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Abstract 15 

This work applies reconstruction methods based on a genetic algorithm to derive 3D material properties, 16 
namely porosity and percolation fraction, in irradiated U-Pu-Zr fuel with minor actinides. We provide 17 
two-dimensional experimental data regarding the radial distribution of fission gas bubbles in the fuel and 18 
apply the algorithm successfully developed in a companion paper to reconstruct the fuel pore structure in 19 
3D which is unknown a priori. The algorithm returned a set of best structures that constituted the best 20 
candidate solutions representing the pore phase. From these, it was possible to extract statistics on the 3D 21 
percolation fraction of the reference medium and infer a mean value, the related uncertainty, and an upper 22 
and lower bound of the percolation fraction. The algorithm proved able to infer this 3D property from 2D 23 
information of the metallic fuel with confidence intervals, thus establishing a path to infer 3D properties 24 
directly from 2D experimental images. The knowledge of such a relationship can be used to extrapolate 25 
the percolation threshold with confidence interval, which is a crucial property in defining microstructure-26 
based fission gas release models of metallic fuels. 27 
 28 
Keywords: FUTURIX-FTA, metallic fuel, PIE, image analysis, 3D reconstruction, genetic 29 
algorithm 30 

1 Introduction 31 

Visualization of microstructural changes within the fuel pellet is an important source of information 32 
regarding the performance of the fuel during irradiation. Several types of microscopy can be applied, e.g., 33 
optical microscopy (OM), Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy 34 
(TEM). In addition to qualitative analysis assessing the overall performance of the candidate fuel, 35 
extraction of salient microstructure features and quantitative description of their variation within the fuel 36 
is a crucial component of post-irradiation examinations aimed at enabling robust comparison of 37 
performance of different fuel designs. The porosity quantification is one of the most important quantities 38 
needed experimentally to validate fuel performance code predictive models, especially concerning fission 39 
gas release and gaseous swelling results [1]. For instance, physics-based models that predict the onset of 40 
thermal fission gas release to the fuel rod free volume following interconnection of bubbles require 41 
knowledge of bubble shape and density to determine the saturation threshold triggering the release [2,3] 42 
and hence would benefit from experimental data related to the 3D bubble density and distribution to 43 

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022311521000660
Manuscript_54501989ffb642bd8fd397256cb3511f

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022311521000660


validate the underlying assumptions. Bubble size distribution experimental data are used as direct input to 44 
calculate local bubble pressure during temperature transients [4] and are important for simulation of fuel 45 
behavior during off-normal condition [5].Application of advanced microscopy for nuclear materials and 46 
specifically for nuclear fuels has significantly increased over the last ten years with tremendous 47 
improvements in the understanding of nuclear material microstructure and irradiation effects [6]. 48 
Increased attention has been paid to the application of serial reconstruction using ion beam/scanning 49 
electron microscopy (FIB-SEM) imaging to determine three-dimensional (3D) microstructure from two-50 
dimensional (2D) imaging. A recent example has studied the morphology of metal-oxide interface of 51 
Zircaloy cladding at different burnup to understand the change in the rate of hydrogen uptake of the 52 
claddings during in-reactor life [7]. The first application on nuclear fuels was conducted on high burnup 53 
sodium fast reactor mixed oxide (MOX) [8], more recently on dispersion U-Mo fuel coated with ZrN [9], 54 
and high burnup UO2 fuel [10,11]. Alternatively, X-ray tomography has been used to obtain structural 55 
information [12] as well as mechanical response [13] of TRISO particles non-destructively. 56 

These techniques provide fundamental information of the fuel structure, but they present some limitations 57 
in some applications to nuclear fuels, particularly for high burnup metallic fuels. X-ray tomography of 58 
irradiated metallic fuels has been recently performed on irradiated metallic fuel, but the overall volume 59 
investigated was small (∼8 × 105 μm3) [14], likely due to the limited penetration in high atomic number 60 
and dense materials, which limits the amount of fuel that can be investigated, as well as the practical 61 
limitations to bring large quantities of irradiated fuels to synchrotron facilities. 62 

 Metallography of metallic fuels has been extensively collected over the decades, showing pores as big as 63 
hundreds of microns [15–19]. The size of those features largely exceeds the current FIB-SEM-based 64 
milling and reconstruction capabilities, which are generally limited to milling areas of the order of tens of 65 
microns. Hence, FIB-SEM reconstruction of pore phase in metallic fuels would not be able to capture 66 
such features, which account for most of the porosity. Moreover, the number of metallography samples 67 
that are prepared and analyzed in hot cells ranges between 2-3 up to tens of samples for each single rod. 68 
The time and cost to manage this problem by performing serial reconstruction on each sample for all 69 
possible microstructures is clearly prohibitive. Moreover, when dealing with highly radioactive nuclear 70 
fuels, which imply additional handling challenges and damage to the FIB-SEM detectors, the time and 71 
costs associated with the analyses increase drastically. 72 

A more cost-effective approach is the reconstruction of the structure of 3D random multiphase materials, 73 
such as the porous irradiated fuel, from the information obtained from a two-dimensional image. Such 74 
approach, despite intrinsically ill-posed, is of great value and routinely applied in a wide variety of fields 75 
(e.g., biology and petroleum engineering) when only 2D images are available for analysis [20]. There are 76 
several approaches used from reconstruction of microstructures from 2D images, including simulated 77 
annealing [20], Gaussian random fields [21], and genetic algorithms (GA) [22]. 78 

In this work, we study the fission gas bubbles of irradiated metallic fuels with a combination of image 79 
analysis and an optimization technique based on a genetic algorithm [23]. We provide quantitative 80 
information regarding the characteristics of the porosity in 3D in irradiated U-Pu-Zr fuel with minor 81 
actinides to obtain a correlation between the 3D properties, such as the percolating fraction of the 82 
porosity, and the experimentally measurable 2D quantities. 83 

The paper is organized as follows. In Section 2, materials and methods, a description of the experimental 84 
fuel sample and image processing to extract useful information for the reconstruction procedure is 85 
introduced. Then the reconstruction procedure based on GA is briefly outlined, with particular care being 86 
paid to the definition of the optimization problem and to the 3D model of the porosity adopted for 87 



reconstruction. At the end of Section 2, the algorithm for the computation of the percolation fraction is 88 
presented. In Section 3, results and discussion, the experimental data are first introduced and thoroughly 89 
described. Then, the results of the reconstruction procedure applied to the experimental data are presented 90 
and, in the end, the 3D porosity and 3D percolation fraction of each reconstructed 3D microstructures are 91 
computed and discussed. 92 

2 Materials and methods 93 

2.1 Fuel sample and image analysis 94 

The sample used in this work belongs to the FUTURIX-FTA irradiation campaign conducted in the 95 
Phénix reactor as part of a joint collaboration between the U.S. Department of Energy (DOE) and the 96 
French Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA). Extensive details about 97 
the irradiation campaign can be found in [24] and in the manuscripts reporting the post-irradiation 98 
examinations [19,25]. The sample, which belonged to the experiment DOE1, was constituted by a 99 
metallic alloy with nominal composition 34.1U-28.3Pu-3.8Am-2.1Np-31.7Zr (wt%) and predicted 100 
discharge burnup of 9.1% Fission of Initial Metallic Atoms (FIMA). The post-irradiation examinations 101 
showed that the presence of minor actinides did not significantly alter the overall performance of the 102 
alloy, compared to historical PIE on U-Pu-Zr fuels [19]. The Zr content of the DOE1 experiment is 103 
different from the “typical” Zr content of the ternary U-Pu-Zr alloys used as reference fuel in U.S. (30 104 
wt.% vs. 10 wt.%) [26]. The PIE on FUTURIX-FTA DOE1 showed that the higher Zr content limited the 105 
anisotropic growth and swelling of alpha-uranium, and most of the porosity remained fairly circular, 106 
suggesting an underlying cubic structure [19]. A simple and isotropic pore structure compared to what 107 
observed in the other alloys is advantageous for application of reconstruction methods like the one here 108 
proposed, which relies upon the assumption that the pores can be modelled using randomly distributed 109 
overlapping spheres. 110 

Figure 1 shows a low magnification overview of the fuel cross section from Ref. [19]. Quantitative image 111 
analysis was performed on images acquired with magnification 200X with a pixel spatial resolution of 112 
4.81 pixels/µm using a Leica DMi8 microscope installed in the hot cell at the Hot Fuel Examination 113 
Facility (HFEF) at Idaho National Laboratory (INL). The images were processed in order to obtain a final 114 
binary mask of the initial microstructure representing the fuel as a two-phase material composed of the 115 
solid phases (in white) and the pore phase (in black). Complete details about the image processing can be 116 
found in the Appendix A. Once the image was binarized, the two-dimensional (2D) porosity, defined as 117 
the fraction of area occupied by the black phase, was calculated. Simultaneously, other statistical 118 
information was extracted, namely: the pore number density in 2D, the 2D pore size distribution by 119 
calculating the equivalent diameter of each pore, and two statistical correlations (i.e., the two-point 120 
correlation function and the lineal path function). Those two are defined after Ref. [27] and were already 121 
summarized in the first part of this work [23]. 2D porosity, pore size distribution and pore density are 122 
used as reference with the 2D sections of the reconstructed material, while the statistical correlations are 123 
verified a-posteriori. 124 



2.2 Reconstruction methodology 125 

The reconstruction procedure of 3D microstructures from 2D images can be treated as an optimization 126 
problem. However, the difficulties implied in the application to 3D reconstruction − such as multi-object 127 
optimization, the generally unchartered nature of the functional search space, and the inherent 128 
complexities of the 3D model of the microstructure − make this a complex optimization problem that 129 
cannot be properly faced with traditional optimization methods (e.g., the gradient method). In this work, 130 
we opted for the adoption of the reconstruction procedure based on a GA presented by the authors in a 131 
separate publication [23]. The genetic algorithm has the best features for the resolutions of complex 132 
optimization problems defined by unknown functional space [22,28]. Indeed, when there is no a priori 133 
knowledge of the properties of the search space, it is extremely difficult to locate a good solution that can 134 
be used as a starting point for a traditional optimization method, making the employment of heuristic 135 
methods preferable. 136 

The development of the genetic algorithm applied to the reconstruction procedure has been already 137 
treated in detail in [23]. Here we briefly recall the main features of the reconstruction process. This 138 
reconstruction algorithm randomly samples an initial population of solutions (i.e., 3D structures of a 139 
porous material) rather than a single solution as in the traditional optimization methods. Once the 3D 140 
structures are created, one random 2D section is extracted from each 3D structure. It then ranks the 141 
solutions based on the quantitative similarities between the 2D sections from the modeled structures and 142 
the reference image of the experimental section. The information from the best ones is then used to 143 
produce a new population. The best solutions are ranked according to Pareto’s efficiency, since the 144 
problem of 3D reconstruction is a multi-object optimization. It must be noted that generally with this 145 
ranking method there can be multiple solutions with the same rank, therefore the optimal solutions are 146 

 

Figure 1. Overview of the FUTURIX-FTA DOE1 sample [19]. 



more than one and belong to Pareto’s front. This process is repeated until the algorithm gets to a favorable 147 
set of solutions that converge to the global optimum [29]. Indeed, sampling many solutions across the 148 
search space improves exploration properties [30,31], increasing the likelihood that the algorithm locates 149 
the global optimum and converges to it once it is located.  150 

The initial model used to create the simulate 3D structures is a free parameter and needs to be established. 151 
The choice of the 3D radius-distribution of the spherical pores is extremely important to the 152 
reconstruction procedure and must be inquired to understand which model is the most feasible to 153 
reproduce the experimental 2D pore-size distribution and correlations. This information must have 154 
physical meaning. That is, it must be justified with physical arguments as well as modelling ones, as 155 
discussed below in this section. 156 

It is possible to infer this information by analyzing the experimental 2D images (Figure 2a) and 157 
confronting them with 2D images taken from artificial 3D microstructures described by different models 158 
of the pore-phase (Figure 2b). First of all, assumptions regarding the distribution of the pore phase must 159 
be made. The simplest approach is to simulate the pore phase as a system of overlapping, spatially 160 
randomly distributed spheres. This assumption is justified by the observation of the experimental two-161 
point correlation function (Figure 3b), which shows an exponential decay typical of a system of 162 
overlapping spheres [27]. 163 

As for the initial 3D size distribution, the 2D images of metallic fuel generally follow a pore-size 164 
distribution that resembles a lognormal, yet much more skewed, with a sharper peak and a lower shoulder 165 
at the larger pores than the corresponding lognormal with the same average and standard deviation 166 
(Figure 2a) [32]. 167 

The lognormal distribution for 3D spherical pores accounts for several physical processes that are 168 
characterized by small percentage growth [33]. Thus, the lognormal distribution best describe the physical 169 
processes of nucleation, growth, and coalescence of pores throughout the irradiation time in metallic fuels 170 
[19]. Albeit it is effective in producing the larger pores belonging to the shoulder of the distribution, it is 171 
inadequate in capturing the smaller pores belonging to the peak visible in Figure 3a. The contrary is true 172 
for the single-sized distribution that can catch only the smaller pores in the peak and not the largest in the 173 
shoulder, highlighting the presence of smaller pores that have nucleated too recently to have grown and 174 
coalesced. The different abilities of the single-sized model to catch the peak and the lognormal model to 175 
catch the shoulder suggest that the spherical pores might experimentally follow a linear combination of 176 
two distributions. In fact, it should be reminded that any measured PIE data is the integral result of 177 
various phenomena occurred at different stages of irradiation. The single-size distribution captures the 178 
pores at the peak of the 2D pore-size distribution and the lognormal captures the behavior of larger, 179 
coalesced pores at the shoulder of the 2D distribution. This result can be matched with heuristic trials to 180 
yield the following. 181 

The trials were able to produce 3D microstructures whose 2D images matched both visually (Figure 2) 182 
and statistically (Figure 3) the experimental image. Model tailoring was performed on three such images. 183 
Although operating on few images might present a statistical limitation, the number of pores in these were 184 
such (more than 2,000) to provide enough statistical information to infer the 3D model faithfully enough. 185 
The resulting distribution is a hybrid microstructure defined by lognormal distributed spherical pores and 186 
single-sized spherical pores. The statistical information measured from 2D sections taken from 187 
realizations of 3D structures based on the aforementioned model resemble the most the information 188 
measured from the experimental reference 2D section.  189 



  

Figure 2. FUTURIX-FTA [32] 2D section (a) and reconstructed 2D section  (b).  
 190 

 191 

  

Figure 3. Comparison between the FUTURIX-FTA fuel experimental (red) and the simulated (blue) 2D pore-size distribution 
(a) and 2D correlations (b) yielded by a linear combination of a lognormal and a single size 3D spherical pore-size 
distribution.  

2.3 Percolation algorithm 192 

The percolation algorithm developed in this work computes the percolation fraction −  i.e., the fraction  of 193 
volume of the 3D medium that belongs to clusters of pores that span the 3D medium from one side to the 194 
opposite in either one of the three directions [34]. 195 

It must be stressed that an algorithm of this kind cannot be directly applied to a continuous model, hence 196 
the reconstructed 3D microstructure must be digitized. Even the experimental images have an intrinsic 197 
error because of digitization when passing from the physical sample to the digitized image. Digitization 198 
introduces systematic errors with respect to the continuum at the pixel scale. Thus, the finer the 199 
discretization, the less the deviation from the continuum [35]. The structure that can be reconstructed 200 
should not have a higher resolution than the experimental reference, as having a model with higher 201 
resolution than the images used to generate the system would be useless as it would exceed the length 202 
scale of the problem [13]. 203 

Connectivity between voxels influences the percolation calculation. The limit definitions of connectivity 204 
between voxels are 6 (face to face) and 26 (face to face, corner to corner, edge to edge) [35]. They 205 
introduce respectively the least and the largest number of possible paths across the pore phase of the 206 
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medium. Therefore, they constitute the smallest and the largest overestimation of the pore phase 207 
connected volume. 208 

A swift study of the upper and lower bound of the percolation fraction − here as a fraction to the total 209 
volume − is presented in Figure 4a and 4b adopting a single-sized and lognormal model, respectively. It 210 
can be observed that different connectivity yields significant difference between the upper and lower 211 
bounds at the lower porosities, but the difference significantly reduces for large values of the porosity 212 
(i.e., >30%).  213 

  
Figure 4. Percolation fraction curves for single-size pores (a), and lognormal (b), connectivity 26 (red) vs. connectivity 6 
(blue). 

3 Results and discussion 214 

3.1 Experimental data 215 

The porosity values measured in each image are shown in Figure 5. Together with the porosity values, the 216 
local pore density (number of pores per unit area) was obtained, and is reported in Figure 6. Additional 217 
statistical information is shown in Figure 7 and Figure 8, which report pore size distribution and two 218 
statistical functions, respectively. In this case, the values are reported for a peripheral region of the fuel 219 
and for the center. A collage of images has been performed in order to analyze a larger total area to 220 
ameliorate the statistics. The total area analyzed for each region was 0.43 mm2. In Figure 8, the statistical 221 
descriptors measured are the two-point correlation function (Figure 8a), which provides information on 222 
how the two end points in the pore phase are spatially correlated, and the lineal-path function (Figure 8b) 223 
which is the probability that a line segment of length z lies wholly in the pore phase when randomly 224 
thrown into the image. This second function captures connectedness aspects of the pore phase.  225 
 226 
The trend of the measured porosity reported in Figure 5 is consistent with the qualitative appearance of 227 
the cross section in Figure 1, in which the fuel surface appears homogeneous throughout most of the fuel 228 
radius, while it is clear that the outermost part of the pellet (corresponding to r/r0 ≈ 0.60-1) has less 229 
porosity. Although the porosity is decreasing, the number of pores increases as shown in Figure 6, 230 
meaning that the average pore size is decreasing. This behavior is reflected in the pore-size distribution 231 
reported in Figure 7. There is a clear decrease in the number of larger pores in the periphery, which, 232 
despite less numerous, contribute most to the porosity. The different size-distribution is also reflected in 233 
the statistical correlations. The faster decay of the lineal path function measured at the fuel periphery in 234 
Figure 8b is a sign of the lower connectedness of the pore phase on the fuel periphery. The change in the 235 
porosity trend coincides with the phase separation reported by Wright et al. [25] by Electron Probe Micro 236 
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Pellet central part Pellet periphery 

Analysis (EPMA). Starting at radial position r/r0 = 0.6, separation of U and Zr occurred. Although the 237 
explanation of the mechanism driving this separation is beyond the scope of this work, it is interesting to 238 
note the correspondence between the pore phase and the metallic phases, suggesting an influence of the 239 
composition on the resulting porosity and pore density across the radius. Three images have been selected 240 
across the radius and used for reconstruction of the pore phase. Results are shown and discussed in the 241 
next section. 242 
 243 

 

Figure 5. Porosity radial profile obtained from the image analysis. Here, the border between the central and peripheral areas of 
the samples can be inferred by the drop of 2D porosity, about 0.6 relative radial position from the central axis of the samples. 

 244 

 

Figure 6. Radial profile of the 2D pore number density. Here the border between the central and peripheral areas of the 
samples can be inferred by the rise of 2D pore number density, about 0.6 relative radial position from the center axis of the 
samples.  
 245 
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Figure 7. Equivalent pore diameter size distribution from the fuel center and periphery. 

 246 

 

 

Figure 8. Statistical functions of the pore phase from the center and periphery of the radial cross section: (a) two-point 
correlation functions, (b) lineal path functions.  

3.2 3D reconstruction results 247 

The reconstruction procedure described in Section 2.2 is applied to three experimental images, using the 248 
linear combination of a lognormal and a single-size distribution of the spherical pores previously justified. 249 
The images were sampled from different radial positions across the radius of the sample. 250 

The results of the 3D reconstruction are shown in Figure 9, Figure 10, and Figure 11 in terms of pore-size 251 
distribution and 2D statistical correlations. The reference 2D image and one of the reconstructed 2D 252 
images are also shown along. Since the 3D reconstruction procedure is based on GA applied to a multi-253 
object optimization problem, the reconstruction procedure returns a multitude of reconstructed 2D images 254 
taken from as many 3D microstructures. These are the set of best solutions yielded by the 3D 255 
reconstruction procedure. That is, the individuals from the last generation of the genetic algorithm that are 256 
ranked as the best according to Pareto efficiency. 257 

(a) 
(b) 



The first image (Figure 9c) was taken in the intermediate region of the cross section between 0.6 and 0.7 258 
of the relative radial distance from the central axis, around the phase separation region at high U 259 
concentrations [25]. In this region, there is a comparatively high density of pores (Figure 6) and a porosity 260 
generally lower around 30% to 35% (Figure 5). The second image (Figure 10c) was taken between 0.2 261 
and 0.3 relative radial distance and is characterized by lower pore number density (Figure 6) and higher 262 
porosity (about 35% to 40%, Figure 5) than the previous image. The 3D structures are away from the 263 
critical region − i.e., far from the phase transition from γ-U-Pu-Zr to the U rich one [25]. The third image 264 
(Figure 11c) was taken in the central portion of the cross section − within 0.1 and 0.2 relative position, 265 
with pore number density (Figure 6) and porosity similar to the second image (35% to 40%, Figure 5). 266 

The comparison of the experimental and GA results is shown in Figure 9 through Figure 11. For each of 267 
them, the 2D pore-size distribution, the 2D statistical correlations and the binary sections are shown. For 268 
all of them, convergence is imposed on the pore-size distribution (Figure 9a, Figure 10a and Figure 11a). 269 
Convergence on the pore-size distribution resulted in the convergence of the correlation functions, which 270 
are also clustered around the experimental ones (Figure 9b, Figure 10b and Figure 11b). 271 

The successful convergence of the GA is also qualitatively demonstrated by the comparison of the 272 
experimental binary image with a 2D section cut from one of the best individuals (the optimal individuals 273 
produced by the genetic algorithm), which are shown in Figure 9d, Figure 10d and Figure 11d. The 274 
qualitative similarity of the reconstructed 2D images to the reference experimental 2D images highlights 275 
the coherence of the model adopted in Section 2.2. The choice of overlapping spheres [34] and their 276 
double 3D radius-distributions − lognormal to capture the larger, coalesced pores, and single-size to catch 277 
the smaller isolated ones − could well represent the porosity structure and produce odd-shaped pore 278 
features. Furthermore, the presence of many pores (more than 2,000) much smaller than the scale of the 279 
image has beneficial effects for the application of the reconstruction procedure. These two features 280 
provide for good statistics necessary to the reconstruction of a 3D microstructure from a single 2D 281 
section. 282 

There are few differences between the reference 2D images and the reconstructed ones. This is 283 
nonetheless expected, since the 3D reconstruction procedure aims to reproduce 3D microstructures that 284 
statistically resemble the reference one. Indeed, the 3D reconstruction procedure imposes convergence on 285 
the moments of the 2D pore-size distribution (i.e., mean value and standard deviation). This feature of the 286 
adopted 3D reconstruction procedure contrasts with state-of-the-art approaches, which consistently 287 
impose convergence on statistical correlations [22,36,37]. However, convergence on statistical 288 
correlations imposes the adoption of strong hypothesis of isotropy of the system. The adoption of 289 
convergence on the 2D pore-size distribution aims at overcoming such limitations and achieve generality 290 
of the 3D reconstruction procedure [23]. 291 

Other differences regard the shape of the pores, whose contour is smoother on the reference 2D images 292 
than in the reconstructed ones. This is due to the necessary simplification of the model which treats 293 
complex pore geometry as a combination of perfect spheres allowed to overlap. However, such difference 294 
accounts only for exceedingly small areas and has little to no influence on the statistical properties of the 295 
porous medium. 296 



(d) (c) 

 

 
  

Figure 9. Comparison of the GA reconstructed microstructures with the experimental data. (a) Pore size distribution, (b) 
Statistical correlations. In both images the experimental data is shown in red, while the GA results of the best individuals in blue. 
(c) Binary mask of the fuel porosity (Local porosity is 0.319). (d) 2D section obtained from one of the reconstructed 
microstructures.  
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Figure 10. Comparison of the GA reconstructed microstructures with the experimental data. (a) Pore size distribution, (b) 
Statistical correlations. In both images the experimental data is shown in red, while the GA results of the best individuals in blue. 
(c) Binary mask of the fuel porosity (Local porosity is 0.397). (d) 2D section obtained from one of the reconstructed 
microstructures. 

  

  
Figure 11. Comparison of the GA reconstructed microstructures with the experimental data. (a) Pore size distribution, (b) 
Statistical correlations. In both images the experimental data is shown in red, while the GA results of the best individuals in blue. 
(c) Binary mask of the fuel porosity (Local porosity is 0.383). (d) 2D section obtained from one of the reconstructed 
microstructures.  

 297 

3.3 3D properties calculations 298 

The percolation fraction is now analyzed as a function of the pore fraction of the reconstructed media. It 299 
must be recalled that both terms are defined as fractions of the total volume. Since the references are at 300 
high porosities (up to 30%-40% for the second and third image) the conditions are such that the difference 301 
between the upper and lower bound of the percolation fraction is minimal (Figure 6). The computed 302 
values are calculated using connectivity 26. The values returned are thus consistently overestimating the 303 
percolation fraction of the 3D microstructure. Yet, in this field of application, the calculation of the upper 304 
bound of the percolation fraction provides a conservative result from the point of view of fuel safety [16]. 305 
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The results of the calculation of 3D percolation fraction and 2D porosity of all the 3D microstructures 306 
reconstructed from each 2D image in Section 3.1 are shown in Figure 12 and summarized in Table 1. The 307 
values are distributed along a curve that resembles the ones presented in Figure 3, which for higher 308 
porosities converge on the bisector of the graph. Furthermore, the values of 3D porosities are in all three 309 
cases clustered about the correspondent 2D porosity of the reference 2D image. These results present 310 
consistency with theoretical definition of  random heterogeneous material, whereas 2D porosity 311 
converges to 3D porosity apart from small error at the infinite volume limit [36]. 312 

Being able to establish a relationship between the (measured) 2D porosity and the 3D percolation fraction, 313 
the reconstruction procedure combined to the percolation fraction calculation algorithm can be used in the 314 
design phase of new metallic fuel pins and in the interpretation of past experiments. This relationship 315 
would allow to correlate the gaseous swelling (i.e., the local porosity) to the fission gas release which is, 316 
among others, correlated to the percolated fraction. These are two key parameters for the design and 317 
performance analysis of metallic fuels. 318 

In general, the importance of such results is that the proposed reconstruction procedure has proven its 319 
ability in the determination of empirical relationships between 3D properties and 2D information with 320 
confidence intervals whereas no clear mathematical relationship exists. Figure 12 plots the results for the 321 
three experimental images to which the reconstruction has been applied. A general trend of the data starts 322 
being visible, suggesting that with more images at different porosities it is possible to populate the space 323 
and extract the empirical law tying the 2D porosity of metallic fuel to the average 3D percolation fraction 324 
with confidence intervals. By means of an empirical law available it is possible to extrapolate the value of 325 
the percolation threshold of the pore microstructure of metallic fuel, which is also a quantity of interest 326 
for the study of fission gas release, with the respective confidence intervals. Overall, the reconstruction 327 
procedure has thus proven to be a valuable tool for the inferring of 3D properties from 2D information. 328 



 
Figure 12. Properties of every 3D microstructure reconstructed compared with the 2D porosity value of the respective 
reference 2D image represented by the dotted lines of respective color.  

 329 

Table 1: Summary of the 3D percolation values vs. the experimental 2D porosity values. 330 

Image 

number 

2D experimental 

porosity 

3D percolation 

fraction  

3D percolation 

fraction lower 

bound 

3D percolation 

fraction upper 

bound 

Image 1 0.319 0.302±0.003* 0.236 0.337 
Image 2 0.383 0.379±0.002 0.360 0.386 
Image 3 0.397 0.374±0.003 0.345 0.433 
*The indicated error represents the standard error 
 331 

4 Conclusions 332 

The phenomenon of fission gas swelling has impact on component redistribution [38,39], thermal 333 
conductivity [40], and transient behavior [41]. Therefore, it is of great importance for fuel safety 334 
assessment. It is known that the swelling behavior is related to the fuel phases and textures created during 335 
irradiations [39,40], but until now no investigation of the pore phase properties such as percolation 336 
thresholds has been conducted. 337 

This information is obtainable only directly from knowledge of the 3D structure, that is not easily 338 
obtainable through direct methods (e.g., Micro-CT and FIB). Indirect methods such as reconstruction 339 
procedures are favored for this kind of materials, however the complexity of the pore phase generated in 340 
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metallic fuel and the lack of understanding of the underlying physical phenomena driving the swelling 341 
pose a serious challenge to the effectiveness of the reconstruction. 342 

The algorithm successfully developed in a companion paper [23] could be applied to the reconstruction of 343 
experimental media with 3D features unknown a priori, and the percolation fraction of these structures 344 
was calculated. The procedure returned a set of best structures that constituted the best candidate solutions 345 
representing the unknown microstructures. From these, it was possible to extract statistics on the 3D 346 
properties of the reference medium and infer a mean value, the related uncertainty, and an upper and 347 
lower bound to these properties (see Table 1). This was applied to the calculation of the percolation 348 
fraction, and the algorithm proved able to infer this 3D property from 2D information of the metallic fuel 349 
with confidence intervals. Further application of the reconstruction procedure to lower porosity images of 350 
metallic fuel can be used to extract more useful data for the determination of a comprehensive empirical 351 
relationship between 2D porosity and 3D percolation factions. The knowledge of such a relationship can 352 
be useful in extrapolating the percolation threshold with confidence interval, which is a crucial property in 353 
defining the irradiation performance of metallic fuel. 354 

The application to the nuclear field of this procedure is only one option, and the algorithm can be applied 355 
to the modelling of material phases of any solid-state material that can be modelled as a random 356 
heterogeneous material. 357 
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Appendix A 482 

The image processing started with pre-processing to enhance image contrast. After grayscale conversion, 483 
the contrast was enhanced by adopting the Matlab® built-in function for contrast-limited adaptive 484 
histogram equalization. The optical microscopy images showed good contrast between the large pores and 485 
the fuel matrix phase, but the simultaneous very small and shallow pores exhibited much less contrast due 486 
to their shallow nature, hence a simple binarization approach could not be implemented. The successful 487 
segmentation of the smaller pores is important to promote data accuracy as smaller pores, despite bringing 488 
little contribution to the total porosity, are relevant for pore-size distribution measurements and statistical 489 
analysis of pore spatial distribution and connectivity. Hence, we adopted a 3 steps approach, step 1 490 
dedicated to the segmentation of the large pores and the other two to the segmentation of the small pores. 491 

A schematic overview of the algorithm is depicted in Fig. A1. 492 

 

Figure A1: Algorithm scheme for the optical microscopy images. 

 493 

In step 1, the good contrast allows for segmentation based on grayscale, by dividing the histogram in 494 
three clusters associated with matrix, porosity, and additional phase that encompass solid fission products 495 
precipitates. Step 2 is dedicated to the segmentation of small pores. Those are first identified by over-496 
segmenting the image by adding an additional cluster in the region-based segmentation, as shown in Fig. 497 
A2 (see the arrows). However, since the shading of the larger pores is also identified in this procedure, an 498 
additional condition is imposed to identify only the correct features. The objects, in addition to belonging 499 
to the added gray level cluster, must have limited elongation, i.e., the major axis length must be less than 500 
three times the minor axis length. In addition, objects must be solid, i.e., the Euler number associated with 501 
the object must be one. This last condition assures that shading areas are always removed.     502 



(a) 

(b) 

 

 

Figure A2: (a) Original image, (b) 4-means clustering used in STEP 2 to isolate the core of small pores. The red 
arrows highlight the small pores identified thanks to the oversegmentation. 
  503 

In the last part of the algorithm, the results obtained in the previous steps are refined. Due to resolution 504 
limits, some of the pores might be loosely connected in the resulting segmented image (see arrows in Fig. 505 
A3a). The borders of each object are explored and if connecting lines whose thickness is equal or less 506 
than 2 pixels are found, they are removed (shown in pink in Fig. A3b). 507 



(a) 
 

 

Figure A3: (a) Original image. The arrows highlight pores interconnections which are due to resolution limits (b) 
Binary image of (a) showing the removed connecting lines indicated by the arrows. 
 508 

The oversegmentation used in step 2 to identify the small pores is effective to locate the pore cores, but it 509 
might lead to an underestimation of their size. Therefore, an additional sub-step is added to allow the 510 
expansion of small pores (with size below 50 pixels) based on gray-level difference with the surrounding. 511 
For each small pore, the average gray-value of the pore core is determined and a gray-level distance map 512 
from this mean value is computed. An area of radius 10 pixels is explored around each object. If the gray-513 
value of the pixels in the examined surrounding area is within a tolerance threshold � of the average gray-514 
value of the pore core, the neighboring pixels are added to the object. The effect of variations in the 515 
tolerance value on the resulting porosity measurements are evaluated and discussed in the results section. 516 
Figure A4b shows the expansion of the pores when T is set to 10%.  517 

Once the segmentation process is complete and the binary image obtained combining the objects 518 
identified in the various steps, the statistical parameters are calculated. As the tolerance assigned during 519 

(b) 



the expansion is arbitrary and can impact the porosity value calculated from the image, the calculation of 520 
the porosity was performed also for an expansion threshold of 5%. The results in Fig. A5 show the 521 
limited impact of this parameter in the experimental porosity value, particularly when compared to the 522 
uncertainty associated with overall porosity uncertainty. In fact, the sample surface curvature around the 523 
pores can create uncertainties in the definition of the pore boundaries. In order to provide a conservative 524 
estimation of the porosity error, both a contraction and an expansion of the pores around the pixel 525 
boundaries has been performed, which gives an upper and lower value of porosity for each image showed 526 
by the error bars in Fig. A5. 527 

 

 

Figure A4: (a) Original image. (b) Binary image of (a) showing the expanded small pores in green. 
 528 

 529 
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(a) 
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Figure A5: Impact on the measured porosity of the variation of the expansion threshold of small pores. 
 531 
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