
Are We Really Making Much Progress? A Worrying Analysis of
Recent Neural Recommendation Approaches

Maurizio Ferrari Dacrema Paolo Cremonesi Dietmar Jannach
Politecnico di Milano, Italy Politecnico di Milano, Italy University of Klagenfurt, Austria
maurizio.ferrari@polimi.it paolo.cremonesi@polimi.it dietmar.jannach@aau.at

ABSTRACT
Deep learning techniques have become the method of choice for
researchers working on algorithmic aspects of recommender sys-
tems. With the strongly increased interest in machine learning in
general, it has, as a result, become difcult to keep track of what
represents the state-of-the-art at the moment, e.g., for top-n rec-
ommendation tasks. At the same time, several recent publications
point out problems in today’s research practice in applied machine
learning, e.g., in terms of the reproducibility of the results or the
choice of the baselines when proposing new models.

In this work, we report the results of a systematic analysis of algo-
rithmic proposals for top-n recommendation tasks. Specifcally, we
considered 18 algorithms that were presented at top-level research
conferences in the last years. Only 7 of them could be reproduced
with reasonable efort. For these methods, it however turned out
that 6 of them can often be outperformed with comparably simple
heuristic methods, e.g., based on nearest-neighbor or graph-based
techniques. The remaining one clearly outperformed the baselines
but did not consistently outperform a well-tuned non-neural linear
ranking method. Overall, our work sheds light on a number of
potential problems in today’s machine learning scholarship and
calls for improved scientifc practices in this area.

CCS CONCEPTS
• Information systems → Collaborative fltering; Recommender
systems; • General and reference → Evaluation.

KEYWORDS
Recommender Systems; Deep Learning; Evaluation; Reproducibility
ACM Reference Format:
Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are
We Really Making Much Progress? A Worrying Analysis of Recent Neural
Recommendation Approaches. In Thirteenth ACM Conference on Recom-
mender Systems (RecSys ’19), September 16–20, 2019, Copenhagen, Denmark.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3298689.3347058

1 INTRODUCTION
Within only a few years, deep learning techniques have started to
dominate the landscape of algorithmic research in recommender

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’19, September 16–20, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6243-6/19/09. . . $15.00
https://doi.org/10.1145/3298689.3347058

systems. Novel methods were proposed for a variety of settings
and algorithmic tasks, including top-n recommendation based on
long-term preference profles or for session-based recommendation
scenarios [36]. Given the increased interest in machine learning in
general, the corresponding number of recent research publications,
and the success of deep learning techniques in other felds like
vision or language processing, one could expect that substantial
progress resulted from these works also in the feld of recommender
systems. However, indications exist in other application areas of
machine learning that the achieved progress—measured in terms
of accuracy improvements over existing models—is not always as
strong as expected.

Lin [25], for example, discusses two recent neural approaches
in the feld of information retrieval that were published at top-
level conferences. His analysis reveals that the new methods do
not signifcantly outperform existing baseline methods when these
are carefully tuned. In the context of recommender systems, an
in-depth analysis presented in [29] shows that even a very recent
neural method for session-based recommendation can, in most
cases, be outperformed by very simple methods based, e.g., on
nearest-neighbor techniques. Generally, questions regarding the
true progress that is achieved in such applied machine learning
settings are not new, nor tied to research based on deep learning.
Already in 2009, Armstrong et al. [2] concluded from an analysis
in the context of ad-hoc retrieval tasks that, despite many papers
being published, the reported improvements “don’t add up”.

Diferent factors contribute to such phenomena, including (i)
weak baselines; (ii) establishment of weak methods as new base-
lines; and (iii) difculties in comparing or reproducing results across
papers. One frst problem lies in the choice of the baselines that are
used in the comparisons. Sometimes, baselines are chosen that are
too weak in general for the given task and dataset, and sometimes
the baselines are not properly fne-tuned. Other times, baselines are
chosen from the same family as the newly proposed algorithm, e.g.,
when a new deep learning algorithm is compared only against other
deep learning baselines. This behaviour enforces the propagation
of weak baselines. When previous deep learning algorithms were
evaluated against too weak baselines, the new deep learning algo-
rithm will not necessarily improve over strong non-neural baselines.
Furthermore, with the constant fow of papers being published in
recent years, keeping track of what represents a state-of-the-art
baseline becomes increasingly challenging.

Besides issues related to the baselines, an additional challenge is
that researchers use various types of datasets, evaluation protocols,
performance measures, and data preprocessing steps, which makes
it difcult to conclude which method is the best across diferent
application scenarios. This is in particular problematic when source
code and data are not shared. While we observe an increasing trend

101

https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3298689.3347058&domain=pdf&date_stamp=2019-09-10

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

that researchers publish the source code of their algorithms, this
is not the common rule today even for top-level publication out-
lets. And even in cases when the code is published, it is sometimes
incomplete and, for instance, does not include the code for data pre-
processing, parameter tuning, or the exact evaluation procedures,
as pointed out also in [15].

Finally, another general problem might lie in today’s research
practice in applied machine learning in general. Several “troubling
trends” are discussed in [27], including the thinness of reviewer
pools or misaligned incentives for authors that might stimulate
certain types of research. Earlier work [46] also discusses the com-
munity’s focus on abstract accuracy measures or the narrow focus
of machine learning research in terms of what is “publishable” at
top publication outlets.

With this research work, our goal is to shed light on the ques-
tion if the problems reported above also exist in the domain of
deep learning-based recommendation algorithms. Specifcally, we
address two main research questions:

(1) Reproducibility: To what extent is recent research in the area
reproducible (with reasonable efort)?

(2) Progress: To what extent are recent algorithms actually lead-
ing to better performance results when compared to rela-
tively simple, but well-tuned, baseline methods?

To answer these questions, we conducted a systematic study in
which we analyzed research papers that proposed new algorithmic
approaches for top-n recommendation tasks using deep learning
methods. To that purpose, we scanned the recent conference pro-
ceedings of KDD, SIGIR, TheWebConf (WWW), and RecSys for
corresponding research works. We identifed 18 relevant papers.

In a frst step, we tried to reproduce the results reported in the
paper for those cases where the source code was made available by
the authors and where we had access to the data used in the experi-
ments. In the end, we could reproduce the published results with an
acceptable degree of certainty for only 7 papers. A frst contribution
of our work is therefore an assessment of the reproducibility level
of current research in the area.

In the second part of our study, we re-executed the experiments
reported in the original papers, but also included additional baseline
methods in the comparison. Specifcally, we used heuristic methods
based on user-based and item-based nearest neighbors as well as
two variants of a simple graph-based approach. Our study, to some
surprise, revealed that in the large majority of the investigated cases
(6 out of 7) the proposed deep learning techniques did not consis-
tently outperform the simple, but fne-tuned, baseline methods. In
one case, even a non-personalized method that recommends the
most popular items to everyone was the best one in terms of certain
accuracy measures. Our second contribution therefore lies in the
identifcation of a potentially more far-reaching problem related to
current research practices in machine learning.

The paper is organized as follows. Next, in Section 2, we de-
scribe our research method and how we reproduced existing works.
The results of re-executing the experiments while including addi-
tional baselines are provided in Section 3. We fnally discuss the
implications of our research in Section 4.

2 RESEARCH METHOD
2.1 Collecting Reproducible Papers
To make sure that our work is not only based on individual ex-
amples of recently published research, we systematically scanned
the proceedings of scientifc conferences for relevant long papers
in a manual process. Specifcally, we included long papers in our
analysis that appeared between 2015 and 2018 in the following
four conference series: KDD, SIGIR, TheWebConf (WWW), and
RecSys.1 We considered a paper to be relevant if it (a) proposed a
deep learning based technique and (b) focused on the top-n recom-
mendation problem. Papers on other recommendation tasks, e.g.,
group recommendation or session-based recommendation, were
not considered in our analysis. Given our interest in top-n recom-
mendation, we considered only papers that used for evaluation
classifcation or ranking metrics, such as Precision, Recall, MAP.
After this screening process, we ended up with a collection of 18
relevant papers.

In a next step, we tried to reproduce2 the results reported in
these papers. Our approach to reproducibility is to rely as much as
possible on the artifacts provided by the authors themselves, i.e.,
their source code and the data used in the experiments. In theory,
it should be possible to reproduce published results using only the
technical descriptions in the papers. In reality, there are, however
many tiny details regarding the implementation of the algorithms
and the evaluation procedure, e.g., regarding data splitting, that
can have an impact on the experiment outcomes [39].

We therefore tried to obtain the code and the data for all relevant
papers from the authors. In case these artifacts were not already
publicly provided, we contacted all authors of the papers and waited
30 days for a response. In the end, we considered a paper to be
reproducible, if the following conditions were met:

• A working version of the source code is available or the code
only has to be modifed in minimal ways to work correctly.3

• At least one dataset used in the original paper is available. A
further requirement here is that either the originally-used
train-test splits are publicly available or that they can be
reconstructed based on the information in the paper.

Otherwise, we consider a paper to be non-reproducible given our
specifc reproduction approach. Note that we also considered works
to be non-reproducible when the source code was published but
contained only a skeleton version of the model with many parts
and details missing. Concerning the datasets, research based solely
on non-public data owned by companies or data that was gathered
in some form from the web but not shared publicly, was also not
considered reproducible.

The fraction of papers that were reproducible according to our
relatively strict criteria per conference series are shown in Table 1.

Overall, we could reproduce only about one third of the works,
which confrms previous discussions about limited reproducibility,

1All of the conferences are either considered A* in the Australian Core Ranking or
specifcally dedicated to research in recommender systems.
2Precisely speaking, we used a mix of replication and reproduction [12, 35], i.e., we
used both artifacts provided by the authors and our own artifacts. For the sake of
readability, we will only use the term “reproducibility” in this paper.
3We did not apply modifcations to the core algorithms.

102

i · j
si j =

∥ri ∥∥rj ∥ + h

fi · fj
i j =

∥fi ∥∥fj ∥ + h

Are We Really Making Much Progress? RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Table 1: Reproducible works on deep learning algorithms
for top-n recommendation per conference series from 2015
to 2018.

Conference

KDD 3/4 (75%) [17], [23], [48]
RecSys 1/7 (14%) [53]
SIGIR 1/3 (30%) [10]
WWW 2/4 (50%) [14], [24]

Total 7/18 (39%)

Rep. ratio Reproducible

Non-reproducible: KDD: [43], RecSys: [41], [6], [38],
[44], [21], [45], SIGIR: [32], [7], WWW: [42], [11]

see, e.g., [3]. The sample size is too small to make reliable con-
clusions regarding the diference between conference series. The
detailed statistics per year—not shown here for space reasons—
however indicate that the reproducibility rate increased over the
years.

2.2 Evaluation Methodology
Measurement Method. The validation of the progress that is

achieved through new methods against a set of baselines can be
done in at least two ways. One is to evaluate all considered methods
within the same defned environment, using the same datasets and
the exact same evaluation procedure for all algorithms as done
in [29]. While such an approach helps us obtain a picture of how
diferent methods compare across datasets, the implemented eval-
uation procedure might be slightly diferent from the one used in
the original papers. As such, this approach would not allow us to
exactly reproduce what has been originally reported, which is the
goal in this present work.

In this work, we therefore reproduce the work by refactoring
the original implementations in a way that allows us to apply the
same evaluation procedure that was used in the original papers.
Specifcally, refactoring is done in a way that the original code for
training, hyper-parameter optimization and prediction are sepa-
rated from the evaluation code. This evaluation code is then also
used for the baselines.

For all reproduced algorithms considered in the individual experi-
ments, we used the optimal hyper-parameters that were reported by
the authors in the original papers for each dataset. This is appropri-
ate because we used the same datasets, algorithm implementation,
and evaluation procedure as in the original papers.4 We share all
the code and data used in our experiments as well as details of the
fnal algorithm (hyper-)parameters of our baselines along with the
full experiment results online. 5

Baselines. We considered the following baseline methods in our
experiments, all of which are conceptually simple.
TopPopular: A non-personalized method that recommends the
most popular items to everyone. Popularity is measured by the
number of explicit or implicit ratings.

4We will re-run parameter optimization for the reproduced algorithms as part of our
future work in order to validate the parameter optimization procedures used by the
authors. This step was, however, outside the scope of our current work.
5https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

ItemKNN: A traditional Collaborative-Filtering (CF) approach
based on k-nearest-neighborhood (KNN) and item-item similari-
ties [49]. We used the cosine similarity si j between items i and j
computed as

r r
(1)

where vectors ri , rj ∈ R |U | represent the implicit ratings of a
user for items i and j , respectively, and |U | is the number of users.
Ratings can be optionally weighted either with TF-IDF or BM25,
as described in [50]. Furthermore the similarity may or not be
normalized via the product of vector norms. Parameter h (the
shrink term) is used to lower the similarity between items having
only few interactions [5]. The other parameter of the method is
the neighborhood size k .

UserKNN: A neighborhood-based method using collaborative user-
user similarities. Hyper-parameters are the same as used for
ItemKNN [40].

ItemKNN-CBF: A neighborhood content-based-fltering (CBF)
approach with item similarities computed by using item content
features (attributes)

s (2)

where vectors fi , fj ∈ R |F | describe the features of items i and j,
respectively, and |F | is the number of features. Features can be op-
tionally weighted either with TF-IDF or BM25. Other parameters
are the same used for ItemKNN [28].

ItemKNN-CFCBF: A hybrid CF+CFB algorithm based on item-
item similarities. The similarity is computed by frst concatenating,
for each item i , the vector of ratings and the vector of features –
[ri ,wfi] – and by later computing the cosine similarity between
the concatenated vectors. Hyper-parameters are the same used for
ItemKNN, plus a parameter w that weights the content features
with respect to the ratings.

P3α : A simple graph-based algorithm which implements a ran-
dom walk between users and items [8]. Items for user u are
ranked based on the probability of a random walk with three
steps starting from user u. The probability pui to jump from user
u to item i is computed from the implicit user-rating-matrix as
pui = (rui /Nu)

α , where rui is the rating of user u on item i , Nu
is the number of ratings of user u and α is a damping factor. The
probability piu to jump backward is computed as piu = (rui /Ni)

α ,
where Ni is the number of ratings for item i . The method is equiva-
lent to a KNN item-based CF algorithm, with the similarity matrix
defned as Õ

si j = pjv pvi
v

(3)

The parameters of the method are the numbers of neighbors k
and the value of α . We include this algorithm because it provides
good recommendation quality at a low computational cost.

RP3β : A version of P3α proposed in [34]. Here, the outcomes of
P3α are modifed by dividing the similarities by each item’s popu-
larity raised to the power of a coefcient β . If β is 0, the algorithm
is equivalent to P3α . Its parameters are the numbers of neighbors
k and the values for α and β .
For all baseline algorithms and datasets, we determined the opti-

mal parameters via Bayesian search [1] using the implementation

103

https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

of Scikit-Optimize6. We explored 35 cases for each algorithm, where
the frst 5 were used for the initial random points. We considered
neighborhood sizes k from 5 to 800; the shrink term h was between
0 and 1000; and α and β took real values between 0 and 2.

3 VALIDATION AGAINST BASELINES
This section summarizes the results of comparing the reproducible
works with the described baseline methods. We share the detailed
statistics, results, and fnal parameters online.

3.1 Collaborative Memory Networks (CMN)
The CMN method was presented at SIGIR ’18 and combines memory
networks and neural attention mechanisms with latent factor and
neighborhood models [10]. To evaluate their approach, the authors
compare it with diferent matrix factorization and neural recom-
mendation approaches as well as with an ItemKNN algorithm (with
no shrinkage). Three datasets are used for evaluation: Epinions,
CiteULike-a, and Pinterest. Optimal hyper-parameters for the pro-
posed method are reported, but no information is provided on how
the baselines are tuned. Hit rate and NDCG are the performance
measures used in a leave-one-out procedure. The reported results
show that CMNs outperform all other baselines on all measures.

We were able to reproduce their experiments for all their datasets.
For our additional experiments with the simple baselines, we op-
timized the parameters of our baselines for the hit rate (HR@5)
metric. The results for the three datasets are shown in Table 2.

Our analysis shows that, after optimization of the baselines,
CMN7 is in no single case the best-performing method on any of
the datasets. For the CiteULike-a and Pinterest datasets, at least two
of the personalized baseline techniques outperformed the CMN
method on any measure. Often, even all personalized baselines
were better than CMN. For the Epinions dataset, to some surprise,
the unpersonalized TopPopular method, which was not included in
the original paper, was better than all other algorithms by a large
margin. On this dataset, CMN was indeed much better than our
baselines. The success of CMN on this comparably small and very
sparse dataset with about 660k observations could therefore be tied
to the particularities of the dataset or to a popularity bias of CMN.
An analysis reveals that the Epinions dataset has indeed a much
more uneven popularity distribution than the other datasets (Gini
index of 0.69 vs. 0.37 for CiteULike-a). For this dataset, CMN also
recommends in its top-n lists items that are, on average, 8% to 25%
more popular than the items recommended by our baselines.

3.2 Metapath based Context for
RECommendation (MCRec)

MCRec [17], presented at KDD ’18, is a meta-path based model
that leverages auxiliary information like movie genres for top-n
recommendation. From a technical perspective, the authors propose
a priority-based sampling technique to select higher-quality path
instances and propose a novel co-attention mechanism to improve
the representations of meta-path based context, users, and items.

The authors benchmark four variants of their method against a
variety of models of diferent complexity on three small datasets
6https://scikit-optimize.github.io/
7We report the results for CMN-3 as the version with the best results.

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

Table 2: Experimental results for the CMN method using the
metrics and cutofs reported in the original paper. Numbers
are printed in bold when they correspond to the best result
or when a baseline outperformed CMN.

HR@5
CiteULike-a

NDCG@5 HR@10 NDCG@10

TopPopular
UserKNN
ItemKNN
P3α
RP3β

0.1803
0.8213
0.8116
0.8202
0.8226

0.1220
0.7033
0.6939
0.7061
0.7114

0.2783
0.8935
0.8878
0.8901
0.8941

0.1535
0.7268
0.7187
0.7289
0.7347

CMN 0.8069 0.6666 0.8910 0.6942

HR@5
Pinterest

NDCG@5 HR@10 NDCG@10

TopPopular
UserKNN
ItemKNN
P3α
RP3β

0.1668
0.6886
0.6966
0.6871
0.7018

0.1066
0.4936
0.4994
0.4935
0.5041

0.2745
0.8527
0.8647
0.8449
0.8644

0.1411
0.5470
0.5542
0.5450
0.5571

CMN 0.6872 0.4883 0.8549 0.5430

HR@5
Epinions

NDCG@5 HR@10 NDCG@10

TopPopular
UserKNN
ItemKNN
P3α
RP3β

0.5429
0.3506
0.3821
0.3510
0.3511

0.4153
0.2983
0.3165
0.2989
0.2980

0.6644
0.3922
0.4372
0.3891
0.3892

0.4547
0.3117
0.3343
0.3112
0.3103

CMN 0.4195 0.3346 0.4953 0.3592

(MovieLens100k, LastFm, and Yelp). The evaluation is done by cre-
ating 80/20 random training-test splits and by executing 10 of such
evaluation runs. The evaluation procedure could be reproduced;
public training-test splits were provided only for the MovieLens
dataset. For the MF and NeuMF [14] baselines used in their paper,
the architecture and hyper-parameters were taken from the original
papers; no information about hyper-parameter tuning is provided
for the other baselines. Precision, Recall, and the NDCG are used
as performance measures, with a recommendation list of length 10.
The NDCG measure is however implemented in an uncommon and
questionable way, which is not mentioned in the paper. Here, we
therefore use a standard version of the NDCG.

In the publicly shared software, the meta-paths are hard-coded
for MovieLens, and no code for preprocessing and constructing the
meta-paths is provided. Here, we therefore only provide the results
for the MovieLens dataset in detail. We optimized our baselines for
Precision, as was apparently done in [17]. For MCRec, the results
for the complete model are reported.

Table 3 shows that the traditional ItemKNN method, when con-
fgured correctly, outperforms MCRec on all performance measures.

Besides the use of an uncommon NDCG measure, we found other
potential methodological issues in this paper. Hyper-parameters
for the MF and NeuMF baselines were, as mentioned, not optimized

104

https://scikit-optimize.github.io/

Are We Really Making Much Progress? RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

PREC@10 REC@10 NDCG@10

TopPopular 0.1907 0.1180 0.1361
UserKNN 0.2913 0.1802 0.2055
ItemKNN 0.3327 0.2199 0.2603
P3α 0.2137 0.1585 0.1838
RP3β 0.2357 0.1684 0.1923

MCRec 0.3077 0.2061 0.2363

Table 3: Comparing MCRec against our baselines (Movie-
Lens100k)

for the given datasets but taken from the original paper [17]. In
addition, looking at the provided source code, it can be seen that the
authors report the best results of their method for each metric across
diferent epochs chosen on the test set, which is inappropriate.8

3.3 Collaborative Variational Autoencoder
 (CVAE)

The CVAE method [23], presented at KDD ’18, is a hybrid technique
that considers both content as well as rating information. The
model learns deep latent representations from content data in an
unsupervised manner and also learns implicit relationships between
items and users from both content and ratings.

The method is evaluated on two comparably small CiteULike
datasets (135k and 205k interactions). For both datasets, a sparse
and a dense version is tested. The baselines in [23] include three
recent deep learning models and as well as Collaborative Topic
Regression (CTR). The parameters for each method are tuned based
on a validation set. Recall at diferent list lengths (50 to 300) is
used as an evaluation measure. Random train-test data splitting is
applied and the measurements are repeated fve times.

Table 4: Experimental results for CVAE (CiteULike-a).

REC@50 REC@100 REC@300

TopPopular
UserKNN
ItemKNN
P3α
RP3β
ItemKNN-CFCBF

0.0044
0.0683
0.0788
0.0788
0.0811
0.1837

0.0081
0.1016
0.1153
0.1151
0.1184
0.2777

0.0258
0.1685
0.1823
0.1784
0.1799
0.4486

CVAE 0.0772 0.1548 0.3602

We could reproduce their results using their code and evalua-
tion procedure. The datasets are also shared by the authors. Fine-
tuning our baselines led to the results shown in Table 4 for the
dense CiteULike-a dataset from [47]. For the shortest list length of
50, even the majority of the pure CF baselines outperformed the
CVAE method on this dataset. At longer list lengths, the hybrid
ItemKNN-CFCBF method led to the best results. Similar results were
obtained for the sparse CiteULike-t dataset. Generally, at list length
50, ItemKNN-CFCBF was consistently outperforming CVAE in all
tested confgurations. Only at longer list lengths (100 and beyond),
CVAE was able to outperform our methods on two datasets.
8In our evaluations, we did not use this form of measurement.

Overall, CVAE was only favorable over the baselines in certain
confgurations and at comparably long and rather uncommon rec-
ommendation cutof thresholds. The use of such long list sizes was
however not justifed in the paper.

3.4 Collaborative Deep Learning (CDL)
The discussed CVAE method considers the earlier and often-cited
CDL method [48] from KDD ’15 as one of their baselines, and the
authors also use the same evaluation procedure and CiteULike
datasets. CDL is a probabilistic feed-forward model for joint learn-
ing of stacked denoising autoencoders (SDAE) and collaborative
fltering. It applies deep learning techniques to jointly learn a deep
representation of content information and collaborative informa-
tion. The evaluation of CDL in [48] showed that it is favorable in
particular compared to the widely referenced CTR method [47],
especially in sparse data situations.

Table 5: Experimental results for CDL on the dense
CiteULike-a dataset.

REC@50 REC@100 REC@300

TopPopular
UserKNN
ItemKNN
P3α
RP3β
ItemKNN-CBF
ItemKNN-CFCBF

0.0038
0.0685
0.0846
0.0718
0.0800
0.2135
0.1945

0.0073
0.1028
0.1213
0.1079
0.1167
0.3038
0.2896

0.0258
0.1710
0.1861
0.1777
0.1815
0.4707
0.4620

CDL 0.0543 0.1035 0.2627

We reproduced the research in [48], leading to the results shown
in Table 5 for the dense CiteULike-a dataset. Not surprisingly, the
baselines that were better than CVAE in the previous section are
also better than CDL, and again for short list lengths, already the
pure CF methods were better than the hybrid CDL approach. Again,
however, CDL leads to higher Recall for list lengths beyond 100
in two out of four dataset confgurations. Comparing the detailed
results for CVAE and CDL, we see that the newer CVAE method
is indeed always better than CDL, which indicates that progress
was made. Both methods, however, are not better than one of the
simple baselines in the majority of the cases.

3.5 Neural Collaborative Filtering (NCF)
Neural network-based Collaborative Filtering [14], presented at
WWW ’17, generalizes Matrix Factorization by replacing the in-
ner product with a neural architecture that can learn an arbitrary
function from the data. The proposed hybrid method (NeuMF) was
evaluated on two datasets (MovieLens1M and Pinterest), containing
1 million and 1.5 million interactions, respectively. A leave-one out
procedure is used in the evaluation and the original data splits are
publicly shared by the authors. Their results show that NeuMF
is favorable, e.g., over existing matrix factorization models, when
using the hit rate and the NDCG as an evaluation measure using
diferent list lengths up to 10.

Parameter optimization is done on a validation set created from
the training set. Similar to the implementation of MCRec above,

105

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

the provided source code shows that the authors chose the number
of epochs based on the results obtained for the test set. Since the
number of epochs, however, is a parameter to tune and should not
be determined based on the test set, we use a more appropriate
implementation that fnds this parameter with the validation set.
For the ItemKNN method, the authors only varied the neighborhood
sizes but did not test other variations.

Table 6: Experimental results for NCF.

HR@5
Pinterest

NDCG@5 HR@10 NDCG@10

TopPopular
UserKNN
ItemKNN
P3α
RP3β

0.1663
0.7001
0.7100
0.7008
0.7105

0.1065
0.5033
0.5092
0.5018
0.5116

0.2744
0.8610
0.8744
0.8667
0.8740

0.1412
0.5557
0.5629
0.5559
0.5650

NeuMF 0.7024 0.4983 0.8719 0.5536

HR@5
Movielens 1M

NDCG@5 HR@10 NDCG@10

TopPopular
UserKNN
ItemKNN
P3α
RP3β

0.3043
0.4916
0.4829
0.4811
0.4922

0.2062
0.3328
0.3328
0.3331
0.3409

0.4531
0.6705
0.6596
0.6464
0.6715

0.2542
0.3908
0.3900
0.3867
0.3991

NeuMF 0.5486 0.3840 0.7120 0.4369

SLIM 0.5589 0.3961 0.7161 0.4470

Given the publicly shared information, we could reproduce the
results from [14]. The outcomes of the experiment are shown in
Table 6. On the Pinterest dataset, two of the personalized baselines
were better than NeuMF on all metrics. For the MovieLens dataset,
NeuMF outperformed our simple baselines quite clearly.

Since the MovieLens dataset has been extensively used over the
last decades for evaluating new models, we made additional ex-
periments with SLIM, a simple linear method described in [33]. To
implement SLIM, we took the standard Elastic Net implementation
provided in the scikit-learn package for Python (ElasticNet). To
tune the hyper-parameters on the validation set, we considered
neighborhood sizes as in the other baselines; the ratio of l1 and l2
regularization between 10−5 and 1.0; and the regularization magni-
tude coefcient between 10−3 and 1.0. Table 6 shows that SLIM is
indeed better than our baselines, as expected, but also outperforms
NeuMF on this dataset.

3.6 Spectral Collaborative Filtering
(SpectralCF)

SpectralCF [53], presented at RecSys ’18, was designed to specif-
ically address the cold-start problem and is based on concepts of
Spectral Graph Theory. Its recommendations are based on the bipar-
tite user-item relationship graph and a novel convolution operation,
which is used to make collaborative recommendations directly in
the spectral domain. The method was evaluated on three public
datasets (MovieLens1M, HetRec, and Amazon Instant Video) and

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

benchmarked against a variety of methods, including recent neural
approaches and established factorization and ranking techniques.
The evaluation was based on randomly created 80/20 training-test
splits and using Recall and the Mean Average Precision (MAP) at
diferent cutofs.9

For the MovieLens dataset, the training and test datasets used by
the authors were shared along with the code. For the other datasets,
the data splits were not published therefore we created the splits
by ourself following the descriptions in the paper.

Somehow surprisingly, the authors report only one set of hyper-
parameter values in the paper, which they apparently used for all
datasets. We therefore ran the code both with the provided hyper-
parameters and with hyper-parameter settings that we determined
by our own on all datasets. For the HetRec and Amazon Instant
Video datasets, all our baselines, to our surprise also including
the TopPoular method, outperformed SpectralCF on all measures.
However, when running the code on the provided MovieLens data
splits, we found that SpectralCF was better than all our baselines
by a huge margin. Recall@20 was, for example, 50% higher than
our best baseline.

We therefore analyzed the published train-test split for the Movie-
Lens dataset and observed that the popularity distribution of the
items in the test set is very diferent from a distribution that would
likely result from a random sampling procedure.10 We then ran
experiments with our own train-test splits also for the MovieLens
dataset, using the splitting procedure described in the paper. We
optimized the parameters for our data split to ensure a fair com-
parison. The results of the experiment are shown in Table 7. When
using data splits that were created as described in the original pa-
per, the results for the MovieLens dataset are in line with our own
experiments for the other two datasets, i.e., SpectralCF in all con-
fgurations performed worse than our baseline methods and was
outperformed even by the TopPopular method.

Table 7: Experimental results for SpectralCF (MovieLens1M,
using own random splits and fve repeated measurements).

Cutof 20 Cutof 60 Cutof 100
REC MAP REC MAP REC MAP

TopPopular 0.1853 0.0576 0.3335 0.0659 0.4244 0.0696
UserKNN CF 0.2881 0.1106 0.4780 0.1238 0.5790 0.1290
ItemKNN CF 0.2819 0.1059 0.4712 0.1190 0.5737 0.1243
P3α 0.2853 0.1051 0.4808 0.1195 0.5760 0.1248
RP3β 0.2910 0.1088 0.4882 0.1233 0.5884 0.1288

SpectralCF 0.1843 0.0539 0.3274 0.0618 0.4254 0.0656

Figure 1 visualizes the data splitting problem. The blue data
points show the normalized popularity values for each item in the
training set, with the most popular item in the corresponding split
having the value 1, ordered by decreasing popularity values. In
case of random sampling of ratings, the orange points from the
test set would mostly be very close to the corresponding blue ones.
Here, however, we see that the popularity values of many items
9To assess the cold-start behavior, additional experiments are performed with fewer
data points per user in the training set.
10We contacted the authors on this issue, but did not receive an explanation for this
phenomenon.

106

1.0 Training data
Test data

 in

te
ra
ct
io
ns

0.8

0.6

of
er

 n
um

b
d 0.4

N
or
m
al
iz
e

0.2

0.0

0 500 1000 1500 2000 2500 3000 3500
Items

Figure 1: Popularity distributions of the provided training
and test splits. In case of a random split, the normalized val-
ues should, on average, be close for both splits.

Are We Really Making Much Progress? RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

in the test set difer largely. An analysis of the distributions with
measures like the Gini index or Shannon entropy confrms that the
dataset characteristics of the shared test set diverge largely from a
random split. The Gini index of a true random split lies at around
0.79 for both the training and test split. While the Gini index for
the provided training split is similar to ours, the Gini index of the
provided test split is much higher (0.92), which means that the
distribution has a much higher popularity bias than a random split.

3.7 Variational Autoencoders for Collaborative
Filtering (Mult-VAE)

Mult-VAE [24] is a collaborative fltering method for implicit feed-
back based on variational autoencoders. The work was presented
at WWW ’18. With Mult-VAE, the authors introduce a generative
model with multinomial likelihood, propose a diferent regulariza-
tion parameter for the learning objective, and use Bayesian infer-
ence for parameter estimation. They evaluate their method on three
binarized datasets that originally contain movie ratings or song
play counts. The baselines in the experiments include both a matrix
factorization method from 2008 [18], a linear model from 2011 [33],
and a more recent neural method [51]. Accoring to the reported
experiments, the proposed method leads to accuracy results that
are typically around 3% better than the best baseline in terms of
Recall and the NDCG.

Using their code and datasets, we found that the proposed method
indeed consistently outperforms our quite simple baseline tech-
niques. The obtained accuracy results were between 10% and 20%
better than our best baseline. Thus, with Mult-VAE, we found one
example in the examined literature where a more complex method
was better, by a large margin, than any of our baseline techniques
in all confgurations.

To validate that Mult-VAE is advantageous over the complex non-
neural models, as reported in [24], we optimized the parameters
for the weighted matrix factorization technique [18] and the linear
model [33] (SLIM using Elastic Net) for the MovieLens and Netfix

datasets by ourselves. We made the following observations. For both
datasets, we could reproduce the results and observe improvements
over SLIM of up to 5% on the diferent measures reported in the
original papers. Table 8 shows the outcomes for the Netfix datasets
using the measurements and cutofs from the original experiments
after optimizing for NDCG@100 as in [24].

Table 8: Experimental results for Mult-VAE (Netfix data), us-
ing metrics and cutofs reported in the original paper.

REC@20 REC@50 NDCG@100

TopPop
ItemKNN CF
P3α
RP3β

0.0782
0.2088
0.1977
0.2196

0.1643
0.3386
0.3346
0.3560

0.1570
0.3086
0.2967
0.3246

SLIM 0.2551 0.3995 0.3745

Mult-VAE 0.2626 0.4138 0.3756

The diferences between Mult-VAE and SLIM in terms of the
NDCG, the optimization goal, are quite small. In terms of the Recall,
however, Mult-VAE improvements over SLIM seem solid. Since the
choice of the used cutofs (20 and 50 for Recall, and 100 for NDCG)
is not very consistent in [24], we made additional measurements at
diferent cutof lengths. The results are provided in Table 9. They
show that when using the NDCG as an optimization goal and as
a performance measure, the diferences between SLIM and Mult-
VAE disappear on this dataset, and SLIM is actually sometimes
slightly better. A similar phenomenon can be observed for the
MovieLens dataset. In this particular case, therefore, the progress
that is achieved through the neural approach is only partial and
depends on the chosen evaluation measure.

Table 9: Experimental results for Mult-VAE using additional
cutof lengths for the Netfix dataset.

NDCG@20 NDCG@50 REC@100 NDCG@100

SLIM 0.2473 0.3196 0.5289 0.3745

Mult-VAE 0.2448 0.3192 0.5476 0.3756

4 DISCUSSION
4.1 Reproducibility and Scalability
In some ways, establishing reproducibility in applied machine learn-
ing should be much easier than in other scientifc disciplines and
also other subfelds of computer science. While many recommen-
dation algorithms are not fully deterministic, e.g., because they use
some form of random initialization of parameters, the variability
of the obtained results when repeating the exact same experiment
confguration several times is probably very low in most cases.
Therefore, when researchers provide their code and the used data,
everyone should be able to reproduce more or less the exact same
results. Given that researchers today often rely on software that is
publicly available or provided by academic institutions, the barriers
regarding technological requirements are mostly low as well. In

107

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach

particular, virtualization technology should make it easier for other
researchers to repeat an experiment under very similar conditions.

Nonetheless, our work shows that the level of reproducibility is
actually not high. The code of the core algorithms seems to be more
often shared by researchers than in the past, probably also due to
the fact that reproducibility has become an evaluation criterion
for conferences. However, in many cases, the code that is used for
hyper-parameter optimization, evaluation, data pre-processing, and
for the baselines is not shared. This makes it difcult for others to
validate the reported fndings.

One orthogonal factor that can make reproducibility challenging
is the computational complexity of many of the proposed methods.
Ten years after the Netfix Prize and its 100 million rating dataset,
researchers, in the year 2019, commonly use datasets containing
only a few hundred thousand ratings. Even for such tiny datasets,
which were considered unacceptably small a few years ago, hyper-
parameter optimization can take days or weeks, even when re-
searchers have access to GPU computing. Clearly, nearest-neighbor
methods, as discussed in our paper, can also lead to scalability issues.
However, with appropriate data pre-processing and data sampling
mechanisms, scalability can also be ensured for such methods, both
in academic and industrial environments [19, 26].

4.2 Progress Assessment
Despite their computational complexity, our analysis showed that
several recently proposed neural methods do not even outperform
conceptually or computationally simpler, sometimes long-known,
algorithms. The level of progress that is achieved in the feld of
neural methods is, therefore, unclear, at least when considering the
approaches discussed in our paper.

One main reason for this phantom progress, as our work shows,
lies in the choice of the baselines and the lack of a proper optimiza-
tion of the baselines. In the majority of the investigated cases, not
enough information is given about the optimization of the consid-
ered baselines. Sometimes, we also found that mistakes were made
with respect to data splitting and the implementation of certain
evaluation measures and protocols.

Another interesting observation is that a number of recent pa-
pers use the neural collaborative fltering method (NCF) [14] as
one of their state-of-the-art baselines. According to our analysis,
this method is however outperformed by simple baselines on one
dataset and does not lead to much better results on another, where
it is also outperformed by a standard implementation of a linear
regression method. Therefore, progress is often claimed by compar-
ing a complex neural model against another neural model, which
is, however, not necessarily a strong baseline. Similar observations
can be made for the area of session-based recommendation, where
a recent method based on recurrent neural networks [16] is con-
sidered a competitive baseline, even though almost trivial methods
are in most cases better [29, 30].

Another aspect that makes it difcult to assess progress in the
feld lies in the variety of datasets, evaluation protocols, metrics,
and baselines that are used by researchers. Regarding datasets, for
example, we found over 20 public datasets that were used, plus
several variants of the MovieLens and Yelp datasets. As a result,
most datasets are only used in one or two papers. All sorts of metrics

are used (e.g., Precision, Recall, Mean Average Precision, NDCG,
MRR etc.) as well as various evaluation procedures (e.g., random
holdout 80/20, leave-last-out, leave-one-out, 100 negative items or
50 negative items for each positive). In most cases, however, these
choices are not well justifed beyond the fact that others used them
before. In reality, the choice of the metric should depend on the
application context. In some applications, for example, it might
be important to have at least one relevant item at the top of the
recommendations, which suggests the use of rank-based metrics
like MRR. In other domains, high Recall might be more important
when the goal is to show as many relevant items as possible to
the user. Besides the unclear choice of the measure, often also the
cutof sizes for the measurement are not explained and range from
top-3 or top-5 lists to several hundred elements.

These phenomena are, however, not tied to neural recommen-
dation approaches, but can be found in algorithmic research in
recommender systems also in pre-neural times. Considering the ar-
guments from [27, 46], such developments are fueled by the strong
focus of machine learning researchers on accuracy measures and
the hunt for the “best” model. In our current research practice,
it is often considered sufcient to show that a new method can
outperform a set of existing algorithms on at least one or two pub-
lic datasets on one or two established accuracy measures.11 The
choice of the evaluation measure and dataset however often seems
arbitrary.

An example of such unclear research practice is the use of Movie-
Lens rating datasets for the evaluation of algorithms for implicit
feedback datasets. Such practices point to the underlying funda-
mental problem that research is not guided by any hypothesis or
aim at the solution of a given problem. The hunt for better accuracy
values dominates research activities in this area, even though it
is not even clear if slightly higher accuracy values are relevant in
terms of adding value for recommendation consumers or providers
[20, 22, 52]. In fact, a number of research works exist that indicate
that higher accuracy does not necessarily translate into better-
received recommendations [4, 9, 13, 31, 37].

5 SUMMARY
In this work, we have analyzed a number of recent neural algorithms
for top-n recommendation. Our analysis indicates that reproducing
published research is still challenging. Furthermore, it turned out
that most of the reviewed works can be outperformed at least
on some datasets by conceptually and computationally simpler
algorithms. Our work therefore calls for more rigor and better
research practices with respect to the evaluation of algorithmic
contributions in this area.

Our analyses so far are limited to papers published in certain
conference series. In our ongoing and future work, we plan to ex-
tend our analysis to other publication outlets and other types of
recommendation problems. Furthermore, we plan to consider more
traditional algorithms as baselines, e.g., based on matrix factoriza-
tion.

11From the 18 papers considered relevant for our study, there were at least two papers
which proposed new DL architectures which were evaluated on a single private dataset
and for which no source code was provided.

108

Are We Really Making Much Progress?

REFERENCES
[1] S. Antenucci, S. Boglio, E. Chioso, E. Dervishaj, K. Shuwen, T. Scarlatti, and

M. Ferrari Dacrema. 2018. Artist-driven layering and user’s behaviour impact
on recommendations in a playlist continuation scenario. In Proceedings of the
ACM Recommender Systems Challenge 2018 (RecSys 2018). https://doi.org/10.
1145/3267471.3267475 Source: https://github.com/MaurizioFD/spotify-recsys-
challenge.

[2] Timothy G. Armstrong, Alistair Mofat, William Webber, and Justin Zobel. 2009.
Improvements That Don’t Add Up: Ad-hoc Retrieval Results Since 1998. In Pro-
ceedings CIKM ’09. 601–610.

[3] Joeran Beel, Corinna Breitinger, Stefan Langer, Andreas Lommatzsch, and Bela
Gipp. 2016. Towards reproducibility in recommender-systems research. User
Modeling and User-Adapted Interaction 26, 1 (2016), 69–101.

[4] Jöran Beel and Stefan Langer. 2015. A Comparison of Ofine Evaluations, Online
Evaluations, and User Studies in the Context of Research-Paper Recommender
Systems. In Proceedings TPDL ’15. 153–168.

[5] Robert M Bell and Yehuda Koren. 2007. Improved neighborhood-based collabora-
tive fltering. In KDD cup and workshop at the KDD ’07. Citeseer, 7–14.

[6] Homanga Bharadhwaj, Homin Park, and Brian Y. Lim. 2018. RecGAN: Recurrent
Generative Adversarial Networks for Recommendation Systems. In Proceedings
RecSys ’18. 372–376.

[7] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative fltering: Multimedia recommendation
with item-and component-level attention. In Proceedings SIGIR ’17. 335–344.

[8] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. 2014. Ran-
dom walks in recommender systems: exact computation and simulations. In
Proceedings WWW ’14. 811–816.

[9] Paolo Cremonesi, Franca Garzotto, and Roberto Turrin. 2012. Investigating the
Persuasion Potential of Recommender Systems from a Quality Perspective: An
Empirical Study. Transactions on Interactive Intelligent Systems 2, 2 (2012), 1–41.

[10] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for
Recommendation Systems. In Proceedings SIGIR ’18. 515–524.

[11] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
learning approach for cross domain user modeling in recommendation systems.
In Proceedings WWW ’15. 278–288.

[12] Association for Computing Machinery. 2016. Artifact Review and Badging.
Available online at: https://www.acm.org/publications/policies/artifact-review-
badging (Accessed March, 2018).

[13] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin,
and Amr Huber. 2014. Ofine and Online Evaluation of News Recommender
Systems at Swissinfo.Ch. In Proceedings RecSys ’14. 169–176.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative fltering. In Proceedings WWW ’17. 173–182.

[15] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. 2018. Deep Reinforcement Learning That Matters. In Proceedings
AAAI ’18. 3207–3214.

[16] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In
Proceedings ICLR ’16.

[17] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging
meta-path based context for top-n recommendation with a neural co-attention
model. In Proceedings KDD ’18. 1531–1540.

[18] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In Proceedings ICDM ’08. 263–272.

[19] Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Networks
Meet the Neighborhood for Session-Based Recommendation. In Proceedings Rec-
Sys ’17. 306–310.

[20] Dietmar Jannach, Paul Resnick, Alexander Tuzhilin, and Markus Zanker. 2016.
Recommender Systems - Beyond Matrix Completion. Commun. ACM 59, 11
(2016), 94–102.

[21] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.
2016. Convolutional Matrix Factorization for Document Context-Aware Recom-
mendation. In Proceedings RecSys ’16. 233–240.

[22] Joseph A. Konstan and John Riedl. 2012. Recommender systems: from algorithms
to user experience. User Modeling and User-Adapted Interaction 22, 1 (2012),
101–123.

[23] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for
recommender systems. In Proceedings KDD ’17. 305–314.

[24] Dawen Liang, Rahul G Krishnan, Matthew D Hofman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In Proceedings WWW ’18.
689–698.

[25] Jimmy Lin. 2019. The Neural Hype and Comparisons Against Weak Baselines.
SIGIR Forum 52, 2 (Jan. 2019), 40–51.

[26] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-to-
item collaborative fltering. IEEE Internet Computing 7, 1 (2003), 76–80.

[27] Zachary C. Lipton and Jacob Steinhardt. 2018. Troubling Trends in Machine
Learning Scholarship. arXiv:arXiv:1807.03341

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

[28] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. 2011. Content-based
recommender systems: State of the art and trends. In Recommender Systems
Handbook. Springer, 73–105.

[29] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-based Rec-
ommendation Algorithms. User-Modeling and User-Adapted Interaction 28, 4–5
(2018), 331–390.

[30] Malte Ludewig, Noemi Mauro, Sara Latif, and Dietmar Jannach. 2019. Perfor-
mance Comparison of Neural and Non-Neural Approaches to Session-based Rec-
ommendation. In Proceedings RecSys ’19. https://doi.org/10.1145/3298689.3347041

[31] Andrii Maksai, Florent Garcin, and Boi Faltings. 2015. Predicting Online Perfor-
mance of News Recommender Systems Through Richer Evaluation Metrics. In
Proceedings RecSys ’15. 179–186.

[32] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. 2018. A Contextual
Attention Recurrent Architecture for Context-Aware Venue Recommendation.
In Proceedings SIGIR ’18. 555–564.

[33] Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-n
recommender systems. In Proceedings ICDM ’11. 497–506.

[34] Bibek Paudel, Fabian Christofel, Chris Newell, and Abraham Bernstein. 2017.
Updatable, Accurate, Diverse, and Scalable Recommendations for Interactive
Applications. ACM Transactions on Interactive Intelligent Systems 7, 1 (2017), 1.

[35] Hans Ekkehard Plesser. 2017. Reproducibility vs. Replicability: A Brief History
of a Confused Terminology. Frontiers in Neuroinformatics 11, 76 (2017).

[36] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
Aware Recommender Systems. Comput. Surveys 51, 4 (2018), 1–36.

[37] Marco Rossetti, Fabio Stella, and Markus Zanker. 2016. Contrasting Ofine and
Online Results when Evaluating Recommendation Algorithms. In Proceedings
RecSys ’16. 31–34.

[38] Noveen Sachdeva, Kartik Gupta, and Vikram Pudi. 2018. Attentive Neural Archi-
tecture Incorporating Song Features for Music Recommendation. In Proceedings
RecSys ’18. 417–421.

[39] Alan Said and Alejandro Bellogín. 2014. Rival: A Toolkit to Foster Reproducibility
in Recommender System Evaluation. In Proceedings RecSys ’14. 371–372.

[40] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative fltering recommendation algorithms. In Proceedings WWW ’01.
285–295.

[41] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu.
2018. Recurrent Knowledge Graph Embedding for Efective Recommendation. In
Proceedings RecSys ’18. 297–305.

[42] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric
learning via memory-based attention for collaborative ranking. In Proceedings
WWW ’18. 729–739.

[43] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Multi-Pointer Co-Attention
Networks for Recommendation. In Proceedings SIGKDD ’18. 2309–2318.

[44] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D Convolutional Networks for
Session-based Recommendation with Content Features. In Proceedings RecSys
’17. 138–146.

[45] Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec:
Product Embeddings Using Side-Information for Recommendation. In Proceedings
RecSys ’16. 225–232.

[46] Kiri Wagstaf. 2012. Machine Learning that Matters. In Proceedings ICML ’12.
529–536.

[47] Chong Wang and David M Blei. 2011. Collaborative topic modeling for recom-
mending scientifc articles. In Proceedings KDD ’11. 448–456.

[48] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In Proceedings KDD ’15. 1235–1244.

[49] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. 2006. Unifying user-
based and item-based collaborative fltering approaches by similarity fusion. In
Proceedings SIGIR ’06. 501–508.

[50] Jun Wang, Stephen Robertson, Arjen P de Vries, and Marcel JT Reinders. 2008.
Probabilistic relevance ranking for collaborative fltering. Information Retrieval
11, 6 (2008), 477–497.

[51] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabo-
rative denoising auto-encoders for top-n recommender systems. In Proceedings
WSDM ’16. 153–162.

[52] Bo Xiao and Izak Benbasat. 2007. E-commerce Product Recommendation Agents:
Use, Characteristics, and Impact. MIS Quarterly 31, 1 (March 2007), 137–209.

[53] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. 2018. Spectral
Collaborative Filtering. In Proceedings RecSys ’18. 311–319.

109

https://doi.org/10.1145/3267471.3267475
https://doi.org/10.1145/3267471.3267475
https://github.com/MaurizioFD/spotify-recsys-challenge
https://github.com/MaurizioFD/spotify-recsys-challenge
http://arxiv.org/abs/arXiv:1807.03341
https://doi.org/10.1145/3298689.3347041
https://Amazon.com
https://Swissinfo.Ch
https://www.acm.org/publications/policies/artifact-review

	Abstract
	1 Introduction
	2 Research Method
	2.1 Collecting Reproducible Papers
	2.2 Evaluation Methodology

	3 Validation Against Baselines
	3.1 Collaborative Memory Networks (CMN)
	3.2 Metapath based Context for RECommendation (MCRec)
	3.3 Collaborative Variational Autoencoder (CVAE)
	3.4 Collaborative Deep Learning (CDL)
	3.5 Neural Collaborative Filtering (NCF)
	3.6 Spectral Collaborative Filtering (SpectralCF)
	3.7 Variational Autoencoders for Collaborative Filtering (Mult-VAE)

	4 Discussion
	4.1 Reproducibility and Scalability
	4.2 Progress Assessment

	5 Summary
	References

