
Citation: Bono, F.M.; Radicioni, L.;

Cinquemani, S.; Benedetti, L.;

Cazzulani, G.; Somaschini, C.; Belloli,

M. A Deep Learning Approach to

Detect Failures in Bridges Based on

the Coherence of Signals. Future

Internet 2023, 15, 119. https://

doi.org/10.3390/fi15040119

Academic Editor: Wei-Chiang Hong

Received: 1 March 2023

Revised: 21 March 2023

Accepted: 23 March 2023

Published: 25 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Deep Learning Approach to Detect Failures in Bridges Based
on the Coherence of Signals
Francesco Morgan Bono * , Luca Radicioni , Simone Cinquemani , Lorenzo Benedetti ,
Gabriele Cazzulani , Claudio Somaschini and Marco Belloli

Mechanical Department, Politecnico di Milano, Via G. La Masa, 1, 20156 Milan, Italy
* Correspondence: francescomorgan.bono@polimi.it

Abstract: Structural health monitoring of civil infrastructure, such as bridges and buildings, has
become a trending topic in the last few years. The key factor is the technological push given by
new technologies that permit the acquisition, storage, processing and visualisation of data in real
time, thus assessing a structure’s health condition. However, data related to anomaly conditions
are difficult to retrieve, and, by the time those conditions are met, in general, it is too late. For
this reason, the problem becomes unsupervised, since no labelled data are available, and anomaly
detection algorithms are usually adopted in this context. This research proposes a novel algorithm
that transforms the intrinsically unsupervised problem into a supervised one for condition monitoring
purposes. Considering a bridge equipped with N sensors, which measure static structural quantities
(rotations of the piers) and environmental parameters, exploiting the relationships between different
physical variables and determining how these relationships change over time can indicate the bridge’s
health status. In particular, this algorithm involves the training of N models, each of them able to
estimate the quantity measured via a sensor by using the others’ N − 1 measurements. Hence, the
system can be represented by the ensemble of the N models. In this way, for each sensor, it is possible
to compare the real measurement with the predicted one and evaluate the residual between the
two; this difference can be addressed as a symptom of changes in the structure with respect to the
condition regarded as nominal. This approach is applied to a real test case, i.e., Candia Bridge in
Italy, and it is compared with a state-of-the-art anomaly detector (namely an autoencoder) in order to
validate its robustness.

Keywords: structural health monitoring; neural networks; bridge monitoring; iterative models;
artificial intelligence

1. Introduction

To use a metaphor, infrastructural networks can be described as the veins and arteries
of a country. Indeed, they allow for the flux of people and goods, which is essential for
the flourishing of culture and economics. Among the components of traffic routes, bridges
are the most impactful on a system’s resilience. Additionally, bridges are potentially
subject to a very large spectrum of degradation processes linked to their constructive
materials, structural characteristics and exposure to external agents [1–3]. This is why an
efficient approach to the management and maintenance of these structures has always been
considered of paramount importance, with the United States leading the way since the
1970s. The latter has become a hot topic in the last decade, made even more evident by
serious facts and collapses happening worldwide with worrying frequency [4,5]. Many
factors contribute to this process: in particular, the scientific literature on bridge safety
affirms that ageing and damage caused by natural disasters are the most relevant threats
to bridges’ integrity, with 7 out of 10 structural failures due to a combination of such
factors [6,7]. To make things worse, data from the World Meteorological Organization
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report a concerning five-time increase in the occurrence of natural disasters over the past
50 years, mainly driven by climate change and more extreme weather conditions [8].

According to most countries’ policies, after such exceptional events affect a bridge,
its structural safety should be assessed through extraordinary visual inspections, which
oversee the deployment of testing equipment to check the status of the superstructure,
substructure and underwater elements [9]. However, not only is this practice extremely
expensive and time-consuming, but also, its results are questionable and surely not able
to capture any phenomena of drift of the structural behaviour of the bridge, which are
quantitative and evolve slowly over time [10,11]. Instead, the continuous monitoring of
the bridge through sensors is much more informative. To make a comparison of the two
techniques, continuous monitoring might be considered, for example, in the form of a
video, while a visual inspection is more similar to a picture. On the other hand, a significant
analysis effort is required to extract such valuable information from the huge amount of
data produced daily by a monitoring system.

In this regard, machine learning represents a precious resource. The design and im-
plementation of efficient algorithms based on artificial intelligence allow for analysing
data from heterogeneous sensors simultaneously, making it possible to capture the com-
plexity of a bridge’s structural behaviour. This approach can lead to more autonomous,
accurate and robust processing of the monitoring data [12]. In recent years, researchers
in the structural health monitoring (SHM) community have been exploring the potential
applications of deep learning-based approaches for detecting structural damage and as-
sessing the overall condition of structures. By leveraging the power of deep learning, these
approaches have the potential to improve the reliability and efficiency of SHM systems,
thereby enhancing the safety and performance of structures.

Jian et al. [13] demonstrated the effectiveness of a one-dimensional convolutional
neural network (CNN) for anomaly identification with vibration signals in bridges. Bao
et al. [14] proposed a novel data anomaly detection method that uses computer vision
and deep learning techniques. This approach involves converting the original time series
measurement values into image vectors, which are then input to a deep neural network
to detect various anomalies. In their study, Mousavi and Gandomi [15] employed an ap-
proach to detect damages in structures by training an RNN using the natural frequency and
corresponding Johansen cointegration residuals, by removing seasonal patterns from the
data with variational mode decomposition algorithm. Ni et al. [16] proposed a novel deep
learning-enabled data compression and reconstruction framework based on two different
networks: a CNN that extracts features directly from the input signals to detect anoma-
lous data and a data compression and reconstruction method based on an autoencoder,
which can recover the data. Mao et al. [17] adopted generative adversarial networks and
autoencoders to recognise anomaly conditions.

This paper contributes to the literature by proposing a deep-learning-based approach.
The proposed algorithm relies on the analysis of the signal’s coherence: given an acquisition
system made of N sensors, the idea is to train N models iteratively, estimating the readings
of one sensor by using all of the other nodes of the acquisition network. The result is an
anomaly detection system that can localise and quantify anomalous behaviour. Moreover, being
that the model is totally data-driven, it requires no previous knowledge of the structure,
can be applied to sensors of different natures and is characterised by a fast deployment on
existing time series.

The validation of this approach has been carried out by applying it to a masonry arch
bridge in Italy, which allowed for the detection and localisation of a flood’s effects. The
bridge, which flooded in October 2020, has been endowed with a monitoring system to
collect data since December 2020 [18]. The proposed algorithm is compared with another
one, which analogously performs data fusion on signals from tiltmeters installed on the
structure, with the aim of tracking the bridge’s structural behaviour.

The proposed methodology successfully identified the transient between the flood
and the stabilisation on a new equilibrium position. This is a really valuable result be-
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cause it helps ensure the bridge’s structural safety after such an extreme event, thus
supporting the maintenance of the infrastructural network by providing quantitative and
reliable information.

The paper is organised as follows: in Section 2, the experimental setup and a descrip-
tion of the available dataset are outlined; in Section 3, a novel methodology is introduced
and compared with a state-of-the-art algorithm; in Section 4, a discussion on data prepro-
cessing and algorithm architecture is described; in Section 5, the methodology is applied to
a real test case to prove its robustness; and, finally, conclusions are drawn.

2. Experimental Set Up

The monitoring system installed on this bridge (represented in Figure 1) acquires data
continuously. Candia Bridge is a multi-span masonry arch bridge that is monitored mainly
by tiltmeters, which are used to assess the static position of the bridge. In particular, MEMS
tiltmeters (hereafter denoted by Txx) are placed on the arches skewback and are in charge
of recording the transversal rotation (positive if upriver) of the piers. In fact, as an example,
a possible flooding scenario can apply a scouring action on the foundation by determining
(in the long period) potentially irreversible rotations. Moreover, a weather station is placed
in the middle of the bridge to record different environmental factors: the pressure, internal
temperature of the station, external air temperature, internal humidity, external humidity,
wind speed, speed direction and rain rate. Tiltmeters 2 and 14 are equipped with an internal
temperature sensor that is stored during the acquisition.
To detect extraordinary events, the bridge is equipped with hydraulic and visual sensors too:

• Hydrometer: measures the river level identifying possible flooding that can be dan-
gerous for the bridge’s structure.

• Echo sounder: measures the level of the river bed and can provide information about
possible movements of the piers within its proximity.

• Cameras: identify possible detritus stacks at the base of the piers by documenting and
characterising the annual process of plant transportation.

Figure 1. Candia Bridge Monitoring System.

A strengthening intervention was made on the river bed in 2003; it is noticed that the
piers located within the working site are more subjected to the scouring action. On these
piers, two tiltmeters are installed; to better describe this phenomenon, they are placed on
the arch skewback converging on the pier.

Dataset Acquisition

The dataset available for this research consists of the measurements acquired from all
of the sensors summarised in Table 1. The temperatures corresponding to channels 23 and
24 are extracted from tiltmeters 2 and 14. The temperatures in channels 26 and 27 (hereafter
called Temp1 and Temp2) refer instead to the internal and external temperatures measured
by the weather station. All of the signals have been acquired with a sampling frequency of
1 Hz. To make the models more robust against random noise and reduce the storage space,
the data have been averaged on an hourly basis, so that every channel counts one value per
hour. In Figure 2, the arrangement of the data after preprocessing is reported. The dataset
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consists now of a matrix, where each row corresponds to a timestamp and each column
corresponds to a sensor. A new row is generated every hour.

Table 1. Channels, sensors and measurement units of the acquisition system mounted on Can-
dia Bridge.

Channels Sensors Measurement Unit

1–15 Tiltmeters rad

16 Hydrometer m

23, 24 Temperatures ◦C

25 Atmospheric pressure bar

26, 27 Temperatures ◦C

28, 29 Humidity %

30 Wind speed Km/h

31 Wind direction ◦

32 Rain rate mm/h

Figure 2. Data arrangement after preprocessing.

The acquisition period spans from December 2020 to December 2022. It is important to
underline that, in October 2020, the city of Candia Lomellina was hit by a flood that caused
damage in this area, and, in particular, another bridge collapsed on this occasion. In the
next section, it will be demonstrated how Candia Bridge was affected by this phenomenon
by moving away from its equilibrium position and finding a new, stable one in the summer
of 2021.

3. Multi-Input Machine Learning Modelling

Although simple models such as linear regressions are easy to interpret and give a
sufficiently accurate description of bridge physics, they have some intrinsic limits. For in-
stance, the number of inputs that can be introduced while keeping a representation of
the laws understandable for humans is usually no more than two, so that the model can
be represented in a 3D space. In addition, linear models are characterised by a limited
number of parameters, having then an inadequate capability to represent the behaviour
of complex systems, particularly when they are evolving in time. It can, consequently, be
beneficial to model the system by contemplating more inputs and models characterised by
more parameters. Fully data-driven modelling of the system is then suitable for this purpose.
The problem of structural health monitoring with an unsupervised dataset is commonly
regarded as novelty detection or anomaly detection [19]. The logic is to use the training data to
establish the nominal condition of the structure. The monitoring system must be then able to
identify a modification in the system. Before fitting any model into the dataset, a baseline
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must be defined, that is, the portion of the dataset corresponding to periods where the
structure is regarded as healthy. In practice, given a time series matrix X ∈ Rn×m, made of
n measurements for m time “snapshots”:

XXX = [xxx1, xxx2, · · · , xxxm] (1)

and defining the training set finally consists in selecting the proper k < m so that:

XXXtrain = [xxx1, xxx2, · · · , xxxk] (2)

3.1. Iterative Models

The dataset collected from a structure is unsupervised most of the time, namely a
dataset with no specific labels (numerical or categorical) associated with the dataset objects.
Most of the unsupervised approaches rely on the detection of the dataset modifications.
However, in this way, the monitoring system is only able to identify whether something
has changed, without actually localising where the modification took place [20]. A possible
approach to overcome these limitations could be to turn the unsupervised problem into a
supervised one. For example, some health monitoring algorithms are based on the use of
environmental variables (such as temperatures) as the input of a regressor, which must
estimate the features extracted from the sensors. This allows the normalisation of the
signals with respect to the environmental effects, before applying an anomaly detection
algorithm that is usually based on statistics [21,22]. If the physical variables measured are
static, which means they measure low-frequency variations only, this procedure can be
applied directly to the sensors’ readings, without any particular feature extraction.

Among the possible machine learning methods for regression, neural networks are
among the most flexible ones. The layers of neural networks can be selected and adjusted
to take in input and output tensors of any size. It is then possible to divide the sensors
mounted on the structure into groups according to the type of physical quantity that they
measure (tiltmeter, strain gauges, thermometers, etc.) or their location (first span of the
bridge, second span, and so on) and then train a neural network so that it can use one group
from the input to estimate the values of the sensors of another group. Then, the residuals
eij can be computed as:

eij = yij − ŷij (3)

where yij and ŷij refer to the measured value and the value estimated by the neural
network, respectively, while the subscript i refers to the ith sensor considered and j to the
jth timestamp. The residuals can then be used as an indicator of the structure’s health
condition. In this way, the normalisation of the signals with respect to the environmental effect can
just be seen as a particular case of this procedure, where the inputs of the neural network
are the temperatures and the output of a group (or multiple groups) of sensors, as shown in
Figure 3. By following this procedure, the residuals obtained represent all the disturbances
that cannot be attributed to temperatures. However, one might also focus on one single
group and establish the effect of all of the other groups of sensors (Figure 4). The physical
meaning of residuals is now different compared to the case where only the temperatures
are used as the input. Now the model takes into account the readings of sensors of different
natures. Therefore, the residuals are proportional to the level of coherence of one group of
sensors with respect to the others. By iterating the process for all groups of sensors, given G
groups, every iteration consists of the training of G models, so that each of them estimates
the value of one group of sensors taking into account the other G− 1.
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Figure 3. A model (such as a neural network) takes the temperature as the input and gives an
estimation of the readings of other sensors.

Figure 4. A model estimates the values of one group of sensors by taking all of the other groups as
the input.

The logical extension of this procedure is to consider only the groups made of one
single sensor (leave-one-out strategy). If N sensors are mounted on the structure, this
strategy involves the training of N neural networks, so that at every iteration the neural
network estimates the value of one single sensor by taking the other N − 1 ones as the
input. Eventually, a comprehensive model made of N neural networks is associated with the
structure. For simplicity, we call this “comprehensive” model an iterative model. It is worth
mentioning that the iterative model can be made of other machine learning regressive
models rather than neural networks, since the output is, in this case, a single continuous
variable. [23,24]. By considering the set of measurements YYY j =

[
y1j, · · · , ynj

]
available at

the jth timestamp, the iterative model can synthetically be represented by the system:

ŷij = f̂i(XXXij) for i = 1, · · · , n (4)

where XXXij = YYY j−{yij} represents the set of values measured by all the sensors except the ith

one, whereas f̂i is the regressor able to estimate the value of the ith sensor from XXXij. Finally,
the residuals can be computed with Equation (3). In this context, the residuals represent
how distant the value measured by a sensor is from the expected one, and, therefore, the
equation quantifies coherence among all sensors’ readings. This approach reaches level 2 in
the SHM hierarchical structure, namely the localisation of damage, as well as its assessment,
even if only to a limited degree. In this regard, it is necessary to remark on an important
aspect: the application of an iterative model to a new observation YYYnew will produce a
vector of residuals: EEEnew = [e1,new, · · · , en,new], which must show low values in the case of
a healthy structure. In addition, in the case of damage caused at the ith sensor, the residual
vector EEEnew is expected to feature a “spike” in the ith residual ei,new. However, since yi,new
is the input for the other sensors, an increase in the residuals will be seen in all of the other
elements of the vector EEEnew. Therefore, the damage identification capability is maintained
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as long as the residual in the ith position of EEEnew grows more than the others. However,
since the method is fully data-driven, it is hard to define when and how this might happen.
During the monitoring phase, some statistical considerations can be carried out on the
vector of residuals EEE to define the confidence level for raising warnings.

It is worth mentioning that this algorithm has been tested on two other bridges that
were monitored for about one and a half years. Iterative models were trained over a
one-year time span and tested on the remaining period. In both structures, no anomaly
conditions were recorded since the obtained residuals for all of the sensors maintained low
values in time, comparable to the training loss. However, in this paper, the results related
to these two bridges are not included because the authors want to focus on a test case in
which a real anomaly condition has been met and correctly identified. In fact, a flood is an
exceptional event that has hardly been encountered in previous research works related to
bridge monitoring.

Due to the limited period of monitoring, it is not possible to be sure that the algorithm
is robust to long-term changes. However, due to the fact that it evaluates the coherence of
the different signals and, indirectly, the measurement of a single variable, it is realistic to
suppose that it will be robust to long-term changes. If the algorithm finds a change in the
system, it can be a preliminary warning that an inspection or, more generally, an evaluation
of the bridge is required. If after the inspection, the bridge is considered healthy, it is
possible to retrain the model and, therefore, to define a new nominal condition.

3.2. Autoencoder Model

To evaluate the performance of iterative models, a comparison with the state-of-
the-art autoencoder (AU) algorithm is carried out. The AU has been regarded as an
anomaly detector algorithm [17,25,26], which can be applied in applications where it is
necessary to establish whether a system is moving away from the nominal condition. This
algorithm (represented in Figure 5) is a particular type of neural network that performs
two main operations:

• Encoder function: it applies different transformations to the input data (XXX) by means
of successive layers, which generates a compressed representation of the input (HHH)
in a new feature space usually called latent space. The mathematical expression is:
HHH = f (XXX).

• Decoder function: starting from the latent space, it applies different transforma-
tions to determine a reconstruction (RRR) of the input. The mathematical expression is:
RRR = g(HHH).

Figure 5. Autoencoder structure.
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To evaluate the performance in reconstructing the input, the residual between the
input and output is evaluated:

EEEAU = RRR−XXX (5)

where RRR and XXX are vectors with dimensions N × 1 (number of measurements). So, eAU
is a vector with the same dimension, whose elements represent the reconstruction error
for all measurements. If the AU is trained with nominal data, it learns to minimise the
reconstruction error when nominal data are processed and to raise it when anomalous data
are encountered.

4. Data Preprocessing and Models Architecture

As already explained in Section 2, the data are averaged on an hourly basis, so that
every channel counts one value per hour. A preliminary statistical analysis of the data led
to not considering some measurements when constructing the model; in particular, the dif-
ferent models consider the 15 tiltmeters, the hydrometer level and the two temperatures
Temp1 and Temp2. The other variables are not taken into account since they are not related
to the bridge’s behaviour.

To bring the data in the format required for their processing with neural networks,
some manipulations are performed according to the method described in [27]. Firstly,
the data are arranged in a matrix, whose dimensions are Nsamples × 18, with 18 being the
number of measurements used by the model. Secondly, each column of the matrix for the
training set is normalised by adopting a standardisation technique [28]:

zij =
xij − µj

σj
for j = 1, · · · , 17 and i = 1, · · · , Nsamples (6)

where µj and σj, respectively, represent the mean value and the standard deviation for the
measure of the jth sensor in the training set. In this way, the distribution of samples for
each variable will be centred on zero with a standard deviation of 1.

For the iterative models, the dimensions of the input–output tensors, respectively,
become Nsamples × 17 and Nsamples × 1. The architecture of the network (represented in
Figure 6) is made of two dense layers with the ReLU activation function, a dropout layer to
avoid overfitting [29] and a final dense output with a linear activation function.

Figure 6. Iterative model’s architecture.

While for the AU model, the input and output of the network are the same, including
all the measurements available, i.e., a matrix with the dimensions Nsamples × 18. The archi-
tecture, in this case, is represented in Figure 7.

For the case study of Candia Bridge, the model is trained with data from December
2021 to December 2022, during which the bridge is considered in a new, stable equilibrium
position. The testing phase is then performed on data from December 2020 to November
2021 to verify the hypothesis that the bridge was in a “transitory” phase due to the flood
event. The objective is first to assess if the bridge is in stable condition at the end and to
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find the moment at which it arrived to this condition; in this way, it is possible to assess the
bridge’s safety after an extraordinary event.

Figure 7. Autoencoder’s architecture.

5. Results

The selection of the periods for training and testing has been corroborated by
Figures 8 and 9. In these two figures, the readings of two tiltmeter (T2 and T8) averages
per day are plotted against the temperature. Then, the data points are grouped according
to months. In Figure 8, the readings of T2 present a transition between January 2021 and
April 2021. Then, it looks as if the data points stabilised around a regression line. A similar
situation can be observed in Figure 9. The tiltmeter T8 features a longer transition phase,
from January 2021 to August 2021, before it settles down around a new regression line.
Apparently, it took to the bridge between three and nine months to become stable in a new
equilibrium position after the October 2020 flood.

Figure 8. T2 daily average trend (2021–2022) vs. temperature.

Figure 9. T8 daily average trend (2021–2022) vs. temperature.
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This consideration justifies a partition of the two years of measurements available
between the training set (from December 2021 to December 2022), which is used to validate
the models as well, and the test set (from December 2020 to November 2021), although,
usually, the collection of the training set comes chronologically before the test one. Thus, the
following procedure was applied to evaluate the two models (iterative and autoencoder)
and establish whether they are able to recognise and quantify the effect of the flood.

1. The iterative model and the autoencoder introduced in Section 4 are trained on the
training set. Then, both the training set and the test set are passed to the two models.
The estimated values are then used to compute the residuals (Equations (3) and (5)).

2. For each sensor, a moving average and a moving standard deviation are applied with
a one-week window to evaluate the distributions of residuals in time.

3. For each month, the mean absolute error (MAE) of the scaled residuals is computed;
that is, Equations (3) and (5) are applied before the true values, and the estimations
are scaled back to the original range. This allows the evaluation of how the sensors
detect unusual behaviours on a comparable scale.

The values obtained during step 2 are computed for both the iterative model and the
autoencoder. The results for sensor T1 are plotted in Figures 10 and 11. In red are the mean
values, whereas the area in orange refers to a double confidence level (±2 std). From the
figures, one might notice that not only the dispersion of the data for the iterative model is
lower, but also the results at the end of 2022 are more consistent compared to those of the
autoencoder. In fact, the residual for the AU model has an unexpected deviation at the end
of 2022, which does not have any physical reason behind it.

Figure 10. Iterative model: T1 residuals.

Figure 11. Autoencoder: T1 residuals.

For other sensors, such as T2, the residuals produced by the two models are surpris-
ingly similar (Figures 12 and 13). Likewise, this happens to T3, T4, T7, T8, T9, T12 and
T13. For other sensors, such as T10, the iterative model seems to succeed in recognising the
flood effects (Figure 14) whereas the autoencoder totally failed (Figure 15).
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Figure 12. Iterative model: T2 residuals.

Figure 13. Autoencoder: T2 residuals.

Figure 14. Iterative model: T10 residuals.

Figure 15. Autoencoder: T10 residuals.
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Consistently with step 3, a barplot has been produced for every month and model.
Since the residuals are computed before scaling back to the original measurement units,
the distributions associated with every sensor (in the training set) have a mean of zero
and a variance of one, and, consequently, the results can be compared. For instance,
Figures 16 and 17 show the bar plots of MAE for the first month available after the flood
(December 2020). The iterative model estimates that strong variations are located at sensors
T1, T8 and T9, whereas the situation is practically nominal in T2, T4 and T13, for instance.
On the contrary, the autoencoder is less sensitive overall to variations since the scale is
even lower.

Figure 16. Iterative model: bar plots of MAE residuals (December 2020).

Figure 17. Autoencoder: bar plots of MAE residuals (December 2020).

By looking at the later months, the MAE of the residuals rapidly decreases. The month
of June is reported in Figures 18 and 19. According to the iterative model, three locations
are still far from the new equilibrium condition, which are the ones corresponding to T1,
T5 and T15. All of the others residuals have an MAE below one. On the contrary, according
to the autoencoder, T1 and other sensors, such as T6, T10 and T11, are already in a perfectly
nominal range.

Finally, by looking at the last available month not present in the training set (Novem-
ber 2021, Figures 20 and 21), all of the sensors readings are “normal”, although strong
variations among measurements do exist for the autoencoder. In fact, the MAE of sensor
T6 is one order of magnitude over T6, and more consistent results are obtained for the
iterative model.

Some consideration may be inferred after this comparison between the two anomaly
detection systems. The iterative model seems to yield consistent results, whereas it allows
for easy quantification of the coherence of sensor readings. For instance, by looking at
Figure 8, one might initially think that the region of the bridge closer to sensor 2 settles
down around 21 April, but Figure 12 shows that, in April, the T2 residuals go through zero,
and then at least two more months were needed for that signal to be coherent with the



Future Internet 2023, 15, 119 13 of 16

others. This can also be addressed by the presence of nonlinear activation functions in the
neural networks’ layers, which might find a wider variety of relationships rather than just
linear ones.

On the contrary, the autoencoder produced similar results for some sensors, whereas,
for others, it simply does not yield credible results. Since the methodology is fully data-
driven and all of the outputs were scaled, it is hazardous to infer whether this can be
corrected by acting on the loss function, for instance, by regularising it. However, it is
worth underlining that, since the iterative model counts n sub-models, the training time
required for an iterative model is approximately n-times higher than the one required for the
autoencoder. Actually, the training of a single iterative model’s neural network is slightly
faster than the autoencoder model, since it has one output and fewer weights overall. Then,
as a rule of thumb:

ttrain,IT < n× ttrain,AU (7)

where n is the number of sensors in the acquisition system.
If the computation resources are not a constraint, the iterative models look promising

for assessing the health condition of a structure. They are extremely sensitive to structure
variations, and they can effectively recognise which location of the construction is most
affected by an extraordinary event. Moreover, they look suitable for evaluating whether
the structure comes back to the previous equilibrium position or to a new one.

Figure 18. Iterative model: bar plots of MAE residuals (June 2021).

Figure 19. Autoencoder: bar plots of MAE residuals (June 2021).
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Figure 20. Iterative model: bar plots of MAE residuals (November 2021).

Figure 21. Autoencoder: bar plots of MAE residuals (November 2021).

6. Conclusions

In this work, a novel approach able to detect anomalies in structures has been pro-
posed. It demonstrates a greater robustness with respect to the AU while dealing with
extraordinary events (flooding, in this case); the only drawback is that it has a higher
computational burden that requires a longer training time. With this approach, it is possi-
ble to effectively detect an anomalous condition, quantify the entity of the variation and
characterise the severity of the situation. Furthermore, with this model, it is possible to
assess whether the structure finds a new equilibrium position and determine the moment
at which it is reached. Future developments of this work will concern the deployment of
this approach for other structures where exceptional events are recorded as well as the
implementation of better regressors, such as dynamic ones.
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