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ABSTRACT 
Deep learning techniques have become the method of choice for 
researchers working on algorithmic aspects of recommender sys-
tems. With the strongly increased interest in machine learning in 
general, it has, as a result, become difcult to keep track of what 
represents the state-of-the-art at the moment, e.g., for top-n rec-
ommendation tasks. At the same time, several recent publications 
point out problems in today’s research practice in applied machine 
learning, e.g., in terms of the reproducibility of the results or the 
choice of the baselines when proposing new models. 

In this work, we report the results of a systematic analysis of algo-
rithmic proposals for top-n recommendation tasks. Specifcally, we 
considered 18 algorithms that were presented at top-level research 
conferences in the last years. Only 7 of them could be reproduced 
with reasonable efort. For these methods, it however turned out 
that 6 of them can often be outperformed with comparably simple 
heuristic methods, e.g., based on nearest-neighbor or graph-based 
techniques. The remaining one clearly outperformed the baselines 
but did not consistently outperform a well-tuned non-neural linear 
ranking method. Overall, our work sheds light on a number of 
potential problems in today’s machine learning scholarship and 
calls for improved scientifc practices in this area. 
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1 INTRODUCTION 
Within only a few years, deep learning techniques have started to 
dominate the landscape of algorithmic research in recommender 
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systems. Novel methods were proposed for a variety of settings 
and algorithmic tasks, including top-n recommendation based on 
long-term preference profles or for session-based recommendation 
scenarios [36]. Given the increased interest in machine learning in 
general, the corresponding number of recent research publications, 
and the success of deep learning techniques in other felds like 
vision or language processing, one could expect that substantial 
progress resulted from these works also in the feld of recommender 
systems. However, indications exist in other application areas of 
machine learning that the achieved progress—measured in terms 
of accuracy improvements over existing models—is not always as 
strong as expected. 

Lin [25], for example, discusses two recent neural approaches 
in the feld of information retrieval that were published at top-
level conferences. His analysis reveals that the new methods do 
not signifcantly outperform existing baseline methods when these 
are carefully tuned. In the context of recommender systems, an 
in-depth analysis presented in [29] shows that even a very recent 
neural method for session-based recommendation can, in most 
cases, be outperformed by very simple methods based, e.g., on 
nearest-neighbor techniques. Generally, questions regarding the 
true progress that is achieved in such applied machine learning 
settings are not new, nor tied to research based on deep learning. 
Already in 2009, Armstrong et al. [2] concluded from an analysis 
in the context of ad-hoc retrieval tasks that, despite many papers 
being published, the reported improvements “don’t add up”. 

Diferent factors contribute to such phenomena, including (i) 
weak baselines; (ii) establishment of weak methods as new base-
lines; and (iii) difculties in comparing or reproducing results across 
papers. One frst problem lies in the choice of the baselines that are 
used in the comparisons. Sometimes, baselines are chosen that are 
too weak in general for the given task and dataset, and sometimes 
the baselines are not properly fne-tuned. Other times, baselines are 
chosen from the same family as the newly proposed algorithm, e.g., 
when a new deep learning algorithm is compared only against other 
deep learning baselines. This behaviour enforces the propagation 
of weak baselines. When previous deep learning algorithms were 
evaluated against too weak baselines, the new deep learning algo-
rithm will not necessarily improve over strong non-neural baselines. 
Furthermore, with the constant fow of papers being published in 
recent years, keeping track of what represents a state-of-the-art 
baseline becomes increasingly challenging. 

Besides issues related to the baselines, an additional challenge is 
that researchers use various types of datasets, evaluation protocols, 
performance measures, and data preprocessing steps, which makes 
it difcult to conclude which method is the best across diferent 
application scenarios. This is in particular problematic when source 
code and data are not shared. While we observe an increasing trend 
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that researchers publish the source code of their algorithms, this 
is not the common rule today even for top-level publication out-
lets. And even in cases when the code is published, it is sometimes 
incomplete and, for instance, does not include the code for data pre-
processing, parameter tuning, or the exact evaluation procedures, 
as pointed out also in [15]. 

Finally, another general problem might lie in today’s research 
practice in applied machine learning in general. Several “troubling 
trends” are discussed in [27], including the thinness of reviewer 
pools or misaligned incentives for authors that might stimulate 
certain types of research. Earlier work [46] also discusses the com-
munity’s focus on abstract accuracy measures or the narrow focus 
of machine learning research in terms of what is “publishable” at 
top publication outlets. 

With this research work, our goal is to shed light on the ques-
tion if the problems reported above also exist in the domain of 
deep learning-based recommendation algorithms. Specifcally, we 
address two main research questions: 

(1) Reproducibility: To what extent is recent research in the area 
reproducible (with reasonable efort)? 

(2) Progress: To what extent are recent algorithms actually lead-
ing to better performance results when compared to rela-
tively simple, but well-tuned, baseline methods? 

To answer these questions, we conducted a systematic study in 
which we analyzed research papers that proposed new algorithmic 
approaches for top-n recommendation tasks using deep learning 
methods. To that purpose, we scanned the recent conference pro-
ceedings of KDD, SIGIR, TheWebConf (WWW), and RecSys for 
corresponding research works. We identifed 18 relevant papers. 

In a frst step, we tried to reproduce the results reported in the 
paper for those cases where the source code was made available by 
the authors and where we had access to the data used in the experi-
ments. In the end, we could reproduce the published results with an 
acceptable degree of certainty for only 7 papers. A frst contribution 
of our work is therefore an assessment of the reproducibility level 
of current research in the area. 

In the second part of our study, we re-executed the experiments 
reported in the original papers, but also included additional baseline 
methods in the comparison. Specifcally, we used heuristic methods 
based on user-based and item-based nearest neighbors as well as 
two variants of a simple graph-based approach. Our study, to some 
surprise, revealed that in the large majority of the investigated cases 
(6 out of 7) the proposed deep learning techniques did not consis-
tently outperform the simple, but fne-tuned, baseline methods. In 
one case, even a non-personalized method that recommends the 
most popular items to everyone was the best one in terms of certain 
accuracy measures. Our second contribution therefore lies in the 
identifcation of a potentially more far-reaching problem related to 
current research practices in machine learning. 

The paper is organized as follows. Next, in Section 2, we de-
scribe our research method and how we reproduced existing works. 
The results of re-executing the experiments while including addi-
tional baselines are provided in Section 3. We fnally discuss the 
implications of our research in Section 4. 

2 RESEARCH METHOD 
2.1 Collecting Reproducible Papers 
To make sure that our work is not only based on individual ex-
amples of recently published research, we systematically scanned 
the proceedings of scientifc conferences for relevant long papers 
in a manual process. Specifcally, we included long papers in our 
analysis that appeared between 2015 and 2018 in the following 
four conference series: KDD, SIGIR, TheWebConf (WWW), and 
RecSys.1 We considered a paper to be relevant if it (a) proposed a 
deep learning based technique and (b) focused on the top-n recom-
mendation problem. Papers on other recommendation tasks, e.g., 
group recommendation or session-based recommendation, were 
not considered in our analysis. Given our interest in top-n recom-
mendation, we considered only papers that used for evaluation 
classifcation or ranking metrics, such as Precision, Recall, MAP. 
After this screening process, we ended up with a collection of 18 
relevant papers. 

In a next step, we tried to reproduce2 the results reported in 
these papers. Our approach to reproducibility is to rely as much as 
possible on the artifacts provided by the authors themselves, i.e., 
their source code and the data used in the experiments. In theory, 
it should be possible to reproduce published results using only the 
technical descriptions in the papers. In reality, there are, however 
many tiny details regarding the implementation of the algorithms 
and the evaluation procedure, e.g., regarding data splitting, that 
can have an impact on the experiment outcomes [39]. 

We therefore tried to obtain the code and the data for all relevant 
papers from the authors. In case these artifacts were not already 
publicly provided, we contacted all authors of the papers and waited 
30 days for a response. In the end, we considered a paper to be 
reproducible, if the following conditions were met: 

• A working version of the source code is available or the code 
only has to be modifed in minimal ways to work correctly.3 

• At least one dataset used in the original paper is available. A 
further requirement here is that either the originally-used 
train-test splits are publicly available or that they can be 
reconstructed based on the information in the paper. 

Otherwise, we consider a paper to be non-reproducible given our 
specifc reproduction approach. Note that we also considered works 
to be non-reproducible when the source code was published but 
contained only a skeleton version of the model with many parts 
and details missing. Concerning the datasets, research based solely 
on non-public data owned by companies or data that was gathered 
in some form from the web but not shared publicly, was also not 
considered reproducible. 

The fraction of papers that were reproducible according to our 
relatively strict criteria per conference series are shown in Table 1. 

Overall, we could reproduce only about one third of the works, 
which confrms previous discussions about limited reproducibility, 

1All of the conferences are either considered A* in the Australian Core Ranking or 
specifcally dedicated to research in recommender systems.
2Precisely speaking, we used a mix of replication and reproduction [12, 35], i.e., we 
used both artifacts provided by the authors and our own artifacts. For the sake of 
readability, we will only use the term “reproducibility” in this paper.
3We did not apply modifcations to the core algorithms. 
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Table 1: Reproducible works on deep learning algorithms 
for top-n recommendation per conference series from 2015 
to 2018. 

Conference    

KDD 3/4 (75%) [17], [23], [48] 
RecSys 1/7 (14%) [53] 
SIGIR 1/3 (30%) [10] 
WWW 2/4 (50%) [14], [24] 

Total 7/18 (39%) 

Rep. ratio Reproducible

Non-reproducible: KDD: [43], RecSys: [41], [6], [38], 
[44], [21], [45], SIGIR: [32], [7], WWW: [42], [11] 

see, e.g., [3]. The sample size is too small to make reliable con-
clusions regarding the diference between conference series. The 
detailed statistics per year—not shown here for space reasons— 
however indicate that the reproducibility rate increased over the 
years. 

2.2 Evaluation Methodology 
Measurement Method. The validation of the progress that is 

achieved through new methods against a set of baselines can be 
done in at least two ways. One is to evaluate all considered methods 
within the same defned environment, using the same datasets and 
the exact same evaluation procedure for all algorithms as done 
in [29]. While such an approach helps us obtain a picture of how 
diferent methods compare across datasets, the implemented eval-
uation procedure might be slightly diferent from the one used in 
the original papers. As such, this approach would not allow us to 
exactly reproduce what has been originally reported, which is the 
goal in this present work. 

In this work, we therefore reproduce the work by refactoring 
the original implementations in a way that allows us to apply the 
same evaluation procedure that was used in the original papers. 
Specifcally, refactoring is done in a way that the original code for 
training, hyper-parameter optimization and prediction are sepa-
rated from the evaluation code. This evaluation code is then also 
used for the baselines. 

For all reproduced algorithms considered in the individual experi-
ments, we used the optimal hyper-parameters that were reported by 
the authors in the original papers for each dataset. This is appropri-
ate because we used the same datasets, algorithm implementation, 
and evaluation procedure as in the original papers.4 We share all 
the code and data used in our experiments as well as details of the 
fnal algorithm (hyper-)parameters of our baselines along with the 
full experiment results online. 5 

Baselines. We considered the following baseline methods in our 
experiments, all of which are conceptually simple. 
TopPopular: A non-personalized method that recommends the 
most popular items to everyone. Popularity is measured by the 
number of explicit or implicit ratings. 

4We will re-run parameter optimization for the reproduced algorithms as part of our 
future work in order to validate the parameter optimization procedures used by the 
authors. This step was, however, outside the scope of our current work.
5https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation 

ItemKNN: A traditional Collaborative-Filtering (CF) approach 
based on k-nearest-neighborhood (KNN) and item-item similari-
ties [49]. We used the cosine similarity si j between items i and j
computed as 

r  r
(1)

where vectors ri , rj ∈ R |U | represent the implicit ratings of a 
user for items i and j , respectively, and |U | is the number of users. 
Ratings can be optionally weighted either with TF-IDF or BM25, 
as described in [50]. Furthermore the similarity may or not be 
normalized via the product of vector norms. Parameter h (the 
shrink term) is used to lower the similarity between items having 
only few interactions [5]. The other parameter of the method is 
the neighborhood size k . 

UserKNN: A neighborhood-based method using collaborative user-
user similarities. Hyper-parameters are the same as used for 
ItemKNN [40]. 

ItemKNN-CBF: A neighborhood content-based-fltering (CBF) 
approach with item similarities computed by using item content 
features (attributes) 

s (2)

where vectors fi , fj ∈ R |F | describe the features of items i and j, 
respectively, and |F | is the number of features. Features can be op-
tionally weighted either with TF-IDF or BM25. Other parameters 
are the same used for ItemKNN [28]. 

ItemKNN-CFCBF: A hybrid CF+CFB algorithm based on item-
item similarities. The similarity is computed by frst concatenating, 
for each item i , the vector of ratings and the vector of features – 
[ri ,wfi ] – and by later computing the cosine similarity between 
the concatenated vectors. Hyper-parameters are the same used for 
ItemKNN, plus a parameter w that weights the content features 
with respect to the ratings. 

P3α : A simple graph-based algorithm which implements a ran-
dom walk between users and items [8]. Items for user u are 
ranked based on the probability of a random walk with three 
steps starting from user u. The probability pui to jump from user 
u to item i is computed from the implicit user-rating-matrix as 
pui = (rui /Nu )

α , where rui is the rating of user u on item i , Nu 
is the number of ratings of user u and α is a damping factor. The 
probability piu to jump backward is computed as piu = (rui /Ni )

α , 
where Ni is the number of ratings for item i . The method is equiva-
lent to a KNN item-based CF algorithm, with the similarity matrix 
defned as Õ 

si j = pjv pvi 
v 

(3) 

The parameters of the method are the numbers of neighbors k 
and the value of α . We include this algorithm because it provides 
good recommendation quality at a low computational cost. 

RP3β : A version of P3α proposed in [34]. Here, the outcomes of 
P3α are modifed by dividing the similarities by each item’s popu-
larity raised to the power of a coefcient β . If β is 0, the algorithm 
is equivalent to P3α . Its parameters are the numbers of neighbors 
k and the values for α and β . 
For all baseline algorithms and datasets, we determined the opti-

mal parameters via Bayesian search [1] using the implementation 
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of Scikit-Optimize6. We explored 35 cases for each algorithm, where 
the frst 5 were used for the initial random points. We considered 
neighborhood sizes k from 5 to 800; the shrink term h was between 
0 and 1000; and α and β took real values between 0 and 2. 

3 VALIDATION AGAINST BASELINES 
This section summarizes the results of comparing the reproducible 
works with the described baseline methods. We share the detailed 
statistics, results, and fnal parameters online. 

3.1 Collaborative Memory Networks (CMN) 
The CMN method was presented at SIGIR ’18 and combines memory 
networks and neural attention mechanisms with latent factor and 
neighborhood models [10]. To evaluate their approach, the authors 
compare it with diferent matrix factorization and neural recom-
mendation approaches as well as with an ItemKNN algorithm (with 
no shrinkage). Three datasets are used for evaluation: Epinions, 
CiteULike-a, and Pinterest. Optimal hyper-parameters for the pro-
posed method are reported, but no information is provided on how 
the baselines are tuned. Hit rate and NDCG are the performance 
measures used in a leave-one-out procedure. The reported results 
show that CMNs outperform all other baselines on all measures. 

We were able to reproduce their experiments for all their datasets. 
For our additional experiments with the simple baselines, we op-
timized the parameters of our baselines for the hit rate (HR@5) 
metric. The results for the three datasets are shown in Table 2. 

Our analysis shows that, after optimization of the baselines, 
CMN7 is in no single case the best-performing method on any of 
the datasets. For the CiteULike-a and Pinterest datasets, at least two 
of the personalized baseline techniques outperformed the CMN 
method on any measure. Often, even all personalized baselines 
were better than CMN. For the Epinions dataset, to some surprise, 
the unpersonalized TopPopular method, which was not included in 
the original paper, was better than all other algorithms by a large 
margin. On this dataset, CMN was indeed much better than our 
baselines. The success of CMN on this comparably small and very 
sparse dataset with about 660k observations could therefore be tied 
to the particularities of the dataset or to a popularity bias of CMN. 
An analysis reveals that the Epinions dataset has indeed a much 
more uneven popularity distribution than the other datasets (Gini 
index of 0.69 vs. 0.37 for CiteULike-a). For this dataset, CMN also 
recommends in its top-n lists items that are, on average, 8% to 25% 
more popular than the items recommended by our baselines. 

3.2 Metapath based Context for 
RECommendation (MCRec) 

MCRec [17], presented at KDD ’18, is a meta-path based model 
that leverages auxiliary information like movie genres for top-n 
recommendation. From a technical perspective, the authors propose 
a priority-based sampling technique to select higher-quality path 
instances and propose a novel co-attention mechanism to improve 
the representations of meta-path based context, users, and items. 

The authors benchmark four variants of their method against a 
variety of models of diferent complexity on three small datasets 
6https://scikit-optimize.github.io/ 
7We report the results for CMN-3 as the version with the best results. 
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Table 2: Experimental results for the CMN method using the 
metrics and cutofs reported in the original paper. Numbers 
are printed in bold when they correspond to the best result 
or when a baseline outperformed CMN. 

HR@5 
CiteULike-a 

NDCG@5 HR@10 NDCG@10 

TopPopular 
UserKNN 
ItemKNN 
P3α 
RP3β 

0.1803 
0.8213 
0.8116 
0.8202 
0.8226 

0.1220 
0.7033 
0.6939 
0.7061 
0.7114 

0.2783 
0.8935 
0.8878 
0.8901 
0.8941 

0.1535 
0.7268 
0.7187 
0.7289 
0.7347 

CMN 0.8069 0.6666 0.8910 0.6942 

HR@5 
Pinterest 

NDCG@5 HR@10 NDCG@10 

TopPopular 
UserKNN 
ItemKNN 
P3α 
RP3β 

0.1668 
0.6886 
0.6966 
0.6871 
0.7018 

0.1066 
0.4936 
0.4994 
0.4935 
0.5041 

0.2745 
0.8527 
0.8647 
0.8449 
0.8644 

0.1411 
0.5470 
0.5542 
0.5450 
0.5571 

CMN 0.6872 0.4883 0.8549 0.5430 

HR@5 
Epinions 

NDCG@5 HR@10 NDCG@10 

TopPopular 
UserKNN 
ItemKNN 
P3α 
RP3β 

0.5429 
0.3506 
0.3821 
0.3510 
0.3511 

0.4153 
0.2983 
0.3165 
0.2989 
0.2980 

0.6644 
0.3922 
0.4372 
0.3891 
0.3892 

0.4547 
0.3117 
0.3343 
0.3112 
0.3103 

CMN 0.4195 0.3346 0.4953 0.3592 

(MovieLens100k, LastFm, and Yelp). The evaluation is done by cre-
ating 80/20 random training-test splits and by executing 10 of such 
evaluation runs. The evaluation procedure could be reproduced; 
public training-test splits were provided only for the MovieLens 
dataset. For the MF and NeuMF [14] baselines used in their paper, 
the architecture and hyper-parameters were taken from the original 
papers; no information about hyper-parameter tuning is provided 
for the other baselines. Precision, Recall, and the NDCG are used 
as performance measures, with a recommendation list of length 10. 
The NDCG measure is however implemented in an uncommon and 
questionable way, which is not mentioned in the paper. Here, we 
therefore use a standard version of the NDCG. 

In the publicly shared software, the meta-paths are hard-coded 
for MovieLens, and no code for preprocessing and constructing the 
meta-paths is provided. Here, we therefore only provide the results 
for the MovieLens dataset in detail. We optimized our baselines for 
Precision, as was apparently done in [17]. For MCRec, the results 
for the complete model are reported. 

Table 3 shows that the traditional ItemKNN method, when con-
fgured correctly, outperforms MCRec on all performance measures. 

Besides the use of an uncommon NDCG measure, we found other 
potential methodological issues in this paper. Hyper-parameters 
for the MF and NeuMF baselines were, as mentioned, not optimized 
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PREC@10 REC@10 NDCG@10 

TopPopular 0.1907 0.1180 0.1361 
UserKNN 0.2913 0.1802 0.2055 
ItemKNN 0.3327 0.2199 0.2603 
P3α 0.2137 0.1585 0.1838 
RP3β 0.2357 0.1684 0.1923 

MCRec 0.3077 0.2061 0.2363 

Table 3: Comparing MCRec against our baselines (Movie-
Lens100k) 

for the given datasets but taken from the original paper [17]. In 
addition, looking at the provided source code, it can be seen that the 
authors report the best results of their method for each metric across 
diferent epochs chosen on the test set, which is inappropriate.8 

3.3 Collaborative Variational Autoencoder 
 (CVAE)

The CVAE method [23], presented at KDD ’18, is a hybrid technique 
that considers both content as well as rating information. The 
model learns deep latent representations from content data in an 
unsupervised manner and also learns implicit relationships between 
items and users from both content and ratings. 

The method is evaluated on two comparably small CiteULike 
datasets (135k and 205k interactions). For both datasets, a sparse 
and a dense version is tested. The baselines in [23] include three 
recent deep learning models and as well as Collaborative Topic 
Regression (CTR). The parameters for each method are tuned based 
on a validation set. Recall at diferent list lengths (50 to 300) is 
used as an evaluation measure. Random train-test data splitting is 
applied and the measurements are repeated fve times. 

Table 4: Experimental results for CVAE (CiteULike-a). 

REC@50 REC@100 REC@300 

TopPopular 
UserKNN 
ItemKNN 
P3α 
RP3β 
ItemKNN-CFCBF 

0.0044 
0.0683 
0.0788 
0.0788 
0.0811 
0.1837 

0.0081 
0.1016 
0.1153 
0.1151 
0.1184 
0.2777 

0.0258 
0.1685 
0.1823 
0.1784 
0.1799 
0.4486 

CVAE 0.0772 0.1548 0.3602 

We could reproduce their results using their code and evalua-
tion procedure. The datasets are also shared by the authors. Fine-
tuning our baselines led to the results shown in Table 4 for the 
dense CiteULike-a dataset from [47]. For the shortest list length of 
50, even the majority of the pure CF baselines outperformed the 
CVAE method on this dataset. At longer list lengths, the hybrid 
ItemKNN-CFCBF method led to the best results. Similar results were 
obtained for the sparse CiteULike-t dataset. Generally, at list length 
50, ItemKNN-CFCBF was consistently outperforming CVAE in all 
tested confgurations. Only at longer list lengths (100 and beyond), 
CVAE was able to outperform our methods on two datasets. 
8In our evaluations, we did not use this form of measurement. 

Overall, CVAE was only favorable over the baselines in certain 
confgurations and at comparably long and rather uncommon rec-
ommendation cutof thresholds. The use of such long list sizes was 
however not justifed in the paper. 

3.4 Collaborative Deep Learning (CDL) 
The discussed CVAE method considers the earlier and often-cited 
CDL method [48] from KDD ’15 as one of their baselines, and the 
authors also use the same evaluation procedure and CiteULike 
datasets. CDL is a probabilistic feed-forward model for joint learn-
ing of stacked denoising autoencoders (SDAE) and collaborative 
fltering. It applies deep learning techniques to jointly learn a deep 
representation of content information and collaborative informa-
tion. The evaluation of CDL in [48] showed that it is favorable in 
particular compared to the widely referenced CTR method [47], 
especially in sparse data situations. 

Table 5: Experimental results for CDL on the dense 
CiteULike-a dataset. 

REC@50 REC@100 REC@300 

TopPopular 
UserKNN 
ItemKNN 
P3α 
RP3β 
ItemKNN-CBF 
ItemKNN-CFCBF 

0.0038 
0.0685 
0.0846 
0.0718 
0.0800 
0.2135 
0.1945 

0.0073 
0.1028 
0.1213 
0.1079 
0.1167 
0.3038 
0.2896 

0.0258 
0.1710 
0.1861 
0.1777 
0.1815 
0.4707 
0.4620 

CDL 0.0543 0.1035 0.2627 

We reproduced the research in [48], leading to the results shown 
in Table 5 for the dense CiteULike-a dataset. Not surprisingly, the 
baselines that were better than CVAE in the previous section are 
also better than CDL, and again for short list lengths, already the 
pure CF methods were better than the hybrid CDL approach. Again, 
however, CDL leads to higher Recall for list lengths beyond 100 
in two out of four dataset confgurations. Comparing the detailed 
results for CVAE and CDL, we see that the newer CVAE method 
is indeed always better than CDL, which indicates that progress 
was made. Both methods, however, are not better than one of the 
simple baselines in the majority of the cases. 

3.5 Neural Collaborative Filtering (NCF) 
Neural network-based Collaborative Filtering [14], presented at 
WWW ’17, generalizes Matrix Factorization by replacing the in-
ner product with a neural architecture that can learn an arbitrary 
function from the data. The proposed hybrid method (NeuMF) was 
evaluated on two datasets (MovieLens1M and Pinterest), containing 
1 million and 1.5 million interactions, respectively. A leave-one out 
procedure is used in the evaluation and the original data splits are 
publicly shared by the authors. Their results show that NeuMF 
is favorable, e.g., over existing matrix factorization models, when 
using the hit rate and the NDCG as an evaluation measure using 
diferent list lengths up to 10. 

Parameter optimization is done on a validation set created from 
the training set. Similar to the implementation of MCRec above, 
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the provided source code shows that the authors chose the number 
of epochs based on the results obtained for the test set. Since the 
number of epochs, however, is a parameter to tune and should not 
be determined based on the test set, we use a more appropriate 
implementation that fnds this parameter with the validation set. 
For the ItemKNN method, the authors only varied the neighborhood 
sizes but did not test other variations. 

Table 6: Experimental results for NCF. 

HR@5 
Pinterest 

NDCG@5 HR@10 NDCG@10 

TopPopular 
UserKNN 
ItemKNN 
P3α 
RP3β 

0.1663 
0.7001 
0.7100 
0.7008 
0.7105 

0.1065 
0.5033 
0.5092 
0.5018 
0.5116 

0.2744 
0.8610 
0.8744 
0.8667 
0.8740 

0.1412 
0.5557 
0.5629 
0.5559 
0.5650 

NeuMF 0.7024 0.4983 0.8719 0.5536 

HR@5 
Movielens 1M 

NDCG@5 HR@10 NDCG@10 

TopPopular 
UserKNN 
ItemKNN 
P3α 
RP3β 

0.3043 
0.4916 
0.4829 
0.4811 
0.4922 

0.2062 
0.3328 
0.3328 
0.3331 
0.3409 

0.4531 
0.6705 
0.6596 
0.6464 
0.6715 

0.2542 
0.3908 
0.3900 
0.3867 
0.3991 

NeuMF 0.5486 0.3840 0.7120 0.4369 

SLIM 0.5589 0.3961 0.7161 0.4470 

Given the publicly shared information, we could reproduce the 
results from [14]. The outcomes of the experiment are shown in 
Table 6. On the Pinterest dataset, two of the personalized baselines 
were better than NeuMF on all metrics. For the MovieLens dataset, 
NeuMF outperformed our simple baselines quite clearly. 

Since the MovieLens dataset has been extensively used over the 
last decades for evaluating new models, we made additional ex-
periments with SLIM, a simple linear method described in [33]. To 
implement SLIM, we took the standard Elastic Net implementation 
provided in the scikit-learn package for Python (ElasticNet). To 
tune the hyper-parameters on the validation set, we considered 
neighborhood sizes as in the other baselines; the ratio of l1 and l2 
regularization between 10−5 and 1.0; and the regularization magni-
tude coefcient between 10−3 and 1.0. Table 6 shows that SLIM is 
indeed better than our baselines, as expected, but also outperforms 
NeuMF on this dataset. 

3.6 Spectral Collaborative Filtering 
(SpectralCF) 

SpectralCF [53], presented at RecSys ’18, was designed to specif-
ically address the cold-start problem and is based on concepts of 
Spectral Graph Theory. Its recommendations are based on the bipar-
tite user-item relationship graph and a novel convolution operation, 
which is used to make collaborative recommendations directly in 
the spectral domain. The method was evaluated on three public 
datasets (MovieLens1M, HetRec, and Amazon Instant Video) and 
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benchmarked against a variety of methods, including recent neural 
approaches and established factorization and ranking techniques. 
The evaluation was based on randomly created 80/20 training-test 
splits and using Recall and the Mean Average Precision (MAP) at 
diferent cutofs.9 

For the MovieLens dataset, the training and test datasets used by 
the authors were shared along with the code. For the other datasets, 
the data splits were not published therefore we created the splits 
by ourself following the descriptions in the paper. 

Somehow surprisingly, the authors report only one set of hyper-
parameter values in the paper, which they apparently used for all 
datasets. We therefore ran the code both with the provided hyper-
parameters and with hyper-parameter settings that we determined 
by our own on all datasets. For the HetRec and Amazon Instant 
Video datasets, all our baselines, to our surprise also including 
the TopPoular method, outperformed SpectralCF on all measures. 
However, when running the code on the provided MovieLens data 
splits, we found that SpectralCF was better than all our baselines 
by a huge margin. Recall@20 was, for example, 50% higher than 
our best baseline. 

We therefore analyzed the published train-test split for the Movie-
Lens dataset and observed that the popularity distribution of the 
items in the test set is very diferent from a distribution that would 
likely result from a random sampling procedure.10 We then ran 
experiments with our own train-test splits also for the MovieLens 
dataset, using the splitting procedure described in the paper. We 
optimized the parameters for our data split to ensure a fair com-
parison. The results of the experiment are shown in Table 7. When 
using data splits that were created as described in the original pa-
per, the results for the MovieLens dataset are in line with our own 
experiments for the other two datasets, i.e., SpectralCF in all con-
fgurations performed worse than our baseline methods and was 
outperformed even by the TopPopular method. 

Table 7: Experimental results for SpectralCF (MovieLens1M, 
using own random splits and fve repeated measurements). 

Cutof 20 Cutof 60 Cutof 100 
REC MAP REC MAP REC MAP 

TopPopular 0.1853 0.0576 0.3335 0.0659 0.4244 0.0696 
UserKNN CF 0.2881 0.1106 0.4780 0.1238 0.5790 0.1290 
ItemKNN CF 0.2819 0.1059 0.4712 0.1190 0.5737 0.1243 
P3α 0.2853 0.1051 0.4808 0.1195 0.5760 0.1248 
RP3β 0.2910 0.1088 0.4882 0.1233 0.5884 0.1288 

SpectralCF 0.1843 0.0539 0.3274 0.0618 0.4254 0.0656 

Figure 1 visualizes the data splitting problem. The blue data 
points show the normalized popularity values for each item in the 
training set, with the most popular item in the corresponding split 
having the value 1, ordered by decreasing popularity values. In 
case of random sampling of ratings, the orange points from the 
test set would mostly be very close to the corresponding blue ones. 
Here, however, we see that the popularity values of many items 
9To assess the cold-start behavior, additional experiments are performed with fewer 
data points per user in the training set.
10We contacted the authors on this issue, but did not receive an explanation for this 
phenomenon. 
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Figure 1: Popularity distributions of the provided training 
and test splits. In case of a random split, the normalized val-
ues should, on average, be close for both splits. 
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in the test set difer largely. An analysis of the distributions with 
measures like the Gini index or Shannon entropy confrms that the 
dataset characteristics of the shared test set diverge largely from a 
random split. The Gini index of a true random split lies at around 
0.79 for both the training and test split. While the Gini index for 
the provided training split is similar to ours, the Gini index of the 
provided test split is much higher (0.92), which means that the 
distribution has a much higher popularity bias than a random split. 

3.7 Variational Autoencoders for Collaborative 
Filtering (Mult-VAE) 

Mult-VAE [24] is a collaborative fltering method for implicit feed-
back based on variational autoencoders. The work was presented 
at WWW ’18. With Mult-VAE, the authors introduce a generative 
model with multinomial likelihood, propose a diferent regulariza-
tion parameter for the learning objective, and use Bayesian infer-
ence for parameter estimation. They evaluate their method on three 
binarized datasets that originally contain movie ratings or song 
play counts. The baselines in the experiments include both a matrix 
factorization method from 2008 [18], a linear model from 2011 [33], 
and a more recent neural method [51]. Accoring to the reported 
experiments, the proposed method leads to accuracy results that 
are typically around 3% better than the best baseline in terms of 
Recall and the NDCG. 

Using their code and datasets, we found that the proposed method 
indeed consistently outperforms our quite simple baseline tech-
niques. The obtained accuracy results were between 10% and 20% 
better than our best baseline. Thus, with Mult-VAE, we found one 
example in the examined literature where a more complex method 
was better, by a large margin, than any of our baseline techniques 
in all confgurations. 

To validate that Mult-VAE is advantageous over the complex non-
neural models, as reported in [24], we optimized the parameters 
for the weighted matrix factorization technique [18] and the linear 
model [33] (SLIM using Elastic Net) for the MovieLens and Netfix 

datasets by ourselves. We made the following observations. For both 
datasets, we could reproduce the results and observe improvements 
over SLIM of up to 5% on the diferent measures reported in the 
original papers. Table 8 shows the outcomes for the Netfix datasets 
using the measurements and cutofs from the original experiments 
after optimizing for NDCG@100 as in [24]. 

Table 8: Experimental results for Mult-VAE (Netfix data), us-
ing metrics and cutofs reported in the original paper. 

REC@20 REC@50 NDCG@100 

TopPop 
ItemKNN CF 
P3α 
RP3β 

0.0782 
0.2088 
0.1977 
0.2196 

0.1643 
0.3386 
0.3346 
0.3560 

0.1570 
0.3086 
0.2967 
0.3246 

SLIM 0.2551 0.3995 0.3745 

Mult-VAE 0.2626 0.4138 0.3756 

The diferences between Mult-VAE and SLIM in terms of the 
NDCG, the optimization goal, are quite small. In terms of the Recall, 
however, Mult-VAE improvements over SLIM seem solid. Since the 
choice of the used cutofs (20 and 50 for Recall, and 100 for NDCG) 
is not very consistent in [24], we made additional measurements at 
diferent cutof lengths. The results are provided in Table 9. They 
show that when using the NDCG as an optimization goal and as 
a performance measure, the diferences between SLIM and Mult-
VAE disappear on this dataset, and SLIM is actually sometimes 
slightly better. A similar phenomenon can be observed for the 
MovieLens dataset. In this particular case, therefore, the progress 
that is achieved through the neural approach is only partial and 
depends on the chosen evaluation measure. 

Table 9: Experimental results for Mult-VAE using additional 
cutof lengths for the Netfix dataset. 

NDCG@20 NDCG@50 REC@100 NDCG@100 

SLIM 0.2473 0.3196 0.5289 0.3745 

Mult-VAE 0.2448 0.3192 0.5476 0.3756 

4 DISCUSSION 
4.1 Reproducibility and Scalability 
In some ways, establishing reproducibility in applied machine learn-
ing should be much easier than in other scientifc disciplines and 
also other subfelds of computer science. While many recommen-
dation algorithms are not fully deterministic, e.g., because they use 
some form of random initialization of parameters, the variability 
of the obtained results when repeating the exact same experiment 
confguration several times is probably very low in most cases. 
Therefore, when researchers provide their code and the used data, 
everyone should be able to reproduce more or less the exact same 
results. Given that researchers today often rely on software that is 
publicly available or provided by academic institutions, the barriers 
regarding technological requirements are mostly low as well. In 
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particular, virtualization technology should make it easier for other 
researchers to repeat an experiment under very similar conditions. 

Nonetheless, our work shows that the level of reproducibility is 
actually not high. The code of the core algorithms seems to be more 
often shared by researchers than in the past, probably also due to 
the fact that reproducibility has become an evaluation criterion 
for conferences. However, in many cases, the code that is used for 
hyper-parameter optimization, evaluation, data pre-processing, and 
for the baselines is not shared. This makes it difcult for others to 
validate the reported fndings. 

One orthogonal factor that can make reproducibility challenging 
is the computational complexity of many of the proposed methods. 
Ten years after the Netfix Prize and its 100 million rating dataset, 
researchers, in the year 2019, commonly use datasets containing 
only a few hundred thousand ratings. Even for such tiny datasets, 
which were considered unacceptably small a few years ago, hyper-
parameter optimization can take days or weeks, even when re-
searchers have access to GPU computing. Clearly, nearest-neighbor 
methods, as discussed in our paper, can also lead to scalability issues. 
However, with appropriate data pre-processing and data sampling 
mechanisms, scalability can also be ensured for such methods, both 
in academic and industrial environments [19, 26]. 

4.2 Progress Assessment 
Despite their computational complexity, our analysis showed that 
several recently proposed neural methods do not even outperform 
conceptually or computationally simpler, sometimes long-known, 
algorithms. The level of progress that is achieved in the feld of 
neural methods is, therefore, unclear, at least when considering the 
approaches discussed in our paper. 

One main reason for this phantom progress, as our work shows, 
lies in the choice of the baselines and the lack of a proper optimiza-
tion of the baselines. In the majority of the investigated cases, not 
enough information is given about the optimization of the consid-
ered baselines. Sometimes, we also found that mistakes were made 
with respect to data splitting and the implementation of certain 
evaluation measures and protocols. 

Another interesting observation is that a number of recent pa-
pers use the neural collaborative fltering method (NCF) [14] as 
one of their state-of-the-art baselines. According to our analysis, 
this method is however outperformed by simple baselines on one 
dataset and does not lead to much better results on another, where 
it is also outperformed by a standard implementation of a linear 
regression method. Therefore, progress is often claimed by compar-
ing a complex neural model against another neural model, which 
is, however, not necessarily a strong baseline. Similar observations 
can be made for the area of session-based recommendation, where 
a recent method based on recurrent neural networks [16] is con-
sidered a competitive baseline, even though almost trivial methods 
are in most cases better [29, 30]. 

Another aspect that makes it difcult to assess progress in the 
feld lies in the variety of datasets, evaluation protocols, metrics, 
and baselines that are used by researchers. Regarding datasets, for 
example, we found over 20 public datasets that were used, plus 
several variants of the MovieLens and Yelp datasets. As a result, 
most datasets are only used in one or two papers. All sorts of metrics 

are used (e.g., Precision, Recall, Mean Average Precision, NDCG, 
MRR etc.) as well as various evaluation procedures (e.g., random 
holdout 80/20, leave-last-out, leave-one-out, 100 negative items or 
50 negative items for each positive). In most cases, however, these 
choices are not well justifed beyond the fact that others used them 
before. In reality, the choice of the metric should depend on the 
application context. In some applications, for example, it might 
be important to have at least one relevant item at the top of the 
recommendations, which suggests the use of rank-based metrics 
like MRR. In other domains, high Recall might be more important 
when the goal is to show as many relevant items as possible to 
the user. Besides the unclear choice of the measure, often also the 
cutof sizes for the measurement are not explained and range from 
top-3 or top-5 lists to several hundred elements. 

These phenomena are, however, not tied to neural recommen-
dation approaches, but can be found in algorithmic research in 
recommender systems also in pre-neural times. Considering the ar-
guments from [27, 46], such developments are fueled by the strong 
focus of machine learning researchers on accuracy measures and 
the hunt for the “best” model. In our current research practice, 
it is often considered sufcient to show that a new method can 
outperform a set of existing algorithms on at least one or two pub-
lic datasets on one or two established accuracy measures.11 The 
choice of the evaluation measure and dataset however often seems 
arbitrary. 

An example of such unclear research practice is the use of Movie-
Lens rating datasets for the evaluation of algorithms for implicit 
feedback datasets. Such practices point to the underlying funda-
mental problem that research is not guided by any hypothesis or 
aim at the solution of a given problem. The hunt for better accuracy 
values dominates research activities in this area, even though it 
is not even clear if slightly higher accuracy values are relevant in 
terms of adding value for recommendation consumers or providers 
[20, 22, 52]. In fact, a number of research works exist that indicate 
that higher accuracy does not necessarily translate into better-
received recommendations [4, 9, 13, 31, 37]. 

5 SUMMARY 
In this work, we have analyzed a number of recent neural algorithms 
for top-n recommendation. Our analysis indicates that reproducing 
published research is still challenging. Furthermore, it turned out 
that most of the reviewed works can be outperformed at least 
on some datasets by conceptually and computationally simpler 
algorithms. Our work therefore calls for more rigor and better 
research practices with respect to the evaluation of algorithmic 
contributions in this area. 

Our analyses so far are limited to papers published in certain 
conference series. In our ongoing and future work, we plan to ex-
tend our analysis to other publication outlets and other types of 
recommendation problems. Furthermore, we plan to consider more 
traditional algorithms as baselines, e.g., based on matrix factoriza-
tion. 

11From the 18 papers considered relevant for our study, there were at least two papers 
which proposed new DL architectures which were evaluated on a single private dataset 
and for which no source code was provided. 
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