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Abstract 

About 40% of global crop production takes place on irrigated land, which accounts for approximately 
20% of the global farmland. The great majority of freshwater consumption by human societies is 
associated with irrigation, which contributes to a major modification of the global water cycle by 
enhancing evapotranspiration and reducing surface and groundwater runoff. In many regions of the 
world irrigation contributes to streamflow and groundwater depletion, soil salinization, cooler 
microclimate conditions, and altered land-atmosphere interactions. Despite the important role played 
by irrigation in food security, water cycle, soil productivity, and near-surface atmospheric conditions, its 
global extent remains poorly quantified. To date global maps of irrigated land are often outdated and 
based on estimates from circa year 2000. Here we apply artificial intelligence methods based on 
machine learning algorithms to satellite remote sensing and monthly climate data to map the spatial 
extent of irrigated areas between 2001 and 2015. We provide global annual maps of irrigated land at 
≈9km resolution for the 2001-2015 and we make this dataset available online. 
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Introduction 

The global demand for agricultural products is increasing as a result of demographic growth, shifts to 
resource-intensive diets, and increasing reliance on biofuels (Godfray et al., 2010; Foley et al., 2011; 
Cassidy et al., 2013). To sustain these ongoing trends, global crop production will have to more than 
double by 2100 (Beltran-Pena et al., 2020), thereby dramatically increasing human pressure on the 
limited land and water resources of the planet (e.g., Falkenmark et al., 2006; Ramankutty et al., 2008; 
Rockstrom et al., 2009; Cassidy et al., 2013). Despite the big push for food security pathways that rely on 
more efficient use of resources, reduction of food waste, and moderation of consumption (Kummu et 
al., 2012; Davis et al., 2014; Springmann et al., 2018), the demand for increased agricultural production 
will be unavoidable. It will require either the expansion of agriculture at the expenses of natural 
ecosystems such as forests, savannas, and grasslands, or the increase in crop yields in the land that is 
currently cultivated (Foley et al., 2011). Known as “agricultural intensification” the latter approach 
would prevent additional losses of natural habitat and biodiversity and avoid the greenhouse gas 
emissions associated with land conversions (Runyan and D’Odorico, 2016). At the same time, 
intensification will require the provision of additional inputs that are needed to improve yields through 
an adequate supply of fertilizers and water (Erisman et al., 2012; Rosa et al., 2018). In many regions of 
the world the closure of the gap between actual and maximum potential yields requires irrigation 
(Mueller et al., 2012). Previous studies have mapped the rainfed croplands where the local water 
resources are sufficient to sustainably meet the local irrigation water requirements (Jägermeyr et al 
2017; Rosa et al., 2018; 2020a). A major limitation in this line of research is the lack of knowledge of the 
extent and distribution of irrigated land. Most studies rely on a reconstruction of the areas equipped for 
agriculture around year 2000 (Portmann et al., 2010). A recent extension of these analyses has 
reconstructed the global history of irrigated areas between 1900 and 2005 (Siebert et al., 2015), while of 
more regional studies have mapped irrigated areas at 30m resolution for South Asia and Australia 
(GFSAD30) (Salmon et al., 2015; Meier et al., 2018). Therefore, it is often reported that roughly 20% of 
the cultivated land is irrigated and accounts for 40% of the global crop production (e.g., Molden, 2010). 
These estimates, however, are outdated, as the spatial extent of irrigation has likely changed over the 
past two decades. With agriculture contributing to 90% of human water consumption, lack of 
knowledge of irrigated areas prevents an analysis of the extent to which water resources around the 
world are used sustainably (i.e., without depleting local groundwater stocks and environmental flows). It 
also limits our ability to investigate ongoing changes in agricultural practices around the world (Davis et 
al., 2017; Jägermeyr et al 2017; D’Odorico et al., 2018; Rosa et al., 2019). 

Satellite remote sensing combined with modern machine learning techniques provides unprecedented 
opportunities to identify areas equipped for irrigation, where irrigation may therefore take place for at 
least part of the year. Irrigated areas tend to exhibit higher productivity and “greenness” than their 
rainfed counterparts in the same region. As a result, irrigation is expected to be detectable with 
greenness indices such as EVI and NDVI (e.g., Kotsuki and Tanaka, 2015). Moreover, there is compelling 
evidence (Muller et al., 2016; 2017; Thiery et al., 2020) that irrigated areas tend to be cooler during the 
day than adjacent rainfed land as a result of the different partitioning of the incoming solar radiation 
into sensible and latent heat fluxes, with irrigated soil exhibiting greater evapotranspiration and 
associated latent heat fluxes (Kueppers et al., 2007; Puma et al., 2010; Lobell et al., 2008; 2009; Bonfils 
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and Lobell, 2007). Therefore, surface temperature, which can be detected from space, is expected to be 
a good proxy for irrigation (Wei et al., 2013; Cook et al., 2020). 

In this study, we develop a global assessment of irrigation and provide global annual maps of irrigated 
land at ≈9km resolution for the 2001-2015 period. To that end, we apply advanced machine learning 
methods to data available from satellite remote sensing, using as “label” (to train the algorithm) the 
known distributions of irrigated land from Siebert et al. (2015). We make this dataset available on the 
Zenodo repository https://zenodo.org/deposit/4392826 . 

 

2. Data and Methods 

Irrigation maps are produced by two machine learning models: (A) a time-series model, and (B) a point-
in-time (time-stationary) model, as explained below. The results from these two models are then 
combined for better overall performance. 

2.1 Data sets  

Both models are trained on a global dataset of irrigation extent (the time-series model is 
trained only on areas identified as croplands), originating from Siebert et al. 
(2015).  This dataset is available at a spatial resolution of 5 arc minutes, i.e. 1 pixel of the map 
corresponds to an area of 86 km2 (or 8604 ha) at the equator, which corresponds to a pixel side of 
≈9.276 km. We use “area equipped for irrigation” data from the Siebert et al. (2015) dataset, specifically 
the one listed as “HYDE Final” as labels to train the algorithm. 

2.1.1 Time-Series Model  

The four available “HYDE final” datasets from Siebert et al. (2015) for 1985-2000 were used as “labels”. 
Because satellite data used in this study were not consistently available pre-1981, labels from previous 
years were discarded. Given the restraints on satellite and geographic data available from 1985-2015, 
we used as features the following datasets: (a) NDVI Data sourced from the AVHRR  15 day data set and 
compiled in the Global Inventory Monitoring and Modeling System, GIMMS (NCAR, 2018). These data 
were aggregated biannually to take the mean, variance and max of all inputs over a 6 month period; (b) 
TerraClimate data were taken from the University of Idaho online archives and re-projected to the same 
resolution as the NDVI data and labels (Abatzoglou, et al., 2018). For each year, monthly values of 
climate variables were used to estimate annual mean, maximum, variance and minimum. The long-term 
averages aggregated by TerraClimate for the years 1981-2010 were also fed to the model as a stand-in 
for long term suitability for agriculture. The datasets that proved most useful to the purpose of this 
study were maximum temperature, minimum temperature, vapor pressure, downward surface 
shortwave radiation, wind-speed, actual evapotranspiration, climate water deficit (i.e., the difference 
between potential and actual evapotranspiration), and soil moisture. These hydroclimatic variables are 
known to control evapotranspiration rates, and crop water demand (e.g., Katul et al., 2012). 

Given the relatively high computing requirements to train the model globally over two decades, a 
decision was made to concentrate on cultivated land by filtering the data based on the 2010 GFSAD 
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(Global Food Security-support Analysis Data) croplands extent, including irrigated and rainfed croplands 
(Massey et al., 2017). This mask was selected because it contained most of the irrigated land and was 
more extensive than the MODIS land cover data set. Applying this mask reduced the required computing 
time by a factor of ten and allowed for the inclusion of many more training features. 

The time series model was performed in two stages. Firstly, a binary test was used to determine 
whether at least 1% of land was irrigated. Secondly, any land that was detected to be irrigated was then 
run through another binary test to detect whether the land was highly irrigated (defined as a pixel with 
at least 20% of the area or 2000 hectares irrigated). The result was a three class feature irrigated at 1%, 
irrigated between 1 to 20%, and irrigated 20% or more. 

Within the GFSAD cropland area the non-irrigated land is more than four times greater than the 
irrigated land (i.e., about 20% of the cultivated land is irrigated (e.g., Molden, 2010)). Decision tree 
models (including ‘random forests’ and ‘extra trees’) tend to not perform well with such an imbalance 
between classes. Therefore, we under-sampled the non-irrigated land at a rate of 60%.  This significantly 
improved the overall performance of the model.  

The F1 and kappa metrics were used to evaluate the performance of the model. Given the class 
imbalance, a model could deliver relatively high accuracy by only predicting non-irrigated land. The 
kappa metric represents how much better the model performs with respect to a baseline model that 
simply predicts based on class frequencies (or “expected accuracy”). Thus, kappa is expressed as (model 
accuracy – expected accuracy) / (1 – expected accuracy). Kappa adjusts the accuracy score to reflect 
class imbalance and therefore Kappa is a better metric when there is class imbalance (i.e., there is no 
even split between classes as in our case, as we have only 11% irrigated land). The F1 score is a measure 
that incorporates both recall and precision. The kappa metric of the first stage processing was 78%, with 
an F1 score of 92%. On the second layer of learning, differentiating between “highly irrigated” and other 
irrigation classes kappa was 76% and F1 again was 92%; this led to an overall model performance of 
kappa=0.76 and accuracy (a measure of how often the model classifies correctly) of 0.89, and F1 of 0.88. 

2.1.2 Time-Stationary Model 

For the time-stationary model, we used labels from Siebert et al. (2015) for the year 2005 and the same 
spatial resolution as in the time series model (i.e., with pixels of 8604 ha, which corresponds to a pixel 
side of about 9.276 km).  We ignored pixels with less than 25 hectares of land equipped for irrigation 
and classified them as not irrigated.  Pixels with 25 to 2000 hectares equipped for irrigation were 
classified as “low or medium” irrigation.  Pixels with more than 2000 hectares of land equipped for 
irrigation were classified as “high” irrigation.  Because the distribution is highly skewed, it drops rapidly 
as we go to higher values of irrigated areas -- there is only a relatively limited amount of data at higher 
levels of irrigation.  
 
We took a random sample of 20,000 points worldwide to develop a machine learning model.  To train 
the model, we used features pertaining to climate, soil, vegetation and land-cover from TERRACLIMATE 
(Abatzoglou et al., 2018), the Global Land Data Assimilation System, GLDAS (Rodell et al., 2004), and 
MODIS datasets.  Our final choice was a random forest model with 1000 trees, a bagging fraction of 
0.63, and 10 variables per split.  We also used a random forest algorithm to select features based on 
their importance.  Our final model used 11 features, including latitude and longitude (X and Y), annual 
average maximum temperature (tmmx), potential evapotranspiration (pet), downward surface 
shortwave radiation (srad), and wind-speed (vs) from TERRACLIMATE; annual average albedo 
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(Albedo_inst), direct evaporation from bare soil (ESoil_tavg), atmospheric pressure (Psurf_f_inst) from 
GLDAS; land cover type (MCD12Q1 for UMD) and annual maximum EVI from MODIS. The relative 
importance of these predictors is shown in Figure 1. Again, the microclimate variables chosen as 
“features” are known for playing a role in determining the rates of evapotranspiration and the crop 
water requirements (e.g., Katul et al, 2012). 

 
We used the R statistical environment for model development and tuning.  We then exported this 
model to Google Earth Engine® and ran it there for the years 2001 through 2015.  This platform 
provided us with a repository to access many geospatial datasets, as well as a distributed computing 
infrastructure that allowed us to process large amounts of feature data and classify the cultivated land 
based on the occurrence and intensity of irrigation. The time-stationary model has accuracy of 0.89, and 
a Kappa value of 0.56. 

2.2 Combining the Two Models 
 
We then combined predictions from the above two models. First, we partitioned the world’s land area 
into croplands and non-croplands using the GFSAD crop dominance dataset to determine the cropland 
boundaries (considering all crop classes in GFSAD). For croplands, we predict irrigation using the time-
series model.  For non-croplands, we predict with the time-stationary model. Our combined map has 
accuracy of 0.94, and a kappa value of 0.73. The confusion matrix and summary statistics are shown in 
Tables 1 and 2. 
 
 

Figure 1. Relative importance of the features used for the time-stationary model, which included including latitude 
and longitude (X and Y), annual average maximum temperature (tmmx), potential evapotranspiration (pet), 
downward surface shortwave radiation (srad), and wind-speed (vs) from TERRACLIMATE; annual average albedo 
(Albedo_inst), direct evaporation from bare soil (ESoil_tavg), atmospheric pressure (Psurf_f_inst) from GLDAS; land 
cover type (MCD12Q1 for UMD) and annual maximum EVI from MODIS. 
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Table 1. Confusion matrix of the combined model 
 

↓ Predicted | Actual →  Not irrigated Low to medium High TOTAL 

Not irrigated 1958518 41151 2150 2001819 

Low to medium 59439 136056 7626 203121 

High 1455 9313 38468 49236 

TOTAL 2019412 186520 48244 2254176 

 
 

Table 2. Summary statistics or accuracy, precision, recall, and F1-score 

Class n(truth) n(classified) Accuracy Precision Recall F1-score 

Not irrigated 2019412 2001819 95.38% 0.98 0.97 0.97 

Low to medium irrigated 186520 203121 94.79% 0.67 0.73 0.70 

Highly irrigated 48244 49236 99.09% 0.78 0.80 0.79 
 

2.3 Validation 

After running our model, we validated the false positives and false negatives produced by the model, by 
taking a random sample of 100 points in each class. We downloaded LANDSAT 7 TOA (Top of the 
Atmosphere) imagery for these points, for a buffer of 9 km and a buffer of further 9 km. We then 
visually inspected each picture to validate the model classification. 



7 
 

 

Figure 2. An example of pixels exhibiting a mosaic of croplands and non-croplands (the red square wraps 
a circle of 9.3km diameter) 

3. Results 

We developed annual global maps of irrigation (Figure 3), encompassing all continents except Antarctica 
and the Pacific islands of Oceania. These maps are at a spatial resolution of 5 arc minutes (9276 m at the 
equator) and are available for every year from 2001 through 2015. The maps show the extent of 3 
classes of irrigation: (i) no irrigation, (ii) low-concentration irrigation (1% to 20% irrigated), and (iii) high-
concentration irrigation (>20% irrigated). The model predicts that as of 2005 11.2% of the world’s land 
was used as irrigated cropland.  Of this, 80.5% is in the low irrigation class, and 19.5% is in the high 
irrigation class. The confusion matrix (Table 1) shows that 97% of the non-irrigated areas were correctly 
predicted as non-irrigated; 73% of low-concentration irrigated areas and 80% of high concentration 
irrigated areas were correctly predicted as irrigated at low or high concentrations, respectively. These 
discrepancies between predictions and actual irrigation are for most part due to 22% of low irrigation 
areas being mistakenly classified as non-irrigated and 16% of high-concentration irrigation areas being 
mistakenly classified as low-concentration (Table 1). We use a validation process to evaluate to what 
extent these discrepancies are due to limitations in our predictions or are the result of inconsistencies in 
our label and do not correspond to actual misclassifications in our predictions. 
 
The results of the validation process show that model performance is better than what is reported in 
Sections 2.2 and 2.3. In fact, for points that are false positives, we found that 41 out of 100 points were 
croplands (27) or a mosaic of croplands and non-croplands such as uncultivated hills, water bodies or 
forests (14).  This means that the model was correct in its classification for these points.  The remaining 
59 points were non-croplands. For points that are false negatives, we found that 47 out of 100 points 
were indeed non-croplands.  This means the model was correct in its classification for these points.  33 
points were a mosaic, and 20 points were croplands. These numbers show some of the limitations in the 
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use of Siebert et al., (2015) as training labels, bring uncertainty to the model assessment metrics 
reported above based solely on the training labels. These results show that our models fare poorly in 
areas which have a mosaic of croplands and non-croplands.  This problem occurs in the Brazilian 
highlands, northern Germany, and southern China, where the terrain is a mix of hilly areas and 
croplands.  Our spatial resolution assigns 86 square km to each pixel, and this can be too coarse to 
identify irrigation in such mosaics (Figure 2).  Additionally, one of the feature datasets, GLDAS, is at even 
coarser resolution, which can cause predictions to mis-classify adjoining pixels.  Moreover, mosaics have 
the effect of confusing our model in the low class of irrigation (Figure 2).  
 
Globally, most irrigation occurs at low density (i.e., with less than 20% of the area being irrigated), 
particularly in sub-Saharan Africa, Oceania, and South America. South Asia and East Asia, however, 
exhibit a relatively large fraction of their irrigated areas at high-density irrigation (51% and 32%, 
respectively), pointing to regions of the world of particularly intensified crop production (Figure 3). 
 
 

 
Figure 3 shows a map of the irrigated areas in 2001 (top) and 2015 (bottom). Dark blue corresponds to high 
density (i.e., >20%) irrigation and lighter blue to areas with low density (1-20%) irrigation. 
 

2001 

2015 
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Our predictions of irrigated and non-irrigated areas between 2001 and 2015 show some interesting 
trends (Figure 4).  There is a slight decreasing trend in irrigation in high levels of irrigation.  But there is 
an increasing trend in irrigation in low levels of irrigation (1-20% irrigated land).  This may indicate 
increased irrigation because of drought or reduced rainfall in regions traditionally reliant on rainfall. 
 

 

Figure 4. Number of pixels with low and high-density irrigation between year 2001 and 2015 (see figure S1 in the 
Appendix for the definition of these regions). 

 

 
Figure 5. Difference in irrigation between 2015 and 2001. Green areas exhibited a decrease in irrigation; in orange 
areas an increase in irrigation. Darker colors correspond to bigger changes (i.e. from high density irrigation to no 
irrigation or vice versa); Lighter colors correspond to smaller changes in irrigation (from high to low density or from 
low density to no irrigation). 
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Interestingly, we see that irrigation has decreased in central parts of eastern China, Thailand, Saudi 
Arabia, Russia, and the Southeastern USA, Syria, Albania, Eastern Germany, Northern Italy, and certain 
parts of Brazilian highlands (Figure 5).  We see an increase in irrigation in central parts of the United 
States (Figure 6), along the mid-low course of the Danube (Hungary, Serbia, Romania, and Bulgaria), 
Northern India, and in drier regions of Central Asia. Links to these global maps and the validation areas 
are provided in the online materials. 
 
 
 

  
Figure 5. Example of detected decrease in Brazilian highlands: 2001 (left) vs. 2015 (right). 
 

  
Figure 6. Example of detected increase of irrigation in central plains of North America: 2001 (left) vs. 2015 (right). 
 

Discussion 

This study differs from previous efforts based on statistical methods (Portmann et al., 2010), in that it 
uses machine learning algorithms to map irrigated areas worldwide. The dataset developed in this 
research provides a global scale mapping of low and high intensity/density irrigated areas with about 9 
km resolution. This analysis allows us to investigate spatiotemporal patterns of irrigation worldwide. 
Specifically, we find that high density irrigated areas are found mostly in South Asia and East Asia, 
followed by North America, Europe and the Middle-East/North Africa (MENA) region. Between 2001 and 
2015 irrigated areas have increased across North America and South Asia, and the increase was 
contributed by an expansion of low density irrigation areas. Conversely, South America and the MENA 
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region saw a decrease in irrigated areas as a result of a decrease in areas with low-density irrigation. The 
case of East Asia is different because, while low density irrigation areas have increased, low density 
irrigated areas have shrunk, leading to an overall decrease of irrigated areas. These patterns are 
expected to change as an effect of climate change with an expansion of irrigated agriculture at the mid-
high latitude and a loss of irrigation suitability or the need for seasonal reservoirs in breadbasket regions 
of Eurasia (Rosa et al., 2020b). 

A comparison between our results for 2015 and those obtained by Meier et al (2018) for the same years 
shows an overall agreement in the classification or irrigated and non-irrigated areas ranging between 
81%-96% - depending on the region - with an average of 91%. When the comparison is limited to the 
areas classified as irrigated in our study the agreement ranges between 59%-81% with an average of 
73%. Alternatively, we can measure the agreement as a percentage of the irrigated area in Meier et al 
(2018); in that case the agreement drops to 24%-77% with an average of 48%. The differences are likely 
a consequence of the different methods used by the two studies. We are unable to establish, however, 
which one of the two methods provides the correct classification. Most likely, both methods produce 
correct or wrong results in different regions. The validation results presented in the previous section for 
a sample of 100 pixels shows that for the year 2001 our classification tends to be in stronger agreement 
than the “label” (Siebert et al., 2015) with the signs of irrigation detectable with Google Earth in areas 
classified in this study as irrigated. Of course, a more extensive analysis would be needed to generalize 
these conclusions to the entire world. 

 

Table 2. Comparison between the irrigated areas in this study and in Meier et al. (2018) for the year 

2015. 

Country Total # 
Pixels 

Irrigated in this 
study but not in 

Meier et al. 
(2018) 

Irrigated 
for both 

Irrigated in 
Meier et al., 

(2018) but not in 
this study 

Agreemen
t (% of 

total area) 

Agreement (%  
of irrigated area 
in Meier et al., 

2018) 

Agreement 
(%  of 

irrigated 
area in this 

study) 

N. America            
533,902  

                           
11,339  

       
22,383  

                        
17,980  95 55 66 

S. America            
221,636  

                              
4,973  

          
8,719  

                        
14,056  91 38 64 

Europe            
207,960  

                              
3,235  

       
14,042  

                        
16,602  90 46 81 

Russia            
400,742  

                              
1,553  

          
2,240  

                           
5,221  98 30 59 

India               
89,279  

                              
8,711  

       
27,429  

                           
8,387  81 77 76 

South East 
Asia 

              
53,226  

                              
3,140  

       
11,328  

                           
5,885  83 66 78 

China            
172,649  

                              
9,027  

       
33,161  

                        
12,865  87 72 79 

Oceania            
111,050  

                              
1,109  

          
1,608  

                           
3,997  95 29 59 

UAE            
167,892  

                              
4,392  

          
7,088  

                           
8,153  93 47 62 
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Africa            
262,258  

                              
1,677  

          
2,801  

                           
9,107  96 24 63 

Total 
        

2,220,59
4  

                           
49,156  

     
130,799  

                      
102,253  91 48 73 
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Appendix 

Figure S1. Regions used in figure 1 and 2. 

In the Zenodo archive (https://zenodo.org/deposit/4392826)  the reader can find: 

Prediction maps:  Prediction maps for every year from 2001 to 2015, in GeoTIFF format.  Class 0 
represents no irrigation, class 1 is low to medium irrigation, and class 2 is high irrigation. 

Assessment map: Model assessment map for the year 2005. 

Difference map: Map showing cropland differences between 2001 and 2015. 
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