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Effectively managing energy and power consumption is crucial to the success of the design of any computing

system, helping mitigate the efficiency obstacles given by the downsizing of the systems while also being

a valuable step towards achieving green and sustainable computing. The quality of energy and power

management is strongly affected by the prompt availability of reliable and accurate information regarding

the power consumption for the different parts composing the target monitored system. At the same time,

effective energy and power management are even more critical within the field of devices at the edge, which

exponentially proliferated within the past decade with the digital revolution brought by the Internet of

things. This manuscript aims to provide a comprehensive conceptual framework to classify the different

approaches to implementing run-time power monitors for edge devices that appeared in literature, leading

the reader toward the solutions that best fit their application needs and the requirements and constraints

of their target computing platforms. Run-time power monitors at the edge are analyzed according to both

the power modeling and monitoring implementation aspects, identifying specific quality metrics for both

in order to create a consistent and detailed taxonomy that encompasses the vast existing literature and

provides a sound reference to the interested reader.
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1 INTRODUCTION

Edge computing brings data storage and processing to the edge of the network, i.e., physically
closer to users, drastically reducing the communication bandwidth and latency and avoiding the
need to send information which might be private, sensitive, or safety-critical [96, 99]. The edge
computing paradigm mitigates, therefore, the concerns typical of cloud computing about the in-
efficient usage of costly, centralized resources, their environmental impact, and the privacy risks
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posed by storing users’ data in remote places [5, 68]. Edge gadgets can often be battery-powered
mobile devices or even resort to energy-harvesting solutions, and in general it is crucial to deal
with their energy and power constraints. At the same time, as the applications and services they
provide vary in complexity, edge gadgets comprise a wide and heterogeneous range of devices
with different processing capabilities [50].

The processing components of devices at the edge are in charge of efficiently performing a large
variety of computation- and communication-intensive tasks within tight energy constraints [21],
and satisfying the energy- and power-efficiency requirements is a key aspect of their design for two
main reasons. On the one hand, the ever-stricter time-to-market constraints that impose to accom-
modate a large variety of application scenarios have been driving the design of over-provisioned
computing platforms, causing a significant fraction of the available computing resources to be left
unused in real-world scenarios. On the other hand, the requirements for newer and more complex
heterogeneous applications impose pairing multi-core processors with specialized hardware accel-
erators, thus making the overall computing platform even more complex and difficult to optimize.

To this end, run-time optimization techniques and the related monitoring infrastructures are
foreseen as the solution to optimize the energy efficiency of modern computing platforms. Indeed,
the effectiveness of any run-time energy optimization technique is strongly related to the quality of
the measurements or estimates of power consumption provided by a run-time power monitoring
system. The latter leverages either a direct measurement strategy or an indirect estimation one.
Direct methods ensure high accuracy at the cost of poor scalability, due to the need to adopt a mixed
analog-digital design, and high implementation costs. Indirect methods leverage the correlation
between the power consumption and a carefully selected set of the platform’s run-time statistics
to deliver periodic power estimates. In general, indirect methods are more scalable and cheaper
due to the possibility of selecting the platform’s statistics to design the power monitor at different
levels of abstractions, i.e., ranging from the architectural performance monitoring counters down
to the switching activity of the microarchitecture.

Notably, the usage of run-time power monitors has been extensively studied within the scenarios
of high performance computing (HPC) [82] and datacenters [54, 65], while several state-of-the-
art contributions specifically target the design of run-time power monitors for high-performance
central processing units (CPUs) [69] and graphics processing units (GPUs) [13]. These sur-
veys highlighted the complex taxonomy in the fields of power monitoring systems for HPC as well
as for high-performance CPUs and GPUs, while, in contrast, the large amount of work targeting
run-time power monitors at the edge is still unstructured and is missing a comprehensive taxon-
omy. The ever-increasing need to ease the design of effective monitoring systems and to better
identify the areas that require further research make it paramount to deliver a complete and com-
prehensive classification of the current state-of-the-art solutions in the field of run-time power
monitors at the edge.

Contributions. This manuscript provides a comprehensive taxonomy of the solutions proposed
in the literature of run-time power monitors targeting the processing elements of edge devices,
with the final goal of helping the reader select and implement the proper infrastructure fitting the
computing platform at hand as well as the system and application requirements.

The manuscript is organized according to three key principles to maximize its readability. First,
each analyzed run-time power monitor is explored in terms of both the power modeling and power
monitoring aspects, discussing its quality metrics for each aspect and how they correlate to each
other to produce the actual implementation. Second, the proposed run-time power monitor clas-
sification considers both software- and hardware-implemented monitoring solutions that target
edge computing platforms, dividing the latter into three classes, i.e., CPUs, GPUs, and hardware
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accelerators. Hardware accelerators can be either human-designed or generated through high-

level synthesis (HLS). Third, the analyzed power monitors are evaluated in terms of functional
and non-functional requirements. Functional requirements include the quality of the estimate and
the temporal resolution, while non-functional ones comprise the performance, area, and power
overheads due to the addition of the monitoring infrastructure.

Structure of the manuscript. The rest of this survey is organized into five parts. Section 2 intro-
duces the theoretical background of power consumption and the core principles guiding its re-
duction. Section 3 overviews the state-of-the-art proposals, while a detailed discussion on power
modeling and monitoring aspects is provided in Sections 4 and 5, respectively. Section 6 draws
some concluding remarks discussing this survey’s key findings and highlighting future research
directions in the field.

2 BACKGROUND

This section overviews the background on run-time power and energy management by giving
definitions for energy and power consumption, highlighting the factors that impact the latter, and
introducing the general structure of a run-time power and energy management framework, as well
as the concepts of run-time power modeling and monitoring.

2.1 Power Consumption in CMOS Devices

The energy consumption E can be defined as the total amount of electricity used to perform some
work by a computing platform over a specific periodT . Differently, the power consumption P can
be defined as the rate at which a system consumes electricity. The relationship between energy
and power consumption can be formulated as shown in Equation (1).

E =

∫ T

0

P (t ) dt (1)

Energy consumption is indeed the integral of the power consumption over time, where power con-
sumption P (t ) refers to a specific time instant t . Equivalently, power consumption can be defined
as the time derivative of energy consumption, according to Equation (2).

P =
dE

dt
(2)

Estimating the energy consumption associated with a computing task requires predicting its power
consumption at each instant. Without loss of generality, all models, modeling, and monitoring
methods concerning both power and energy consumption can thus be referred to as power models,
power modeling, and power monitoring methods, respectively. In CMOS devices, power consump-
tion P can be split into two distinct components, dynamic and static power consumption [18, 61],
as reported in Equation (3).

P = Pdynamic + Pstatic (3)

The two power components are additive and, generally, both need to be addressed to optimize
the overall power consumption. The dynamic component of power consumption Pdynamic can
be traced back primarily to switching power, which derives from the load capacitance charging
and discharging during switches in CMOS gates [17]. During the charging phase of the CMOS
gate, the output voltage swings from 0 to VDD , dissipating energy taken from the power supply
while, during the discharging phase, the energy stored in the load capacitance is dissipated. In
both cases, some heat is generated. Switching power consumption is generally approximated as
shown in Equation (4), where α is the switching activity, i.e., the number of switching transitions
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Fig. 1. Block diagram for a generic run-time power/energy management framework. This survey focuses on

the blocks written in bold.

per clock cycle,CL is the equivalent load capacitance at the gate output,VDD is the supply voltage,
i.e., the voltage at which the load capacitance charges, and fclk is the operating clock frequency.

Pdynamic ≈ α ·CL ·V 2
dd · fclk (4)

In contrast, the static component Pstatic of power consumption can be traced back to the power
dissipated by leakage currents which also flow when the device is inactive. There are multiple
leakage sources, but the static power component due to the subthreshold leakage current is the
most significant one, while the contribution of the others is negligible in devices that employ
modern CMOS process technologies. The subthreshold leakage current derives from the transistor
threshold voltage, which keeps decreasing as the node process technology advances and the
transistor size shrinks. The transistor threshold voltage is reduced by design to offset the slower
transistor dynamics as the supply voltage is scaled down, determining an exponential increase
in the subthreshold leakage current. Static power Pstatic is approximately expressed as shown in
Equation (5), where β and γ are technology-dependent constants, Vdd is the supply voltage, Vth

is the threshold voltage, and VT is the thermal voltage.

Pstatic ≈ β ·Vdd · e−
Vth

γ ·VT (5)

2.2 Run-time Energy and Power Management Frameworks

A generic power/energy run-time management framework is composed of a set of core blocks
that interact with each other in a closed-loop fashion, as depicted in Figure 1. At a coarse grain, it
can be split into two main functionalities, namely (i) power/energy modeling and monitoring, and
(ii) power/energy control and actuation.

This survey will focus on the power/energy modeling and monitoring part. In particular, a power
model is fed a set of select monitored statistics measured or estimated from the target computing
platform. The power model and the set of monitored statistics are generally defined at design
time to fit the target computing platform and provide accurate estimates at the desired tempo-
ral resolution while requiring acceptable overheads of area, performance, and power due to the

ACM Computing Surveys, Vol. 55, No. 14s, Article 325. Publication date: July 2023.



A Survey on Run-time Power Monitors at the Edge 325:5

monitoring infrastructure. Power modeling and power monitoring are introduced in Section 2.3,
while comprehensive overviews and taxonomies are provided in Sections 4 and 5, respectively.

On the control and actuation side, the power consumption estimates produced at run time by the
power model, together with the constraints of the running applications of the overall system, are
input to the power/energy controller, which produces control signals to maintain power/energy
consumption close to the desired set-points, according to the implemented policies. Finally, the
power actuators act on the target platform according to the inputs given by the power/energy
controller, closing the power/energy management framework loop. Such actuators usually act on
two main factors of dynamic power consumption, i.e., the supply voltage VDD and the operating
clock frequency fclk . Actuation techniques exploited in run-time power management frameworks
range from more complex dynamic voltage and frequency scaling (DVFS) [15, 44, 88, 101, 124]
and dynamic frequency scaling (DFS) [64] techniques to simpler ones such as power gating [42,
46, 100, 114] and clock gating [26, 58, 118].

2.3 Power Modeling and Monitoring Basics

Power modeling encompasses the design of models that can adequately estimate the power con-
sumption of a target computing platform. A power model can generally be defined as a mathe-
matical function that correlates the power consumption with features, measured or estimated at
a certain level of abstraction, of the underlying hardware architecture. A power model can be
employed mainly in two ways, i.e., as an input to either design-time power analysis or run-time
power monitoring. Depending on the specific target application of a power model, it must satisfy
different requirements and therefore be designed accordingly.

Design-time power analysis makes an offline use of a power model to explore the design space
of the target computing platform, allowing to evaluate their energy, power, performance, and area
quality metrics at an early design stage. McPAT [59], DSENT [107], ORION [49], and Strober [51]
are examples of frameworks for design-time power analysis. The offline nature of power analy-
sis carried out at an early design stage makes the performance of the underlying power model
a non-critical factor. Such analysis adds no overhead in terms of performance, area, and power
to the original hardware platform since it is carried out as part of the hardware design pro-
cess. Notably, these frameworks often work at the architectural level and therefore employ a
generic power model for multiple computing platforms, thus resulting in a low estimation accuracy
[94, 119].

On the contrary, run-time power monitoring delivers an infrastructure to compute online es-
timates of the power consumption of the target computing platform. Employing them requires
carefully considering the overhead in terms of performance, mainly for software implementations,
and area and power, in particular for hardware implementations. In both scenarios, the run-time
power monitors must be implemented in an ad-hoc manner, providing better accuracy than offline
power analysis, at the cost of time spent designing the monitoring infrastructure.

3 RUN-TIME POWER MONITORS

This section presents the classification of the state-of-the-art run-time power monitors targeting
edge devices, with the goal of providing the reader with a comprehensive overview of the available
state-of-the-art contributions. In particular, Section 3.1 presents the dimensions considered for the
classification, while Section 3.2 discusses the actual classification of the contributions surveyed
within this manuscript. Notably, a detailed discussion of the run-time power modeling and mon-
itoring aspects for each state-of-the-art contribution is provided in Sections 4 and 5, respectively,
while Section 6 presents the key findings as well as the future research directions.
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3.1 Taxonomy Dimensions

Each state-of-the-art proposal is classified and discussed according to four independent dimen-
sions, i.e., target platforms, model families, power model statistics, and monitoring implementa-
tion, that are defined in the rest of this subsection.

3.1.1 Target Platforms. The survey considers run-time power monitors that target the com-
puting elements of edge devices, distinguishing between CPUs, GPUs, and hardware accelerators.
General-purpose central processing units (CPU in Table 1) may be either single- or multi-core,
possibly implementing multi-threading and heterogeneous architectures. Graphics processing

units (GPU) accelerate highly parallel tasks and are employed in high-end embedded systems.
Hardware accelerators provide dedicated hardware support to computationally-expensive
functionalities and might be either hand-written or obtained as the output of the high-level

synthesis (HLS) procedure [72].

3.1.2 Model Families. In general, power models are either regression or machine learning mod-
els. Regression models (Regression in Table 1) are commonly used in run-time power monitoring
scenarios due to their simple and low-overhead implementation. Regression may be either lin-
ear, polynomial, or other more complex variants. In such regression models, power statistics are
the independent variables while power consumption is the dependent one. Machine learning mod-

els (Learning in Table 1) implement the power model as a neural network, a decision tree, or a
random forest.

3.1.3 Model Statistics. Feeding the power model with optimal input statistics is of paramount
importance for the sake of accuracy and effectiveness in modeling the power consumption of
the target platform when considering real-world scenarios. Such input statistics can be split
into two coarse-grained categories, i.e., performance events and switching activity. Performance

events (Perf. events in Table 1) are commonly provided by general-purpose programmable plat-
forms such as CPUs and GPUs through so-called performance monitoring counters (PMCs).
The events collected by these counters, such as the number of instructions, branches taken, and
cache misses, were initially exposed with the goal of monitoring performance in CPUs and GPUs,
while their good correlation with the power consumption extended their use to power monitor-
ing scenarios. On the other hand, the switching activity of each signal contributes to the dynamic
power consumption of hardware platforms realized in CMOS technology, thus making the tog-

gling activity (Toggl. activity in Table 1) of specific signals an alternate candidate input statistic
for run-time power models. Notably, some state-of-the-art solutions also make use of additional
statistics (Others in Table 1) such as voltage, frequency, and temperature measurements as inputs
to the proposed run-time power models.

3.1.4 Monitoring Implementation. Power statistics related to the switching activity can be mon-
itored either at the software or hardware level, as shown in Figure 2. A software power moni-

toring (Softw. in Table 1) implementation provides a flexible solution that can be applied in an
after-market perspective, since making use of the performance monitoring counters (PMCs) al-
ready available in an existing design requires no hardware changes while the computation of the
power estimate is carried out at the software level. Software-implemented run-time power moni-
tors, depicted in Figure 2(a), leverage the architectural statistics exposed through the PMCs, where
a carefully selected subset of such PMCs is periodically read out to compute the power estimates.
In contrast, a hardware power monitoring solution requires to instantiate ad-hoc additional digital
hardware elements that operate in a totally isolated manner from the main computing pipeline. As
shown in Figure 2(b), hardware-implemented run-time power monitors leverage the microarchitec-
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Fig. 2. Generic hardware and software implementations of run-time power monitors.

tural statistics directly exposed by the hardware platform. In particular, a hardware-implemented
power monitor is an additional hardware component that periodically reads out the switching ac-
tivity from a selected subset of physical wires to compute the power estimates. The output of the
hardware-implemented power monitor can be exposed at the software level through a dedicated
performance counter.

3.2 Classification of the State of the Art

Table 1 classifies the surveyed state of the art according to the four taxonomy dimensions dis-
cussed in Section 3.1. A large fraction of the proposed solutions target general-purpose CPUs,
while few are aimed at GPUs and hardware accelerators (see Target in Table 1). The simplicity
of linear regressors makes them the de-facto standard power modeling design choice regardless
of the monitored target component, although some proposals also explored learning-based solu-
tions such as neural-network models (see Family in Table 1). From the model statistics viewpoint,
performance events represent the most exploited source of information to compute the run-time
power estimates for both CPUs and GPUs, while circuit-level switching activity is the most used
information to feed run-time power monitors targeting hardware accelerators. Notably, there are
no proposals in the literature that combine both performance events and toggling activity as the
statistics of a run-time power model (see Statistics in Table 1). Finally, the majority of run-time
power monitors targeting CPUs and GPUs are software-implemented due to the impossibility of
modifying the hardware of commercial computing units, while, on the contrary, run-time power
monitors targeting hardware accelerators are mainly implemented at the hardware level (see
Implem. in Table 1).

An extensive discussion of the quality, performance, overheads, and implementation details of
each state-of-the-art contribution related to the run-time power modeling and monitoring aspects
is provided in Sections 4 and 5, respectively.

4 POWER MODELING

The run-time power model is at the core of the run-time power monitoring infrastructure since it
defines the mathematical function implemented in the power monitor. In particular, the run-time
power model represents the identified mathematical function that delivers a periodic estimate of
the power consumption of the target computing platform starting from the values of a carefully
selected set of statistics that are periodically sampled. Such statistics might be any measurable
activity in the target platform satisfying two properties. First, each statistic displays a high cor-
relation with the power consumption of the underlying hardware architecture. Second, the set of
selected statistics collectively explains the power consumption.
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Table 1. Overview of the State-of-the-art Contributions Discussed in this Survey and their Classification

According to the Modeling and Monitoring Dimensions

Modeling Monitoring
Target Family Statistics Implem.

Perf. Toggl.
Ref. CPU GPU Accel. Regression Learning events activity Others Softw. Hardw.

[9] � − − Linear regr. − � − − � −
[48] � − − Linear regr. − � − − � −
[43] � − − Linear regr. − � − − � −
[95] � − − Linear regr. − � − − � −
[91] � − − Linear regr. − � − − � −

[112] � − − Linear regr. − � −
Voltage,

� −freq.,
CPI

[77] � − − Linear regr. − � −
Voltage,

None
freq.,
temp.,
state

[76] � − − Linear regr. − � − Freq. None
[75] � − − Linear regr. − � − Freq. None
[74] � − − Linear regr. − � − − None
[86] � − − Linear regr. − − � − − �
[71] � − − Linear regr.,

Neural netw. − � − − �
MARS

[127] � − − Linear regr. − − � − − �
[126] � − − Linear regr. − − � − − �
[121] � − − Linear regr. − − � − − �
[120] � − − Linear regr. − − � − − �
[70] − � − Linear regr. − � − − � −
[20] − � − − Random for. � − − Virtual
[103] − � − − Neural netw. � − − � −
[66] − � − − Neural netw. � − − � −

[78] − � − Linear regr. − � −
Voltage,

� −freq.,
temp.

[47] − − � Linear regr. − − � − − �
[60] − − � − Decis. tree − � − − �
[83] � − � Linear regr. − − � − � �
[52] � − � Linear regr. − − � − − �
[23] � − � Linear regr. − − � − − �
[128] � − � Linear regr. − − � − − �
Legend: �yes, − no; Target target platforms (see Section 3.1.1); Family model families (see Section 3.1.2); Statistics

model statistics (see Section 3.1.3); Implem. monitoring implementation (see Section 3.1.4).

This section is organized into two parts, with the goal of presenting a taxonomy of the state of
the art concerning the run-time power models for edge computing platforms, organized according
to three macro-dimensions and evaluated according to three quality metrics. Section 4.1 introduces
the considered quality metrics, defined as the properties that allow comparing the quality of differ-
ent power models. Section 4.2 discusses the proposals available in the literature, starting from the
quality metrics and the dimensions of the taxonomy defined in Sections 4.1 and 3.1, respectively.
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4.1 Quality Metrics

For each state-of-the-art contribution, this survey considers three quality metrics, i.e., model com-
plexity, accuracy, and training and assessment strategies. Such metrics guide the analysis and
evaluation of the literature and allow a direct comparison between the different considered state-
of-the-art solutions.

The designers of a run-time power monitor must carefully select the properties of the underlying
power model in order to satisfy the requirements and constraints of the overall system and obtain
the desired qualities related to power monitoring.

4.1.1 Model Complexity. The complexity of a selected power model determines the complexity
of the corresponding monitoring infrastructure and, therefore, the resulting implementation over-
heads. In this survey, we employ the number of variables employed as inputs of a power model as
a proxy for its complexity (Complexity in Table 2).

4.1.2 Model Accuracy. Accuracy is the degree of closeness of direct or indirect measurements
of a quantity to its actual value. It describes systematic errors and measures statistical bias. In this
survey, we measure the accuracy of a power model (Accuracy in Table 2) as its average estimation
error, i.e., the mean relative error for the estimation of the dynamic power consumption.

4.1.3 Training and Assessment Strategies. Identifying (Benchmarks − Training in Table 2)
and assessing (Benchmarks − Assessment) the run-time power model require executing bench-
marks on the computing platform under analysis. These benchmarks may be either general-purpose

ones or micro-benchmarks. General-purpose benchmarks are meant to mimic realistic applications,
thus exhibiting complex software architectures and long execution time. They are commonly used
to compare the performance, power consumption, and efficiency of different computing platforms.
Micro-benchmarks are small kernels meant to timely and efficiently stress specific components of
the computing platform. They are commonly used to test and debug specific portions of a comput-
ing platform.

On the contrary, using random stimuli to generate the switching activity patterns and the corre-
sponding power traces is not instead a viable solution for the training and assessment of a power
model for two main reasons. On the one hand, generating unconstrained random stimuli can pro-
voke the execution of illegal machine instructions that will never occur during normal operating
conditions. On the other hand, covering the entire space of the inputs and internal states using a
random stimuli generation requires a large amount of time.

4.2 Detailed Overview of the State of the Art

Table 2 summarizes all the considered run-time power modeling proposals from the state of the art,
classifying them according to the target platform, model family, and input statistics dimensions.
For each proposal, complexity and accuracy numbers as well as training and assessment strategies
are also reported. The state-of-the-art works are ordered primarily according to their target plat-
forms, i.e., CPUs, GPUs, and hardware accelerators, and secondarily according to the employed
power statistics, i.e., performance events and toggling activity. In the rest of this subsection, we
discuss in more detail such state-of-the-art solutions, in the same order as in Table 2, analyzing
their quality metrics and discussing their strengths and weaknesses.

4.2.1 CPUs - Performance Events-based Power Modeling. The first class of state-of-the-art
power modeling solutions targets general-purpose CPUs that expose performance monitoring
counters (PMCs). While the initial works and most of the subsequent ones focused on linear
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Table 2. Detailed Taxonomy of the Run-time Power Modeling State of the Art

Benchmarks

Training Assessment

Ref. Complexity Accuracy Gen. Micr. Gen. Micr. Section

[9] 4 N/A − � − �

Sec. 4.2.1

[48] 9
≤ 8% Compaq � − � −≤ 15% Intel

[43] 15 avg. 3W, ≤ 5.8% − � � −

[95] 3-5
3.0-4.0% Nehalem � − � −
3.9-6.1% Atom

[91] 6
2.8% Cortex-A15 � − � −
3.9% A7→ A15

[112] 6 + 3 (V, F, C)
3.8% Cortex-A7 � − � −
2.8% Cortex-A15

[77] 10 + 4 (V, F, T, C)
5% Cortex-A7 � − � −
8% Cortex-A15

[76]
≤ 4 Cortex-A7 ≤ 3% single-thread � − � −≤ 6 Cortex-A15 ≤ 7.5% multi-thread

[75] 1-12
1.46% (1 perf. ev.) � − � −
1.72% (12 perf. ev.)

[74] 6 ≤ 5% � � � �
[86] 2-8 2% � − � −

Sec. 4.2.2

[71]
1-8 (Linear regr.) 3.6% (Linear regr.) � − � −
1-6 (MARS) 2.9% (MARS) � − � −
1-6 (Neural netw.) 4.0% (Neural netw.) � − � −

[127] 6 ≤ 9% � − � −
[126] N/A ≤ 1.8% − � � −
[121] 100-400 6% − � − �
[120] 100-300 3% N/A N/A N/A N/A

[70] 13 4.7% � − � −

Sec. 4.2.3
[20] 22 7.8% � − � −
[103] 12 2.1% � − � −
[66] 12 + 14 (CPU + GPU) 4.5% � − � −
[78] 4 + 3 (V, F, T) 5% � − � −
[47] 1655-2050 ≤ 5% − − − −

Sec. 4.2.4
[60] 10-20 4.4% − − − −
[83] 1-25 ≤ 3% − − − −

Sec. 4.2.5
[52] 113 ≤ 7% � � � �
[23] 1-29 ≤ 5% − − − −
[128] N/A ≤ 2.7% − − − −

Legend: �yes, − no, N/A unavailable data; Complexity model complexity (see Section 4.1.1); Accuracy model

accuracy (see Section 4.1.2), average estimation error; Benchmarks − Training/Assessment training and assessment

strategies (see Section 4.1.3), general-purpose benchmarks (Gen.), micro-benchmarks (Micr.).

run-time power models, the state of the art also explored performance-events-based models with
higher complexity.

[9] introduced the concept of estimating the energy consumption of a CPU by exploiting infor-
mation gathered by PMCs about the activity of the CPU hardware units, e.g., ALU, FPU, cache, and
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memory. In particular, performance events such as the number of integer and control-flow opera-
tions, floating-point operations, and level 2 cache misses were shown to have a linear correlation
with the energy consumption of the target platform. The experimental evaluation was carried out
on the x86 Intel Pentium II general-purpose CPU [98] and AMD ELAN microcontroller, and it made
use of synthetic workloads to train and assess the power model.

[48] proposed a method to estimate the power consumption of separate components of a CPU
from its performance events. Such components include the instruction and data caches, the regis-
ter file, the integer and floating-point ALUs, the buses, and the branch predictor. It also discussed
which PMCs count events are actually relevant for the power consumption and how to estimate
event counts for power-relevant events not well supported by the available PMCs. Indeed, since
typical performance counters do not capture all the power relevant events, the proposed method-
ology approximated utilization factors through heuristics depending on the machine structure and
on the available PMCs. The experimental evaluation considered the Intel Pentium Pro [10, 85] and
Compaq Alpha 21164 [7] CPUs and the training and assessment of the linear power models were
carried out by employing general-purpose benchmarks from SPEC CPU95 [104]. Experimental re-
sults highlighted average estimation errors up to 8% and 15% for the Alpha and Pentium processors,
respectively.

In [43], the authors estimated the power consumption for each of 22 components of a CPU
through linear regression models taking performance events as inputs. The total power consump-
tion of the overall processor could then be computed as the sum of the power consumptions of
the 22 components plus the idle power consumption of the CPU. This work targeted the x86 Intel

Pentium 4 CPUs, employing micro-benchmarks during the identification phase and then validat-
ing the obtained power model on the execution of benchmarks from the SPEC CPU2000 suite [39]
and of three Linux desktop applications. Concerning the SPEC CPU2000 benchmarks, the identified
power model showed a average estimation error of 3W and a maximum error of 5.8W.

[95] demonstrated the possibility to effectively estimate the dynamic power consumption of
both Intel high-performance Nehalem [102] and low-power Atom [37] CPUs by using only three
performance events, i.e., the number of fetched instructions, level 1 cache hits, and dispatch stalls.
The performance events were fed to a linear power model, which was experimentally validated
against the simulated Wattch [14] power model. Both training and assessment made use of general-
purpose benchmarks from the SPEC CPU2000 [39], MiBench [35], and MediaBench [56] suites.
Results showed 4% and 6.1% average estimation errors on the Nehalem and Atom CPUs, which
decreased to 3% and 3.9%, respectively, by employing five counters. Moreover, the authors showed
that, for small differences in architecture type, the expression obtained for one architecture can be
used to estimate power on the other, with a small increase, around 3%, of the estimation error.

[91] proposed a run-time power model that, targeting ARM big.LITTLE heterogeneous multi-
core CPUs, predicted the power consumption of an application on a target core given its execution
profile on the current core. For the smaller Cortex-A7 cores of the target big.LITTLE multi-core,
the authors claimed it was not necessary to devise a power model, due to the power consumption
ranging between 1.4W and 1.5W across all training benchmarks, therefore showing a negligible
variability. On the contrary, the larger Cortex-A15 showed a power consumption varying between
4.5W and 5.1W, suggesting instead the need to identify a run-time power model. The authors
identified therefore a linear regression model that takes as the inputs the amounts of integer and
floating-point instructions, the number of instructions per cycle, and the access rates to the L1
data, L2, and main memory levels of the memory hierarchy. Moreover, by employing an inter-core
prediction model for miss events, the statistics fetched during the execution on a Cortex-A7 core
can be exploited to estimate the power that would be instead consumed by executing on a Cortex-

A15 core. The authors made use of the SD-VBS [111], SPEC CPU2000 [39], and SPEC CPU2006 [40]
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benchmark suites, splitting them into two sets devoted to training and assessment, respectively.
On the larger core, the model identified with an average estimation error of 1.2% on the training
set showed a 2.6% average estimation error on the test set. The inter-core power model, predicting
Cortex-A15 power from Cortex-A7 statistics, provided instead a 3.9% average estimation error on
the test benchmarks.

[112] proposed a methodology to model power consumption with the PMCs available on ARM

big.LITTLE multi-core processors. In particular, the authors targeted a SoC that featured ARM

Cortex-A7 and -A15 CPU cores. This work highlighted the importance of carefully selecting a small
subset of PMCs to be used within the power model, due to the need to reduce their number so that
they can be monitored simultaneously as well as to avoid redundancy due to correlated events. A
good PMC selection corresponds to events that are highly correlated with power but at the same
time are not highly correlated with each other. The experimental evaluation employed benchmarks
from the MiBench [35], MediaBench [56], and Longbottom [62] suites and the results produced
average power estimation errors of 3.8% and 2.8% for Cortex-A7 and -A15 CPUs, respectively.

[77] proposed an approach for developing run-time power models that exploited a combination
of physical predictors measuring frequency, voltage, and temperature, performance events, and
information about the CPU state. The methodology is validated on an ARM big.LITTLE heteroge-
neous architecture. The authors also claimed that tuning the model for every CPU frequency level
is much more accurate than having a unified model for all clock frequencies. The accuracy of the
developed models was compared with the state of the art, showing average prediction errors of 8%
and 5% on Cortex-A15 and Cortex-A7, respectively.

[76] extended the methodology described in [77] with more comprehensive event space explo-
ration and statistical techniques to develop more accurate power models for ARM big.LITTLE SoCs
compared to previous works [91, 112]. CPU state information was notably not employed as a power
statistic, differently from [77], due to the large overhead introduced by its usage. The implemented
models, which can be split into single- and multi-thread ones and into intra- and inter-core ones,
were evaluated by targeting the ODROID-XU3 development board, executing cBench benchmarks
for single-thread models and benchmarks from the PARSEC [12] suite for multi-thread ones. Intra-
core single-thread and multi-thread models reported average estimation errors below 3% and 7.5%,
respectively. Notably, the multi-thread models took as their inputs sets of performance events that
were completely different from those employed in the single-thread ones.

[75] described an approach to obtain accurate power models on embedded computing platforms
which do not expose PMCs. Targeting a Gaisler LEON3 CPU [3], the authors demonstrated the us-
age of a soft-core replica implemented on a field-programmable gate array (FPGA) and enhanced
with PMCs to obtain execution statistics and then correlate them with the power consumption mea-
sured on the original computing platform. Training made use of the BEEBS [84] open-source bench-
mark suite, specifically designed to assess the performance and energy consumption of embedded-
system targets, while the assessment was carried out on a closed-source computer vision algorithm
used in space satellite imaging. Experimental results highlighted a 1.46% accuracy error for a model
employing the number of store instructions as the lone performance event and a 1.72% one for a
model taking 12 events as its inputs. Moreover, the ability of both models to follow program phases
made them suitable for run-time power profiling at the design stage.

[74] modified the Thumbulator instruction set simulator to expose performance events in or-
der to model the power consumption of microcontrollers that do not provide access to PMCs.
The methodology targeted the ARM Cortex-M0 microcontroller, and the training and assessment
made use of the BEEBS [84] benchmark suite and of 154 micro-benchmarks, extracted from
an edge computing application, implementing the various CNN layers with different hyperpa-
rameters and optimisations. In particular, the authors identified six performance events, namely
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executed instructions excluding multiplications, multiplication instructions, taken branches, RAM
reads, RAM writes, and flash reads, as run-time power statistics. The resulting models, tailored to
different clock frequencies and with knowledge of the activation of prefetch buffers and CPU wait
states, provided an average prediction error below 5%.

4.2.2 CPUs - Toggling Activity-based Power Modeling. [86] was one of the first works to ex-
ploit the toggling activity of control signals to model the dynamic power consumption. The au-
thors presented a methodology to add hardware counters attached to the control path of the CPU,
enabling run-time power monitoring without employing performance events exposed by PMCs,
which might also be unavailable on some processors. Indeed, the toggling activity of a subset of
identified control signals from the target CPU was shown to have a linear relation with the power
consumption. The sum of the measured toggling activity counters, multiplied by coefficients de-
termined within the model identification phase, was therefore shown to be a good estimate of
the CPU power consumption. The model training and assessment employed applications from
the MiBench [35] benchmark suite, and the estimates were compared to the measures simulated
by Synopsys Primepower [108]. The proposed methodology, applied to an existing processor [87],
resulted in average power and energy estimation errors of 2% and 1.5%, respectively.

[71] also proposed a methodology to add run-time monitoring of dynamic power consumption
in SoCs starting from their register-transfer level (RTL) description. After generating the dataset
of power consumption, signals, and toggling activity from simulation and selecting the optimal set
of signals to monitor, and thus employ their toggling activity as the independent variables in the
power model, the authors explored the usage of three power models and compared their accu-
racy as well as the overheads of the corresponding monitoring infrastructure. In particular, the
authors evaluated linear regression, multivariate adaptive regression splines (MARS) [27],
and neural network models. In their experimental evaluation, they targeted a SecretBlaze proces-
sor [8] implemented on a Xilinx Spartan-6 FPGA [2]. The results highlighted the linear model as the
best-performing one, when the input is the toggling activity of three signals, with a 3.6% average
estimation error. On the contrary, the MARS model with three toggling activity counters showed
a 2.9% average estimation error, however with a higher complexity which resulted in higher over-
heads when employing the power model at run time. Finally, the neural network model achieved a
4% average error, not improving accuracy over both the other models while also requiring a more
complex software computation than the linear model.

[127] similarly proposed a dynamic power model, based on toggling activity, designed to be in-
strumented into an existing RTL design in order to add run-time power monitoring capabilities. To
implement such monitoring infrastructure, the described PowerProbe methodology first collected
from a simulation the architectural statistics and the related time-based power traces, using then
such information to develop a power model by employing linear regression. Obtaining such a
linear power model meant identifying the signals which contribute the most to dynamic power
consumption and their corresponding weights. The design of the power model considered four
figures of merit, i.e., not only the accuracy of the power consumption estimation, but also the per-
formance, power, and area overheads of the implemented monitoring infrastructure. The proposed
methodology, while theoretically applicable to any RTL design, was only evaluated by applying it
to the mor1kx CPU [81]. Applications from the WCET [34] benchmark suite were employed for
the training and assessment of the power model, which produced an average estimation error of
9%, with a standard deviation of 2%.

[126] extended the work in [127] to target complex hardware multi-threaded architectures that
support single instruction, multiple data (SIMD) parallel processing, such as multi/manycore
accelerators and GPUs. The PowerTap methodology identified power models by solely considering
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signals that represent either a primary input or output of an RTL module within the design hierar-
chy. According to the authors, such a choice avoided modeling complex non-linear relationships
between the power consumption and the internal logic of a hardware module and significantly re-
duces the computational time required by the model identification. The methodology distinguished
between two ways to measure the switching activity of multi-bit signals, with the authors remark-
ing that Hamming-weight counters, which count the number of varying bits for each variation in
the signal, are well-suited to measure the switching activity of data signals, while single-toggle
counters, that count any change in the target signal, are better tailored to control signals. The
methodology was validated on nu+ [28], a hardware multi-threaded SIMD processor. Notably, and
differently from [127], power model identification exploited a set of micro-benchmarks tailored
to the target architecture to stress specific parts of the target platform. The assessment phase em-
ployed instead the same WCET benchmark suite [34], with the experimental results showing a
1.8% maximum estimation error. A later work also applied the PowerTap methodology to a posit
arithmetic unit meant to be integrated in RISC-V CPUs [89].

The APOLLO framework proposed in [121] introduced a novel methodology to identify
the dynamic power consumption model, which is obtained by applying minimax concave

penalty (MCP) regression [125]. The authors targeted an Arm Cortex-A77 core for their ex-
perimental evaluation, which highlighted a per-cycle accurate estimation. Both training and
assessment are carried out by executing micro-benchmarks. The training set is composed of
300 micro-benchmarks generated automatically through a genetic algorithm (GA)-based frame-
work [36], while the validation set is instead made of 12 micro-benchmarks written by CPU
designers to represent different use cases, such as low or high power consumption and CPU throt-
tling. The model obtained in the experimental evaluation employed a number of input variables
ranging from 100 and 400, producing an average accuracy error of 6% when executing the micro-
benchmarks from the validation set.

[120] proposed the DEEP methodology to extend the work in [121]. Rather than operating on
multi-bit signals as a single variable, DEEP proposes to select model variables at bit level rather
than signal level, i.e., signals selected by the linear-regression power model can be any individual
bits rather than whole signals. Such a solution provides more flexibility in the design space that
can be explored, since the number of bits is possibly much larger than the number of signals,
which can in general be multi-bit ones. DEEP proposes a two-step selection method to identify
the variables of the power model. A top-down pruning step based on MCP reduces the number
of variables and it is followed by a bottom-up selection algorithm based on best subset selection
[67] that produces the set of bits chosen as the model inputs. The authors targeted a 64-bit, single-
core CPU for the experimental evaluation of the proposed methodology. Models taking as inputs
a number of variables ranging from 100 to 300 produced an accuracy around 3%.

4.2.3 GPUs - Performance Events-based Power Modeling. Power modeling approaches followed
by state-of-the-art literature also use PMCs in GPUs similarly to those adopted for general-purpose
CPUs.

[70] proposed to estimate the power consumption deriving from the execution of a GPU kernel
through a linear regression model, where the independent variables are the performance events
collected by the PMCs. Notably, the proposed methodology estimated power consumption at the
granularity of kernel calls since the PMCs of the GPU can be accessed only after the completion of
each computed kernel. The methodology was demonstrated on Nvidia CUDA GPUs [79], training
and evaluating the model by using 49 publicly available GPGPU kernels from the CUDA SDK and
the Rodinia benchmark suite [19]. The experimental results highlighted an average estimation
error of 4.7%.
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[20] applied instead a tree-based random forest method to the run-time power modeling of
Nvidia CUDA GPUs [79]. The experimental evaluation targeted the Nvidia GTX280 graphics card,
with 52 GPU application kernels from CUDA SDK, Rodinia [19], and Parboil [106] used for train-
ing and assessment of the power model. The experimental results showed that the random forest
method produced an average estimation error of 7.77%, improving over state-of-the-art regression
tree and multiple linear regression methods, both producing 11.7% errors.

The authors of [103] highlighted the shortcomings of employing linear regression models to esti-
mate the power consumption of GPUs, proposing instead the adoption of neural networks (NNs).
Among the advantages of modeling GPU power consumption with NNs, they cited their capa-
bility to capture non-linear dependencies, their flexibility and adaptability, and their aptitude to
learn various computation and memory access patterns which makes them suitable to model such
a complex architectures. The experimental analysis targeted the NVIDIA Tesla C2075 and M2090

GPUs [116] and employed GPU kernels from CUDA SDK, GEM [32], and the SHOC [24] benchmark
suite, with the results showing an average power estimation error of 2.1%.

[66] applied deep learning techniques to obtain a power model for a heterogeneous mobile SoC
executing parallel applications. The resulting power model was a neural network trained using
CPU and GPU PMCs along with actual power measurements by employing a set of OpenGL and
OpenCL benchmarks representative of graphics and computing workloads, also used for its eval-
uation. In particular, the authors targeted a Intel Z3560 SoC with an Imagination PowerVR G6430

GPU. The proposed model is a fully connected neural network with four layers, that takes as in-
puts 14 PMCs from the GPU and 12 from the CPU and provides a power consumption estimate as
the output. The model was implemented using the Keras framework [22] with TensorFlow [1] as
its backend. Notably, the GPU utilization PMC is considered as a measure of data coverage of the
training dataset. Benchmarks were executed several times with different input sizes under differ-
ent load conditions until reaching a good coverage of GPU utilization values. The experimental
results showed an average estimation error of 4.47% compared to real power measurements, with
the authors claiming 3.3× and 2× smaller average estimation errors than state-of-the-art linear
regression and NN models.

[78] proposed a power model for the Nvidia Tegra X1 SoC, that features four ARM Cortex-A57

high-performance cores coupled with a Nvidia Maxwell-based 256-core GPU. The authors distin-
guished between local events, affecting power consumption in limited regions of the GPU, e.g., the
amounts of executed instructions and memory accesses, and global states, affecting global power
consumption, e.g., operating frequency, voltage, and temperature. This work aimed to identify
a single model that worked for any combination of voltage, frequency, and temperature condi-
tions, making use of only four GPU performance counters. Training was carried out by executing
applications from Rodinia [19], while the quality of the identified power model was assessed on
benchmarks from CUDA SDK. Experimental results showed an average accuracy error of 5% for
the proposed model, making the quality of its power estimation comparable to the one given by
employing different models tailored each to a specific operating clock frequency.

4.2.4 Accelerators - Toggling Activity-based Power Modeling. State-of-the-art run-time power
models for hardware accelerators usually exploit the toggling activity of a subset of their signals.
Indeed, hardware accelerators do not usually expose any kind of information about performance
events, whether they are designed by hand or generated through high-level synthesis tools.

[47] exploited singular value decomposition (SVD) [31, 53], which is commonly used in ma-
chine learning to reduce the number of data dimensions for principal component analysis [113],
to identify the correlation between the toggling activity of registers and the power consumption.
In particular, SVD highlights which are the most critical registers and how much they contribute
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to the total power consumption, which is then estimated by a linear model. The power model
can then be automatically instrumented to the RTL implementation and synthesized into an FPGA
platform, where it is employed for run-time power monitoring. The proposed methodology, which
targets generic RTL designs, was validated by considering three FPGA implementations of crypto
cores and audio/video encoders/decoders. The obtained power model predicted run-time power
consumption with an average estimation error below 5%, compared to a commercial power esti-
mation tool.

[60] proposed a dynamic power consumption model based on decision-tree regression, rather
than the traditional linear regression. The methodology targeted hardware accelerators imple-
mented on FPGA, with the goal of instrumenting the identified power model within the RTL design.
The proposed methodology is composed of three main steps. First, the most significant signals, i.e.,
nets in the Verilog hardware description language (HDL) netlist exported after place-and-route,
are identified through a timing simulation with random-generated input vectors, also filtering the
redundant signals. Then, power traces are derived via post-implementation timing simulation. Fi-
nally, a decision tree model is identified, tuning its hyper-parameters depending on the desired
complexity. The authors claimed that the decision tree is well suited to an area-efficient hardware
implementation, since the corresponding series of comparators can be decomposed into a series of
if-then-else rules that map effectively to hardware. The experimental results showed an average
power estimation error of 4.36%.

4.2.5 CPUs and Accelerators - Toggling Activity-based Power Modeling. As the last class of the
proposed power modeling taxonomy, we discuss solutions targeting generic RTL designs, i.e.,
general-purpose CPUs and dedicated hardware accelerators, by applying the same methodology,
which exploits toggling activity as the input statistics to the identified run-time power model.

[83] proposed regression models based on toggling activity for both static and dynamic power
while instrumenting the RTL level of generic hardware designs, i.e., covering both general-purpose
CPUs and hardware accelerators. Concerning dynamic power, the switching activity of an iden-
tified subset of registers is exploited to compute the power consumption estimate according to a
linear model, whose coefficients are also identified within an automated analysis flow. In addition,
the model is retrained after the place-and-route phase that added the corresponding power moni-
toring infrastructure, allowing to account for variations in power consumption due to its insertion
in the RTL design. The methodology was applied to the 32-bit RISC-V [115] RI5CY processor [110]
and to two hardware accelerators from OpenCores that implemented the AES cryptographic algo-
rithm and a FIR filter. The implemented models showed an average estimation error smaller than
3%.

[52] presented Simmani, a run-time power modeling methodology applicable to any RTL design
that automatically identifies the signals that contribute the most to dynamic power consumption
through clustering. It leverages the intuition that signals displaying similar toggle patterns will
also have a similar contribution to power consumption, hence the modeling error can be reduced
by having all the signals from a cluster share the same coefficient in the power model. After cluster-
ing signals that showed similar switching activities in the VCD dumps obtained for the execution
of benchmark applications from the training set, and thus identifying a smaller number of signals,
the methodology produces a linear-regression model with high-order, i.e., > 1 order, terms. The
RTL simulation required to collect run-time power traces within the model training phase is fur-
ther sped up through FPGA acceleration by exploiting the open-source Strober framework [51].
Both micro-benchmarks and general-purpose benchmarks are used for training and assessment
purposes. The authors demonstrated their methodology by targeting a heterogeneous processor
composed of a Rocket in-order core [6] and a Hwacha vector accelerator [57]. Results are shown
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for a number of model signals ranging from 40 to 120 and a window size ranging from 80 to 380
clock cycles, and a model with 113 signals and a 340-cycle window size is shown to have the best
accuracy.

[23] proposed a linear model based on toggling activity and targeting generic RTL designs, but
with a focus on satisfying the resource constraints when implementing the corresponding mon-
itoring infrastructure. The solution considers the impact of the area overhead due to the power
monitoring and it allows to implement a model with the desired accuracy, capable to fit a certain
budget allocated for its resources, i.e., considering constraints to the amount of FPGA resources
that can be devoted to the actual RTL implementation of the power monitor. The methodology
was evaluated on HLS-generated [90] hardware accelerators corresponding to kernels from the
WCET benchmark suite [34] and on a 32-bit RISC-V single-core CPU [97]. Resource-constrained
instances of the power model managed to maintain the average estimation error below 5%.

[128] introduced a methodology to design SCA-resistant power monitors, ensuring that the
switching activity of the signals used to compute the power estimates is not a function of the
cryptographic keys, plaintexts, and ciphertexts processed within the target computing platform.
Such security aspects must be tackled at the model level, i.e., during the identification of the run-
time power model. SCA-resistant power monitors targeting a general-purpose computing platform
showed an average estimation error in the 1.2%–2.4% range, depending on the temporal resolution,
while the ones targeting an HLS-generated hardware accelerator showed a 0.89%-2.7% error range.

5 POWER MONITORING

Run-time power monitors implement the identified power models to deliver online estimates for
the power consumption of the target computing platforms. Their implementation can be con-
strained with respect to (i) the minimum values for the quality metrics, i.e., temporal resolu-
tion and accuracy, and (ii) the imposed constraints, i.e., area, power, and performance overheads.
Regardless of the software or hardware implementation of the power monitor, the activity coun-
ters represent the critical components of the entire run-time power monitoring infrastructure. The
activity counters are in charge of sampling the activities to feed the power model. In software-
implemented power monitors, the performance counter infrastructure defines and implements the
activity counters to sample the required architectural statistics, such as the number of executed
ALU instructions or cache accesses. In contrast, hardware-implemented power monitors define
their own activity counters.

The rest of this section is organized into two parts, with the goal of presenting a taxonomy
of the state of the art of run-time power monitors for edge computing platforms that considers
two classification dimensions and four quality metrics. Section 5.1 presents first the considered
quality metrics, which are the properties that allow comparing the effectiveness of different power
monitors. Section 5.2 discusses then the contributions from the literature, starting from the quality
metrics and the dimensions of the proposed taxonomy that were defined in Sections 5.1 and 3.1,
respectively.

5.1 Quality Metrics

This survey analyses the considered state-of-the-art run-time power monitoring solutions accord-
ing to four quality metrics. They are the temporal resolution and the performance, area, and power
overheads. Such metrics guide the analysis of the state of the art and allow evaluating and com-
paring the solutions proposed by the literature.

The design of a power monitoring infrastructure might optimize different quality metrics de-
pending on the requirements and constraints of the overall system. In general, the optimization
of a quality metric might worsen another one. The designers must indeed carefully consider the
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trade-offs between the contrasting quality metrics, and, in particular, might aim to minimize the
values of each of the four considered quality metrics.

5.1.1 Temporal Resolution. Sampling period, corresponding to the difference in time between
two consecutive estimates. In this survey, we measure the temporal resolution of a power moni-
tor (Temp. res. in Table 3) as either the absolute time in seconds or the number of clock cycles
occurring between two samples. For some contributions, the operating frequency of the target
platform is also reported in Table 3 for reference.

5.1.2 Performance, Area, and Power Overheads. The monitoring infrastructure may present
overheads in terms of loss of performance (Overheads − Perf. in Table 3), due to the use of com-
puting resources, and increased area (Overheads −Area) and power consumption (Overheads −
Power), originated by the additional hardware logic instantiated to implement the power monitor.

5.2 Detailed Overview of the State of the Art

The run-time power monitoring contributions were previously categorized according to their tar-
get platform and hardware or software implementation in Table 1, and their power modeling clas-
sification was further discussed in Section 3. Table 3 summarizes all the considered run-time power
monitoring state-of-the-art investigations, highlighting quantitative results in terms of temporal
resolution as well as performance, area, and power overheads. The state-of-the-art works are or-
dered primarily according to their target platforms, i.e., CPUs, GPUs, and hardware accelerators,
and secondarily according to whether the monitoring infrastructure is implemented at the soft-
ware or hardware level. The solutions for power monitoring can be grouped into four main classes
according to the target platform and the software or hardware implementation of the monitor-
ing infrastructure. In particular, we can identify software-based monitoring solutions targeting
general-purpose CPUs and GPUs and hardware-based ones targeting CPUs and hardware accel-
erators. Due to the overlapping of hardware-based solutions that target generic RTL designs, i.e.,
both CPUs and accelerators, such state-of-the-art solutions are treated as a fifth separate taxon-
omy class. In the rest of this subsection, we discuss state-of-the-art solutions in more detail, in the
same order as in Table 3, analyzing their quality metrics, strengths, and weaknesses.

5.2.1 CPUs - Software-based Power Monitoring. The first state-of-the-art solutions for run-time
power monitoring targeted general-purpose CPUs and made use of performance monitoring coun-
ters. Indeed, such counters were already available on target platforms, albeit being designed for
other purposes, i.e., monitoring the performance of the system by counting significant events such
as cache misses, memory accesses, and ALU operations.

[9] first introduced a run-time methodology that employed the PMCs available on the target
CPU to track events related to power consumption. The number and type of these events is peri-
odically stored and updated, allowing to estimate energy and power consumption both at thread
and system level. The methodology was evaluated on a Intel Pentium II general-purpose CPU [98]
and an AMD ELAN microcontroller. The authors remarked a performance overhead caused by
saving and restoring counter values in the context switching routine.

[48] implemented a similar solution on the Compaq Alpha 21264 [7] and Intel Pentium Pro [10, 85]
CPUs. The authors pointed out the limitation due to the maximum number of performance events
that can be measured simultaneously, requiring therefore to rotate through the available PMCs,
examining concurrently a limited subset of counters that can be accessed at the same time.

[43] described a methodology that combined measurements of the total CPU power consump-
tion with PMC-based per-component power estimates. The resulting tool offers total power mea-
surements at run time for Intel Pentium 4 [41, 105] single-core CPUs and also provides a breakdown
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Table 3. Detailed Taxonomy of the Run-time Power Monitoring State of the Art

Overheads

Ref. Temp. res. Perf. Area Power Section

[9] N/A N/A − −

Sec. 5.2.1

[48] 1ms N/A − −
[43] 440ms N/A − −
[95] 100K cc N/A − −
[91] 500ms @1GHz < 0.5% − −
[112] 1ms-1s @2GHz N/A − ≤ 60mW
[86] 10K cc 0.2% 4.9% 3%

Sec. 5.2.2

[71] 0.1-1ms @25MHz
≥ 0.3%l 1.5-4%l 0.8-2%l,e

≥ 2%n 1.5-3%n ≥ 2%n,e

≥ 3%m 1.5-3%m ≥ 3%m,e

[127] 2us @50MHz − 6.9% 4.7%

[126] 2us @50MHz − 9.9% LUT
12mW

3.9% FF
[121] 1cc − 0.2% 0.9%
[120] 1cc − 0.04-0.08% N/A

[70] Kernel N/A − −

Sec. 5.2.3
[20] N/A N/A N/A N/A
[103] 60Hz N/A − ≤ 5W
[66] Kernel N/A − −
[78] 500ms N/A − −

[47] N/A − 15.8-25.1%
N/A

Sec. 5.2.4

3600-5700 LUT

[60]
3us −

≤ 162 LUT

≤ 6mW
@100MHz

≤ 508 FF
≤ 2.5 BRAM
≤ 9 DSP

[83] 0.1-1ms @800MHz
≤ 1.4%s

1.4%r,s 1.8%r,s

Sec. 5.2.5

0%h

7.1%r,h 5.8%r,h

0.5%a,s 0.5%a,s

1.8%a,h 1.6%a,h

9.7%f,s 12.4%f,s

31.7%f,h 22.1%f,h

[52] 80-380 cc − N/A N/A
[23] 0.02-0.5ms − Constrained Prop. to area

[128] 0.1-0.5ms − ≤ 7%u ≤ 5.5%u

≤ 6%p ≤ 5%p

Legend: − no, N/A unavailable data; Temp. res. temporal resolution (see Section 5.1.1), sampling period in

seconds or clock cycles, (optional) operating frequency of target; Overheads − Perf./Area/Power performance,

area, and power overheads (see Section 5.1.2); [71]: l linear, n NN, and m MARS models, e energy overhead; [83]: r

RI5CY, a AES, f FIR, s SW-based, h HW-based power estimation; [128]: u unprotected, p protected.

of power consumption for the 22 main components of the CPU. The authors employed 15 PMCs
with 4 rotations, minimizing the counter switches required to measure all the needed metrics. No-
tably, an actual run-time monitoring implementation would mandate for the collection of 4 PMCs
at most, due to limitations of the Pentium 4 CPU.
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[95] assessed the possibility to identify a universal subset of PMCs that can be used to accu-
rately estimate the power consumption of any computing architecture, reducing the number of
considered PMCs in order to minimize the effects of the limitations of the actual number of con-
currently monitored PMCs and the effective availability of PMCs. The experimental analysis was
provided on the Intel low-power Atom [37] and high-performance Nehalem [102] processors, high-
lighting an estimation error below 5%. The authors also remarked the effects of the window size
on the power estimation error. Indeed, while a small interval might cause a more significant ac-
curacy loss, large intervals may lead to more accurate estimates at the cost however of slowing
down the feedback control dynamics. An interval length of 100, 000 clock cycles was shown to be
a reasonable solution for both considered CPUs.

In [91], the authors targeted an ARM big.LITTLE chip consisting of ARM Cortex-A7 and -A15

cores. The proposed power monitoring infrastructure collected the PMC values by exploiting the
ARM Streamline gator kernel module and daemon [4]. The gator driver is a dynamic kernel module
that interrupts the core at periodic intervals to collect the performance counters. The implemented
power monitoring solution is characterized by a minimal performance overhead due to the gator

daemon in the background. According to the authors, the average CPU utilization of the gator

daemon was less than 0.5%.
[112] targeted an Exynos 5422 SoC, that implemented an ARM big.LITTLE architecture and fea-

tured four ARM Cortex-A7 low-power cores and four Cortex-A15 high-performance cores. The
implemented power model required the collection of six performance counters and of the clock
cycles counter. The authors described the employed data acquisition setup on a real-world, com-
mercial platform, namely the ODROID-XU3 development board. However, such an experimental
setup is not aimed to provide run-time power monitoring. The sampling rate of PMC collection
ranges between 1Hz and 1KHz, while the Cortex-A15 in particular can reach a clock frequency
up to 2GHz. The power overhead given by the data collection platform is up to 60mW at a 1KHz
sampling rate on a Cortex-A15 core.

5.2.2 CPUs - Hardware-based Power Monitoring. Hardware-based monitoring solutions
emerged later than software ones due to the need to build a custom infrastructure that accounts for
the toggling activity of select signals within the target platform. Such hardware-based monitoring
techniques were first applied to general-purpose CPUs.

[86] presented a methodology to modify a processor so that it can estimate its own power con-
sumption at run time, building a power monitoring infrastructure composed of hardware counters
attached to the control signals of the target architecture. The area and power overheads given by
applying the proposed methodology to an existing processor [87] showed values of 4.9% and 3%,
compared to the original target processor, respectively, with a sampling period of 10, 000 clock
cycles. Notably, the computation of the power and energy consumption estimates is performed
at the software level by the target processor, producing a 0.2% performance overhead. The small
impact of performing such computation within the target processor justifies the choice to not im-
plement additional dedicated logic, which would instead add further cost in terms of area and
power consumption, according to the authors.

[71] proposed a methodology to design a power monitoring infrastructure considering all single-
bit signals derived from the RTL description of the target platform, instead of focusing only on the
control signals as in [86]. The monitoring infrastructure collects the toggling activity of an identi-
fied subset of single-bit signals by instantiating dedicated hardware counters. The authors applied
the methodology to a SecretBlaze processor [8] implemented on a Xilinx Spartan-6 FPGA [2]. No-
tably, the computation of the power consumption estimate, starting from the toggling activity
measured by the hardware counters, is carried out at the software level, i.e., it is demanded to
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Fig. 3. Architecture of two activity counters measuring the switching activity of a multi-bit signal [127].

the CPU. The sampling period varies between 100us and 1ms, while the CPU clock frequency is
set to 25MHz. The size of counters, which depends on the sampling period and on the clock fre-
quency, ranges between 12 and 15 bits. Each counter occupies eight Spartan-6 slice registers and
LUTs, resulting in an area overhead of 0.5% FFs and 0.3% LUTs compared to the target SoC. The
overall area overhead ranges from 1.5%, for three counters, to 4%, for eight counters. Performance
overheads grow with the number of counters. The linear model has the lowest overhead, while
the maximum overhead of MARS is critically large. The maximum overhead of the linear and NN
models is lower than 10% for sampling periods greater than 200 and 300 us, respectively. This over-
head reduces significantly by limiting the number of signals in the models and by increasing the
sampling period, decreasing down to 0.3% for linear and 2% for NN models with three signals at
1 ms. The minimum MARS performance overhead is instead about 3% at 1 ms. On the energy side,
the overhead when implementing a linear model is the lowest one, ranging between 4.2% and 11%
at 100 us and between 0.8% and 2% at 1 ms. It is instead greater than 12% at 100 us and 2% at 1 ms
for NN and 20% at 100 us and 3% at 1 ms for MARS.

[127] presented a run-time power monitoring methodology that automatically extracts and im-
plements a power model from the RTL description of the target architecture. The use of ad-hoc
hardware that continuously updates the power estimate minimizes both the performance and the
power overheads. The PowerProbe methodology was validated on mor1kx [81], a 32-bit, single-
issue, in-order CPU that implements the OpenRISC 1000 ISA [55]. The CPU was implemented on
a Xilinx Artix-7 FPGA [92] at 50MHz. Results showed an average prediction error within 9% and
area and power overheads limited to 6.9% and 4.7%, respectively, by employing six toggle counters,
each of which occupies 1.1% area and consumes 0.8% power with respect to the overall CPU. The
measured statistics, i.e., the toggle counts for the primary inputs and outputs of each module in
the hierarchy, were periodically sampled every 100 clock cycles, resulting in a temporal resolu-
tion of 2us. Despite the claimed generic applicability of the methodology to any RTL design, the
experimental evaluation did not consider dedicated hardware accelerators.

[126] extended the work in [127] to target complex hardware multi-threaded processors. Tog-
gling activity counters implement two different architectures, depending on whether they measure
single-toggle or Hamming-weight counts. Figure 3 details the architecture of such two classes of
counters monitoring a generic multi-bit wire. A single-toggle counter, whose architecture is de-
picted in Figure 3(a), counts whether there is at least one change in the signal on the monitored
physical wire. It takes the multi-bit input signal and combines a XOR-tree network with an OR
gate to output 1 or 0 depending on whether at least one bit of the signal toggled, and the produced
value is added to the cumulative switching activity stored in FF pwr. A Hamming-weight counter,
whose architecture is depicted in Figure 3(b), counts instead the number of bits in the signal that
switched their values. It takes the multi-bit input signal and combines a XOR-tree network with an
adder to output the number of switching bits, adding the latter value to the cumulative switching
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activity stored in FF pwr. Concerning area overhead, the number of flip-flops for Hamming-weight
counters increases with the size of the monitored signal and the number of clock cycles in the time
window, while in the case of single-toggle counters it depends only on the time window, since for
each clock cycle they perform at most a unitary increment. Hamming-weight counters also show
a higher power overhead, due to their higher switching activity. The PowerTap methodology was
validated on nu+ [28], a hardware multi-threaded SIMD processor, which was implemented on a
Xilinx Artix-7 FPGA [92]. Temporal resolution was set to 2us at a 50 MHz clock frequency, thus
corresponding to 100 clock cycles. The RTL implementation showed an area overhead of 9.95%
LUTs and 3.87% FFs and a power overhead of 12.17 mW.

The APOLLO framework proposed in [121] also automatically instruments run-time power mon-
itoring capabilities within an existing RTL design. The monitoring infrastructure operates by per-
forming the accumulation of the weights assigned to the monitored signals which toggled their
state during the current clock cycle. Such conditional accumulation is implemented as a set of
adders and AND gates and no multipliers. The weights are fixed-point values with the same width,
and they are accumulated, conditionally depending upon the toggling activity of the monitored
signals, into a single counter that holds the estimation for the average power consumption over
a sampling window. The experimental evaluation, targeting an Arm Cortex-A77 core, explored a
design space where the number of monitored signals ranged between 100 and 400 and the num-
ber of bits for the fixed-point representation of the model weights ranged from 5 to 13. The area
overhead stayed below 0.5% across the whole design space, reaching values below 0.1% with the
minimum number of monitored signals and smallest fixed-point representation. In particular, the
best combination of accuracy and overheads was identified by the authors to only require an area
overhead of 0.2% and a power overhead of 0.9%.

The DEEP framework [120] is an extension of the work in [121], and the architecture of the mon-
itoring infrastructure is similar to the one automatically instrumented by the APOLLO framework.
To reduce the resource utilization of the run-time monitor, weight quantization is applied at design
time. All the weights are quantized to integers and can be encoded by a different number of bits.
The values of the weights are fixed and determined at design time, simplifying the architecture of
the power monitor. In addition to produce the estimation of the power consumption of the whole
monitored design, the monitoring infrastructure can also be modified to produce and expose esti-
mates at the component level. The sum of such component-level estimates will then correspond
to the total power consumption. The experimental evaluation, targeting a 64-bit, single-core CPU,
produced results that highlighted an area overhead ranging from 0.04% to 0.08%.

5.2.3 GPUs - Software-based Power Monitoring. Software-based power monitoring was also ap-
plied to GPUs, that expose performance counters in a similar way to general-purpose CPUs. An
example is the software interface provided by the CUDA framework, which exposes the statistics
collected from the PMCs of Nvidia GPUs.

[70] employed the CUDA performance counters exposed by Nvidia GPUs to estimate the power
consumption of GPU kernels. The proposed solution is limited by the need to monitor 13 counters,
all of which are employed by the identified power estimation model, while the GPU only allows
4 counters to be monitored simultaneously. All counter values can be collected by running the
same kernel multiple times with the same input data, that is a possibility only for offline power
estimation, while in an online scenario it is mandatory to minimize the number of monitored
counters. The authors did not provide any analysis of the performance overhead.

The authors of [20] collected run-time characteristics from the execution of a set of sample
kernels on the GPGPU-Sim GPU simulator, a cycle-level simulator that simulates an instruction
set which closely resembles the real ISA of Nvidia GPUs.
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[103] targeted a Nvidia CUDA GPU, collecting the selected performance events to be fed to a run-
time power model through CUPTI [80]. A dedicated thread was devoted to sampling a selected set
of GPU performance counters at a sampling interval at a sampling frequency of 60Hz, i.e., 60 times
per second. Even the small power overhead due to the run-time profiling thread was considered
within the power model, and was less than 5W even on the higher-end Nvidia Tesla C2075 and
M2090 GPUs.

The authors of [66] applied their proposed power modeling methodology targeting mobile GPUs
to monitor the power consumption of the Intel Z3560 heterogeneous mobile SoC, which features
an Imagination PowerVR GPU. The GPU performance counters were collected through the Imagi-

nation PVRScope API, while the CPU counters were obtained using the Linux perf API [25].
[78] targeted a Nvidia Tegra X1 SoC, implementing the collection of performance monitoring

counters from the Nvidia Maxwell GPU to be fed to a run-time power model. The power consump-
tion model required four PMCs, that is the maximum limit by the GPU architecture. Sampling was
performed through a CPU thread that collected the counters once every 0.5 seconds, i.e., at a 2Hz
sampling frequency.

5.2.4 Accelerators - Hardware-based Power Monitoring. Other works in the state of the art of
power monitoring targeted instead dedicated hardware accelerators, either designed by hand or
generated through high-level synthesis. Estimating the power consumption of accelerators re-
quires by definition to recur to alternative proxies to PMCs, which are not available on such targets.

[47] presented a framework that allowed to automatically instrument the power model at the
RTL level by collecting the toggling activity of an identified subset of registers, thus effectively en-
abling run-time power monitoring. The additional logic instrumented by the proposed framework
must compute the sum of the products between the toggling activity and the model coefficients,
with the result corresponding to the estimated dynamic power consumption. The model coeffi-
cients are quantized to fixed-point values to simplify their hardware implementation. The authors
evaluate the area overhead on a H.264/AVC decoder implemented on a Xilinx Virtex-6 FPGA [2].
The additional power monitoring logic requires 3,603 LUTs, compared to the 22,807 LUTsrequired
by the H.264/AVC decoder, with an area overhead of 15.8%, if a 1-stage adder tree is employed.
In such conditions, the decoder runs at a 41.6MHz clock frequency while the clock frequency for
the power monitoring infrastructure is set at 73.3MHz, which is sufficient for run-time estimation,
according to the authors. Moreover, the adoption of a 2-stage adder tree would require instead
5,735 LUTs,with an area overhead of 25.1% and increasing the clock frequency to 114.2MHz.

The hardware power monitoring infrastructure proposed in [60] targeted HLS-generated accel-
erators instantiated on FPGAs [73] by implementing a decision-tree-based power model, with the
goals of reducing the overheads of traditional linear-model implementations and providing a sam-
pling interval as small as tens of clock cycles. The FPGA-based power monitoring architecture is
composed of two main components. The toggling activity counters may exploit either LUT or DSP
resources, according to which are most widely available, depending on the target chip and on the
resources already occupied by the implemented RTL design. The decision tree regression engine
is designed instead as a memory-based architecture, which exploits the BRAM resources available
on the FPGA to store the memory structure of the decision tree. The experimental analysis em-
ployed C-based benchmarks from CHStone [38], PolyBench/C [122], and Machsuite [93], deriving
their Verilog description through the Vivado HLS framework [73] and implementing them on a
Xilinx Virtex-7 FPGA [92]. The power monitoring infrastructure was shown to require up to 162
LUTs, 508 FFs, 2.5 36kb BRAMs, and 9 DSPs. The power overhead was up to 6 mW and the temporal
resolution of the power estimation was 3 us.
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5.2.5 CPUs and Accelerators - Hardware-based Power Monitoring. More recent works explored
the possibility to monitor the power consumption of generic RTL designs, encompassing general-
purpose CPUs and dedicated hardware accelerators, by applying the same methodology, which
exploits the usage of hardware counters to monitor the toggling activity of RTL signals.

[83] implemented power monitoring for run-time dynamic and static power estimation, account-
ing for the toggling rate of an identified subset of flip-flops. The methodology is proposed in two
variants, a software-based one suited for SoCs and CPUs that produces smaller area and power
overheads and a hardware-based one that can be tailored to fit any RTL design. The hardware-
based meter requires additional area and produces additional power consumption due to the need
to also perform in hardware the fixed-point multiply-and-accumulate operations, which are in-
stead carried out by a CPU or a dedicated microcontroller in the software version, that are required
to compute the power estimate. The counters for the toggling rate of the identified flip-flops, as
well as the power computation logic in the hardware-based case, are automatically added to the
original RTL design. The methodology was evaluated on a RI5CY RISC-V core [110], on a FIR filter,
and on a AES cryptographic accelerator. On the RISC core, the power meters have an area over-
head of 1.4% for the software-based version and 7.1% for the hardware-based one, with an average
estimation error smaller that 3%. Concerning performance overhead, the authors note that the
software-based computation of the power estimate takes around 1.4us, that corresponds to up to
1.4% for a sampling interval that ranging between 100us and 1ms.

The Simmani methodology proposed in [52] automatically instruments the power model into
the target platform by exploiting a custom pass added to the FIRRTL compiler [45]. Each moni-
tored signal is fed to a corresponding component that computes the Hamming distance between
the values at the previous and current clock cycles. In addition, each of those signals is assigned
to a counter within a register file instantiated in the top module of the target platform. The unit
computing the Hamming distance of each monitored signal is connected to the corresponding
counter in the register file, and such counter is updated at each clock cycle. The register file is
exposed to the software running on the target platform. Within the experimental evaluation, tar-
geting a heterogeneous processor composed of a Rocket in-order core [6] and a Hwacha vector
accelerator [57], the power monitor is implemented to collect the toggling activity from 40-120
signals in sampling windows of 80-380 clock cycles. No information is provided by the authors
for what concerns area and power overheads due to instantiating the run-time power monitoring
infrastructure within the target platform.

[23] proposed a framework that leveraged the Yosys open-source synthesizer [117] to automati-
cally implement a resource-constrained power monitor in any computing platform for which the
hardware RTL description is available. Indeed, while the other state-of-the-art works mostly fo-
cused on maximizing the accuracy and temporal resolution or minimizing the implementation
overheads, this work aimed to provide the best accuracy and resolution while satisfying a strict
area constraint pre-defined by the system designer. The methodology was applied both to HLS-
generated hardware accelerators [90], which implemented eight kernels from the WCET bench-
mark suite [34], and to a 32-bit RISC-V single-core CPU [97]. At a 20us temporal resolution, the
proposed methodology produced an area overhead reduction comprised between 37% and 81%
compared to state-of-the-art solutions that did not consider area constraints, while maintaining
the average accuracy loss below 5%. In a scenario that is more common with the rest of the state
of the art, i.e., with a temporal resolution in the range of hundreds of microseconds, the average
accuracy loss remained below 1% with a similar area overhead.

More recent works targeted the security aspects of power monitoring. Due to the threat posed
by side-channel analysis (SCA) attacks carried out by analyzing the power estimates generated
by hardware-based power monitors, [128] introduced a methodology that extends the work in [23]
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to design SCA-resistant power monitors. The proposed framework ensures that the switching
activity of the signals used to compute the power estimates is not a function of the cryptographic
keys, plaintexts, and ciphertexts processed within the target computing platform. SCA-resistant
power monitors targeting a general-purpose computing platform showed an average estimation
error in the 1.2%-2.4% range, depending on the temporal resolution, compared to 0.9%-2.3% for the
corresponding unprotected version, while the ones targeting an HLS-generated hardware acceler-
ator showed 0.9%-2.7% and 0.5%-1.5% error ranges, respectively. The area and power are up to 6%
and 5%, respectively, for the protected monitors, while the corresponding unprotected ones show
area and power overheads up to 7% and 5.5%.

6 SUMMARY AND FUTURE DIRECTIONS

This survey reviewed previous research on run-time power monitors for edge devices, with the
final goal of steering the reader towards the identification of the power monitor that best fits
the needs of their application scenario and the constraints of their target computing platform.
Starting from the presentation of the run-time modeling and monitoring design problems, the
survey defines a novel taxonomy for run-time power monitors where each contribution is classified
according to a set of carefully selected quantitative and qualitative metrics.

The review of the state of the art highlighted five key findings:

• Linear regression represents the most used statistical approach to model the relationship
between dynamic power consumption and the switching activity of the circuit [86]. Com-
pared to more complex solutions that implement models based on learning techniques such
as neural networks [66, 103], random forests [20], decision trees [60], and deep learning tech-
niques, the reported results demonstrated that linear regression offers lower complexity and
overheads while ensuring accuracy error for the corresponding power monitors within 5%
across a wide range of computing platforms [71].
• Run-time power monitors of commercial CPUs and GPUs are commonly implemented at

the software level and leverage coarse-grained performance events such as cache misses
and ALU, floating-point, and load-store instructions [43, 48, 77, 91, 95, 112]. Such design
choices are motivated by (i) the impossibility of changing the hardware of such platforms,
and (ii) the availability of a performance counter infrastructure to collect the required per-
formance events to feed the power model [9].
• The run-time power monitors for application-specific accelerators are implemented in hard-

ware leveraging the linear regression approach on the circuit-level switching activity of se-
lected signals [47, 60, 83]. At the same time, as the momentum of the RISC-V ISA is fueling a
trend in the design of custom embedded and edge CPUs [6, 16, 29, 30, 123], similar monitoring
techniques are commonly applied also to such platforms, driven by their simplicity compared
to commercial processors and the availability of their RTL design sources [71, 120, 126].
• Hardware-based monitors can consider either selected single bits of multi-bit signals [121]

or entire multi-bit signals [120], and activity counters for multi-bit signals can notably be
divided into single-toggle and Hamming-weight counters, as previously shown in Figure 3
and discussed in Section 5.2.2. The design of the toggling activity counters is crucial to the
area and power overheads and accuracy of a hardware-based monitor. The simpler architec-
ture of a single-toggle one consumes less power due to a reduced switching activity, since
it records at most one toggle regardless of the number of toggling bits [126]. In contrast, a
Hamming-weight counter, which outputs a statistic that encodes more information than a
single-toggle one, i.e., the number of bits that toggled within the monitored multi-bit sig-
nal, has a more complex architecture, including an adder instead of the XOR used in the
single-toggle counter [120].
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• State-of-the-art proposals have traditionally targeted primarily the optimization of the
run-time power monitor’s accuracy and temporal resolution metrics. However, recent contri-
butions have addressed the area overhead. For example, [23] proposed an area-constrained
methodology to automatically instrument run-time power monitors in generic RTL hard-
ware components, while [120] demonstrated the possibility to aggressively reduce the area
overhead by selecting model variables at bit level rather than signal level, i.e., signals selected
by the power model can be any individual bits rather than whole signals.

Having carefully investigated the current state of the art related to run-time power monitors for
edge devices, we identify the following key research directions.

Optimization of non-functional metrics. While research in the field started considering the area
overhead as a meaningful metric to optimize within the systematic design of the run-time power
monitor [23, 120], the optimization of the power overhead one is still largely neglected. Notably,
the run-time power monitor can easily become a primary source of power consumption, especially
for those monitors leveraging the circuit-level switching activity, since the power consumption due
to the power monitor is directly related to the switching activity and the bit width of the moni-
tored circuit-level signals [47]. From a different, but related, perspective, the security of a run-time
power monitor represents an additional non-functional metric to consider in the design methodol-
ogy [128]. Side-channel attacks are implementation attacks that allow retrieving the secret key of
an executed cryptographic primitive by correlating the partially known data being encrypted, i.e.,
the plaintext, with the power consumption of the computing platform performing such encryp-
tion [63, 109]. In this scenario, the power monitor can provide low-noise power estimates making
it easier for malicious actors to carry out a side-channel attack [11]. To this end, further research
must be devoted to designing secure run-time power monitors that carefully balance the security
requirements, the overheads, and the quality of the power estimates.

Implementation of hierarchical run-time power monitors. Traditionally, the design of the run-time
power monitor has targeted a single computing platform that was seen as a monolithic device.
However, the ever-increasing complexity of current computing platforms may require novel solu-
tions to the design of run-time power monitors. For example, complex heterogeneous systems can
be seen as the composition of a set of hardware accelerators and a set of general-purpose proces-
sors [33]. Conversely, large FPGAs can offer enough space to allocate multiple hardware accelera-
tors, each of whom may be subject to different constraints or requirements, imposing the design
of ad-hoc power monitors for each part of the system. Whereas state-of-the-art power monitors
can already operate at component-level granularity to compose the dynamic power consumption
of a single design such as a CPU [43, 120], we encourage research into designing future run-time
power monitors that can provide effective estimates on those highly heterogeneous platforms with
a multitude of different CPU cores and accelerators.
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