −B

]

S−1
L (q, T )− 2s0S

−1
R (s, T )B

+ |s|2S−1
R (s, T )BS−1

L (q, T )

so we obtain

S−1
R (s, T )BS−1

L (q, T )Qs(q) = s2S−1
R (s, T )BS−1

L (q, T )− sBS−1
L (q, T )

−BTS−1
L (q, T ) + sS−1

R (s, T )B −B + S−1
R (s, T )Bq

− 2s0sS
−1
R (s, T )BS−1

L (q, T ) + 2s0BS
−1
L (q, T )− 2s0S

−1
R (s, T )B

+ |s|2S−1
R (s, T )BS−1

L (q, T ).

Now we gather some terms in order to get

S−1
R (s, T )BS−1

L (q, T )Qs(q) = (s2 − 2s0s+ |s|2)S−1
R (s, T )BS−1

L (q, T )

− sBS−1
L (q, T )−BTS−1

L (q, T ) + sS−1
R (s, T )B −B + S−1

R (s, T )Bq

+ 2s0BS
−1
L (q, T )− 2s0S

−1
R (s, T )B

and

S−1
R (s, T )BS−1

L (q, T )Qs(q) = (s2 − 2s0s+ |s|2)S−1
R (s, T )BS−1

L (q, T )

− sBS−1
L (q, T )−BTS−1

L (q, T ) + sS−1
R (s, T )B −B + S−1

R (s, T )Bq

+ 2s0BS
−1
L (q, T )− 2s0S

−1
R (s, T )B.

Since −sBS−1
L (q, T ) + 2s0BS

−1
L (q, T ) = sBS−1

L (q, T ) we have

S−1
R (s, T )BS−1

L (q, T )Qs(q) = (s2 − 2s0s+ |s|2)S−1
R (s, T )BS−1

L (q, T )

+ sBS−1
L (q, T )−BTS−1

L (q, T ) + sS−1
R (s, T )B −B + S−1

R (s, T )Bq

− 2s0S
−1
R (s, T )B.
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Recalling the S-resolvent equation

BS−1
L (q, T )q = BTS−1

L (q, T ) +B

we obtain

S−1
R (s, T )BS−1

L (q, T )Qs(q) = (s2 − 2s0s+ |s|2)S−1
R (s, T )BS−1

L (q, T )

+ sBS−1
L (q, T )−BS−1

L (q, T )q + sS−1
R (s, T )B + S−1

R (s, T )Bq

− 2s0S
−1
R (s, T )B

and so

S−1
R (s, T )BS−1

L (q, T )Qs(q) = (s2 − 2s0s+ |s|2)S−1
R (s, T )BS−1

L (q, T )

+ sBS−1
L (q, T )−BS−1

L (q, T )q − sS−1
R (s, T )B + S−1

R (s, T )Bq.

Finally we obtain

S−1
R (s, T )BS−1

L (q, T )Qs(q) = (s2 − 2s0s+ |s|2)S−1
R (s, T )BS−1

L (q, T )

+ sBS−1
L (q, T )−BS−1

L (q, T )q − sS−1
R (s, T )B + S−1

R (s, T )Bq

= (s2 − 2s0s+ |s|2)S−1
R (s, T )BS−1

L (q, T )

+ (S−1
R (s, T )B −BS−1

L (q, T ))q − s(S−1
R (s, T )B −BS−1

L (q, T )

and since s2 − 2s0s+ |s|2 = 0 we get (60). With similar computations we can show that also (59) holds. �

Definition 6.8. (The modified S-resolvent operators) Let T ∈ B0,1(Vn) and s ∈ ρS(T ). We define the
modified left S-resolvent operator of order ℓ ∈ N as

T
ℓ
S−1
L (s, T ) := −T ℓQs(T )

−1(T − s I), (61)

and the modified right S-resolvent operator of order ℓ ∈ N as

S−1
R (s, T )T

ℓ
:= −(T − sI)Qs(T )

−1T
ℓ
, (62)

where Qs(T ) := T 2 − 2Re(s)T + |s|2I.

Remark 6.9. Observe that when T has commuting components the operator B := T
ℓ
commutes with T , so

in this case, by Lemma 6.5, we have

S−1
L (s, T ;T

ℓ
) = T

ℓ
S−1
L (s, T ),

and

S−1
R (s, T ;T

ℓ
) = S−1

R (s, T )T
ℓ
.

We are ready for an alternative, but equivalent, definition of the PS-functional calculus.

Definition 6.10 (The PS-functional calculus (II)). Let T ∈ B0,1(Vn) for j ∈ S set dsj = ds(−j) and let
M ∈ N. Then we have the formulations (II) of the PS-functional calculus. We define

F (T ) :=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

T
ℓ
S−1
L (s, T ) dsj fℓ(s), for all F (s) =

M−1
∑

ℓ=0

s̄ℓfℓ(s) ∈ PSM
L (σS(T )), (63)

and

F (T ) :=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

fℓ(s) dsj S
−1
R (s, T )T

ℓ
, for all F (s) =

M−1
∑

ℓ=0

fℓ(s)s̄
ℓ ∈ PSM

R (σS(T )). (64)

Theorem 6.11. The definition of the PS-functional calculus (II) in (63) and (64) is well posed because the
integrals depend neither on U nor on the imaginary unit j ∈ S.

Proof. The Definitions (63) and (64) are well posed since they are based on the S-functional calculus and
Lemma 6.4 that assures that the modified S-resolvent operators preserve the slice monogenicity. �

The linearity of the PS-functional calculus (II) is a direct consequence of the definition.
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Proposition 6.12. Let T ∈ B0,1(Vn) and M ∈ N.

(1) If F,G ∈ PSM
L (σS(T )), then we have:

(F +G)(T ) = F (T ) +G(T ), (Fλ)(T ) = F (T )λ, for all λ ∈ Rn.

(2) If F,G ∈ PSM
R (σS(T )), then we have:

(F +G)(T ) = F (T ) +G(T ), (λF )(T ) = λF (T ), for all λ ∈ Rn.

Theorem 6.13. Let T ∈ B0,1(Vn) and let M ∈ N. Then:
(I) When F is the series expansion in (51), we have

1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

T
ℓ
S−1
L (s, T ) dsj fℓ(s) =

M−1
∑

ℓ=0

T
ℓ

∞
∑

u=0

T uAk,u.

(II) When F is the series expansion in (52), we have

1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

fℓ(s) dsj S
−1
R (s, T )T

ℓ
=

M−1
∑

ℓ=0

(

∞
∑

u=0

Ak,uT
u
)

T
ℓ
.

We recall that T = T0 −
∑n

j=1 ejTj.

Proof. It is a consequence of the S-functional calculus. �

Theorem 6.14 (The intrinsic PS-functional calculus (II)). Let T ∈ BC0,1(Vn) and set dsj = ds(−j) and let

F be an intrinsic poly monogenic function F ∈ PNM (σS(T )), for M ∈ N with components fℓ. Then the left
and the right formulations of the PS-functional calculus (II) define the same operator, i.e., we have

F (T ) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

T
ℓ
S−1
L (s, T ) dsj fℓ(s) =

1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

fℓ(s) dsj S
−1
R (s, T )T

ℓ
. (65)

Proof. It is a consequence of the fact that T ∈ BC0,1(Vn) and of the S-functional calculus for intrinsic
functions, i.e.,

fℓ(T ) =
1

2π

∫

∂(U∩Cj)

S−1
L (s, T ) dsj fℓ(s) =

1

2π

∫

∂(U∩Cj)

fℓ(s) dsj S
−1
R (s, T ),

holds. �

7. Equivalence of the two definitions of the PS-functional calculus and the product
rules

According to Proposition 3.11 we have some possibilities to obtain the pointwise product of a poly slice
monogenic function and a slice monogenic function that preserves the poly slice monogenicity. According
to such proposition we obtain the related product rules. Using a product that takes out of the class of poly
slice monogenic function of a given order, by Corollary 4.18, we obtain a more general product rule.

First we establish the equivalence of the definitions of the PS-functional calculus (I) and (II).

Theorem 7.1 (Equivalence of the definitions of the PS-functional calculus). Let T ∈ B0,1(Vn), M ∈ N, for
j ∈ S, set dsj = ds(−j), ∂j :=

1
2 (∂u + j∂v). Let ΠℓS

−1
L (s, T ) and ΠℓS

−1
R (s, T ) be the ΠS-resolvent operators.

Then we have

F (T ) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
F (s)

=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

T
ℓ
S−1
L (s, T ) dsj fℓ(s), for all F (s) =

M−1
∑

ℓ=0

s̄ℓfℓ(s) ∈ PSM
L (σS(T )),

(66)
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and

F (T ) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

F (s)∂j
ℓ
dsj ΠℓS

−1
R (s, T )

=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

fℓ(s) dsj S
−1
R (s, T )T

ℓ
, for all F (s) =

M−1
∑

ℓ=0

fℓ(s)s̄
ℓ ∈ PSM

R (σS(T )).

(67)

Proof. It is a consequence of Runge’s theorems for slice monogenic and poly slice monogenic functions and
the continuity properties of the two formulations of the PS-functional calculus. �

As a corollary of the above theorem we have the four possible representations of the operator f(T ) when

F is an intrinsic poly slice monogenic function, i.e., when F ∈ PNM (σS(T )).

Theorem 7.2 (The formulations of PS-functional calculus for intrinsic functions). Let T ∈ BC0,1(Vn),

M ∈ N, for j ∈ S, set dsj = ds(−j), ∂j := 1
2 (∂u + j∂v) and Let M ∈ N, for j ∈ S, set dsj = ds(−j)

and ∂j :=
1
2 (∂u + j∂v). Let ΠℓS

−1
L (s, T ) and ΠℓS

−1
R (s, T ) be the ΠS-resolvent operators. Then, for every

F ∈ PNM (σS(T )), we have

F (T ) =
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

ΠℓS
−1
L (s, T ) dsj ∂j

ℓ
F (s)

=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

T
ℓ
S−1
L (s, T ) dsj fℓ(s)

=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

F (s)∂j
ℓ
dsj ΠℓS

−1
R (s, T )

=
1

2π

∫

∂(U∩Cj)

M−1
∑

ℓ=0

fℓ(s) dsj S
−1
R (s, T )T

ℓ
.

(68)

Proof. It is a consequence of Runge’s theorems for slice monogenic and poly slice monogenic functions and
the continuity properties of the two formulations of the PS-functional calculus. �

The following lemma will be crucial in the proof of the product rules.

Lemma 7.3 (See [8]). Let B ∈ B(Vn). For any q, s ∈ Rn+1 with q /∈ [s] and let f be an intrinsic slice
monogenic function and let U be a slice Cauchy domain with U ⊂ dom(f). By setting

Qs(q)
−1 := (q2 − 2Re(s)q + |s|2)−1

then we have
1

2π

∫

∂(U∩Cj)

f(s) dsj (sB −Bq)Qs(q)
−1 = Bf(q)

for any q that belongs to U and any j ∈ S.

Using Proposition 3.11 we obtain the first set of product rules for the PS-functional calculus.

Theorem 7.4 (Product rule (first case)). Let T ∈ BC0,1(Vn) and M ∈ N.

(Ia) Let F ∈ PNM (σS(T )) and g ∈ SML(σS(T )). Then (Fg)(T ) = F (T )g(T ).

(Ib) Let F ∈ PMM
L (σS(T )) and g ∈ N (σS(T )). Then (gF )(T ) = g(T )F (T ).

(IIa) Let F ∈ PNM (σS(T )) and g ∈ SMR(σS(T )). Then (gF )(T ) = g(T )F (T ).

(IIb) Let F ∈ PMM
R (σS(T )) and g ∈ N (σS(T )). Then (Fg)(T ) = F (T )g(T ).

(III) Let F ∈ PNM (σS(T )) and g ∈ N (σS(T )). Then we have

(gF )(T ) = (Fg)(T ) = F (T )g(T ) = g(T )F (T ).
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Proof. We will show point (Ia). The other claims follow in much the same way. So for F ∈ PNM (σS(T ))
and g ∈ SML(σS(T )) using the PS-functional calculus (II) for F and the S-functional calculus for g we
have

g(T ) :=
1

2π

∫

∂(U∩Cj)

S−1
L (s, T ) dsj g(s), for all f ∈ SML(σS(T )).

Let Uq and Us be bounded slice Cauchy domains that contain σS(T ) such that Uq ⊂ Us and Us ⊂ dom(F )∩
dom(g). The subscripts q and s refer to the respective variable of integration in the following computation.

We choose j ∈ S and we set Γs := ∂(Us ∩ Cj) and Γq := ∂(Uq ∩ Cj) for neatness. So for F ∈ PNM (σS(T ))
by Theorem 6.14 we can represent F as

F (T ) =
1

2π

∫

∂(U∩Cj)

M−1
∑

k=0

fk(s) dsj S
−1
R (s, T )T

k
.

When we consider the product

F (T )g(T ) =
1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj S
−1
R (s, T )T

k 1

2π

∫

Γq

S−1
L (q, T ) dqj g(q)

so we write

F (T )g(T ) =
1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

S−1
R (s, T )T

k
S−1
L (q, T ) dqj g(q). (69)

Now we use the modified S-resolvent equation with B = T
k
that commute with T , since the paravector

operator T has commuting components we have the modified S-resolvent equation

S−1
R (s, T )T

k
S−1
L (q, T ) =

[(

S−1
R (s, T )T

k − T
k
S−1
L (q, T )

)

q − s
(

S−1
R (s, T )T

k − T
k
S−1
L (q, T )

)]

Qs(q)
−1

(70)
we replace it (70) in (69) to get

F (T )g(T ) =
1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

[(

S−1
R (s, T )T

k − T
k
S−1
L (q, T )

)

q

−s
(

S−1
R (s, T )T

k − T
k
S−1
L (q, T )

)]

Qs(q)
−1 dqj g(q)

but also

F (T )g(T ) =
1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

S−1
R (s, T )T

k
qQs(q)

−1 dqj g(q)

− 1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

T
k
S−1
L (q, T )qQs(q)

−1 dqj g(q)

− 1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

sS−1
R (s, T )T

kQs(q)
−1 dqj g(q)

+
1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

sT
k
S−1
L (q, T )Qs(q)

−1 dqj g(q).

Now the integrals with the right S-resolvent operator are zero, in fact we can write them as

1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

S−1
R (s, T )T

k
qQs(q)

−1 dqj g(q)

=
1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj S
−1
R (s, T )T

k 1

2π

∫

Γq

[

qQs(q)
−1 dqj g(q)

]

= 0
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by the Cauchy theorem because qQs(q)
−1 and g(q) are slice monogenic. Similarly it is

− 1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

sS−1
R (s, T )T

kQs(q)
−1 dqj g(q) = 0

so we remain with

F (T )g(T ) = − 1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

T
k
S−1
L (q, T )qQs(q)

−1 dqj g(q)

+
1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

sT
k
S−1
L (q, T )Qs(q)

−1 dqj g(q)

and also we obtain

F (T )g(T ) =
1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

(

sT
k
S−1
L (q, T )− T

k
S−1
L (q, T )q

)

Qs(q)
−1 dqj g(q).

Using Fubini’s theorem we get

F (T )g(T ) =
1

2π

∫

Γq

[ 1

2π

∫

Γs

M−1
∑

k=0

fk(s) dsj

(

sT
k
S−1
L (q, T )− T

k
S−1
L (q, T )q

)

Qs(q)
−1
]

dqj g(q)

and by Lemma 7.3, setting B := T
k
S−1
L (q, T ), we obtain

F (T )g(T ) =
1

2π

∫

Γq

M−1
∑

k=0

T
k
S−1
L (q, T )fk(q) dqj g(q)

and finally

F (T )g(T ) =
1

2π

∫

Γq

M−1
∑

k=0

T
k
S−1
L (q, T ) dqj fk(q)g(q)

=

M−1
∑

k=0

T
k
(fkg)(T ) = (Fg)(T ),

and this concludes the proof. �

Based on the product of poly slice monogenic functions in Corollary 4.18 we prove the following product
rule. This product rule requires that the paravector operator T has commuting components.

Theorem 7.5 (Product rule (second case)). Let T ∈ BC0,1(Vn) and M,N ∈ N.

(I) Let F ∈ NN
L (σS(T )) and G ∈ PSM

L (σS(T )), then we have

(FG)(T ) = F (T )G(T ). (71)

(II) Let F ∈ PSN
R (σS(T )) and G ∈ NM

R (σS(T )), then we have

(FG)(T ) = F (T )G(T ). (72)

Proof. We reason as in Theorem 7.4 taking the same contours of integration and pointing out just the
differences. We show point (I). The other point (II) follows in much the same way. Let Uq and Us be

bounded slice Cauchy domains that contain σS(T ) such that Uq ⊂ Us and Us ⊂ dom(F ) ∩ dom(G). The
subscripts q and s refer to the respective variable of integration in the following computation. We choose
j ∈ S and we set Γs := ∂(Us ∩ Cj) and Γq := ∂(Uq ∩ Cj) for neatness. So by Theorem 6.14 we can represent
F as

F (T ) =
1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj S
−1
R (s, T )T

k
, for all F ∈ PNN (σS(T ))
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and

G(T ) =
1

2π

∫

Γq

M−1
∑

ℓ=0

T
ℓ
S−1
L (q, T ) dqj gℓ(q), for all F ∈ PSM

L (σS(T ))

so when we consider the product

F (T )G(T ) =
1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj S
−1
R (s, T )T

k 1

2π

∫

Γq

M−1
∑

ℓ=0

T
ℓ
S−1
L (q, T ) dqj gℓ(q)

and also.

F (T )G(T ) =
1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

M−1
∑

ℓ=0

S−1
R (s, T )T

k+ℓ
S−1
L (q, T ) dqj gℓ(q).

We use the modified S-resolvent equation to get

F (T )G(T ) =
1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

M−1
∑

ℓ=0

S−1
R (s, T )T

k+ℓ
qQs(q)

−1 dqj gℓ(q)

− 1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

M−1
∑

ℓ=0

T
k+ℓ

S−1
L (q, T )qQs(q)

−1 dqj gℓ(q)

− 1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

M−1
∑

ℓ=0

sS−1
R (s, T )T

k+ℓQs(q)
−1 dqj gℓ(q)

+
1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

M−1
∑

ℓ=0

sT
k+ℓ

S−1
L (q, T )Qs(q)

−1 dqj gℓ(q).

Also here the two integrals that contain the right S-resolvent operators are zero so we obtain

F (T )G(T ) =− 1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

M−1
∑

ℓ=0

T
k+ℓ

S−1
L (q, T )qQs(q)

−1 dqj gℓ(q)

+
1

2π

∫

Γs

N−1
∑

k=0

fk(s) dsj
1

2π

∫

Γq

M−1
∑

ℓ=0

sT
k+ℓ

S−1
L (q, T )Qs(q)

−1 dqj gℓ(q).

Using Fubini’s theorem we finally have

F (T )G(T ) =

=
1

2π

∫

Γq

[ 1

2π

∫

Γs

N−1
∑

k=0

M−1
∑

ℓ=0

fk(s) dsj

(

sT
k+ℓ

S−1
L (q, T )− T

k+ℓ
S−1
L (q, T )q

)

Qs(q)
−1
]

dqj gℓ(q)

setting B := T
k+ℓ

S−1
L (q, T ) in Lemma 7.3 we get

F (T )G(T ) =
1

2π

∫

Γq

N−1
∑

k=0

M−1
∑

ℓ=0

T
k+ℓ

S−1
L (q, T )fk(q) dqj gℓ(q)

=
1

2π

∫

Γq

N−1
∑

k=0

M−1
∑

ℓ=0

T
k+ℓ

S−1
L (q, T ) dqj (fkgℓ)(q)

=

N−1
∑

k=0

M−1
∑

ℓ=0

T
k+ℓ

(fkgℓ)(T ) = (FG)(T ),

and this concludes the proof. �
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Birkhäuser/Springer, Cham, 2019. x+221 pp.

[37] G. Gentili, C. Stoppato, D. C. Struppa, Regular functions of a quaternionic variable. Springer Monographs in Mathe-
matics. Springer, Heidelberg, 2013.

[38] G. Gentili, D. C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math., 216 (2007), 279–301.
[39] R. Ghiloni, A. Perotti, Slice regular functions on real alternative algebras, Adv. Math., 226 (2011), 1662–1691.
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