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Abstract
Developing robotic applications with human–robot interaction for the service sector raises a plethora of challenges. In these
settings, human behavior is essentially unconstrained as they can stray from the plan in numerous ways, constituting a critical
source of uncertainty for the outcome of the robotic mission. Application designers require accessible and reliable frameworks
to address this issue at an early development stage. We present a model-driven framework for developing interactive service
robotic scenarios, allowing designers to model the interactive scenario, estimate its outcome, deploy the application, and
smoothly reconfigure it. This article extends the framework compared to previous works by introducing an analysis of the
impact of human errors on the mission’s outcome. The core of the framework is a formal model of the agents at play—the
humans and the robots—and the robotic mission under analysis, which is subject to statistical model checking to estimate
the mission’s outcome. The formal model incorporates a formalization of different human erroneous behaviors’ phenotypes,
whose likelihood can be tuned while configuring the scenario. Through scenarios inspired by the healthcare setting, the
evaluation highlights how different configurations of erroneous behavior impact the verification results and guide the designer
toward the mission design that best suits their needs.

Keywords Human–robot interaction · Human errors · Service robotics · Formal verification · Formal modeling · Stochastic
Hybrid Automata · Statistical model checking

1 Introduction

The latest technological advances are rapidly transforming
the service sector, and the professional figures that populate
it face an equally significant evolution [21]. Service robots are
complex machines capable of sophisticated motion, manipu-
lation, and interaction skills. These devices are equippedwith
cutting-edge sensors and actuators, allowing them to per-
ceive several aspects of their environment and elaborate data
to perform tasks efficiently [20]. Therefore, service robots
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are increasingly widespread in healthcare, personal care,
domestic assistance, retail, and entertainment settings. State-
of-the-art applications involve robots relieving employees
from the most mundane jobs in industrial settings. How-
ever, human actions in everyday life are not tied to a specific
workflow but are virtually unconstrained; therefore, devel-
oping such robotic applications comes with considerable
challenges.

While remarkable progress has been made with individ-
ual robotic skills such as manipulation and sensing, software
engineering practices bringing these skills together into
fully fledged applications are still lacking [22]. The prac-
titioner in charge of designing the robotic application must
account for all the sources of uncertainty affecting the spe-
cific environment at an early development stage, which calls
for accessible and reliable tools [44]. We address this issue
through amodel-driven framework for designing and devel-
oping interactive service robotic applications extended in this
paper compared to previous publications [37–39]. Specifi-
cally, within the broad domain of human–robot interactions,
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the work focuses on tasks that require physical coordina-
tion between the involved actors, including the possibility
of direct contact. (Spoken interactions or manual guidance
tasks are, thus, out of scope.)The framework targets scenarios
with mobile robots interacting with one or multiple humans
in a fixed layout (i.e., points of interest and fixed obstacles,
such as walls and furniture, are known beforehand). Hence,
applications featuring industrial manipulators or exoskele-
tons (although the latter are considered personal care robots
by standard ISO 13482 [30]) are out of the scope of our work.

The framework clusters frequent human–robot interaction
(HRI) contingencies from real-world scenarios into six pat-
terns [37, 39] (e.g., human follower or leader) presented in
detail in Table 5. A pattern with a destination (e.g., the loca-
tion where the robot must accompany the human) constitutes
a service that a human may request to interact with the robot.
A sequence of services that the robot has to provide to one
(or multiple) human subjects constitutes the roboticmission.
When all services in the sequence are complete, the frame-
work considers the mission finished with success.

The framework allows designers to configure the scenario
under analysis, precisely the characteristics of the agents at
play—the humans and the robots—the layout, and the robotic
mission. The designer configures the scenario through a
domain-specific language (DSL) [40] from which a formal
model of the system is automatically generated, specifically a
network of Stochastic Hybrid Automata (SHA). The SHA
network is subject to statistical model checking (SMC) to
estimate the value of key indicators about the mission, pri-
marily the probability of success. The formal model captures
human physiological and behavioral aspects to obtain accu-
rate and insightful estimations, specifically through a model
of physical fatigue and a stochastic approximation of hap-
hazard decision-making.

Given the variability of service settings, it is fundamen-
tal for the formal analysis to take into account unexpected
human actions straying from the planned mission, referred
to as human errors. To this end, in this paper, we extend
the development framework with a formal model of erro-
neous human behaviors and the possibility of analyzing
their impact on the outcome of the mission. The human
behavioral model is enriched with a taxonomy of errors well-
established in the human–computer interaction analysis field
[27]. The practitioner designs a scenario featuring one or
multiple robotic missions based on the needs of the facil-
ity. They can then adjust the likelihood of each error by
applying different behavioral profiles (e.g., inexperienced or
inattentive) to human subjects in the scenario and estimate the
probability of success with the defined configuration through
the framework. By examining results obtained with differ-
ent configurations (e.g., different combinations of behavioral
profiles), the practitioner determineswhich erroneous behav-
iors have the most considerable impact on the mission and

modify its design suitably to compensate for the issues that
they have identified.

In more detail, the contributions presented in this paper
with respect to [37–39] are:

1. We introduce SHA add-ons capturing erroneous behavior
mapped to the service robotics setting;

2. SHA modeling human–robot interaction patterns pre-
sented in [37, 39] are refined with the developed formal-
ization of erroneous behaviors;

3. Formal analysis, based on SMC, is extended through erro-
neous behavior profiles.

We demonstrate the features of the extended formal model
through case studies inspired by the healthcare setting. The
model-driven framework supports developers from the early
design stage to deployment and reconfiguration in a flexible
and accessible manner. Specifically, the comparison between
human behavioral profiles showcases how erroneous behav-
iors enrich the analysis and provide deeper insights into the
mission the practitioner is designing.

The paper is structured as follows: Sect. 2 provides an
overview of the model-driven framework and the role that
erroneous behaviors play in the analysis; Sect. 3 outlines the
theoretical background underlying the work; Sect. 4 intro-
duces the formal models of erroneous behaviors and the
extended human–robot interaction patterns; Sect. 5 presents
the evaluation results; Sect. 6 surveys related works in the
literature; and Sect. 7 concludes.

2 Model-driven framework

As mentioned in Sect. 1, this article builds upon a model-
driven framework for the design and development of service
robotic missions, where interaction with human subjects is
a core element. The model-driven nature of the framework
allows for a smooth design and reconfiguration process of the
roboticmissionwithout requiring a solid background in robot
programming or formal modeling techniques. Target users of
the framework (also referred to as practitioners or designers)
are experts of the service domain in charge of managing the
logistic workflow of a facility (e.g., a hospital). These profes-
sional figures likely lack solid technical expertise in formal
modeling techniques and, therefore, require accessible and
flexible tools [22].

The development framework consists of three phases
(labeled accordingly in Fig. 1):

PH1: the scenario configuration phase, in which the prac-
titioner designs the interactive scenario and computes
figures of merit about its outcome;
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Fig. 1 Workflow of the model-driven development framework, divided
into three macro-phases: design-time analysis, deployment, and recon-
figuration. Each box represents an operational step. Dotted yellow

diamonds represent the entry point of each phase, whereas normal
diamonds represent join/fork nodes. User symbols indicate manually
performed operations or user decisions (color figure online)

PH2: the application deployment phase, in which the
designed mission is deployed in a fully virtual or
hybrid setting (adhering to the digital-twin paradigm);

PH3: the reconfiguration phase, in which the practitioner
exploits the observations collected during deployment
and the results of the design-time analysis to modify
the scenario, if necessary.

Phase PH1 takes place at design time, while both PH2 and
PH3 take place at runtime since reconfiguration requires
system traces as input.

To keep the framework accessible to target users, the entry
point of the design-time phase (PH1) is the configuration
of the scenario through a custom domain-specific language
(DSL) [40]. TheDSL is a lightweight textual notation to spec-
ify the main features of the scenario under scrutiny. The set
of customizable features is presented in [40] and summarized
in the following. The elements that can be defined through
the DSL are the floor layout, the available robots and their
characteristics, the involved humans and their characteris-
tics, and the mission. The floor layout (i.e., the operational
environment) is modeled as a two-dimensional plane where
Cartesian coordinates of significant points (e.g., walls and
doors) need to be specified. As for robots, designers specify
the initial charge and the robots’ commercial model, deter-
mining maximum speed and acceleration, rotational speed,
and minimum voltage level to power the motors.

The core of the framework is a formal model capturing
both behavioral and physiological aspects of the involved
human subjects. For each human, it is possible to specify

how susceptible to physical fatigue they are, referred to as the
fatigue profile. We aggregate subjects by age (young/elderly)
and state of health (healthy/sick) to identify fourmain fatigue
profiles, determining the rate at which they fatigue and
recover. The formalization of human behavior also captures
the possibility that humans stray from the plan of the mis-
sion and perform actions out of their free will, constituting
a significant source of uncertainty. This aspect is consider-
ably extended in this paper and constitutes its main focus as
we introduce a broader range of erroneous behaviors, whose
likelihood can be tuned during the formal analysis to deter-
mine their impact on the mission’s outcome.

As the framework targets interactive applications within
the service domain, we recall that the robotic mission con-
sists of the sequence of services the robot is asked to provide
and the mission ends in success when all services are com-
plete. Themission fails if the robot gets fully discharged or at
least one of the humans reaches the maximum fatigue value.
Note that an ongoing mission which has not been completed
yet since it requires more time (i.e., the two conditions for
failure are not satisfied) is not considered a failure. Human
service requests impact the system’s evolution while inter-
acting with the robot and the condition that must be verified
for the service to be complete. We have identified frequent
interaction situations from real-world scenarios and grouped
them into patterns [37, 39] described in Table 5. There-
fore, scenarios within the scope described in Sect. 1 must
meet two requirements to be eligible for analysis through the
framework:
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Fig. 2 Setup of the example scenario

1. as previously mentioned, the layout of the operational
workspace must be known;

2. the robotic mission must be expressible as a sequence of
the available patterns.

Example 1 Figure2 shows the setup of an example scenario.
The layout is a T-shaped corridor with four points of inter-
est, i.e., significant locations within the layout: the robot’s
recharge station (RC), two cupboards containing medical
kits (KIT1 and KIT2), and the door leading to the wait-
ing room (WR). There are three agents in the scenario: two
humans (HUM1 and HUM2) and one robot (ROB1). The
designer assesses two alternative mission plans: the first mis-
sion features ROB1 leading HUM1 to the waiting room,
then delivering KIT2 to HUM2. The second mission fea-
tures ROB1 following HUM2 to fetch KIT1, then leading
HUM1 to the waiting room.

This article extends the SHA modeling the human partic-
ipating in each interaction pattern with suitable subsets of
erroneous behaviors applicable to the specific pattern (i.e.,
not all interaction patterns are equally susceptible to all erro-
neous behaviors).

The DSL file is processed to customize the SHA net-
work and the properties to be verified. Properties involve
the estimation of domain-specific metrics, specifically the
probability of occurrence of mission success, the maximum
fatigue level reached by human subjects, and the residual bat-
tery charge of the robot. Given the stochastic nature of the
formal model, properties are checked through SMC: Both
the formal model and verification experiments are managed
through the Uppaal tool [15] and its extension to SMC [14].
When verification ends, the designer examines the results of
the SMC experiments, such as the estimated probability of
success. If the results are not satisfactory, the designer modi-
fies the scenario through theDSL and iterates the design-time
analysis; otherwise, the analysis can switch to the runtime
phase.

As shown in Fig. 1, the approach supports the applica-
tion’s deployment in a real or simulated environment (phase
PH2). Simulation in a realistic virtual environment allows

practitioners to perform hundreds of runs without any effort
by real patients or healthcare professionals. In both cases,
each element of the SHA network is translated into exe-
cutable code. The mapping function between automata and
deployment units (described in detail in [38]) ensures that
two corresponding entities display corresponding behavior
in response to the same events. The agents (i.e., the robot and
humans) and the robot controller (referred to as the orches-
trator) communicate through a ROS-basedmiddleware layer
[47]. The orchestrator receives data about the status of the
system from sensors over ROS topics, checks it against a set
of policies, and sends commands to agents in the same fash-
ion.Whencommunicatingwith the robot, instructions sent by
the orchestrator actuate the motors for motion control. When
communicating with the humans (e.g., doctors and patients
in healthcare settings), the orchestrator issues suggestions on
the action to perform that can be relayed through a wearable
device. Data collected at runtime are processed to extract
the values of relevant indicators (e.g., the observed success
rate or the average patient fatigue level) that the designer
examines. Should these figures of merit be deemed unsatis-
factory, the scenario can be reconfigured (e.g., by changing
the order in which humans are served or swapping the robot
with another one in the fleet) to iterate the procedure.

The framework is structured to have as many automated
tasks as possible for the sake of accessibility to designers. As
a matter of fact, their manual intervention is limited to the
scenario configuration through the DSL (including potential
iterative reconfigurations) and the examination of the for-
mal analysis results. (The verification experiment is, instead,
performed automatically.) For example, they are in charge
of assessing whether a success probability of approximately
75% for the mission is sufficient given the facility’s policies
or calls for a reconfiguration.

3 Background

This section recaps the fundamental concepts underlying our
work. Firstly, we introduce the formalism used to model
HRI scenarios and the verification technique our framework
exploits to estimate the roboticmission’s outcome and further
relevant indicators of the mission’s performance. Secondly,
we recap the principles underlying our modeling approach
and the recurring features of the SHA network introduced in
previous works to keep the article self-contained.

3.1 Stochastic Hybrid Automata and statistical
model checking

The formalism underlying our work is Stochastic Hybrid
Automata (SHA). We define SHA in the following and illus-
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Fig. 3 Example of SHA network. Dashed arrows model probabilistic transitions with weights (in orange) pH and pL, and solid arrows represent
transitions with weight 1. Flow conditions, probability distributions, and exponential rates are in purple, channels in red, and guard conditions in
green (color figure online)

trate their features through a running example inspired by
[14, Section 4].

Example 2 The example captures a system composed of a
room, whose model is shown in Fig. 3a, and the thermostat
controlling its temperature, shown in Fig. 3b. The thermo-
stat can be either on, which makes the room warmer, or off,
thus, letting the room temperature decrease naturally.As soon
as the temperature decreases below a threshold Tth1 (resp.,
exceeds a threshold Tth2), the thermostat fires eventon (resp.,
off). The room temperature ismodeled by variable T , which
grows according to differential equation Ṫ = θ − T

R when
the thermostat is on and decreases according to Ṫ = − T

R
when it is off, where R is a constant and θ is a randomly
distributed parameter. When event on fires, the room may
start heating at a high rate or a low rate (e.g., if a window is
open): The choice is modeled probabilistically and governed
by probability weights pH and pL, respectively. Parameter θ

is a realization of distributionN(μH, σ 2
H)1 when the room is

heating at a high rate and N(μL, σ 2
L) in the opposite case.

Throughout the paper, we express that a random parameter θ
is a realization of randomvariable� governed by distribution
N (μ, σ ) through notation θ ∼ N (μ, σ ).

SHA are defined in the following [2, 5, 15]. LetW be a set
of symbols; we indicate with �(W) the set of conjunctions of
linear constraints on elements ofW. We indicate with �(W)

the set of updates on elements ofW. An update in �(W) (for
example, w′ = w + 2) is an arithmetical constraint where
free variables are elements of W (e.g., w ∈ W) and of its
primed version W′ (e.g., w′ ∈ W′).

Definition 1 A Stochastic Hybrid Automaton is a tuple
〈L,W,F ,D, I,C, E, μ,P, lini〉, where:

1. L is the set of locations and lini ∈ L is the initial location;

1 Throughout the paper, notationN(μ, σ 2) is used to indicate Normal
distributions.

2. W is the set of real-valued variables of which clocks
X ⊆ W, dense-counter variables Vdc ⊆ W, and constants
K ⊆ W are subsets;

3. F : L → {(R+ ∪ (R+ × R)) → R
W } is the function assign-

ing a set of flow conditions to each location;
4. D : L⇀{R → [0, 1]} is the partial function assigning

a probability distribution from {R → [0, 1]} to locations
which feature flow conditions with two parameters;

5. I : L → �(W) is the function assigning a (possibly
empty) set of invariants to each location;

6. C is the set of channels, including the internal action ε;
7. E ⊂ L × C!? × �(W) × ℘(�(W)) × L is the set of

edges, where C!? = {c! | c ∈ C} ∪ {c? | c ∈ C}
is the set of events involving channels in C. Given an
edge (l, c, γ, ξ, l ′) ∈ E , l (resp. l ′) is the outgoing (resp.
ingoing) location, c is the edge event, γ is the edge
condition and ξ is the edge update. For each l ∈ L ,
E(l) ⊆ C!? × �(W) × ℘(�(W)) × L is the set of edges
outgoing from l (for each (c, γ, ξ, l ′) ∈ E(l), then,
(l, c, γ, ξ, l ′) ∈ E holds and vice-versa);

8. μ : (L × R
W ) → {R+ → [0, 1]} is the function assign-

ing a probability distribution from {R+ → [0, 1]} to each
configuration of the SHA; a configuration is a pair (l, vvar)
constituted by a location l ∈ L and a valuation vvar ∈ R

W ;
9. P : L⇀{(C!?×�(W)×℘(�(W))×L)⇀[0, 1]} is the par-

tial function assigning a discrete probability distribution
from {(C!?×�(W)×℘(�(W))× L)⇀[0, 1]} to locations
such that, for each l ∈ L , P(l) is defined if, and only if,
E(l) is non-empty; also, the domain of the distribution is
E(l) (

∑
α=(c!,γ,ξ,l ′)∈E(l)

c∈C
P(l)(α) = 1 holds).

In SHA, real-valued variables (i.e., a generalization of
clocks) evolve in time according to expressions referred to as
flow conditions [2]. The flow conditions constraining the evo-
lution over time of variables inW are defined through sets of
ordinary differential equations (ODEs). This feature makes
SHA a fitting formalism to model systems with complex
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dynamics, as it is possible to model through flow conditions,
for example, laws of physics or biochemical processes.ODEs
constraining clocks (for which ẋ = 1 holds for all x ∈ X ),
dense-counter variables, and constants (where v̇ = 0 holds
for all v ∈ Vdc ∪ K ) are special cases of flow conditions.

If a randomly distributed parameter θ is an independent
term for a flow condition f ∈ F(l) on location l ∈ L—i.e.,
f = f (·, θ) holds—then f is interpreted as a stochastic
process [24].We limit the analysis toflowconditions depend-
ing on at most one random parameter, as per Definition 1,
which is the case for human–robot interaction models within
the scope of our work. For example, in the SHA shown
in Fig. 3a, the room temperature is modeled by real-valued
variable T ∈ W. When the temperature is decreasing, it is
constrained by flow condition Ṫ (t) = −T (t)/R,where func-
tion Ṫ (t) ∈ F(cool) depends on time only and has solutions
in R. When the temperature is increasing, it evolves accord-
ing to flow condition Ṫ (t, θ) = θ − T (t, θ)/R, depending
both on time and random parameter θ . The domain of Ṫ (t, θ)

is, thus, R+ × R, and its solutions belong to R.
The formal model is developed through the Uppaal tool

[36]. Update instructions in �(W) are either deterministic
or stochastic assignments (the latter if stochastic parameters
are involved). In the latter case, upon entering a location
l ∈ L such thatD(l) �= ⊥ holds, with Uppaal, it is possible to
code update instructions on the incoming edge that generate
a realization of distributionD(l) (e.g.,N(μH, σ 2

H) in Fig. 3a)
and assign it to the stochastic parameter (e.g., θ in Fig. 3a)
[14].

In SHA, probability measures are associated with time
delays or transition outputs [15]. In Uppaal, probability
distributions over delays are either uniform or exponen-
tial [14]. If an edge can fire with a bounded delay (i.e.,
within a finite range of values), function μ assigns a uni-
formly distributed probability to all delayswithin such range.
If an edge can fire with an unbounded delay, the proba-
bility is assigned according to an exponential distribution.
Probabilities over transition outputs are assigned as weights
P(l,c, γ, l ′) ∈ [0, 1] on edges, which determine how likely
the system is to evolve in a certain direction. For example,
pL and pH in Fig. 3 determine the probability of taking each
of the two edges from idle.

Complex systems with multiple entities are modeled as a
combination of SHA, forming a network. Synchronization
among different automata inside a network occurs through
the channels of set C [36]. Given a channel c ∈ C and two
complementary edges labeled by c! (the sender) and c?
(the receiver), triggering an event through channel c causes
both edges to fire simultaneously. In Fig. 3b, the thermostat
triggers an event through channels on! and off! to start
or stop heating the room. The room automaton receives the
triggered event through labels on? and off?, which make
the corresponding edges fire.

SHAare eligible for statisticalmodel checking (SMC) [1].
SMC requires a model M with stochastic features (the SHA
network) and a property ψ expressed, in our case, in metric
interval temporal logic (MITL) [3]. SMC exploits a finite set
of runs obtained through simulations of the formal model to
calculate the probability of ψ holding within a specific time
bound. Specifically, the model-checker processes each run to
verify whetherψ holds for that specific run, thus collecting a
set of Bernoulli trial outcomes. The probability ofψ holding
for M corresponds to the value of expression PM (ψ) [14],
calculated by applying statistical techniques to the collected
Bernoulli trials. Therefore, unlike traditionalmodel checking
and probabilisticmodel checking (that analytically computes
the probability of a property holding [34]), SMC does not
entail an exhaustive exploration of the state space. In our
framework, property ψ is of the form ≤τap, where  is
the “eventually” operator, ap ∈ AP is an atomic proposition,
and τ is an integer time bound. Since we do not compare
the value of PM (ψ) against a threshold ϑ ∈ [0, 1], the SMC
experiment returns confidence interval [pmin, pmax] for the
probability of property ψ holding for M .

SHA network M is subject to SMC to estimate the prob-
ability of success of the interactive scenario under analysis
(corresponding to expression PM(≤τ scs), where Boolean
variable scs becomes true when the mission ends in success).
To determine when the generated set of runs is sufficient to
conclude the experiment, Uppaal checks the length of the
interval [p − ε, p + ε] to which the real success probability
belongs (where p = pmin + (pmax −pmin)/2 holds), which is
calculated according to the Clopper–Pearson method [13].
Uppaal stops generating new traces when ε ≤ εth holds,
where εth is a user-specified parameter indicating the max-
imum desired estimation error. The smaller the εth, the
more accurate the estimation must be; thus, more traces are
required.

3.2 HRI scenarios modeling principles

We illustrate the fundamental modeling principles under-
lying the whole SHA network, which features automata
modeling the humans, the robot and its battery, and the
orchestrator. Specifically, we recap the features of SHAmod-
eling human behavior, which is the primary focus of this
article. Interested readers can refer to [38] for a detailed
description of the SHA modeling the robot and its bat-
tery, respectively, whereas the orchestrator is thoroughly
described in [37, 39].

The SHA network models the agents’ behavior based on
their current operational state (e.g., the human resting or
walking). Every operational state of the agent corresponds
to a location in L. At the current stage of development,
operational states are fixed for each agent and, in case of
human subjects, for each interaction pattern. In all interac-
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tion patterns, SHA modeling humans differentiate between
operational states based on how fatigue evolves (i.e., whether
individuals are recovering or not) and how humans are inter-
acting with the robot (e.g., they are leading the action or
waiting for a robot’s action). Operational states specific to
each interaction pattern are recapped in Sect. 4.2.

SHA captures the evolution of relevant quantitative
attributes of the real system, such as human fatigue and bat-
tery level of charge. Each physical attribute corresponds to a
real-valued variable in set W \ {X ∪ Vdc ∪ K } of their mod-
eling automata and flow conditions F(l), associated with a
location l, reproduce the set of ODEs constraining the evolu-
tion of real-valued variables in that specific operating state.

The orchestrator controls the robots and instructs humans
based on sensor readings. Dense counters (set Vdc) are the
discrete equivalents of real-valued variables. Dense counters
are periodically updated every Tpoll ∈ K time units (where
Tpoll corresponds to the refresh period of the specific sensor)
through update instructions in�(W) that are compatible with
the ODEs modeling the dynamics of the physical attributes
in every location. Every SHA in the network uses a clock
tupd ∈ X to measure the time elapsed between two consecu-
tive measurements and trigger an update. Sensors share data
with the orchestrator through ROS publisher nodes. There-
fore,when tupd = Tpoll holds for an automatonA, hencewhen
time Tpoll has elapsed since the last measurement,A switches
to a committed location. A committed location is equivalent
to an ordinary location with invariant t ≤ 0 and all incoming
edges with update instruction t = 0 for some t ∈ X : There-
fore, time cannot elapse while in these locations [36]. In that
location, the dense counters modeling the latest sensor read-
ings are immediately notified to the orchestrator by firing an
event over a dedicated channel that triggers the publishing
routine. (The corresponding modeling pattern is described in
detail in [38, Section IV.2].)

SHAmodeling humanbehavior feature amodel of fatigue.
Incorporating the fatigue model into the automata leads to
formal analysis results that also account for at least one indi-
cator of the humans’ physical status. As a matter of fact,
especially in healthcare settings, subjects may be in crit-
ical physical conditions that may significantly impact the
duration of the mission and, thus, its probability of success.
Human fatigue is a complex phenomenon driven by several
factors:Ourwork focuses onmuscular fatigue due to physical
strain. We exploit the fatigue and recovery model proposed
by Konz [23, 33], described by Eq.1. Human action under-
goes alternate fatigue and recovery cycles, and each cycle is
associated with an index i uniquely identified, given time t ,
by function j : R+ → N. (Thus, i = j(t) holds.) We indi-
cate as ti the timestamp at which cycle i ends. During both
fatigue and recovery, fatigue F(t) depends on the residual
value from the previous cycle ended at time ti−1. Parameters

Fig. 4 〈op〉_pubh modeling pattern [38]. Color-coding is the same as
Fig. 3. Entry and exit ports are marked by �, �, and × symbols (color
figure online)

λi and ρi are the fatigue and recovery rates for cycle i .

F(t) =
{
1 − (1 − F(ti−1)) · e−λi (t−ti−1) (fatigue)

F(ti−1) · e−ρi (t−ti−1) (recovery)
(1)

Full recovery occurs when F(t) = 0 holds, whereas con-
dition F(t) = 1 models the case in which the muscle has
reached the maximum level of endurance. Experiments run
on a pool of subjects have shown how a Normal distribution
is a good fit to capture the variability of rates in the fatigue
model [42]. Therefore, we assume that each λi (resp., ρi ) is a
sample of distribution N(μλ, σ

2
λ ) (resp., N(μρ, σ 2

ρ )) whose
mean and variance depend on the specific subject’s charac-
teristics.

All SHA modeling humans feature real-valued variable
F ∈ W, capturing physical fatigue, and a dense counter
f ∈ Vdc capturing the digital counterpart of F . Besides
physical fatigue, for each human, suitable sensors also peri-
odically (with frequency 1

Tpoll
) refresh their position within

the building. Dense counters model the position hposx and
hposy capturing a pair of Cartesian coordinates. Fatigue and
position are periodically updated for the entire duration of
the interaction between the human and the robot.

The portion of SHA—referred to as 〈op〉_pubh and shown
in Fig. 4—modeling the update of periodic sensors readings
is present in all human states. Exit and entry points are rep-
resented with “ports.” Specifically, the edges marking the
start, stop, and failure of an 〈op〉_pubh instance are marked
by symbols �, �, ×, respectively. We remark that ports are
not part of the formalism but merely a visualization expedi-
ent for the edges entering and leaving the subautomaton. All
instances of 〈op〉_pubh feature ordinary location h〈op〉 and
committed locations hpub1 , hpub2 . Significant variables from
this modeling pattern are summed up in Table 1.
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Table 1 Significant variables from the 〈op〉_pubh modeling pattern

Name Description

〈op〉 Operational state label

Tpoll Sensor data sharing period

tupd Clock measuring the time
elapsed between two
consecutive sensor data
readings

F Real-valued variable modeling
human fatigue

λi Fatigue rate for cycle i

ρi Recovery rate for cycle i

Location h〈op〉 represents the specific human operational
state (e.g., walking or standing). Therefore, it is endowed
with suitable flow conditions F(h〈op〉) constraining the
evolution of real-valued variable F , corresponding to the
derivative of Eq.1 (recovery) (shown in Eq.2) if h〈op〉 is a
recovery state or Eq.1 (fatigue) (shown in Eq.3), otherwise.

Ḟ = f (ρ, t) = −F(ti−1)ρe
−ρ(t−ti−1) (2)

Ḟ = g(λ, t) = F(ti−1)λe
−λ(t−ti−1) (3)

Location h〈op〉 features probability distribution D(h〈op〉)
describing the randomparameter (eitherρi orλi ) in the corre-
sponding agent’s state.Upon entering an 〈op〉_pubh instance,
update ξrand,〈op〉 draws a new sample from D(h〈op〉) and
assigns it to λi if h〈op〉 is a fatigue state, otherwise to ρi .

In all instances of 〈op〉_pubh , invariant I(h〈op〉) includes
condition tupd ≤ Tpoll, which, in conjunction with guard con-
dition tupd ≥ Tpoll on the edge to hpub1 , ensures that the
SHA switches to hpub1 every Tpoll time instants (i.e., when a
new sensor measurement is available). When time Tpoll has
elapsed between two sensor readings, tupd is reset, and dense
counters representing fatigue and position are updated by
ξ〈op〉 (consistently with the corresponding flow condition)
and shared with the orchestrator through channels pftg and
ppos, respectively.

4 Formal modeling of human behavior in HRI
scenarios

This section illustrates how we model human behavior
extended with errors through SHA. First, we present the
set of phenotypes of erroneous human behavior, how we
have mapped the phenotypes to the service setting, and how
we have modeled the mapped phenotypes as SHA add-ons.
Second, we introduce the extensions of the SHA modeling
human–robot interaction patterns presented in [37, 39] with
the erroneous behavior models.

4.1 Phenotypes of erroneous human behavior

The issue of defining and categorizing manifestations of
human erroneous behavior has been largely investigated in
the field of human–computer interaction. Hollnagel’s human
error taxonomy [27] is among the best-established works
in the field addressing how unexpected human behavior can
cause the interaction with a machine to fail. Specifically, [27]
focuses on the cases in which although the interaction plan
is adequate, the performed actions stray from the plan: Such
actions are referred to as human errors. Although the form
and frequency of human errors cannot be fully predicted,
they are bound to take place in a complex interactive sys-
tem and tend to occur in patterns. More specifically, error
patterns consist of a phenotype, i.e., the manifestation of
the erroneous action (e.g., a user failing to press a button in
time), and a genotype, i.e., the cognitive process that causes
the erroneous action (e.g., forgetting the intention of press-
ing the button). As our work does not capture the cognitive
sources of human actions but their observations, through-
out the paper, we focus on phenotypes, while genotypes are
investigated in [26].

The taxonomy proposed by Hollnagel features four
macro-categories of human errors, referred to as error modes
in Table 2: actions in the wrong place (i.e., the position of the
action within the sequence is not correct), at the wrong time
(i.e., the timing of the action is not as planned), of the wrong
type (i.e., the action is not planned but does not disrupt the
plan), not included in the current plan (i.e., the action is not
in the planned sequence). An error mode groups one or mul-
tiple phenotypes, each capturing a deviation (i.e., the error)
with respect to a plan, where a plan is intended as a represen-
tation of both a goal […] and the possible actions required
to achieve it [48]. For each phenotype, Table 2 reports action
sequences displaying the corresponding erroneous behavior
with respect to a planned sequence of generic actions indi-
cated with symbols [A, B, C, D, E]. When timing is necessary
to characterize the phenotype, timestamps of the form ti indi-
cating the expected time of occurrence of an action are also
reported. Notation (ti,⊥) indicates that no action takes place
at time ti contrary to what the plan envisages, while sym-
bol ↓ indicates an unexpected termination of the sequence of
actions.

The formal model in our framework captures human
behavior while interacting with a robot, and the possible
interactions are referred to as patterns. Since each pattern
represents the service requested by the human to the robot,
the goal of a pattern is to provide the service and conclude the
interaction successfully. The condition determining whether
a service is completed successfully is specific to the pat-
tern and indicated in the following as γi,scs ∈ �(W), where
i ∈ [1,Nh] identifies a specific human (equivalently, a spe-
cific pattern, as each SHA modeling a human is an instance
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of a single pattern) and Nh ∈ K is the total number of
humans involved in the scenario. The goal of a pattern i is
then expressed through formula ≤τ (γi,scs), where τ is the
time bound of the SMC experiment, as explained in Sect. 3.

As described in Sect. 3.2, SHAmodeling human behavior
feature multiple instances of the 〈op〉_pubh subautomaton,
each capturing an operational state, such as walking or stand-
ing. Similarly, the SHAmodeling the robot features multiple
instances of the 〈op〉_pub〈id〉 subautomaton presented in
[38, Section IV] modeling the operational state of the robot.
To complete a service, the human and the robot perform a
sequence of actions, i.e., the plan in our framework. The
occurrence of an action in ourmodeling approach is captured
through a change in the operational state (i.e., 〈op〉_pubh
instance) of theSHAmodeling the humanor a changeof loca-
tion in the SHA modeling the robot. Given a SHA involved
in a plan and indicating its location at a given time t as l,
an atomic element (ti, l ′) of the plan such that ti > t holds
indicates that the SHA should switch from l to l ′ at time ti.
On the other hand, element (ti,⊥) indicates that the change
of operational state planned at time ti does not take place due
to a human error, thus, the SHAmodeling the human remains
in its current state. For example, let us consider the Human-
Follower pattern. The goal (expressed in informal terms) is
that the human follows the robot to a certain location (not
known beforehand by the human). To this end, the plan in
informal terms is the following: robot starts moving, human
startswalking, robot stopsmoving,human stopswalking. The
corresponding plan reporting the operational state change is
shown in sequence (4). (The human’s initial operational state
is 〈stand〉_pubh , while the robot starts in ridle.) Note that, to
ease the distinction between changes related to the robot and
to the human when presenting sequences, we report the full
〈op〉_pubh label for humans and only the label of the ordi-
nary location within the 〈op〉_pub〈id〉 subautomaton for the
robot (i.e., rstart and rstop).

[(t1, rstart), (t2, 〈walk〉_pubh),
(t3, rstop), (t4, 〈stand〉_pubh)].

(4)

In reality, human behavior in a service setting is barely
constrained, and the decision-making process is highly sus-
ceptible to free will; therefore, numerous deviations from the
plan are possible. In our framework, SHA modeling human
behavior capture this aspect by embedding a formalization
of human errors. In the following, we present the developed
SHA add-ons modeling the phenotypes as summarized in
Table 3, providing examples of the corresponding erroneous
behaviors within the domain of our framework. Table 4 sum-
marizes the significant variables from each add-on, whose
role is explained in detail throughout the section. Specifi-
cally, for each add-on, we present its features and show the
corresponding SHA portionmodeling the standard (i.e., non-

Table 3 Mapping between the developed add-ons and the phenotypes
identified by Hollnagel [27]

Add-On Phenotype(s)

Heed/Ignore Delay, →Intrusion

Free Will Premature Action, Reversal, Insertion

Timer Expired Omission

Safety Violation Insertion, Intrusion, Premature Action

Critical Status Intrusion

erroneous) behavior. We remark that we indicate as add-ons
portions of SHA (thus, sub-tuples of the one defined in Def-
inition 1) that can be flexibly incorporated into other SHA.
In more detail, all add-ons consist of patterns of connections
betweenmultiple instances of the 〈op〉_pubh component (see
Fig. 4). Therefore, pre-existing SHAmodeling human behav-
ior and featuring a fixed set of 〈op〉_pubh components (i.e.,
the operational states capturing the human’s fatigue state) can
be extended by incorporating add-ons. (A specific example
is presented in detail in Sect. 4.2.1.) This feature increases
the extensibility of the modeling approach for two reasons:
If new add-ons are developed in the future, these can be eas-
ily plugged into existing human–robot interaction patterns;
if new human–robot interaction patterns are developed in the
future, these can be easily extended with the developed add-
ons.

Given the stochastic nature of the employed formalism,
it is not possible for the developed add-ons to be purely
non-deterministic like the original phenotypes. However,
a probabilistic formalization is necessary and described in
more detail when introducing the various add-ons in the next
sections. Indeed, quantifying the probability of human errors’
manifestations is a long-standing approach in probabilis-
tic Human Reliability Analysis techniques such as CREAM
[28], HEART [56], THERP [53], and THEA [46].

As per Table 3, developed add-ons cover 6 out of 8
phenotypes from Hollnagel’s taxonomy. The reason why
Repetition and Replacement are not supported is due to
the range of human actions currently covered by the mod-
eling approach. In the first case, supported actions cannot
physically or logically be repeated: For instance, the human
cannot start walking twice in a row since they either stop
and restart (counting as two separate actions) or simply keep
walking. Concerning Replacement, the approach does not
include sets of functionally equivalent actions (e.g., standing
and sitting, or walking and running). Therefore, performing
a substitute of the correct action is not supported. Introduc-
ing functionally equivalent action sets will be investigated in
future work, as well as an extension of the available set of
add-ons to model the Replacement error.
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Table 4 Summary of the variables from the developed add-ons

Name Add-On Description

heed/ignore Heed/Ignore Probability weights for the human heeding/ignoring the robot’s instructions

fw Free Will Variable governing the human’s haphazard decisions

FWth Free Will Threshold to trigger the human’s haphazard decisions

FWmax Free Will Maximum fw value

ϕ Timer Expired Real-valued variable modeling the progress of the human task

TE Timer Expired Threshold to consider the time to complete the task expired

texp Timer Expired Clock measuring time elapsed since the start of the task

hpos Timer Expired Human’s coordinates within the layout

target Timer Expired Destination of the pattern

δ Timer Expired Allowance factor for the maximum duration of the task

rpos Safety Violation Robot’s coordinates within the layout

dcrit Safety Violation Maximum distance allowed between human and robot

λsafe Safety Violation Exponential rate for the probability of the human leaving the safe state

pd Critical Status Time-dependent factor of the probability of unexpected accidents

FS Critical Status Constant factor of the probability of unexpected accidents

Fig. 5 SHA showing the standard behavior, and the Heed/Ignore add-
on. Color-coding is the same as Fig. 3 (color figure online)

4.1.1 Heed/Ignore Add-On

TheHeed/Ignore SHA add-on formally models the situation
in which the orchestrator issues an instruction for the human,
and the human ignores it and protracts the action they were
previously performing. We do not further investigate or for-
mally model whether ignoring the instruction is intentional
since, as previously discussed, the formal model captures the
manifestation of the erroneous behavior and not its cognitive
source.

The standard behavior is captured by the SHA in Fig. 5a.
Subautomaton 〈op〉_pubh represents the current state of the
human (e.g., standing or walking), while 〈op〉′_pubh repre-
sents the following state in the sequence. The switch from
〈op〉_pubh to 〈op〉′_pubh occurs through an edge,which fires
when an instruction is sent through channel c ∈ C . (Thus,
the edge is labeled with c?.) Optionally, the edge may also
be labeled with guard condition γ and update ξ .

Consider, for instance, the running example of the action
sequence envisaged by the HumanFollower pattern, where
theorchestrator fires an instruction throughchannelcmd_hstart
to instruct the human to start walking and follow the robot.
In this case, the human acts erroneously as they do not
abide by the instruction, which is captured by the SHA
add-on in Fig. 5b. The deterministic edge from 〈op〉_pubh
to 〈op〉′_pubh in Fig. 5a is changed into two probabilistic
edges with weights heed, ignore ∈ K , and the same labels
γ, c?, and ξ as the original edge. The edge with weight heed
reaches 〈op〉′_pubh , thus capturing the human following the
instruction and changing their state when c? fires. The edge
with weight ignore is a self-loop on 〈op〉_pubh , capturing
the human ignoring the instruction and staying in the state
modeled by 〈op〉_pubh when c? fires. The observed behavior
when introducing this add-on is that the human performs the
required actionwhen instructedby theorchestratorwith prob-
abilityp = heed/(heed + ignore) and does not perform the
required action with probability 1 − p.

We remark that even if the SHAmodeling the human takes
the ignore edge, an event is still received through channel
c due to label c?. Nevertheless, the behavior of the SHA
network that is effectively observed is that the SHAmodeling
the humandoesnot initiate the action semantically associated
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with channel c.When reporting examples of erroneous action
sequences (also for upcoming add-ons), we recall that the
orchestrator checks the state of the system and issues one
or multiple instructions, if necessary, every Tint ∈ K time
units. Therefore, referring to the HumanFollower running
example, if the human erroneously behaves according to the
Heed/Ignore add-on andnoother error occurs throughout the
pattern, the observed action sequence is shown in sequence
(5), where k ∈ N is the number of times the self-loop on
〈op〉_pubh is taken in favor of the edge to 〈op〉′_pubh .

[(t1, rstart), (t2,⊥), (t2 + Tint,⊥), . . . ,

(t2 + kTint,⊥), (t2 + (k + 1)Tint, 〈walk〉_pubh),
(t3, rstop), (t4, 〈stand〉_pubh)]

(5)

With k = 1, we obtain a Delay phenotype (see Table 2).
All sequences observed with k > 1 are an iteration of said
phenotype, resulting in a longer delay. The probability of
choosing the ignore edge k times is (1−p)k. It is possible—
in theory—that the heed edge is never chosen in favor of
the ignore self-loop: The probability of this happening (i.e.,
(1 − p)k with k → ∞) tends to 0 if p < 1 holds—i.e., if
ignore is greater than 0. The action sequence observed in
this corner case (marked by symbol → in Table 3) is given
in sequence (6).

[(t1, rstart), (t2,⊥), . . .] (6)

Since the goal is never reached, this constitutes a special case
of Intrusion with Y = ⊥ (see Table 2).

4.1.2 FreeWill Add-On

The FreeWill SHA add-on, shown in Fig. 6, captures the situ-
ation in which the human performs an action independently
of the orchestrator’s instructions (if the robot initiates the
action) or when the system does not meet the pre-conditions
for the actions (if the human initiates the action). In both
cases, the manifestation of this erroneous behavior depends
on dense counter fw that approximates the free will phe-
nomenon through a random distribution [11] and whose
underlying mechanism is explained below.

If the robot initiates the action, the planned behavior is
shown in Fig. 5a and described in Sect. 4.1.1: The orchestra-
tor instructs the human to perform the next required action
through channel c, triggering them to switch to 〈op〉′_pubh .
The SHA add-on modeling the erroneous behavior (shown
in Fig. 6a) features an additional edge between 〈op〉_pubh
and 〈op〉′_pubh with update ξ , no channel label, and whose
guard is a conjunction between the original guard γ and con-
dition fw ≥ FWth (explained in detail below). The purpose
of the self-loop 〈op〉_pubh , for both cases, is also explained

Fig. 6 Free Will SHA add-on, color-coded as in Fig. 3 (color figure
online)

below contextually to the update of variable fw. The firing
of this edge represents the human erroneously starting the
action represented by channel c when the orchestrator has
issued no instruction.

In the second case (i.e., the action initiated by the human),
the standard behavior is shown in Fig. 6b. Subautomata
〈op〉_pubh and 〈op〉′_pubh represent the current and the next
operational states. The switch between the two subautomata
does not depend on a robot instruction (there is no channel
label on the edge) but is entirely up to the human to perform
the action when a certain condition γ holds. The modeling
approach assumes that no SHA other than the orchestrator
fire an event through a channel (thus, with label c!) represent-
ing the start of an action. The reason is that, in the real system,
the human cannot actively signal the start of each action for
practicality. When the human initiates an action, the orches-
trator infers from sensor measurements that such an event
occurred (e.g., that the human started moving because their
position changed). The erroneous behavior, shown in Fig. 6c,
captures the human potentially performing the action even if
the required pre-conditions (represented by γ ) do not hold,
due to guard fw ≥ FWth ∨ γ .

The mechanism determining free will, i.e., how new val-
ues are assigned to dense counter fw, is stochastic. Let x ∈ X
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be a clock of the SHA the add-on is applied to, subautoma-
ton 〈op〉_pubh is then endowed with invariant x ≤ T, where
T ∈ K is a constant. Both in the Heed/Ignore and Free Will
add-ons, subautomata 〈op〉_pubh and 〈op〉′_pubh may be
endowed with further flow conditions, probability distribu-
tions, and invariants—i.e., F(h〈op〉), D(h〈op〉), I(h〈op〉),
F(h〈op〉′), D(h〈op〉′), and I(h〈op〉′) can be non-empty. Nev-
ertheless, since they do not directly impact the erroneous
behavior like invariant x ≤ T, these labels are not shown
in Fig. 5 nor Fig. 6 to ease the visualization of the add-ons’
essential elements.

Subautomaton 〈op〉_pubh features a self-loop with guard
x ≤ T and update ξfw. The joint presence of the invariant and
the guard condition enforces update ξfw to be executed every
T time units. Simultaneously, clock x is reset (indicated as
{x}) to ensure that the invariant holds after the self-loop fires.
Update ξfw assigns a new value to dense counter fw ∈ Vdc.
Specifically, the update yields a new sample of Uniform
distribution U[0,FWmax), where FWmax ∈ K is a numerical
constant.Guard fw ≥ FWth on the FreeWill edge (in conjunc-
tion or disjunction with γ in Fig. 6a, c, respectively) ensures
that the erroneous behavior occurs only if the last value
drawn for variable fw belongs to range [FWth, FWmax)where
FWth ∈ K is a constant such that FWth ≤ FWmax holds.

The HumanFollower pattern is eligible for the add-on in
Fig. 6a since actions are initiated by the robot. While the
intended plan is reported in sequence (4), if the FreeWill edge
fires (thus, the erroneous behavior occurs) at time t′2 < t2, the
observed actions are those shown in sequence (7).

[(t1, rstart), (t′2, 〈walk〉_pubh),
(t2,⊥), (t3, rstop), (t4, 〈stand〉_pubh)]

(7)

In this case, sequence (7) reports the switch to 〈walk〉_pubh
(i.e., the human starting to walk) at time t′2 out of free will
even if no event is fired through channel cmd_hstart. There-
fore, in our framework, the Free Will add-on realizes the
Premature Action phenotype if it involves the correct action
according to the sequence (like starting to walk, in this exam-
ple), but is not performed at the expected time. For example,
the human may start walking during the Tint time range in
which the orchestrator is processing data.

A possible corner case of this erroneous behavior is
obtained by decreasing t′2 to the point that t′2 < t1 holds.
In this case, the observed actions are given in sequence (8),
whose timestamps are not shown as they are not necessary
to identify the error.

[〈walk〉_pubh, rstart, rstop, 〈stand〉_pubh] (8)

Therefore, the realized phenotype, in this case, is a Reversal.
We remark that sequence (8) is feasible in our framework
since the orchestrator still issues instruction cmd_hstart after

Fig. 7 SHA representing a standard behavior and its version with the
Timer Expired add-on representing the erroneous behavior, both color-
coded as in Fig. 3 (color figure online)

cmd_rstart, but since the human is already walking, no
response to such instruction is observed on the human’s side.

The third and final manifestation of the Free Will add-
on is the human erroneously performing an action that is not
envisaged by sequence (4), irrespectively of the time atwhich
it is performed. For example, the human may abruptly stop
walking while following the robot, resulting in sequence (9).
(Timestamps are not reported.)

[rstart, 〈walk〉_pubh, 〈stand〉_pubh,
〈walk〉_pubh, rstop, 〈stand〉_pubh]

(9)

This case realizes an Insertion phenotype since the human
stopping is not expected but still allows the agents to reach
the goal. In this situation, the orchestrator has to instruct the
human to start walking again after the error occurs. There-
fore, the additional cmd_hstart action is not expected, but it
constitutes a response of the system to the error. (Thus, it is
highlighted in blue and not in red.)

The add-on in Fig. 6c, which captures actions initiated by
the human, realizes the same phenotypes, with the difference
that the point of reference is not the firing of channel c but
condition γ being verified based on the system’s state.

4.1.3 Timer Expired Add-On

The Timer ExpiredSHAadd-on captures thehumanextremely
delaying the completion of a task whose progress they are in
charge of, to the point of being considered non-responsive.
An example is the HumanLeader pattern, which is the dual
case of the HumanFollower, in that the human is in charge
of leading the robot to a certain destination. Similarly, the
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HumanApplicant pattern (described in detail in Sect. 4.2.1)
features the human performing an action with the support of
the robot, such as administering a treatment. In such cases,
if the human performs impeccably, the action (i.e., walking
or treating the patient) ends within a reasonable amount of
time. However, unexpected time losses or the incumbency of
an emergency may prevent the human from completing the
task, leading the robot to consider them non-responsive and
the service failed.

The standard behavior is shown in Fig. 7a. The SHA
features two subautomata 〈op〉_pubh and 〈op〉′_pubh rep-
resenting (as in Sects. 4.1.1, 4.1.2) the current and the next
operational state envisaged by the plan. Real-valued vari-
able ϕ ∈ W models the progress of the human task while in
〈op〉_pubh . The evolution of ϕ with time (e.g., the distance
to the destination decreasing) is constrained by flow condi-
tion fnorm(t). The switch from 〈op〉_pubh to 〈op〉′_pubh is
realized through a solid edge with guard γ (ϕ), update ξ , and
channel c: If the human initiates the switch, the channel is
replaced by the internal action. Guard γ (ϕ) is a condition on
the value of ϕ evaluating to true when the task is complete.

The erroneous behavior modeled by the Timer Expired
add-on, shown in Fig. 7b, captures the situation in which
the progress of the task performed by the human is exces-
sively delayed. The evolution of variable ϕ is, therefore,
constrained by a different flow condition ( ferr(t) in Fig. 7b).
While function fnorm(t) models the human behaving nor-
mally, function ferr(t) is such that condition γ (ϕ) (capturing
the completion of the task) may not be verified within a
maximum time bound, corresponding to constant TE ∈ K .
A concrete example of how ferr(t) is implemented is given
in Sect. 4.2.1 when describing in detail the HumanAppli-
cant pattern. Subautomaton 〈op〉_pubh is further endowed
with invariant texp ≤ TE, where texp ∈ X is a clock that is
reset upon entering 〈op〉_pubh . If time bound TE is exceeded,
the SHA switches to subautomaton 〈fail〉_pubh . The edge
from 〈op〉_pubh to 〈fail〉_pubh is labeled with guard condi-
tion texp ≥ TE, which, in conjunction with the invariant on
〈op〉_pubh , ensures that the transition occurs if and only if
texp = TE holds.

For each pattern eligible for this add-on, time bound TE is
estimated based on the characteristics of the human and the
requested service. Equation10 shows an example of how the
value of TE is calculated in patterns requiring the human to
move to a certain destination when initiating the movement
is up to the human. In this case, variable ϕ corresponds to the
distance between the human and the destination, and the task
completion (i.e., condition γ (ϕ)) captures the distance being
equal to 0. Function dist computes the distance between two
points accounting for fixed obstacles (e.g., walls), hpos ∈ W
is the Cartesian coordinate pair representing the human’s
position within the layout, target ∈ K is the Cartesian coor-
dinates pair representing the destination of the service, v ∈ K

is the human’s walking speed, and δ ∈ K is the allowance
factor.

TE = dist(hpos(0), target)

v
· (1 + δ) (10)

The ratio between the distance to be covered (thus, the dis-
tance between the human’s starting position hpos(0) and the
destination) and the walking speed represents the expected
duration of the service in ordinary conditions, whereas δ

determines howmuch the expected duration can be exceeded
for the human to be considered non-responsive. Therefore,
the higher the value of δ, the lower the likelihood of this
erroneous behavior.

Let us refer to a [HumanLeader, HumanFollower] ser-
vice sequence to illustrate themanifestation of this erroneous
behavior. The expected plan for the two services is shown
in sequence (11), where the first 4 elements constitute the
HumanLeader plan, while the last 4 constitute the Human-
Follower plan.

[(t1, 〈walk〉_pubh), (t2, rstart), (t3, 〈stand〉_pubh),
(t4, rstop), (t5, rstart), (t6, 〈walk〉_pubh),
(t7, rstop), (t8, 〈stand〉_pubh)]

(11)

The erroneous behavior modeled by the Timer Expired add-
on may occur, while the human is leading the robot to the
destination (captured by parameter target, as in Sect. 4.1.3)
and they fail to reach it within time TE. In this case, the system
behaves as in sequence (12).

[(t1, 〈walk〉_pubh), (t2, rstart), (t3,⊥), . . . ,

(t3 + TE,⊥), (t′4, rstop), (t5, rstart), . . . ]
(12)

We remark that, in sequence (12), t3 is the expected duration
of the task, and t′4 ≥ t3 + TE holds since the robot stops
serving the HumanLeader and starts serving the HumanFol-
lower after the extra time allowed to complete the task has
elapsed. Therefore, as per Table 2, this add-on realizes an
Omission error phenotype. Note that, since the robot waits
for the human to perform their task until time TE elapses, the
switch to rstop occurs at time t′4 > t4. However, this is not an
error by itself but the system’s response to the error made by
the human. (Thus, it is highlighted in blue and not in red.)

4.1.4 Safety Violation Add-On

The Safety Violation add-on captures the human entering
a critical situation (e.g., moving too close to the robot),
possibly causing a safety hazard [55]. Unlike operators in
industrial settings, people in service settings do not wear
protective devices nor receive systematic and thorough train-
ing in working alongside robots. Enforcing safety measures
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Fig. 8 SHAdepicting the standard behavior and the erroneous behavior
captured by the Safety Violation add-on, color-coded as in Fig. 3 (color
figure online)

may be necessary throughout the interaction to prevent unde-
sirable events, such as collisions. This add-on introduces a
formalization of the human and the robot operating under a
safety measure and the human violating such measure out of
error.

The standard behavior, shown in Fig. 8a, models the situ-
ation in which the human is required to switch to a safe mode
under specific circumstances while performing an action. As
in previous cases, the current state is modeled by subau-
tomaton 〈op〉_pubh , whereas the subsequent state in the plan
is subautomaton 〈op〉′_pubh . The switch to 〈op〉′_pubh is
enforced by the orchestrator by firing an event through chan-
nel c′? when condition γ ′ holds and, upon firing such event,
update ξ ′ is executed. The condition determining whether
the human should switch to the safety mode depends on
the specific interaction pattern. For example, referring to the
HumanFollower pattern, the condition raising safety con-
cerns is the human getting too close to the robot, expressed
as dist(hpos, rpos) ≤ dcrit, where function dist and variable
hpos are as described in Sect. 4.1.3, rpos ∈ W is the Carte-
sian coordinate pair representing the robot’s position, and

dcrit ∈ K is a system-wide constant representing the maxi-
mum distance allowed before a safety measure is enforced.
Therefore, the human should stay in 〈op〉_pubh only, while
the distance from the robot is greater than dcrit.

As soon as the safety–critical condition holds, the human
receives an orchestrator instruction over channel csafe to
switch to the safe mode, i.e., subautomaton 〈op_safe〉_pubh ,
which captures the same operational state as 〈op〉_pubh but
with the safety measure enforced. Realistic examples of this
contingency would be the human being instructed to take a
few steps to avoid the moving robot or walking at a slower
pace to avoid colliding with the robot. Upon switching to
〈op_safe〉_pubh , SHA variables are updated through ξcrit to
reflect the safetymeasure being enforced (e.g., setting a lower
value of the human’s walking speed). If the safety–critical
condition eventually holds, the human is instructed to switch
back to 〈op〉_pubh through channel c. Note that the opera-
tional state modeled by 〈op_safe〉_pubh represents the same
state as 〈op〉_pubh with different parameters (e.g., walking
at a slower pace) and not a different functionally equivalent
action. (Thus, it is not eligible for a Replacement pheno-
type.)

The corresponding add-onmodeling the erroneous behav-
ior is shown in Fig. 8b. In this case, the modeled human
error consists of arbitrarily leaving 〈op_crit〉_pubh even if
the safety–critical condition is still in place (e.g., the human
resuming walking at a full pace even if they are still too close
to the robot). The human arbitrarily leaving 〈op_safe〉_pubh
is captured by an additional edge back to 〈op〉_pubh without
any channel, whose firing depends on exponential rate λsafe
added to subautomaton 〈op_safe〉_pubh . The mechanism
determining whether the SHA takes the new erroneous edge
is stochastic rather than deterministic as in Fig. 8a. Specifi-
cally, the probability of leaving 〈op_safe〉_pubh t time units
after entering it is 1 − e−λsafet . Therefore, the probability of
switching back to 〈op_safe〉_pubh irrespective of the orches-
trator’s instructions increases with time. Note that the longer
the human stays in 〈op_crit〉_pubh , which models the safe
mode, the safer it is for the system. However, the higher λsafe
is, the more likely the human is to leave 〈op_safe〉_pubh
shortly after entering it when the safety–critical condition
still holds.

The human erroneously not entering 〈op_safe〉_pubh
upon receiving a message through csafe would be covered
by applying the Heed/Ignore add-on to the edge from
〈op〉_pubh to 〈op_crit〉_pubh .

This add-on gives rise to several phenotypes of erro-
neous behavior, thus different erroneous action sequences
are illustrated in the following. Examples are provided tak-
ing as reference the HumanFollower pattern, specifically the
sequence that envisages the orchestrator enforcing the safety
measure, shown in sequence (13). Although the switch to
〈walk_safe〉_pubh is not envisaged by default by theHuman-
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Follower pattern (see sequence (4)), it is not considered an
error but a desired effect of the orchestrator’s policies and
the realization of the standard behavior in Fig. 8a. Therefore,
the corresponding elements in sequence (13) are highlighted
in blue and not in red.

[rstart,
(
〈walk〉_pubh, 〈walk_safe〉_pubh

)m
,

(〈walk〉_pubh)n, rstop, 〈stand〉_pubh]
(13)

Sequence (13) captures all the possible realizations of the
standard behavior in Fig. 8a with m ≥ 1 and n ∈ {0, 1}. In
more detail, the human is instructed to enter the safe mode
(i.e., walking at a slower pace) at least once. Afterward, the
humanmay be instructed to switch between 〈walk〉_pubh and
〈walk_safe〉_pubh m − 1 times. Finally, in any case, the task
can either terminate with the human in 〈walk_safe〉_pubh (if
n = 0 holds) or in 〈walk〉_pubh (if n = 1 holds).

When applied to sequence (13), the Safety Violation add-
on realizes different phenotypes based on the value of n.
If n = 0 holds (thus, the human should conclude the task
in 〈walk_safe〉_pubh) and the erroneous behavior in Fig. 8b
occurs, sequence (14) is observed, which captures the human
unexpectedly resuming walking at full speed.

[rstart, 〈walk〉_pubh, 〈walk_safe〉_pubh,
〈walk〉_pubh, rstop, 〈stand〉_pubh]

(14)

Sequence (14) realizes two phenotypes from the same error
mode (i.e., action not included in current plan): If the safety
measure (even if active for a reduced amount of time) was
successful in avoiding a hazard, the service can be completed
successfully, resulting in an Insertion phenotype; otherwise
(i.e., lifting the safety measure too early causes a hazard), the
mission fails, effectively realizing an Intrusion phenotype.
The same phenotypes are realized whetherm = 1 orm > 1
hold.

Ifn = 1 holds, it is sufficient to enforce the safetymeasure
for a limited amount of time before all actions can resume
in their normal mode. (The human concludes the action in
〈walk〉_pubh .) In this case, the possible erroneous behavior is
the human resuming the normal mode too early, as shown in
sequence (15),which realizes a PrematureAction phenotype
withm = 1.

[(t1,cmd_rstart), (t2,cmd_hstart), (t3,cmd_hsafe_start),
(t′4,cmd_hstart), (t4,⊥), (t5,cmd_rstop), . . . ]

(15)

If m > 1 holds, the Premature Action phenotype can
either refer to the last switch to 〈walk〉_pubh (like in sequence
(15)) or any intermediate one.

Fig. 9 SHA representing the Critical Status add-on, color-coded as in
Fig. 3 (color figure online)

4.1.5 Critical Status Add-On

Although our modeling framework applies to generic service
settings, some of its features specifically target healthcare
environments. In such cases, where people are often in pain
or discomfort, robotic applications must safeguard humans’
well-being and take into account unexpected (rather than
purely erroneous) health-related accidents. This contingency
is captured by the Critical Status add-on, capturing human
subjects facing a sudden unexpected health issue (e.g., faint-
ing) that requires immediate medical attention.

The standard behavior, in this case, may be captured by
both Figs. 5a and 6b: In the following, we present the add-on
as a variation of Fig. 5a. However, the same conclusions can
be drawn on the SHA in Fig. 6b by replacing cwith the inter-
nal action. The standard behavior envisages the humanwhose
current state is modeled by subautomaton 〈op〉_pubh and
upcoming state by 〈op〉′_pubh . The switch from 〈op〉_pubh
to 〈op〉′_pubh either depends on the orchestrator’s instruc-
tions sent through channel c or the human’s initiative. The
edge is enabled when guard γ holds and, upon firing, causes
update ξ to execute.

As per Sect. 3.2, our modeling approach features a model
of physical fatigue that increases when the human is actively
performing an action and decreases when they are resting.
Human fatigue can only increase up to a maximum thresh-
old (1 in our case, representing that 100% ofmuscle reservoir
units have been activated) before the human is no longer able
to move autonomously. The Critical Status add-on captures
the possibility that the human faints or a similarly impair-
ing accident occurs even if their current fatigue level is
still below the maximum threshold. The SHA add-on rep-
resenting this contingency is shown in Fig. 9: The additional
location 〈fail〉_pubh represents the deadlock reached by the
SHA if the accident occurs, causing the failure of themission.

As shown in Fig. 9, location 〈op〉_pubh features invariant
x ≤ T as in Fig. 6, where x ∈ X is a clock and T ∈ K is a con-
stant. Compared to the standard behavior, the add-on has two
additional edges leaving 〈op〉_pubh , a self-loop and the edge
to 〈fail〉_pubh , both labeled with guard x ≥ T. Every T time
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Table 5 Summary of
human–robot interaction
patterns with a description of the
captured service

Pattern Description

HumanFollower The human follows the robot to a specific destination. The robot
signals that the service has been completed when both the robot and
the human are close to the destination

HumanLeader The human leads the robot to a specific destination of which they
know the precise location. The human claims the service is complete
when both the human and the robot have reached their destination

HumanRecipient The human has the robot fetch an item from a specific location and
deliver it to the human. The robot determines the service has been
provided when the item has been successfully picked up

HumanCompetitor The human and the robot compete to fetch a critical resource (for
example, a medical kit during an emergency). Both agents move to
the location of the resource to reach it as quickly as possible. The
competition ends when either of the agents reaches the target location

HumanRescuer The robot requires human intervention to complete a task, such as
pressing a button to call the elevator or opening a closed door. In this
case, the robot will emit audible or visible signals to notify its need
for human support. The human moves to the robot’s current location,
performs the required action, and concludes the interaction

HumanApplicant The human requires the robot’s support in performing a task that
implies timely or close-contact interaction, such as feeding a patient
or administering medication. The robot approaches the human’s
location, then the action requiring synchronization starts

units, there is a certain probability that the accident occurs,
and the mission fails (the SHA switches to 〈fail〉_pubh), or
that the human remains in the same state (the self-loop on
〈op〉_pubh fires). Unlike in the Heed/Ignore add-on, proba-
bility weights are not constant, but their value changes with
time. (Thus, they are real-valued variables.) We indicate as
pd ∈ W the real-valued variable in question, whose deriva-
tive is constrained through a flow condition on 〈op〉_pubh .
In our specific case, the add-on envisages that the higher
the level of fatigue, the higher the probability of an acci-
dent occurring. Therefore, the flow condition constraining
pd is indicated as fcrit(t) in Fig. 9 for the sake of general-
ity, but in our specific case, it is a customizable function of
fatigue, modeled by real-valued variable F ∈ W . An exam-
ple, featured by the SHA presented later in this section, is
fcrit(t) = hs · Ḟ(t), where hs ∈ K is a customizable param-
eter determining how rapidly the probability of an accident
increases with fatigue. In general, the probability weight for
the self-loop on 〈op〉_pubh should evolve in time inversely
with respect to fatigue. (Thehigher the fatigue level, the lower
the probability that the human does not have an accident and
stay in the same state.) A trivial example of expression deter-
mining the probability weight on the self-loop, also depicted
in Fig. 9, is FS − pd, where FS ∈ K is a constant such that
FS ≥ sup(pd) holds.

The action sequence observed if the behavior captured
by this add-on occurs features, irrespective of the specific
pattern, an unexpected action corresponding to the accident,
this is not part of the original plan and prevents the human–

robot pair from achieving the goal, effectively realizing an
Intrusion phenotype.

4.2 Human–robot interaction patterns

As described in Sect. 2, in our framework, human behavior is
modeled through different SHA based on the service they are
requesting, and services correspond to interaction patterns.
Each SHA modeling an interaction pattern captures how the
human behaves—either autonomously or in response to a
robot’s action—to achieve the goal of the specific service.
The standard behavior envisaged by each interaction pattern
is described in detail in [37, 39] and briefly summarized in
Table 5 to keep the paper self-contained. This article extends
the six SHA modeling human agents through the previously
presented erroneous behavior add-ons. Not all add-ons apply
to all patterns since we rule out behaviors that are unfeasi-
ble or unrealistic. In the following, we present the extended
SHA modeling the HumanApplicant pattern in detail as an
example of how add-ons are applied to HRI patterns. We
then outline how the other five patterns have been enriched
through a similar procedure.

4.2.1 HumanApplicant pattern

As per Table 5, theHumanApplicant interaction pattern cap-
tures contingencies in which the human requests the robot’s
support to complete a task that requires working in a very
close distance or sharp timely synchronization [39]. Exam-
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Fig. 10 SHA modeling the HumanApplicant pattern (color figure online)

ple applications are robotic companions supporting a patient
while feeding or healthcare professionals receiving the sup-
port of a service robot while administering medication. In
the following, firstly, we recap the standard behavior of this
pattern, shown in Fig. 10a; secondly, we describe the SHA
(shown in Fig. 10b) extended with add-ons to incorporate
erroneous behaviors.

The SHA modeling the HumanApplicant pattern fea-
tures four instances of 〈op〉_pubh corresponding to the three

phases of the service plus the operational state under criti-
cal conditions (〈op_safe〉_pubh in Fig. 8b).When the service
starts, the human is idle and resting, captured by subautoma-
ton 〈idle〉_pubh . The robot starts moving to approach the
human when the orchestrator fires an event through channel
cmd_rstart, causing the human to switch to 〈wait〉_pubh , also
a recovery state. The flow condition constraining F is, there-
fore, f (t, ρ) (seeEq.2) both in 〈idle〉_pubh and 〈wait〉_pubh .
Normal distributions N (μ1, σ

2
1 ) and N (μ2, σ

2
2 ) determine
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the values of rate ρ in 〈idle〉_pubh and 〈wait〉_pubh , respec-
tively.

When the robot has reached the human’s position, the
orchestrator instructs the human to start performing the
required task by firing an event through cmd_hstart, causing
the human to switch to subautomaton 〈exe〉_pubh . The stan-
dard duration of the task ismodeled by aparameterTtask ∈ K ,
while dext ∈ K represents the human’s dexterity, i.e., the
rate at which they perform the specific task. The real-valued
variable capturing the progress of the task is ttask ∈ W (ϕ
in Fig. 7a), which evolves in time according to flow condi-
tion fnorm(t) = dext · t . In the ordinary case, the orchestrator
instructs the human to stop bymeans ofcmd_hstop and switch

back to 〈idle〉_pubh when the human has spent Ttaskdext time units
working on the task [39]. The latter switch marks the com-
pletion of the service (thus contributing to the success of the
mission).

If, while performing the task, the orchestrator deter-
mines that the human and the robot are in a critical
situation (i.e., their distance is below a certain threshold
or human fatigue is above a critical level), it instructs
the human to proceed cautiously. The human receives this
instruction through channel cmd_hsafe_start and switches
to subautomaton 〈exe_safe〉_pubh . Both 〈exe〉_pubh and
〈exe_safe〉_pubh subautomata are fatigue states, thus endowed
withflowcondition g(t, λ) (seeEq.3).DistributionsN (μ3, σ

2
3 )

andN (μ4, σ
2
4 ) determine the values of fatigue rate λ. Since

〈exe_safe〉_pubh captures the human working at a slower
pace to avoid exhaustion or bumping against the robot
(enforced through update ξcrit, which reduces the value of
parameter dext), μ4 < μ3 holds. If the safety measure is
successful, the orchestrator instructs the human to switch
back to 〈exe〉_pubh through channel cmd_hstart, and update
ξnon_crit restores the normal value of dext. Otherwise, if the
task is completed, while the human is in 〈exe_safe〉_pubh ,
the orchestrator instructs it to switch back to 〈idle〉_pubh
through channel cmd_hstop.

Finally, deadlock location hfail is reachable by the two
fatigue states upon reaching the maximum endurable level
of fatigue. (Guard F ≥ 1 holds.)

The edges modeling erroneous behaviors are highlighted
in red in Fig. 10b, and the applied add-ons are individually
described in the following.

Heed/Ignore Add-On
Initially, the human may delay the start of the action

and not respond to the cmd_hstart command. Therefore,
the edge from 〈wait〉_pubh to 〈exe〉_pubh is expanded
into a Heed/Ignore add-on. Similarly, both edges from
〈exe〉_pubh and 〈exe_safe〉_pubh to 〈idle〉_pubh , marking
the end of the action through channel cmd_hstop, might be
erroneously ignored by the human, and are thus expanded
into a Heed/Ignore add-on.

FreeWill Add-On
While in 〈exe〉_pubh , the human may erroneously pause

the task before it is complete (thus, before cmd_hstop fires).
Subautomata 〈exe〉_pubh and 〈idle〉_pubh are connected by
an additional edge implementing the FreeWill add-on, which
fires when fw ≥ FWth holds. Dense counter fw is updated
every Tpoll time instants by ξ〈exe〉 (an instance of ξ〈op〉
in Fig. 4, embedded into the 〈exe〉_pubh subautomaton) as
described in Sect. 4.1.2.

Timer Expired Add-On
While performing the task, the human might erroneously

waste time and delay the completion of the action to the
point that the robot considers them no longer responsive, as
envisaged by the Timer Expired add-on. Therefore, variable
ttask, capturing the progress of the task, is constrained by a
different flow condition, i.e., ferr(t) shown in Eq.16.

ferr(t) = (dext · (rand(0, Tmax) ≥ Tth)) · t (16)

A stochastic mechanism governs the progress of the task as,
for each time instant, function rand draws a new sample from
Uniform distribution U[0,Tmax) and increases the value of ttask
if the sample is greater than a customizable threshold Tth
[39]. Therefore, the randomized evolution of variable ttask
may lead to an unacceptable delay in completing the task.

Since, in this case, the human is not walking toward a
target but performing a task for a certain amount of time,
time bound TE to deem the human non-responsive depends
on the expected duration of the task (parameter Ttask) and
the rate at which the human performs it (dext) as per Eq.17,
where δ is the allowance factor as illustrated in Sect. 4.1.3.

TE = Ttask
dext

· (1 + δ) (17)

Subautomaton 〈exe〉_pubh is endowedwith invariant texp ≤ TE,
where texp ∈ X is a clock (as in Fig. 7b). As in Fig. 7b, the
edge connecting subautomaton 〈exe〉_pubh to deadlock loca-
tion hfail with guard condition texp ≥ TE fires as soon as time
TE elapses.

On the other hand, although the evolution of ttask is
constrained by Eq.16 also while in 〈exe_safe〉_pubh , this
operational state is not extended through the Timer Expired
add-on since working at a slower pace is implied by the
safety measure. Therefore, the time the human spends in
〈exe_safe〉_pubh does not count toward upper bound TE
(〈exe_safe〉_pubh is endowed with flow condition ṫexp = 0).

Safety Violation Add-On
If the orchestrator finds that the human and the robot are in

a safety–critical situation, it will instruct the human to switch
to 〈exe_safe〉_pubh , corresponding to 〈op_safe〉_pubh in
Fig. 8a. As envisaged by the Safety Violation add-on, the
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human may erroneously resume working at a normal pace,
potentially causing a safety hazard. Therefore, while the
orchestrator instructs the human to resume normal opera-
tions through channel cmd_hstart, an additional edge without
labels except update ξnon_crit restoring the standard value
of dext connects 〈exe_safe〉_pubh to 〈exe〉_pubh . Subau-
tomaton 〈exe_safe〉_pubh is endowed with parameter λsafe
representing the rate at which the probability of erroneously
switching back to 〈exe〉_pubh increases with time.

Critical Status Add-On
Since this pattern applies to patients and healthcare pro-

fessionals who may find themselves in stressful situations
or undiagnosed conditions, the modeled human subject is
susceptible to accidents. Therefore, both 〈exe〉_pubh and
〈exe_safe〉_pubh are extended through the Critical Status
add-on. Specifically, at time t , where t is a multiple of
Tpoll (T in Fig. 9), the probability of an accident occurring
is pd, where pd ∈ W is a real-valued variable. If this occurs,
the SHA switches to hfail. Otherwise, the probability of
the SHA remaining in the same operational state depends
on weight FS − pd, where FS ∈ K is a constant such that
FS ≥ sup(pd) holds. The probability of an accident occur-
ring increases with the level of fatigue, as implied by flow
condition ṗd = hs · ˙F(t), where hs ∈ K is a numerical con-
stant.

4.2.2 HumanFollower pattern

The HumanFollower pattern envisages the human following
the robot to a particular destination.Operational states (corre-
sponding to asmany 〈op〉_pubh instances) capture the human
standing (thus, recovering) and walking. Upon receiving the
instruction from the robot to start or stopwalking (thus, either
in the standing and walking states), the Heed/Ignore add-on
introduces the possibility that the human ignores it. Simi-
larly, the human may start or stop walking irrespective of
the robot’s instructions through the Free Will add-on. Since
the Follower pattern does not envisage any motion initiated
by the human, the Timer Expired add-on does not apply. On
the other hand, it is feasible for the human to walk too close
to the robot, leading to the enforcement of a safety measure
(i.e., the human walking slower). Moving in critical condi-
tions is captured by a third 〈op〉_pubh instance, which is
subject to the Safety Violation add-on. Finally, to capture
the possibility of unexpected accidents, all three operational
states are extended through the Critical Status add-on: While
walking (either normally or at a slower pace), probability pd
increases, while it decreases when the human is resting.

4.2.3 HumanLeader pattern

The HumanLeader pattern captures the mirrored situation
compared to the Follower, featuring the human leading the

robot to a certain destination. This SHA features the same
〈op〉_pubh instances as the Follower (walking and stand-
ing), although the human, rather than the robot, initiates the
actions of starting to walk and stopping. Therefore, all edges
between the two subautomata are extended through the Free
Will add-on. The robot only sends an instruction when the
human’s fatigue level rises to a critical threshold, advising
them to stop and recover. This edge is extended through the
Heed/Ignore add-on, as the human may erroneously ignore
or miss the robot’s suggestion. Since this pattern captures a
human freely operating on the floor, they can get caught up in
alternative tasks causing them to excessively delay the walk-
ing phase, which is captured by the Timer Expired add-on.
As with the Follower pattern, the Safety Violation add-on
captures the situation in which the human erroneously starts
walking at full pace while in a critical situation. Finally, the
Critical Status add-on captures the possibility of unexpected
accidents.

4.2.4 HumanRecipient pattern

The HumanRecipient pattern captures fetch-and-delivery
tasks where the robot retrieves a required object and deliv-
ers it back to the human. The standard behavior, in this
case, features two operational states, i.e., the human wait-
ing for the robot to retrieve the object and interacting with
the robot to collect the item. The latter action is performed
upon the robot’s instruction and is thus extended through
the Heed/Ignore add-on. To capture the possibility that the
human might move while waiting for the robot, the SHA
features an additional operational state capturing the human
walking. The switch from the idle operational state, which
is entirely up to the human, occurs through the Free Will
add-on. Since the pickup action is supposedly almost instan-
taneous, the HumanRecipient pattern is not eligible for the
Timer Expired add-on. Finally, the Critical Status captures
the possibility of unexpected accidents, while the Safety Vio-
lation add-on the possibility that the human might ignore a
safety measure. However, the limited duration of the inter-
active phase leads to a reduced impact of this error on the
HumanRecipient pattern.

4.2.5 HumanCompetitor pattern

The HumanCompetitor pattern captures the human and the
robot racing toward a specific location and is, thus, the only
non-cooperative pattern. The standard operational states are
the humanmoving to the requested location, then eitherwait-
ing for the robot to return to its original position (if the
robot wins the competition) or return to their initial posi-
tion themselves (if the humanwins the competition). Starting
to walk and stopping are actions initiated by the human,
both extended through the Free Will add-on, capturing the
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Fig. 11 Floor layout used for scenarios treat1patient and
treat2patients. Agents (P1, P3, D2, D4, and Tbot) are represented in
their starting positions. Location symbols mark the position of points
of interest (POIs): Entrance and robot’s recharge station are in orange,

waiting room and treatment room doors are in red, cupboards are in
green, and doctors’ offices are in blue. Wall lengths (in meters) are also
reported (color figure online)

possibility that the human may get distracted or waste time
while trying to reach the item’s location. Erroneous add-ons
applied to the HumanCompetitor pattern do not directly
impact the outcome of the mission, but they result in a
higher chance of the robot winning the competition. There-
fore, errors that occur amidst a HumanCompetitor service
increase the impact on the overall mission outcome of errors
that may arise amidst services provided by the robot if it wins
the competition.

4.2.6 HumanRescuer pattern

The HumanRescuer pattern captures the mirrored situation
compared to the HumanApplicant, i.e., the robot requiring
the human’s support in performing a task (such as opening
a door or placing an item on the robot’s tray). The stan-
dard behavior features three phases, modeled by as many
〈op〉_pubh instances: the human in idle state, the human
walking toward the robot after noticing the signal request-
ing support, and the human performing the task requested by
the robot. Given the similar structure, this SHA is extended
through the same add-ons as the HumanApplicant pattern
described in Sect. 4.2.1. Deciding to help the robot and move
to its location is an action initiated by the human, extended
through the Free Will add-on. It is the robot, instead, that
instructs the human to begin the task when they are suffi-
ciently close: The walking operational state is, thus, eligible
for the Heed/Ignore add-on. The human may be distracted
by concurrent tasks before assisting the robot; thus, the Timer
Expired add-on imposes an upper bound on the time they take
to reach the robot from their initial location. As in the Appli-
cant pattern, a critical situationmayoccur that requires safety
measures to be enforced, while the human is performing the
required task, which is captured by an additional 〈op〉_pubh
instance, subject to the Safety Violation add-on. Finally, as in
previous patterns, the Critical Status add-oncaptures the pos-

Fig. 12 Floor layout for scenario wardEmergency, color-coded as
Fig. 11. Since D7’s starting position is randomized, the displayed loca-
tion is purely representative (color figure online)

sibility of unexpected accidents, while the human supports
the robot.

5 Evaluation of human errors’ impact

This section reports on a set of formal verification exper-
iments that were carried out to assess the added value of
the erroneous behavior add-ons to the model-driven develop-
ment framework. Three scenarios, inspired by the healthcare
setting and featuring three different robotic missions (i.e.,
sequences of services), have been developed through the
model-driven framework presented in Sect. 2. We perform
design-time analysis with the formal model devoid of erro-
neous behavior add-ons and, subsequently, with the extended
SHA modeling human behavior presented in Sect. 4.2. The
comparative analysis allows us to observe how different
human errors impact different robotic missions and how
introducing this aspect into the mission’s design process can
guide the practitioner toward forward-looking management
choices.
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Table 6 Scenarios used for the validation phase (abbreviation, detailed description, and sequence of services constituting the mission)

Scenario Description Mission

treat1patient The robot (Tbot) serves a patient-doctor pair (P1/D2, respectively).
The robot meets the patient by the entrance (ENTR) and leads them to
the waiting room (WRb) to wait for the doctor to visit them. The
robot follows the doctor to CUP1 where they fetch required tools, and
follows them back (carrying the tools) to the treatment room (TR)
where the patient will receive the treatment. Finally, the robot returns
to WRb and escorts the patient to TR, where the doctor is waiting

P1 Follower, D2 Leader, D2 Leader, P1 Follower

treat2patients The robot (Tbot) serves two patient-doctor pairs (P1/D2 and P3/D4).
The robot meets P1 by the entrance (ENTR) and leads them to the
waiting room (WRa), then it performs the same task for P3 leading
them from the entrance toWRb. The robot fetches the first required
medical kit from CUP1 and delivers it to D2 at OFF1. The robot then
serves D4 by following them to CUP2 and back to their office (OFF3)
while carrying the kit. Finally, the robot leads P1 to OFF1 and P3 to
OFF3 as both doctors are ready to visit them

P1 Follower, P3 Follower, D2 Recipient, D4 Leader,
D4 Leader, P1 Follower, P3 Follower

wardEmergency The robot (Tbot) serves a doctor patient pair (P5/D6), while a second
doctor (D7) is active on the same floor. The robot escorts P5 to the
waiting room. Then it competes with D6 for a resource in CUP1. If
the robot wins the competition (referred to as PLAN a), it requires
D6’s help in opening the office door and then delivers them the
fetched item in OFFICE. If D7 wins (referred to as PLAN b), D6
leads the robot to CUP2 to fetch the required item and has the robot
carry it back to the office. Irrespective of the competition outcome,
when D6 is ready to treat the patient, the robot escorts P5 from the
waiting room to the office and then assists D6 in administering the
medication

P5 Follower,
D7Competitor,

PLAN a:
D6Rescuer
D6 Recipient
PLAN b:
D6 Leader D6 Leader P5 Follower D6Applicant

5.1 Evaluation scenarios

The developed scenarios capture a service robot assisting
Doctor/Patient pairs (one or multiple) and are hereinafter
referred to as treat1patient, treat2patients, and wardEmer-
gency. Scenarios are designed to capture realistic robotic
missions featuring the complete set of services, highlight the
flexibility of the overall framework, and test the impact of
erroneous behavior models in a wide range of situations.

Scenarios treat1patient and treat2patients are set in the
floor layout in Fig. 11. Figure11 shows the planimetry of the
third floor of Building 22 of Politecnico di Milano, whose
areas are featured in the two scenarios as three doctors’
offices, a waiting room, and a treatment room. Figure12
depicts the layout for wardEmergency, as presented in [39],
featuring a T-shaped corridor with a waiting room, a doctor’s
office, and two rooms with cupboards containing medical
kits. Table 6 summarizes the missions captured by each sce-
nario. Although our framework supports multi-robot teams
[39], the three scenarios feature only one robot, indicated as
Tbot, since this paper focuses on human behavior modeling.
In all three scenarios, the employed service robot is a Turtle-

Table 7 Developed erroneous behavior profiles

Dis./ Ob. Fr.W. T.Exp. S.Viol. Cr.St.

Normal O O O O O

Inattentive CR O O O O

Focused NS O O O O

Busy O CR CR O O

Available O NS NS O O

Inexperienced O O O CR O

Experienced O O O NS O

Critical O O O O CR

Stable O O O O NS

Each profile has an identifier and the associated likelihood of occurring
for each add-on
O ordinary, NS not significant, CR critical

Bot3 Waffle Pi,2 with an initial charge of 90% to ensure that
it is sufficiently charged to complete each mission. Patients
are identified as P1, P3 in treat1patient and treat2patients,
and P5 in wardEmergency, and exhibit critical fatigue pro-

2 Technical specification available at https://emanual.robotis.com/
docs/en/platform/turtlebot3/overview/.
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files, specifically Young/Sick for P1 and P5 and Elderly/Sick
for P3. Doctors are identified as D2, D4 in treat1patient
and treat2patients, and D6, D7 in wardEmergency, and all
exhibit less critical fatigue profiles than the patients, specif-
ically Elderly/Healthy for D2, and Young/Healthy for D4,
D6, and D7. We recall that fatigue profiles impact the rate at
which humans fatigue and recover, i.e., the values of param-
eters λ and ρ in Eq.3 and Eq.2, respectively.

As per Fig. 1, scenarios are configured through the DSL3,
which is then automatically translated into the SHA net-
work through the tool available at [41]. The generated formal
model and set of queries are subject to SMC,4 performed
throughUppaal v.4.1.26 on amachinewith 4 cores and 16GB
of memory. Performance data are reported and discussed at
the end of this section.

5.2 Evaluation results

The evaluation aims to illustrate—through the three exam-
ple scenarios in Table 6—how the framework’s design-time
analysis is enriched by the introduction of erroneous behav-
iors. Each add-on features one or multiple parameters that
can be tuned to calibrate the likelihood of the correspond-
ing erroneous behavior. Such parameters are recapped in the
following: (a) probability weights heed and ignore for the
Heed/Ignore add-on; (b) thresholds FWth and FWmax for
the Free Will add-on (T equals constant Tpoll in our mod-
eling approach); (c) allowance factor δ for the Timer Expired
add-on, which determines the value of upper bound TE; (d)
exponential rate λsafe for the Safety Violation add-on; (e) rate
hs and constant FS for the Critical Status add-on.

To exhaustively investigate the impact of each error on a
specific scenario, it would be necessary to compute the prob-
ability of success for all possible values of such parameters
within their respective domain.However, to keep the duration
of a design-time analysis round within an acceptable range,
we group possible values for each add-on into three macro-
categories, similarly to control modes classification in the
CREAM technique [32]. The identified levels are: ordinary
(O), critical (CR), and not significant (NS) error likelihood.
As with fatigue profiles, we have identified 9 profiles of erro-
neous behavior, each elevating (or dampening) the likelihood
of one or multiple specific errors. Erroneous behavior pro-
files are summarized inTable 7.Given the acknowledged lack
of empirical data for techniques analyzing human behavior
such as Human Reliability Analysis (HRA) [18], the spe-
cific parameter values are not extracted from real datasets
but arbitrarily chosen for this analysis. However, the purpose
of this validation is not to assess the accuracy of SMC results

3 Source DSL files available at https://github.com/LesLivia/hri_dsl/
tree/main/hridsl_sources/SoSym_cs.
4 Models available at https://doi.org/10.5281/zenodo.7754156.

against real empirical data but to illustrate how the introduc-
tion of erroneous behaviors impacts design-time results and
supports the mission design process. Therefore, the lack of
real data has limited consequences on the significance of the
obtained results.

For the impact analysis of the three scenarios, we calcu-
late the mission’s success probability range (the y-axis in
Fig. 13) by applying in turn a different erroneous behavior
profile to each human subject (the x-axis in Fig. 13). For
instance, the left-most bar of Fig. 13a reports the success
probability range of treat1patient with the Critical profile
applied to P1, while D2 is set to Normal. For each scenario,
as explained in Sect. 3.1, we calculate the probability of suc-
cess within a time bound τ through expression P(≤τ scs).
Verification is iterated by changing the erroneous behavior
profile for one human subject at a time, while the value
of τ remains unchanged. For the first iteration, all humans
are assigned the Normal profile (see Table 7), representing
the standard probability of success (the dashed horizon-
tal lines in Fig. 13), also referred to as the baseline. We
recall that, as explained in Sect. 3.1, SMC results are of the
form [p − ε, p + ε], representing the confidence interval to
which the real success probability belongs. All SMC experi-
ments have been performed with Uppaal’s default statistical
parameters, specifically the width of the estimated confi-
dence interval (see Sect. 3.1) is set to ε = 0.05. In Fig. 13,
the height of each bar equals the value of p obtained for the
corresponding experiment, while black lines represent the
2ε-wide confidence interval. Note that none of the baseline
success probability estimations is exactly 100%. The first
reason behind this result is that the Normal behavioral pro-
file features an average likelihood for all errors (while these
are mademore or less prominent by the other profiles); there-
fore, errors have a non-null impact on the success probability
also when calculating the baseline. Secondly, time bounds
(parameter τ in each scenario) are chosen so that, should the
success probability be calculated with an error-free model
(i.e., without any add-on), it would equal themaximum value
allowed by Uppaal with this set of parameters, which is
[0.95, 1]. Even in this case, the SMC experiment does not
yield exactly 100% for the probability of success because
the result must be a confidence interval in any case. (Thus, it
yields the feasible half of the confidence interval with p = 1.)

Since human subjects have different roles (i.e., either pro-
fessionals or patients), not all profiles realistically apply to
every subject. Specifically, verification is performed with
patients (subjects P1, P3, and P5) cycling between Critical,
Stable, Inattentive and Focused profiles. This set of profiles
represents the fact that patients are more susceptible than
professionals to accidents (captured by the Critical Status
add-on) and prone to ignore the robot’s instructions either
due to lack of familiarity with the technology or to inat-
tention due to their condition and surrounding environment

123

https://github.com/LesLivia/hri_dsl/tree/main/hridsl_sources/SoSym_cs
https://github.com/LesLivia/hri_dsl/tree/main/hridsl_sources/SoSym_cs
https://doi.org/10.5281/zenodo.7754156


496 L. Lestingi et al.

Fig. 13 Bar plots reporting the estimated probability of success
([0 − 1]) for the three scenarios. Each bar represents the estimationwith
a different erroneous behavior profile grouped by the human subject.
Dashed lines represent the success probability estimated with all human
subjects’ profiles set to Normal (see Table 7) (color figure online)

(captured by the Heed/Ignore add-on). On the other hand,
professionals (subjects D2, D4, D6, and D7) rotate between
Busy, Available, Inexperienced, and Experienced profiles.

In this case, healthcare professionals are more likely to act
in a hectic environment, effectively pushing them to either
rush through a task (i.e., one of the phenotypes captured by
the FreeWill add-on) or start working on different tasks than
the one involving interaction with the robot, thus exceeding
the maximum allowed time bound (captured by the Timer
Expired add-on). Moreover, professionals with little experi-
enceworking alongside a robot aremore likely to erroneously
step out of a safe operational state when a critical situation is
still in place (captured by the Safety Violation add-on). Note
that the described pairings between subjects and behavioral
profiles are only conceived for the purposes of this analysis
and do not reflect actual limitations of the approach. (All pro-
files, including combinations of them, are applicable to any
human agent, irrespective of their role.)

Figure13a displays the results for scenario treat1patient.
With τ = 700 s, in 5 cases out of 8 the probability of suc-
cess is essentially unchanged (if not higher) compared to
the one calculated in standard conditions, which is approx-
imately 80%. Concerning human P1, these results are due
to the nature of the profiles themselves: Both Stable and
Focused are positive profiles, as they feature lower likeli-
hood of erroneous behaviors than the Normal profile. The
same conclusion can be drawn about the Available and Expe-
rienced profiles for D2. On the other hand, the probability
of success is also unaffected by the Inexperienced profile.
As a matter of fact, D2 leads the robot in treat1patient and,
since their walking speed is higher than the robot’s (a healthy
human walks at about 1.4m/s, whereas the robot moves at a
maximum speed of 0.26m/s) it is unlikely for the human to
walk too closely to the robot and trigger the enforcement (and
subsequent erroneous violation) of the safety measure.

As shown in Fig. 13a, scenario treat1patient is most
affected by the Critical and Inattentive profiles for P1, and
Busy forD2. As explained in Sect. 4.2.2, theHumanFollower
interaction pattern,which P1 adheres to, is susceptible to both
the Critical Status and Heed/Ignore add-ons (influenced by
the Critical and Inattentive profiles), which cause the prob-
ability of success to drop to approximately 25% and 55%,
respectively. To address this issue, the practitioner design-
ing the mission may decide to adopt additional monitoring
measures regarding the patient’s health status or have them
walk a shorter distance to reduce the impact of unexpected
accidents. The result might also lead the designer toward
solutions improving the robot’s communication capabilities
that increase the patient’s attention level. ConcerningD2, the
Busy profiles causes a 50% drop in the success probability:
To address this issue, a possible design choice is to assign
the mission to a different employee with a clearer schedule.

Similar conclusions can be drawn about P1 and D4 in sce-
nario treat2patients, whose results are reported in Fig. 13b.
The estimated success probability with τ = 1500 s in stan-
dard conditions is approximately 80%. In this case, the
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Critical Status add-on is more impactful for patient P3 com-
pared to P1 due to the more critical fatigue profile, causing a
steeper growth of probability weight pd. The resulting suc-
cess probability is slightly above 10% (compared to 25% for
P1). These results can guide the practitioner in modifying
the plan of the mission to reduce the physical burden on the
two patients, especially P3: for example, by having the robot
lead them, whenever possible, straight to the treatment room
rather than to the waiting room first. On the other hand, since
the Heed/Ignore add-on has no correlation with the evo-
lution of fatigue, the Inattentive profile has a comparable
impact on the mission’s outcome when applied to P1 and P3.
In this case, the same reconfiguration measures discussed for
subject P1 in scenario treat1patient may be applied.

In scenario treat2patients, although the same set of
behavioral profiles are applied to D2 and D4, the different
interaction patterns they participate in (i.e., HumanRecipi-
ent and HumanLeader) are differently influenced by error
phenotypes. More specifically, the Busy profile has a signif-
icantly larger impact when applied to D4 rather than D2. As
described in Sect. 4.2.4, the HumanRecipient does not fea-
ture any instance of the Timer Expired add-on, whereas the
Free Will add-on, which, like the Timer Expired add-on is
made more prominent by the Busy profile, allows the sub-
ject to move, while the robot is fetching the required object.
Therefore, the human erroneously moving causes the robot
to adjust the target of the delivery task to the new human’s
position, which does not necessarily result in a delay of the
completion of the service nor lowers the success probabil-
ity within time bound τ . Indeed, given the starting position
of D2 (also shown in Fig. 11), it is more likely for them to
move closer to CUP1 (the required object’s location) than
farther, leading to only a slight decline of the success prob-
ability (approximately 75% compared to 80% in standard
conditions). For subject D4, instead, since they also partici-
pate in a HumanLeader pattern like subject D2 in scenario
treat1patient, the Busy profile has a very significant impact
leading to a 70% drop in the success probability compared
to ordinary conditions. The Inexperienced profile (which
increases the likelihood of the Safety Violation add-on) has
a comparably limited impact when applied both on D2 and
D4. Concerning D4, the same conclusions drawn about the
HumanLeader pattern for scenario treat1patient also apply
in this case. As for the HumanRecipient pattern, D2 can
enter the critical interacting operating state at most for the
amount of time required to pick up the item from the robot.
Consequently, the likelihood of erroneously ignoring the
safety measure leading to a collision during the interaction is
also limited. In conclusion, the practitioner does not need to
consider specific design choices concerning D2, while D4
is affected by the same guidelines discussed for scenario
treat1patient.

Estimated success probabilities for scenario wardEmer-
gency are shown in Fig. 13c, all calculated with τ = 600s.
In standard conditions, the mission ends successfully with
a 90% probability. Patient P5 exhibits a similar trend to
that observed for P1 and P3 in scenarios treat1patient and
treat2patients, as the Critical and Inattentive profiles cause
a drop of the success probability of approximately 65% and
55%, respectively.

On the other hand, given the same set of behavioral
profiles, the trend is different for D6 and D7 compared
to subjects covering the role of professionals in previ-
ous scenarios. We recall that, given the presence of a
HumanCompetitor pattern, in this case, the robotic mis-
sion features two alternative plans depending on whether the
human or the robot wins the competition [39], both sum-
marized in Table 6. If the robot loses, D6 is involved in
two HumanLeader interaction patterns, whose dependency
on different behavioral profiles has already been discussed
for subjects D2 in treat1patient and D4 in treat2patients.
Otherwise, D6 participates in a HumanRecipient, Human-
Rescuer sequence. The initial position of D7 is randomized
to make the outcome of the competition unpredictable. As
observed in scenario treat2patients, the HumanRecipient
pattern (involving subject D2) is only slightly affected by
both negative profiles, while the outcome of the HumanRes-
cuer pattern (see Sect. 4.2.6) is impacted by the Free Will,
Timer Expired, and Safety Violation add-ons. The impact
of the Busy profile, which makes the first two add-ons more
prominent, onD6, is an average between the drop it causes on
PLAN a (the impact of profile Busy is low for theHumanRe-
cipient and high for theHumanRescuer patterns) and PLAN
b (the impact of profile Busy is low for both instances of the
HumanLeader pattern), resulting in an overall approximate
45% drop compared to the baseline. Concerning the Inexpe-
rienced profile, both theHumanRescuer (featured byPLAN
a) andHumanApplicant patterns (featured by both plans) are
highly susceptible to the Safety Violation add-on, which can
occur throughout the entire duration of the task they perform
jointly and in close distance with the robot. Therefore, unlike
in scenarios treat1patient and treat2patients, the Inexpe-
rienced profile leads to a larger success probability drop
(more than 70%) than the Busy profile. After examining these
results, the practitioner designing the robotic mission may
either assign the mission to a more experienced employee
or invest in thorough training of the personnel in charge of
performing tasks alongside the robot.

Finally, confirming the modeling choices discussed in
Sect. 4.2.5, the HumanCompetitor pattern, in which subject
D7 participates, is the least influenced by erroneous behav-
iors. This trait of the pattern is reflected by the results in
Fig. 13c, showing that the success probability does not sig-
nificantly change with respect to the baseline, irrespective of
the erroneous behavior profile assigned to D7. As a matter
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of fact, should D7 perform any erroneous action, this does
not result in a failure of the service nor a delay of the overall
mission, but rather it favors the victory of the robot in the
competition. Therefore, the erroneous actions of D7 indi-
rectly influence the outcome of the mission as they result in
PLAN a being enacted more often than PLAN b, so erro-
neous behaviors with a larger impact on PLAN a also have
a larger impact on the mission in its entirety.

As previously mentioned, we have selected a subset
of behavioral profiles for each human subject to per-
form this impact analysis for the three scenarios, rep-
resenting the most realistic contingencies. Consequently,
we have performed four verification experiments (result-
ing in different success probability estimations) for each
human subject plus the baseline, so 9 experiments for
treat1patient, 17 for treat2patients, and 13 for wardEmer-
gency. With the described parameter set, verification ends in
66.72min for treat1patient, 133.95min for treat2patients,
and 104.64min wardEmergency. (These durations refer to
the cumulative time required to complete all experiments—
thus the complete analysis of errors’ impact—for each
scenario.) Given the flexibility of the scenario configuration
phase, the practitioner can modulate the number of experi-
ments to be performed (thus, the duration of the design-time
analysis round). Modulation is performed by selecting the
combinations of behavioral profiles found to be more critical
or more likely to be observed in their specific application.

5.3 Limitations of the analysis

The formal verification experiments highlight the versatil-
ity of the approach and its potential impact on the design
process of robotic applications. Still, the analysis has some
limitations. Mainly, the lack of data recording human actions
(which in part originates from the technology not being
widely deployed in practice) does not enable an assessment
of the accuracy of the formal analysis with respect to the
behavior of real subjects. Therefore, the latter remains an
open research question which is left for future developments.

The analysis has been performed under the assumption
that detected deviations from the expected behavior are due
to actual human errors and not to imprecise sensor readings.
However, should real data be incorporated into the analysis,
potential sensor errors should also be taken into account.

Finally, there is scientific evidence of a correlation
between human reliability and fatigue [25], of which the
Critical Status add-on represents an initial investigation. The
work should be further extended in this direction to modulate
the probability of humans acting erroneously depending on
the level of fatigue they experience. The issue is particularly
relevant for safety–critical service sectors such as healthcare,
in which long and stressful shifts are common.

6 Related works

Modeling human behavior is a long-standing issue in
human–automation interaction analysis. With the advent
of collaborative robotics, the issue has recently started to
attract attention in its declination to human–robot interac-
tion. Unforeseen human actions, especially those originating
from errors, hugely impact the design of general human–
machine interaction, especially with robots [7, 17]. In the
field of human–robot interaction, most works investigate
human errors as sources of safety hazard (e.g., leading to
a collision with the robot), which is the core issue tackled
by Human Reliability Analysis [19, 29] and probabilistic
risk assessment techniques [28, 56]. Given the complexity of
the human mind and the human decision-making process, a
perfectly accurate, all-encompassingmodel of human behav-
ior is not feasible. However, existing works in the literature,
mainly originating from research on human cognition, pro-
posemathematicalmodels of human behaviorwithin specific
boundaries, for example, limited to decision-making in the
workplace. These models fall into three main categories [6]:
(1) cognitive models investigate the mental process lead-
ing to a certain decision; (2) task-analytic models capture
human behavior as a hierarchy of actions; (3) probabilis-
tic models refine the non-determinism of human behavior
through probability distributions over actions.

Well-established cognitive models are Soar [35] and
Adaptive Character of Thought (ACT-R) [4]. However, as
discussed in Sect. 4, cognitive sources behind human behav-
ior are out of the scope of our model-driven framework;
therefore, cognitive models are not further investigated.
Task-analytic models such as ConcurTaskTrees (CTT) [45],
although recently expandedwith a taxonomyof human errors
[10], suffer from the drawback of being intrinsically case
study-specific, thus hardly reusable. Probabilistic models are
considered highly beneficial in designing cyber-physical sys-
tems where human factors are critical [16]. Some examples
of probabilistic models are Boltzmann rationality [8], the
LESS model [9], and Markovian models such as Partially
ObservableMarkovDecision Processes (POMDPs) [50], and
Bayesian Networks [54]. The main issue of probabilistic
models is the lack of extensive and reusable datasets to train
reliable probability distributions [18]. However, although our
work does employ a probabilistic model of human behavior
(i.e., SHA), it partiallyworks around this issue by performing
design-time analysis as a function of probabilistic param-
eters, as discussed in Sect. 5. Nevertheless, collecting real
observations of human behavior while participating in the
analyzed scenarios would still be necessary to provide com-
pelling evidence of the formal model’s accuracy.

Previous works propose a formalization of erroneous
human behavior models for formal verification. Cerone et
al. [12] propose a taxonomy of operator errors in human–
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computer interaction formalized through the CSP process
algebra and temporal logic. Shin et al. [51] present a for-
mal model of human material handlers in manufacturing
systems, depending on human tasks and errors modeled
through part-state graphs. Rukšėnas et al. [49] present a ver-
ification framework for interactive systems with cognitive
models of human errors under timing constraints based on the
Goals, Operators, Methods, and Selection (GOMS) method-
ology [31]. Askarpour et al. [7] present an automated risk
assessment technique for collaborative robotic applications,
in which the eight phenotypes identified by Hollnagel are
expressed through logic formulae and verified through the
Zot formal verification tool.

As discussed in Sect. 1, the service sector has different
demands than the industrial settings, especially in healthcare,
since it is characterized by a higher degree of human task
diversity andmore significant sources of uncertainty [43, 52].
Therefore, given the different target domains and underlying
formalisms, the results obtained in [7] cannot be directly
embedded into our framework. However, the observations in
[7] about the efficacy of Hollnagel’s phenotypes constitute
the foundation for the work presented in this article, which
adapts phenotypes to behaviors observed in service settings
and integrates them with a stochastic characterization.

7 Conclusion

This article extends a model-driven framework for devel-
oping interactive service robotic applications, presented in
[37, 39], with a formalization of erroneous human actions.
The extension is particularly valuable to address sources of
uncertainty due to the significant presence of humans, espe-
cially in safety–critical domains. Designers canmodulate the
analysis to their needs and estimate the probability of success
with different behavioral profiles for their subjects. Statistical
techniques lead to a faster exploration of the resulting config-
uration space. Designers can thus perform a more exhaustive
analysis of the impact of different configurations and reach
more informed decisions on how to train and manage the
personnel based on individual characteristics and level of
expertise.

As discussed in Sect. 5.3, the main limitation of the work
is the lack of empirical observations of real human behav-
ior. The availability of such data would allow for an accurate
estimation of the likelihood of each erroneous action. This
work tackles the issue by performing the evaluation as a func-
tion of such parameters, specifically by sampling three levels
of severity from their domain. Given the flexibility of the
add-ons, discussed in Sect. 4.1, should accurate estimations
become available, these can be easily incorporated into the
formal model.

In the future, we plan on further investigating the issue of
formalmodeling human–robot interaction and human behav-
ior in service settings, which can follow different directions.
Firstly, it is possible to incorporate complex phenotypes
of erroneous human behavior identified by Hollnagel’s
taxonomy since add-ons are currently limited to simple phe-
notypes. Moreover, as discussed in Sect. 4, the modeling
approach will be expanded to cover alternative functionally
equivalent actions (e.g., “walking” and “running”) to sup-
port, as a consequence, the Repetition and Replacement
phenotypes. Finally, a comparative analysis could be car-
ried out between a model based on phenotypes (i.e., the one
presented in this paper) and one based on genotypes, exploit-
ing cognitive models of human decision-making existing
in the literature, comparing the expressiveness, and should
empirical data become available, howaccurately they capture
human actions.
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