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Abstract Recycling of Glass Fibers Reinforced Plastics (GFRP) can be preferen-
tially performed through mechanical processes due to the low cost of virgin fibers.
Because of the poorer mechanical properties after comminution, the most inter-
esting solution to reuse this material is a cross-sectorial approach, in which particles
obtained through shredding of products from one sector are used in another sector.
To allow this, a fine control on the particles dimension is fundamental, together with
the minimization of operational costs. In this chapter, after a deep analysis on the
available size reduction technologies and a preliminary feasibility analysis on the
products involved in Use-Case 1 of the FiberEUse project, a 2-step architecture to
optimize these two characteristics is presented. The models for both steps are shown
and the developed solutions is applied to the End-of-Life products, demonstrating
the potential of this approach, leading to optimal dimension of the particle with
operational costs lower than both virgin fibers and disposal costs.

Keywords GFRP · Mechanical recycling · Optimization · Dimensional
distribution · Operational costs

1 Introduction

Due to their applications and, in particular, to lower price of virgin fibers, Glass Fibers
Reinforced Plastics (GFRP) are currently inserted in co-processing of cement [1] or
recycled through mechanical processes, in particular using shredding technologies.
In addition, comminution reduces length of the fibers, decreasing related mechanical
properties, hindering the possibility of a closed-loop recycling.Moreover, a complete
liberation of the fibers from the resin matrix residues is impossible.
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To overcome these limitations, a cross-sectorial approach has to be followed, in
which shredded GFRP from sectors with higher requirements on mechanical prop-
erties could be reused in new products with lower requirements. Several possible
applications forGFRP in function of the required tensile strength and tensilemodulus
are possible. As an example, particles in output from a mechanical recycling process
of End-of-Life wind blades could be used as fillers for thermal, electric and sound
insulation but also in higher-added value applications as automotive. Furthermore,
they could be used in other sectors as sanitary, sports and leisure equipment or design
products, which form the Use-Case 1 of FiberEUse project. Different reuse options
need different dimensional and morphological properties.

Leveraging on a cross-sectorial approach can open new potentials for composite
made parts recycling, remanufacturing and re-use under a systemic circular economy
perspective. To enable this cross-sectorial approach, a recycling driven by the char-
acteristics needed by the sector in which the fibers will be used as secondary raw
material (that are driven especially by particles dimensions) has to be implemented.
In addition, due to the low price of virgin glass fibers, a minimization of the process
cost is needed to make the recycled GFRP competitive as secondary raw materials.

2 State of the Art

As shown in [2], recycling of composite materials is performed following three
different procedures: mechanical, thermal and chemical methods. Focusing on
mechanical recycling, it has been applied in particular on GFRP, in particular to
Sheet Moulding Compounds (SMC) and Bulk Moulding Compounds (BMC) [3].
The shredding process aims to create particles that can be included as reinforcement
in new products. Palmer et al. [4] have shown also the possibility to have a real
closed-loop recycling of thermoset composites reintegrating the recovered fibers as
reinforcement in SMC and BMC automotive.

Size reduction processes aim to obtain high liberation of target materials and they
are able to create homogenous (both in shape and in size) particles mixtures at a
desired dimension [5]. Palmer et al. [4] underlines that higher degrees of liberation
are achieved by a particle made of a small number of materials and the highest
possible liberation is obtained for particles made of only one material.

Different attempts to develop mathematical models of a shredding process are
available in literature, in particular focused on the mining field. Gaudin [6] proposed
the first model based on mineral texture (called by the author “Mineral Dressing”),
simplifying the mineralogical texture of an ore and predicting the particles distri-
bution as a function of the size. King [7] improved this approach, proposing an
equation to predict linear liberation distribution as a function of the particle size.
Instead of transforming the original ore texture, the author used a linear probe across
the image of a polished section of an ore to characterize it. Meloy [8] developed a
texture transformation for the original ore texture to a simple geometry as spheres
or cubes. This allows to consider the shredding process as the broken of the regular



Smart Composite Mechanical Demanufacturing Processes 63

geometric model into smaller particles with the same shape and to calculate the liber-
ation distribution through geometrical formulas. Barbery [9] improved the approach
using a Boolean model. In this way, under some assumptions (in particular the non-
preferential breakage), he was able to calculate the fraction of liberated particles.
King [10] derived an analytical solution to the multidimensional integrodifferential
equation applied to a shredding batch process for multi-component mineral system.
The obtained solution was compared to experimental data, showing that the model
is reliable.

More recently, several approaches tried to model the evolution along time of
the particle size distribution through the determination of the probability that parti-
cles of a specific liberation class generate particles of another liberation class. One
of the most studied approach is the “Textural Modelling”. It used the mineralog-
ical information acquired during the process to predict the dimensional distribution
evolution. Gay [11] developed a mechanistic method in which ore properties are
direct consequence of the changes in composition distribution.

One the other hand, literature studies are focused on dimensional distribution. Gay
[12] takes the “kernel estimation” approach and applied it to this problem. The kernel
represents the volumetric frequency of the event that one particle with a specific
composition and dimension (parent particles) will generate another particle with
different characteristics (progeny particles). Once the kernel has been determined, it
could be applied to a new set of input particles to predict composition and distribution
of progeny particles. The author used a probabilistic approach to infer the kernel
properties without deriving mineral texture and mechanistic properties but using
only effective experimental data. The considered method is the maximum entropy
principle. The author exploited it to explain and predict multi-sized progeny particles
from single-sized parent particles.

Despite the several examples in mineral field, shredding process in recycling
has been addressed by few works. In particular, [13] modelled the relationship
between product mineralogy and size reduction and liberation during the EoL vehi-
cles comminution tomaximize the efficiency of following separation processes. They
also underlined the differences in shredding between mineral and recycling fields.
In particular, recycling is a continuous process with multi-material products, with
strongly dependency on product design. This concept has been improved and demon-
strated through simulations by Castro [14]. This approach requires a relevant number
of experiments to train the model.

For this reason, the approach used to model the shredding process in FiberEUse
project is based on Population Balance Models (PBMs). Population Balance Models
are mathematical models able to represent the evolution of particles characteristics
through three different quantities, namely the percentage of each particle in a specific
pre-determined size class per each time unit, the evolution of every single size classes
per time unit and the proportion of particles that are able to exit from the comminution
chamber per time unit.

PBMs have been largely used in literature, dividing themodels depending on time,
which could be considered discrete or continuous. Due to the relatively short average
residence time of the particles, the discretization of size classes and the simplicity in
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describing the process as a series of short elementary breakage events, discrete time
PBMs have been used, both in literature and in Task 2.2.

Different examples of PBMs for shredding are present in literature. A recent work
by Bilgili [15] analyzes the non-linear effects of particles in comminution dividing
them in three different types and underling the consequent deviations from the linear
behavior.

Bilgili [16] developed a model for long time size reduction process including all
these deviations. In particular, they decompose the breakage rate in one linear and one
depending on the population. This second breakage rate is described by a functional.
This last one explicitly considers the three types of deviations and the interactions
between particles with different dimensions. This model is a time continuous non-
linear model valid for dense-phase comminution process with extended shredding
time.

These models require several experiments for the training. For this reason, a
revision of the assumptions has to be done to adapt them to recycling field and
allowing the control and optimization of recycling processes reducing the number
and the cost of experiments to estimate the parameters.

3 Rationale of the Work

To shred GFRP EoL products, a size reduction procedure as in Fig. 1 has been
developed. A preliminary coarse shredding is performed to reduce the dimension of
the products, achieving suitable size for the fine comminution. This process-chain
allows a fine control on the final particles dimensions together with a maximization
of the throughput.

Different comminution technologies are commercially available. A deep analysis
on most of them has been carried on and it is summarized in Table 1.

Following this analysis, the first shredding step has been performed using a single
shaft shear shredder byErdwich (modelM600M-400), reaching aparticles dimension
lower than 10 mm. The obtained shredded material has been treated with a cutting
mill by Retsch (model SM-300) using several different grids.

While the coarse shredding aims to create a particles mixture suitable for the
second stage, the fine comminution step is responsible for the dimensional distribu-
tion of the particles and it mostly impacts on the operational costs. As stated before,
different reuse options need different particles characteristics (in particular dimen-
sions). As a consequence, the control of the shredding process is fundamental. A first
formalization has been developed as in Fig. 2.

The input material, composed by entire products or coarse shredded particles,
needs to be characterized. In particular, the most interesting information are the
dimensional distribution of particles and, if needed for following steps, all the
geometrical and morphological information on the mixture. These data are gath-
ered and stored in a dedicated module, that could be useful both for model training
or for future purposes. A simulation module receives the information, predicting
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Fig. 1 Two stage size reduction process-chain

Table 1 Comparison of the different shredding technologies

Technology Throughput Efficiency Suitability for composites

Two shafts shear
shredder

High Risk of fibers wrapping Good for coarse shredding

Single shaft shear
shredder

High Good Good for coarse shredding

Hammermill High Good for thermoset
matrixes, not suitable for
thermoplastic matrixes

Good for coarse shredding
of thermoset composites

Impact crusher High Not suitable for
thermoplastic matrixes

Low

Jaw crusher High Not suitable for
thermoplastic matrixes

Low

Cutting mill Mid Good Best for fine shredding

Disc mill Low Not suitable for
thermoplastic matrixes

Low

Ultracentrifugal
mill

Low Good Good for fine pulverization
(preparation for 3D printing

the evolution over time of dimensional distribution and of all the other interested
characteristics. Then an optimization module, able to exchange information with the
simulation one, processes these data together with information about target distri-
bution and characteristics. The optimized actions suggested by this module are able
to change parameters of the physical shredding process, leading to optimal output.
In addition, information on the machine status (as energy consumption) could be
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Fig. 2 First procedure for shredding control

acquired and processed in the same way, to obtain a process optimized not only in
terms of material characteristics but also in cost, fundamental in recycling. From this
first formalization, it is evident the needs to have good quality and fast data gathering
systems in the physical world and robust and validated models in the cyber one. In
addition, it is fundamental to understand which parameters could be controlled in a
shredding process and how they could be changed.

To design the best control procedure, a deep analysis on common characteristics
among the different technologies has been done and the most important parame-
ters have been studied, dividing it in controllable and non-controllable ones. These
parameters are described below and summarized in Table 2.

• Volume of the chamber. This design parameter controls the maximum amount of
material that can be processed simultaneously. This mass is function not only of
the volume of the chamber but also of the material density (high density results
in higher quantity of material that can be treated and vice versa).

• Number of breaking/cutting elements. Every technology is based on different
breaking principle but all the machines have number of tools as design parameter.
As an example, in cutting mill this is the number of inserts, in hammermill the
number of hammers and in impact crusher the number of breaking plates.

Table 2 Design and
controllable parameters of a
shredding process

Design parameters Controllable parameters

Volume of the chamber Grate size (offline)

Number of cutting elements Rotational speed (online)

Number of cutters per cutting
elements

Feed rate (online)
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• Number of breakers/cutters per cutting element. The breaking or cutting tools
could be designed with one or multiple elements that are able to perform size
reduction. As an example, in cutting mills there are typically four cutters per
insert but only one working at a time with different principles and under different
stresses and strains. On the other hand, impact crusher has usually only one face
of the breaking plate which undergoes the impact force.

• Grate size or free falling aperture dimension. The mechanism of particles exit in
case of continuous flow processes (the most interesting for recycling) is a control-
lable parameter. Typically, this could be done through two different approaches.
The first one is based on a grate, that could be easily changed, with a specific
hole size and shape. Particles that have a dimension lower than the hole size are
able to exit, while the others remain in the chamber to be reduced in dimension
again. This is used for example in cuttingmill, shear shredder or hammermill. The
second one is the so called free falling aperture, in which there is a space between
two elements of the shredding machine, allowing particles that can pass through
that space to exit from the process, as in case of impact crusher and jaw crusher.
In both cases, grate size influences both throughput and dimensional distribution
of the particles in output.

• Speed of the breaking/cuttingmechanism. Speed of the breaking or cuttingmecha-
nism is typically a controllable parameter that strongly influences both throughput
and costs of the process. As an example, the moving part in cutting mills and in
shear shredders is the rotor on which the cutting tools are mounted while in
hammermills, chain shredders and ultra centrifugal mills the central shaft moves,
in impact crushers the drumwith the hangling systems, in jaw crushers themoving
jaw and in disc mills the rotating disc itself.

• Feed rate. Feed rate is common to all the processes and could be controlled
regulating the material entering in the chamber every time unit. There is an upper
limit to this value that depends on several factors as grate size (or free falling
aperture) and, in part, speed of the size reduction mechanism.

From this table it is evident that grate size on one side and rotational speed and feed
rate on the other need two different control approaches. A machine stop is needed to
change the grid and this task is performed manually. This results in loss of time both
for the change and for transition to stationary process. On the other hand speed of
the rotor and throughput (which is equivalent to the feed rate in stationary process)
could be controlled online, avoiding stops. As a consequence, a 2-step approach has
been developed as in Table 3.

The first step is dedicated to the optimization and control of the offline param-
eters, in particular the grate size. The objective is to optimize the dimensional and
morphological distribution of particles in output, increasing the liberation of target
materials and obtaining particles suitable for following processes (as recycling or
direct reuse). This step takes as inputs the dimensional distribution of the particles
to process and the target output distribution, typically suggested by an operator. The
output will be the best grate to use in the size reduction process and the throughput
expressed in mass per time interval.
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Table 3 2-step approach for control of size reduction processes

Step Objective Input Output How

1 Optimize
dimensional
distribution of
output particles

– Dimensional
distribution of
input particles

– Target output
distribution

– Optimal grid
size

– Related
throughput

Population Balance
Model (PBM) and least
squares method
(optimization)—offline

2 Minimize
operational costs
(energy
consumption and
tool wear)

– Throughput (from
step 1)

– Rotational
speed

Cyber-Physical
System—online

The second step has as objective the minimization of operational costs, in partic-
ular due to energy consumption and tool wear. It takes as input the unitary throughput
calculated in Step 1 and it gives as results the rotational speed and the throughput
expressed in mass per time unit (as seconds or hours).

In the next section, the models developed for both steps will be presented, with
an emphasis on the first one.

4 Methodology

4.1 Feasibility Analysis

A preliminary analysis has been performed on different EoL samples (e.g.
sports equipment, sanitary, wind blades and construction). After the process-chain
explained in Fig. 1, the obtained particles have been analyzed using two different
technologies as shown in Fig. 3. Thefirst one is an analytical vibrating sieve byRetsch
which divides the sample in 9 different size classes, from 63 μm up to 10 mm. The
second technology used is an optical Computerized Particles Analyser CPA 2-1 by
Haver & Boecker. It is able to perform a real time dimensional and morphological
analysis giving different distributions and the particle list with all the information
available to be used (examples of typical output are in Figs. 4 and 5). Figure 6 shows
a typical output result of a dimensional and morphological analysis (obtained on
particles from shredding of sanitary products).

Three repetitions have been performed for every EoL product at three different
rotational speeds. These analyses underline the importance of the grid on the density
distribution. Changes in the grate size do not result in morphological characteristics
variation while show relevant differences in density distribution. In addition, from
the analysis on the results at different rotational speeds could be inferred that this
parameter does not affect the final dimensional distribution.
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Fig. 3 Analytical vibrating sieve on the left (Retsch) and optical computerized particles analyzer
on the right (CPA 2-1 of Haver & Boecker)

Fig. 4 Example of output particles list of CPA 2-1
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Fig. 5 Example of output analysis of CPA 2-1

4.2 Criticalities Analysis

As EoL products from different sectors has been shredded, several criticalities
depending on material and shape have been found during the performed prelimi-
nary experiments. Issues and adopted solutions are summarized in Table 4 only for
products that raised problems.

4.3 Step 1: Dimensional Distribution Model

The objective of the developed model is to predict the continuous time evolution of
mass distribution of the particles inside and outside a size reduction machine. Due to
the nature of the process, a discrete-time Population Balance Model (PBM) has been
developed. The time interval, also called breakage interval, has been denoted with
�, which represents the smallest time interval in which a breakage of a particle may
occur (or, equivalently, it represents the time between two consecutive breakages).
It is a function of rotational speed and number of cutting elements and it could be
defined as

� = 1

ncutters · ω
(1)
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Table 4 Criticalities analysis and adopted solutions

Sector Products Criticalities
(coarse)

Criticalities
(fine)

Adopted solution Impact on
the process

Sports
equipment

Pre-preg Samples
entwined
around the
shaft

Melting of
uncured resin

• Manual cut of
the samples

• Increase in
speed (shorter
residence time)

Medium

Sanitary Bath tube scraps Presence of
PE film

Melting of
resin

• PE film manual
removal

• Increase in
speed (shorter
residence time)

• Intermediate
step with larger
grate size

High

Wind
blades

EoL
blades—Central
part

Longer parts
get stuck in
the chamber

Properly cut of
the EoL samples

Low

where ω is the rotational speed of the rotor expressed in round per minute (rpm) and
ncutters is the number of cutting elements. The product at the denominator (ω • ncutters)
represents the number of breakages per minute.

In addition, also a discrete particle division into n size classes with each class
indexed by i = 1;…;n has been considered. Classes with larger dimensions have
higher index number, while the lower ones are for smaller particles. The total number
n of classes and the related sizes should be decided on the basis of both interesting
information to derive from the model (as the target dimensions of the particles)
and the resolution of the measurement technique and instruments used for mixture
characterization (as the particle analyzer presented in Sect. 4.1).

Defining the breakage and selection matrix P, describing the probability of a
particle to pass from one class to a lower one, as

P =
⎡
⎢⎣
p11 · · · p1n
...

. . .
...

0 · · · pnn

⎤
⎥⎦ (2)

where the element pij represents the probability of a particle in class I tomove in class
j after a time interval and the discharge matrix D as a diagonal matrix, describing
the probability of a particle in one class to exit from the chamber, as

D =
⎡
⎢⎣
d11 · · · 0
...

. . .
...

0 · · · dnn

⎤
⎥⎦ (3)
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where the element dii represents the probability of a particle in class i to leave the size
reduction chamber, the mass evolution of the particles during the shredding process
could be written as

M(k) = P · MCH (k − 1) + P · MIN ,ADJ (k − 1) (4)

MCH (k) = (I − D) · M(k) (5)

MOUT (k) = D · M(k) (6)

where M(k) is the distribution of the mass under process at time k, MIN,ADJ(k) is
the distribution of the mass entering the chamber at time k considering the available
space,MCH(k) is the distribution of the mass in the chamber at time k and MOUT(k)
is the distribution of the mass which exits from the chamber at each time step.

The distribution of themass entering the chamber at time k considers the saturation
of the chamber and is defined as

MIN ,ADJ (k) =
{
MIN (k) i f

∑n
i=1 M

CH
i (k) + ∑n

i=1 M
IN
i (k) ≤ mmax

α(k)MIN (k) otherwise
(7)

where

α(k) = mmax − ∑n
i=1 M

CH
i (k)∑n

i=1 M
IN
i (k)

(8)

The explained PBM is Markovian, as P and D are two transition matrices and the
stateM(k+ 1) at time k+ 1 only depends on the stateM(k)=MCH(k)+MIN,ADJ(k)
at time k.

Two different hypotheses have been introduced in this model (and validated in a
previouswork [17]) to simplify it,making it possible to use for real processmodel and
control. These two assumptions have been named multiplication and homogeneity.

The multiplication assumption affirms that the size distribution of particles in
output only depends on the number of breakage intervals, independently from the
rotor speed ω and shredding time τ that generates that given number of breakage
intervals. As a consequence, the output size distribution only depends on k and it is
the same for all pairs (ω;τ) such that the product ω • τ is constant.

The homogeneity assumption states that the transition matrix P does not depend
on time (either calendar time t or the number of breakage events k). Thus, the
comminution process does not depend on how long the rotor was previously running.

These two hypotheses considerably reduce the number of experiments to train the
model and enable the usage of this model to directly control the process.

As could be noticed the distribution of the mass which exits from the chamber at
each time stepMOUT(k) is a function of discharge matrix D and, as a consequence, it
strongly depends on the mounted grid. It is possible to use the developed PBMmodel
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to predict the output distribution and tofind the optimal grate size for the comminution
and to achieve target requirements on particles dimensions for following processes.

4.4 Step 2: Operational Cost Model

Operational costs are fundamental to implement processes that are not only environ-
mentally but also economically sustainable. This is more important when working
with low cost virgin materials, as glass fibers composite plastics. In addition, to
incentivize recycling it is important, if possible, to obtain materials with a cost that
is lower than disposal costs. In shredding processes, the operational costs could be
divided in costs due to energy consumption and to tool wear. While shredding at
higher speeds results in lower residence times, with reduced energy consumption,
tool wear increases. For this reason, an optimization of total operational costs is
fundamental. In particular

C = Cec + Ctw (9)

where C is the total cost of the process, Cec is the cost due to energy consumption
and Ctw is the cost due to tool wear. These two quantities will be analyzed in this
section.

Energy consumption in a shredding process depends on several factors as follows.

• Absorbed power. The absorbed power is technology and machine dependent.
• Throughput. The throughput influences the particles residence time and, as a

consequence, the energy consumption.
• Residence time. The longer the particles remains in the chamber, the higher is the

energy consumption to comminute them.
• Rotational speed. Higher rotational speeds typically means higher energy

consumption but in a shorter time and vice versa.
• Material. Harder materials requires higher power while softer materials have to

be shredded for longer time.
• Saturation of the chamber. The saturation of the chamber influences the

throughput. In addition, higher saturation level results in more particles that could
be broken at each time step.

• Dimensional gap between input and output particles. Higher differences in
the dimensions between input and output particles result in higher energy
consumption.

In addition, the process cost due to energy consumption depends also on the cost
of electric energy, that is Country and Region dependent. It is also function of the
availability of renewable energy and of the accessibility of supply.

The cost for energy consumption depends on the absorbed power as (fromclassical
physics)
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Cec = Cee · P · t (10)

where Cec is the cost for the electric consumption, Cee is the cost for electric energy
in e/kWh (Country and Region dependent), P is the total power absorbed and t is
the time of the process. Dividing the absorbed power into two different factors [18],
total absorbed power P could be written as

P = P0 + Pshredding (11)

where P0 is the power at zero load absorbed to run both mechanical and electrical
parts of the machine that depends on the rotational speed and Pshredding is the power
absorbed for the physical shredding process (considered as the act of breaking parti-
cles), function of material to treat, size reduction technology, tools type and shape
and rotational speed. These two terms have been experimentally studied, finding for
both a linear behavior as

P0 = k0 · ω + c0 (12)

Pshredding = (ksh · ω + csh) · S (13)

where k0, c0, ksh and csh are experimental parameters describing the power needed
for the functioning of electrical and electronic equipment and the linear behavior of
the absorbed power while increasing the rotational speed, and S is the saturation of
the chamber. Taking into consideration the definition of the discrete time presented
in Sect. 4.3 and defining Psh as

Psh = ksh · ω + csh (14)

the cost due to energy consumption could be written as

Cec = Cee · (P0 + Psh · S) · mtot

T htu
· 1

ncutters · ω
(15)

where mtot is the total mass to treat and Thtu is the throughput expressed in kg per
time interval.

On the other hand, the cost due to toolwear depends on different factors as follows.

• Cost of the tool/insert. Tools and inserts cost depends on several characteristics as
material, shape and geometry, number of cutting elements and surface finishing.
More performing tools (with higher mechanical properties) cost more but the life
of the tool is usually longer (if the material of the tool is well coupled with the
material to treat).

• Cost for tool/insert change. The substitution of worn tools and inserts has a cost
due both to the time needed to perform this job and to the stop of the shredding
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machine.Easily replaceable tools and inserts have to bepreferred in order to reduce
this term together with the possibility to mount inserts with multiple cutters.

• Number of tools/inserts. A higher number of tools and inserts increases the effi-
ciency of the shredding machine, in particular in terms of throughput. At the
same time, more cutting elements results in higher costs both for the elements
themselves and for substitution.

• Number of cutters. Several shredding machines are designed including multiple
cutters inserts, with only one cutter working at a time. This configuration gives
the possibility to increase the lifetime of the inserts and decrease the time need
for inserts change (avoiding to actually substitute the insert every time), leading
to a significant cost reduction.

• Residence time. The longer the particles remain in the chamber, the higher will
be the tool wear per kg of material treated.

• Rotational speed. Higher rotational speeds result in higher tool wear.
• Throughput. The throughput influences the particles residence time and, as a

consequence, the tool wear.
• Material to treat.Comminution of hard materials results in higher tool wear while

shredding of soft and deformable materials could lead to longer residence times.
The coupling of bothmaterial to treat andmaterial of the tool has been investigated
in literature leading to the two coefficients n andCof theTaylor’s law inmachining
(i.e. vcTn = c with vc cutting speed and T lifetime of the tool) [19].

In addition to the described factors, the inhomogeneity in tool wear has the capa-
bility to relevantly affect the total cost for shredding. Considering the definition of
the discrete time presented in Sect. 4.3, it could be noticed from this equation that
� (and as a consequence the throughput expressed in kg/s) heavily depends on the
number of cutting elements. If an insert fails, the others could make up for its lack.
This results in a longer breakage interval � and, as a consequence, in an increase
in operational costs (both due to tool wear and energy consumption). If another tool
fails, the other ones could continue the shredding process but increasing the breakage
interval and, as a consequence, the cost and so on, following an exponential curve.
The process could continue until the cost is lower than the maximum acceptable cost
(or, in an equivalent way, if the revenues are higher than the target revenues). To over-
come this issue, an average value for failure time of the tools has been considered.
At this time, the shredding process is stopped and the inserts are changed.

Assuming that the time for tool change is equal with respect to the time for cutter
change (this hypothesis is valid for long time processes as in the case of shredding)
the cost due to the tool wear could be written as

Ctw = ntools ·
(
Ctc + Ctool

ncutters

)
· t

T
(16)

where Ctw is the cost due to tool wear, ntools is the number of tools, Ctc is the cost
for the tool change (or, equivalently, the cost for cutter change), Ctool is the market
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cost of a single tool, ncutters is the number of cutters for every tool, t is the time of the
process and T is the average lifetime of a single tool.

Taking into consideration the definition of the discrete time presented in Sect. 4.3
and adapting the Taylor’s law for tool wear in machining [19], the cost due to tool
wear in a shredding process could be written as

Ctw =
(
Ctc + Ctool

ncutters

)
· mtot

T htu
(
c
r

) 1
n

· 1

ω
n−1
n

(17)

where mtot is the total mass to treat, Thtu is the throughput expressed in kg per time
interval, r is the radius of the shredding rotor, ω is the rotational speed and c and n
are the experimental parameters of the Taylor’s law.

Finally, the final model for operational costs of a shredding process is

C = Cee · (P0 + Psh · S) · mtot

T htu
· 1

ncutters · ω
+

(
Ctc + Ctool

ncutters

)
· mtot

T htu
(
c
r

) 1
n

· 1

ω
n−1
n

(18)

As a consequence, the minimization of the cost could be done optimizing the
rotational speed using this equation. In particular, depending on the material to treat,
the experimental parameters and, as a consequence, the behaviour of cost due to
electric energy consumption and cost due to tool wear could be opposite, leading
to a situation as in Fig. 7, in which the optimal rotational speed is in between the
minimum and the maximum acceptable rotational speeds.

Fig. 7 Cost due to tool wear with respect to rotational speed: red line is the cost due to energy
consumption, blue line is the cost due to tool wear and grey line is the total process cost
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In addition, the effect of tools failure, explained in Sect. 4.4, could be exploited to
control the overall status of the machine. If a tool is completely worn, the throughput
in kg per time unit and, as a consequence, the throughput in kg per seconds, decreases.
Constantlymeasuring the throughput of the process, it is possible to derive the number
of failed tools and, based on the target revenues, to evaluate if the process should be
stopped to change the tools or not. In addition, considering this effect, it is possible to
continuously optimize the process cost, finding the rotational speeds that minimizes
it considering the current throughput and changing it automatically, avoiding loss of
time and money.

5 Application of the Solution and Obtained Results

The models presented in Sects. 4.3 and 4.4 have been implemented in a dedicated
tool to achieve a complete optimization of the shredding process, both in terms of
dimensional distribution and operational costs.

Through a dedicated Graphical User Interface (GUI) the operator is able to insert
the target output distribution. As a result, after the acquisition and the elaboration
of the information on the dimensional distribution of the material in input, the tool
gives in output a representation of the predicted output distribution and it suggests
the best grate size to use.

After this first step, the operator is able to insert all the information needed about
the machine for the operational costs model. In particular, the operator has to insert
the number of tools, the number of cutters, the cost for one tool, the cost for the tool
change, the total mass to treat and the energy fixed cost. From a database it is possible
to select the material to treat and the material of the tool, while the throughput in
time unit is acquired directly from the first step. As a result, the tool gives in output
a representation of the costs due to the energy consumption and to the tool wear and
the total cost for the shredding process, suggesting the optimal rotational speed to
use.

As an example, considering GFRP sanitary products composed by 30% of GF in
a polyester resin, the software gives in output an optimal total cost of the process
equal to about 75 e/ton with a rotational speed equal 2300 rpm to obtain particles
with a final dimension of 1 mm. This is a good result as it is lower than the cost of
new material and, in particular, also than the cost for landfill of this materials. As an
example, the actual cost for landfill of EoL GFRP material in Italy is equal to 235
e/ton. The result obtained for EoL wind blades composed by 65% of glass fibers
in epoxy resin is equal to 30 e/ton with a rotational speed equal 700 rpm to obtain
particles with a final dimension of 1 mm.
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6 Conclusions

In thisChapter an efficient comminution process-chain for the size reduction ofGFRP
End-of-Life products from different sectors (construction, sanitary, sports equipment
and wind energy) has been presented.

A deep analysis of the different available size reduction technologies has been
presented. The advantages and disadvantages of each shredding machine have been
detailed.

Preliminary experiments have been done on the EoL products in a feasibility
analysis. Criticalities have been detailed and a solution has been proposed. The
acquired data have been used for the process modelling.

A 2-step architecture has been developed. The first step describe the evolution of
the dimensional distribution along the comminution and suggests the optimal grate
size for the process. The second step aims to minimize the operational costs.

This approach has been applied to EoL products in Use-Case 1 of FiberEUse
project, showing the importance to control the process, optimizing the dimensional
distribution of the particles and minimizing the operational costs (which result lower
than both virgin material and disposal costs).
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