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Abstract. A distributed optimal control problem for a diffuse interface model,

which physical context is that of tumour growth dynamics, is addressed. The

system we deal with comprises a Cahn–Hilliard equation for the tumour frac-
tion coupled with a reaction-diffusion for a nutrient species surrounding the

tumourous cells. The cost functional to be minimised possesses some objective

terms and it also penalises long treatments time, which may affect harm to
the patients, and big aggregations of tumourous cells. Hence, the optimisation

problem leads to the optimal strategy which reduces the time exposure of the

patient to the medication and at the same time allows the doctors to achieve
suitable clinical goals.

1. Introduction. In the last decades, several developments have been obtained by
scientists in the field of tumour growth modelling. The key idea behind these mod-
els arises from realising that the tumour tissue, as a special material, has to obey
physical laws. Hence, the modelling techniques originally developed for engineering
purposes can be adapted and exploited to derive mathematical models which better
emulate the evolution of tumours (see [10]). The great advantages of mathematics
are, among others, that of being able to foresee, make predictions, and capture in-
formation that does not interfere with the patient’s health. Moreover, mathematics
has the ability to select specific mechanisms we could be interested in. Besides, let
us also mention that further understanding from the mathematical point of view
can also allow the doctors to tailor a personalised therapeutic pathway.

The diffuse interface model we are going to deal with reads as follows:

α∂tµ+ ∂tϕ−∆µ = P (ϕ)(σ − µ) in Q := Ω× (0, T ), (1.1)

µ = β∂tϕ−∆ϕ+ F ′(ϕ) in Q, (1.2)

∂tσ −∆σ = −P (ϕ)(σ − µ) + u in Q, (1.3)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ := ∂Ω× (0, T ), (1.4)

µ(0) = µ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω, (1.5)

2020 Mathematics Subject Classification. Primary: 35Q92, 49J20, 49K20; Secondary: 35K86,

92C50.
Key words and phrases. Optimal control, free terminal time, phase field, tumour growth, Cahn–

Hilliard equation, adjoint system, necessary optimality conditions.

1

http://dx.doi.org/10.3934/dcds.2020373


2 ANDREA SIGNORI

where α and β represent two positive relaxation parameters and Ω and T > 0 denote
the spatial set in which the evolution takes place and the time horizon, respectively.

This model constitutes a variation of the four-species thermodynamically con-
sistent model proposed by Hawkins–Daruud et al. in [26] (see also [9, 32, 25, 27]),
where the velocity contribution and chemotaxis effect are neglected and two relax-
ation terms α∂tµ and β∂tϕ in equation (1.1) and (1.2) are included. Let us notice
that equations (1.1)–(1.2) comprise a viscous Cahn–Hilliard system for (ϕ, µ) (see,
e.g., the review article [29] and the references therein for more details) with a
non-standard source term P (ϕ)(σ − µ) modelling the growth and death of cells.
Since the physical background of the above model has been extensively described in
[4, 6, 8, 15], we just sketch the role covered by the occurring symbols. In the above
equations, the primary variables of the model are ϕ, µ, and σ denoting in the order
the difference in volume fractions between the tumour and healthy cells, the asso-
ciated chemical potential, and the nutrient concentration of an unknown nutrient
species (e.g., glucose, oxygen). Typically ϕ ranges between −1 and 1, where the
two extremes represent the pure phases, i.e., the healthy case and the tumourous
case. The function P represents a source/sink term which accounts for biological
mechanisms such as proliferation. Besides, as typical for phase field models, the
function F denotes a double-well potential whose classical examples are the regular
quartic potential and the singular logarithmic potential, which is more relevant for
applications. They are defined, in the order, by

Freg(r) := 1
4 (r2 − 1)2 for r ∈ R, (1.6)

Flog(r) := ((1− r) log(1− r) + (1 + r) log(1 + r))− λr2 for |r| < 1, (1.7)

where in (1.7) λ stands for a positive constant large enough to avoid convexity. The
positive constants α and β can be seen as relaxation parameters. The first one
provides (1.1) with a parabolic structure, whereas the second term in the equation
(1.2) is the classical viscous term of the Cahn–Hilliard equation. Let us also refer to
[36] and to [4, 6, 8] where these relaxations are incorporated in the model. Lastly,
the variable u appearing in (1.3) plays the role of control variable so that the system
(1.1)–(1.5) will be referred to as the state system in the sequel.

The well-posedness and long-time behavior of the above model (with u = 0),
in terms of the omega-limit set, have been addressed in [4] for a general class of
double-well potentials, in the case α = β > 0. Next, in [6] and [8] Colli et al.
discuss in which sense the parameters α and β can be sent to zero both separately
and jointly providing to specify the functional framework under which this can
be done depending on the asymptotic study under consideration. Furthermore,
we mention [15], where the above system (with u = 0) without any relaxation
terms, i.e., the system (1.1)–(1.5) with α = β = 0, is studied. There, despite
they restricted the analysis on regular potentials with suitable polynomial growth,
they keep the assumptions on the nonlinearity P very general postulating for it a
controlled polynomial growth. Then, we refer to [30], where the authors investigate
the existence of the global attractor for the dynamical system generated by (1.1)–
(1.5) in the case α = β = 0 (see, .e.g., [31] for further details on global attractors).
Furthermore, let us point out [16], where a non-local model is taken into account
for the challenging case of singular potentials and degenerate mobilities. As for the
diffuse interface models including the velocity field effects by assuming a Darcy’s
law or a Stokes–Brinkman’s law, we refer to [11, 12, 17, 18, 19, 20, 21, 22, 24, 40],
where also further biological mechanisms such as chemotaxis and active transport
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are incorporated in the model. Lastly, we refer to [1, 41] and to the reference therein
for some numerical applications.

Before introducing the optimal control problem we are going to address, let
us spend some words explaining how the cancer treatments are usually scheduled
which motivate some of the modelling considerations made below. A typical medical
treatment include surgery, chemotherapy, radiotherapy, and immunotherapy and
especially the last three therapies are particularly sensitive to the time exposition
of the patient. Moreover, the therapy is divided into cycles consisting of a “short”
period of treatment followed by a longer period of rest. The goal of these therapies is
usually to reduce the tumour mass to achieve a reasonable stage which is compatible
with surgery. Besides, as time passes by the dispensed drug starts to accumulate
in the body bringing additional waste items to be purified by kidneys and liver,
and in the worst-case scenario, it may happen that after a long-time exposure the
tumour cells became resistant to the medicament. This is the reason which leads
us to incorporate a long treatment time penalisation in our optimisation problem.

Up to our knowledge, the first contribution concerning an optimal control prob-
lem governed by the system (1.1)–(1.5) is [7], where (1.1)–(1.5) was considered
without any relaxation terms, i.e., with the choice α = β = 0. There, the authors
proved the existence of a minimiser for the optimisation problem and provide first-
order necessary conditions for optimality in the framework of regular potentials
exhibiting polynomial growth. Then, we mention [36], where a similar optimisation
problem is addressed for the system (1.1)–(1.5) with α, β > 0 as the state system
in the case of singular, while regular, potentials allowing the logarithmic potential
to be included in the investigation. In this direction, the artificial relaxation terms
α∂tµ and β∂tϕ play a crucial role since, owing to their regularizing effect, they
allow proving a uniform separation principle for the phase variable which is a key
property to handle singular potentials. Next, the same author extends in [35] the
optimisation problem to the case of the double-obstacle potential by following the
asymptotic scheme known in the literature as to deep quench limit. Then, in [33]
and [34] the author proves, by employing proper asymptotic strategies, how the
optimal control problem for the case α, β > 0 can be useful to solve the optimal
control problems related to the state system above in which α = 0, β > 0 and
α > 0, β = 0 by letting the parameters α and β go to zero, respectively. Besides,
we are also aware of the recent work [3], where, after discussing the long-time be-
havior of solutions, the authors show that the optimal control problem [7] can be
extended to the case in which the cost functional also depends on time. Referring
to different models, we mention the contribution [23], where an optimal treatment
time has been performed for a slightly different state system of Cahn–Hilliard type,
where the control appears in the first equation. Moreover, we refer to [38], where
an optimal control problem for the two-dimensional Cahn–Hilliard–Darcy system
with mass sources is addressed. Lastly, we point out [13, 14], where optimal control
problems for the more involved Cahn–Hilliard–Brinkman model, previously inves-
tigated by [12], are addressed. For the interested reader, we also mention [5], where
a different type of control problem, known as sliding mode control, is performed for
a similar system.

In the spirit of [23] (and [3]), we aim at generalizing the results established in
[36] by introducing in the functional to be minimised a time penalisation. The
optimisation problem considered in [36] consists in minimising the following cost
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functional

Jold(ϕ, σ, u) =
b1
2

∫
Q

|ϕ− ϕQ|2 +
b2
2

∫
Ω

|ϕ(T )− ϕΩ|2 +
b3
2

∫
Q

|σ − σQ|2

+
b4
2

∫
Ω

|σ(T )− σΩ|2 +
b0
2

∫
Q

|u|2, (1.8)

for some non-negative constants b0, ..., b4 and some given target functions ϕQ, σQ,
ϕΩ, σΩ defined in proper functional spaces, under the constrained that the control
u belongs to the set of admissible controls Uad which is defined by

Uad := {u ∈ L∞(Q) : u∗ ≤ u ≤ u∗ a.e. in Q}, (1.9)

where u∗ and u∗ denote some prescribed functions in L∞(Q), and such that the
variables ϕ and σ are solutions to the state system (1.1)–(1.5). Thus, we aim at
extending the above minimisation problem to a time-dependent cost functional by
adding a free terminal time, which penalises long treatments time, as well as an
objective time to be approached. Moreover, we also introduce in the cost functional
an additional penalisation term for large aggregation of tumour cells. Namely, the
time-dependent objective cost functional we are going to minimise reads as

J (ϕ, σ, u, τ) :=
b1
2

∫
Qτ

|ϕ− ϕQ|2 +
b2
2

∫
Ω

|ϕ(τ)− ϕΩ|2 +
b3
2

∫
Qτ

|σ − σQ|2

+
b4
2

∫
Ω

(1 + ϕ(τ)) + b5τ +
b6
2
|τ − τ∗|2 +

b0
2

∫
Q

|u|2, (1.10)

where the symbols b0, ..., b6 denote non-negative constants, while ϕQ, σQ, ϕΩ, and τ∗
stand for the targets we want to approximate. Here, let us point out the following
comments and differences with respect to the problem discussed in [36]:

(i) Despite the last term in (1.10), the time integrals are performed between
zero and τ ∈ [0, T ], where τ models the treatment time of the cycle which
the patient undergoes the clinical therapy, while T may be regarded as the
maximum amount of time prescribed by some protocol. Let us claim that
only minor changes are in order if one substitutes the term b5τ in (1.10) with
a more general term like b5f(τ), where f : [0,∞) → [0,∞) is an increasing
and continuously differentiable function.

(ii) The term b6
2 |τ − τ∗|

2 forces the optimal time to be as close as possible to τ∗
which stands for some target time to be reached. Notice that the sum of this
latter (which is quadratic in τ) and b5τ (which is linear) gives still a convex
contribution.

(iii) Minimizing the integral
∫
Qτ
|ϕ − ϕQ|2 leads the phase variable ϕ to be as

close as possible, at the time τ and in the sense of the L2-norm, to the pre-
scribed target ϕQ. In a similar fashion, it goes for the other variables. Thus,
ϕQ, σQ, ϕΩ, should be chosen as stable configurations of the system or as some
desirable configurations which are meaningful for surgery.

(iv) The last term
∫
Q
|u|2 penalises the large values of the control variable designing

the side-effect that the dispensation of too many drugs to the patient might
cause.

(v) The term 1+ϕ(τ)
2 measures the size of the tumourous mass at the given time

τ . Hence, it penalises the strategies which do not shrink the tumour. Notice
that the presence of 1 in the numerator is due to the fact that in the healthy
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case we have ϕ = −1 so that in that case the corresponding tumour mass is
indeed zero.

(vi) The constants b0, ..., b6 can be chosen accordingly to the therapeutic goal we
are interested in.

Compared to [23] and [3], let us underline that we also include in the analysis a target
time τ∗ to be approximated as best as possible. This choice has the advantage to
produce a better characterisation of the optimality of the time variable (cf. Theorem
3.9). Notice that the choice τ∗ = 0 is allowed.

To conclude the section, let us introduce some general facts concerning optimal
control theory. At first, let us note that since the well-posedness of system (1.1)–
(1.5) has already been established in [36], we are in a position to properly define
the control-to-state operator which assigns to a given control u the corresponding
solution to (1.1)–(1.5). Namely, we have

S : u 7→ (µ, ϕ, σ), (1.11)

where (µ, ϕ, σ) stands for the unique solution to system (1.1)–(1.5) associated with
the control variable u. This allows us to suppress the variables ϕ and σ in the
cost functional J by expressing them as functions of u leading to the corresponding
reduced cost functional which is defined as

Jred(u, τ) := J (S2(u),S3(u), u, τ), (1.12)

where S2(u),S3(u) denote the second and third components of S, respectively. Al-
though the existence of a minimiser of the above problem can be deduced by follow-
ing similar reasoning as in [36], the corresponding first-order necessary conditions
for optimality present significant differences. However, following classical arguments
(see, e.g., [39, 28]), it is clear that that the optimality of (u, τ) ∈ Uad × [0, T ] can
be characterised by employing the following variational inequalities{

DuJred(u, τ)(v − u, τ) ≥ 0 for every v ∈ Uad,

DτJred(u, τ)(u, s− τ) ≥ 0 for every s ∈ [0, T ],
(1.13)

where DiJred, i = {u, τ}, stand for the derivative of the reduced cost functional
Jred with respect to the corresponding variable in a proper functional setting.

To get the necessary conditions for the time optimality, the key argument is
to show that the reduced cost functional is Fréchet differentiable so that the ab-
stract conditions (1.13) can be exploited. In particular, the Fréchet differentiability
with respect to the time variable requires higher order temporal regularity for the
phase variable ϕ. In this direction, let us anticipate that the time derivative of
the reduced cost functional will produce some terms involving ϕ(τ) and ∂tϕ(τ)
(cf. Theorem 3.8), where (u, τ) stands for some optimal pair and (µ, ϕ, σ) for
the corresponding state. A sufficient condition which gives meaning to the above
terms is ϕ ∈ H2(0, T ;L2(Ω)) due to the continuous injections of H2(0, T ;L2(Ω))
in C1([0, T ];L2(Ω)) so that the pointwise terms ϕ(τ) and ∂tϕ(τ) are meaningful,
at least in L2(Ω). In this regards, let us also mention that we can not consider
in the cost functional (1.10) any contribution involving

∫
Ω
|σ(τ) − σΩ|2, where σΩ

models some target function. The reason is that if such term is present, in the
time derivative of Jred it will appear the pointwise term ∂tσ(τ) which, in turn,
will require to show σ ∈ H2(0, T ;L2(Ω)). However, the nutrient equation (1.3)
contains the control variable u so that, to get the mentioned regularity for σ, we
would be forced to assume the control variable to be sufficiently regular in time,
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say u ∈ H1(0, T ;L2(Ω)), which is not significant for the applications. For the same
reason, we are considering the term

∫
Q
|u|2 in (1.10), instead of

∫
Qτ
|u|2, to avoid

assuming any temporal regularity for u. However, in Section 4, by using the relax-
ation arguments employed by Garcke et al. in [23], we also show that it is possible
to include in the analysis an objective control for the nutrient variable at time τ .

Hence, introducing the space of admissible states and controls by

Aad :=

{(
ϕ, σ, u, τ

)
: (u, τ) ∈ Uad × [0, T ], (ϕ, σ) =

(
S2(u),S3(u)

)}
, (1.14)

we can summarise the minimisation problem we are going to address as:

(CP ) inf
(ϕ,σ,u,τ)∈Aad

J (ϕ, σ, u, τ).

The rest of the paper is outlined as follows: in the next section, we set our
conventions, present the assumptions and state our results. The existence of a
minimiser for the optimisation problem (CP ) and the corresponding first-order
necessary conditions for optimality have been addressed in Section 3. Next, in
Section 4, we point out some possible generalisations of the work via a relaxation
argument.

2. Mathematical setting. Throughout the paper, we assume Ω ⊂ R3 to be a
smooth bounded domain with boundary Γ, and T > 0 is a fixed final time. For
every t ∈ [0, T ], we employ the classical notation

Qt := Ω× (0, t), Σt := Γ× (0, t) for every t ∈ (0, T ],

and

Q := QT , Σ := ΣT .

For an arbitrary Banach space X, we use ‖·‖X to denote its norm, X∗ for its topo-
logical dual, and X∗〈·, ·〉X for the duality product between X∗ and X. Meanwhile,
for every p ∈ [1,+∞], we simply write ‖·‖p to indicate the usual norm of the Sobolev
spaces Lp(Ω). Besides, it turns out to be convenient to set

H := L2(Ω), V := H1(Ω), W := {v ∈ H2(Ω) : ∂nv = 0 on Γ},

equipped with their standard norms, where ∂n stands for the outward normal de-
rivative of Γ. Under these assumptions, it follows that the injections V ↪→ H ∼=
H∗ ↪→ V ∗ are both continuous and dense which entails that (V,H, V ∗) forms a
Hilbert triple so that we have the following identification

V ∗〈u, v〉V =

∫
Ω

uv for every u ∈ H, v ∈ V .

As far as the general assumptions are concerned, we postulate that

α, β are positive constants. (2.1)

b0, b1, b2, b3, b4, b5, b6 are non-negative constants, but not all zero. (2.2)

ϕQ, σQ : Q→ R, ϕΩ : Ω→ R, and ϕQ, σQ ∈ L2(Q), ϕΩ ∈ L2(Ω). (2.3)

u∗, u
∗ ∈ L∞(Q) with u∗ ≤ u∗ a.e. in Q. (2.4)

τ∗ ∈ [0, T ]. (2.5)
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P ∈ C2(R) is non-negative, bounded with bounded derivative. (2.6)

ϕ0 ∈W,µ0 ∈ V ∩ L∞(Ω), σ0 ∈ V. (2.7)

F (ϕ0) ∈ L1(Ω). (2.8)

Moreover, let us postulate that the control-box Uad is defined by (1.9), so that Uad

is a closed and convex subset of L2(Q). On the other hand, it will be sometimes
necessary to work with an open set. Hence, let us define the open superset UR as
follows

UR ⊂ L2(Q) is a non-empty, bounded and open set containing Uad

such that ‖u‖2 ≤ R for all u ∈ UR.
As for the nonlinear double-well potential F , we require that

F : R→ [0,+∞], with F := B̂ + π̂, (2.9)

where

B̂ : R→ [0,+∞] is convex, and lower semicontinuous, with B̂(0) = 0. (2.10)

π̂ ∈ C3(R) and π := π̂′ is Lipschitz continuous. (2.11)

Under these assumptions it is well-known that the subdifferential of B̂, ∂B̂ =: B, is
a maximal and monotone graph B ⊆ R × R (see, e.g., [2, Ex. 2.3.4, p. 25]) whose
domain we indicate by D(B). Furthermore, we assume that F is a smooth function
when restricted to its domain by assuming that

D(B) = (r−, r+), with −∞ ≤ r− < 0 < r+ ≤ +∞.
F|D(B)

∈ C3(r−, r+), and lim
r→r±

F ′(r) = ±∞. (2.12)

It is worth noting that both the regular potential (1.6) and the logarithmic potential
(1.7) do fit the above assumptions. Moreover, we additionally require that the initial
datum ϕ0 verifies

r− < inf ϕ0 ≤ supϕ0 < r+, (2.13)

which for the logarithmic potential (1.7) has the physical interpretation that ϕ0

does not contain any region with pure phases. Notice that the above condition
combined with (2.7) entails that

1
β (µ0 + ∆ϕ0 −B(ϕ0)− π(ϕ0)) ∈ H. (2.14)

The mathematical assumptions required so far are more or less the same assumed
in [36]. However, as already mentioned, the first-order necessary conditions for
optimality that we will point out later will demand higher order temporal regularity
for the phase variable. To give meaning to all the appearing pointwise terms we
replace (2.3) and (2.14) by

ϕQ, σQ ∈ H1(0, T ;H), (2.15)

1
β (µ0 + ∆ϕ0 −B(ϕ0)− π(ϕ0)) ∈ V, (2.16)

respectively. Let us also point out that condition (2.16) easily follows once the
initial data, in addition to (2.7), fulfils ϕ0 ∈ H3(Ω).

Before moving on, let us recall some well-known results which we will apply later
on. First, we often owe to the standard Sobolev continuous embedding

H1(Ω) ↪→ Lq(Ω), for every q ∈ [1, 6], (2.17)
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which is also compact for every q ∈ [1, 6). Moreover, we recall the Young inequality

ab ≤ δa2 +
1

4δ
b2, for every a, b ≥ 0 and δ > 0. (2.18)

Lastly, we convey to use the symbol small-case c for every constant which only
depend on structural data of the problem such as the final time T , Ω, R, the shape
of the nonlinearities, the norms of the involved functions, and possibly α and β. On
the other hand, we devote the capital letters to designate some specific constants.

3. The control problem.

3.1. The state system. To begin with, let us recall the well-posedness result for
the sytem (1.1)–(1.5) obtained in [36].

Theorem 3.1 ([36, Thms. 2.1, 2.2, and 2.3]). Suppose that (2.1)–(2.14) hold and
let u ∈ UR. Then, the state system (1.1)–(1.5) admits a unique solution (µ, ϕ, σ)
satisfying

ϕ ∈W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ⊂ C0([0, T ];C0(Ω)), (3.1)

µ, σ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V ), (3.2)

µ ∈ L∞(Q). (3.3)

Moreover, there exists a positive constant C1, which depends on R, α, β, and on
the data of the system, such that

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖µ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )∩L∞(Q)

+ ‖σ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ C1. (3.4)

In addition, it holds the so-called uniform separation property. Namely, there exists
a compact subset K ⊂ (r−, r+) = D(B) such that

ϕ(x, t) ∈ K for all (x, t) ∈ Q.
Furthermore, the following estimate

‖ϕ‖C0(Q) + max
0≤i≤3

‖F (i)(ϕ)‖L∞(Q) + max
0≤j≤2

‖P (j)(ϕ)‖L∞(Q) ≤ C2 (3.5)

is satisfied for a positive constant C2 which depends only on R, α, β, K and on the
data of the system.

The well-posedness of the state system (1.1)–(1.5) established by the the above
theorem allow us to define the control-to-state operator S as the map which assigns
to every control u the corresponding solution (µ, ϕ, σ) to system (1.1)–(1.5).

We are now ready to present the first novelty of the work regarding improved
regularity results for the solutions to (1.1)–(1.5) obtained in the above theorem that
will be used later on to investigate the optimal control problem (CP ).

Theorem 3.2. Suppose that (2.1)–(2.13) and (2.16) hold and let u ∈ UR. Then,
the unique solution (µ, ϕ, σ) to (1.1)–(1.5) obtained from Theorem 3.1, in addition
to (3.1)–(3.3), enjoys the following regularity

ϕ ∈W 1,∞(0, T ;V ) ∩H2(0, T ;H)∩H1(0, T ;H2(Ω))

⊂ C1([0, T ];H) ∩ C0([0, T ];H2(Ω)). (3.6)

Moreover, there exists a positive constant C3 depending on R, α, β, and on the data
of the system, such that

‖ϕ‖W 1,∞(0,T ;V )∩H2(0,T ;H) ≤ C3. (3.7)
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Proof. For the sake of simplicity, we perform only formal a priori estimates which
can be carried out rigorously within an approximation scheme such as the Faedo–
Galerkin scheme.

We differentiate (1.2) with respect to time, multiply the obtained equation by
∂ttϕ, and integrate over Qt and by parts to obtain that

β

∫
Qt

|∂ttϕ|2 +
1

2

∫
Ω

|∇∂tϕ(t)|2

=
1

2

∫
Ω

|∇∂tϕ(0)|2 −
∫
Qt

F ′′(ϕ)∂tϕ∂ttϕ+

∫
Qt

∂tµ∂ttϕ,

where we denote the integrals on the right-hand side by I1, I2 and I3, respectively.
The terms on the left-hand side are non-negative, whereas I2 and I3 can be dealt
by means of the Young inequality, along with the estimate (3.5) which is verified
by the solution ϕ. Namely, we have that

|I2|+ |I3| ≤
β

2

∫
Qt

|∂ttϕ|2 + c

∫
Qt

(|∂tµ|2 + |∂tϕ|2).

Moreover, by taking t = 0 in (1.2) and using the assumption (2.16) we readily infer
that

|I1| ≤ c.

Therefore, owing to the estimate (3.4), we deduce that there exists a positive con-
stant c such that

‖∂ttϕ‖L2(0,T ;H) + ‖∇∂tϕ‖L∞(0,T ;H) ≤ c.
Next, let us recall the well-known embedding of H1(0, T ;H) in C0([0, T ];H) which
entails also that ∂tϕ ∈ C0([0, T ];H). Lastly, comparison in equation (1.2) produces

∆ϕ ∈ H1(0, T ;H) ⊂C0([0, T ];H),

so that, upon invoking the elliptic regularity theory, the proof is concluded.

Theorem 3.3. Suppose that the assumptions of Theorem 3.2 are verified. More-
over, let µ0 ∈ H3(Ω). Then, the unique solution (µ, ϕ, σ) to (1.1)–(1.5) obtained
from Theorem 3.1, in addition to (3.1)–(3.3) and (3.6) satisfies

µ ∈W 1,∞(0, T ;V ) ∩H2(0, T ;H)∩H1(0, T ;H2(Ω))

⊂ C1([0, T ];H) ∩ C0([0, T ];H2(Ω)).

Moreover, there exists a positive constant C4 depending on R, α, β, and on the data
of the system, such that

‖µ‖W 1,∞(0,T ;V )∩H2(0,T ;H) ≤ C4. (3.8)

Proof. As before, we proceed formally and let us claim that the proof can be carried
out in a rigorous fashion by employing a Galerkin scheme.

We differentiate (1.1) with respect to time, test the obtained equation by ∂ttµ,
and integrate over time and by parts to obtain that

α

∫
Qt

|∂ttµ|2 +
1

2

∫
Ω

|∇∂tµ(t)|2 =
1

2

∫
Ω

|∇∂tµ(0)|2 +

∫
Qt

P ′(ϕ)(σ − µ)∂tϕ∂ttµ

+

∫
Qt

P (ϕ)(∂tσ − ∂tµ)∂ttµ−
∫
Qt

∂ttϕ∂ttµ,
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where we indicate by I1, ..., I4 the integrals on the right-hand side, in this order.
The first term can be bounded by combining the assumption (2.7) with (2.16) and
the additional requirement on the initial datum µ0 ∈ H3(Ω). In fact, evaluating
equation (1.1) at t = 0, and then equation (1.2) at t = 0 lead us to realise that

∂tµ(0) =
1

α

(
1

β

(
−µ0 −∆ϕ0 + F ′(ϕ0)

)
+ ∆µ0 + P (ϕ0)(σ0 − µ0)

)
∈ V

so that

|I1| ≤ c.

Then, using the previous estimates (3.4)–(3.5) and (3.7), Hölder’s inequality, the
continuous embedding V ⊂ L4(Ω), and the boundedness of P ′, we have

|I2| ≤ c
∫ t

0

(‖σ‖4 + ‖µ‖4)‖∂tϕ‖4‖∂ttµ‖2

≤ δ
∫
Qt

|∂ttµ|2 + cδ

∫
Qt

(‖σ‖2V + ‖µ‖2V )‖∂tϕ‖2V

≤ δ
∫
Qt

|∂ttµ|2 + cδ,

for a positive δ yet to be determined, where in the last line we also invoke the fact
that, due to (3.1)–(3.3) and to (3.7), we have that ‖σ‖V , ‖µ‖V and ‖∂tϕ‖V belong
to L∞(0, T ). Using the Young inequality, the boundedness of P , and (3.5), we infer
that

|I3|+ |I4| ≤ δ
∫
Qt

|∂ttµ|2 + cδ

∫
Qt

(|∂ttϕ|+ |∂tσ|2 + |∂tµ|2),

for a positive δ yet to be determined. Hence, adjusting δ ∈ (0, 1) small enough and
accounting for the above estimates, we deduce that

‖∂ttµ‖L2(0,T ;H) + ‖∇∂tµ‖L∞(0,T ;H) ≤ c.

Arguing as above, we easily infer that ∂tµ ∈ C0([0, T ];H) and then, by comparison
in equation (1.1) also that

∆µ ∈ H1(0, T ;H) ⊂C0([0, T ];H)

which complete the proof upon invoking the elliptic regularity theory.

To conclude the section, let us recall the continuous dependence result for (1.1)–
(1.5) obtained in [36, Thms. 2.2 and 2.3].

Theorem 3.4. Assume that (2.1)–(2.14) are fulfilled. Moreover, for i = 1, 2, let
ui ∈ UR and (µi, ϕi, σi) be the corresponding solution to (1.1)–(1.5) obtained from
Theorem 3.1. Then, there exists a positive constant C5, which depends only on R,
α and β, and on the data of the system such that

‖α(µ1 − µ2) + (ϕ1 − ϕ2) + (σ1 − σ2)‖L∞(0,T ;V ∗) + ‖µ1 − µ2‖L∞(0,T ;H)∩L2(0,T ;V )

+ ‖ϕ1 − ϕ2‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖σ1 − σ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ C5‖u1 − u2‖L2(0,T ;H). (3.9)

This latter can be equivalently interpreted as a Lipschitz continuity property for
the control-to-state operator S between suitable Banach spaces.
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3.2. Existence of a minimiser. Here, we prove the existence of a minimiser for
the optimisation problem (CP ).

Theorem 3.5. Assume that (2.1)–(2.14) are fulfilled. Then, the optimal control
problem (CP ) admits at least a minimiser. Namely, there exists some (ϕ, σ, u, τ) ∈
Aad such that

J (ϕ, σ, u, τ) = inf
(ϕ,σ,u,τ)∈Aad

J (ϕ, σ, u, τ).

The control variable u will be referred to as optimal control, whereas τ and (µ, ϕ, σ)
will be referred to as optimal time and optimal state, respectively.

Proof. The proof can be easily carried out by means of the well-known direct method
of calculus of variations, e.g., by retracing the proof of [36, Thm. 2.6]. To begin
with, let us check that the cost functional J is bounded from below. Using the
bounds for the phase variable ϕ expressed by (3.4)–(3.5), we infer that

J (ϕ, σ, u, τ) ≥ b4
2

∫
Ω

ϕ(τ) ≥ −b4
2
‖ϕ‖C0(Q) ≥ −

b4
2
C2 > −∞.

Next, we pick a minimizing sequence {(un, τn)}n of elements of Uad × (0, T ) with
the sequence of the corresponding solutions {(µn, ϕn, σn)}n to (1.1)–(1.5) obtained
from Theorem 3.1. Namely, we have that

lim
n→∞

J (ϕn, σn, un, τn) = inf
(ϕ,σ,u,τ)∈Aad

J (ϕ, σ, u, τ) > −∞.

On the other hand, for every n ∈ N, the bounds provided by estimate (3.4) hold
independentely of n. Therefore, using classical weak and weak-star compactness
results we infer that, up to a not relabeled subsequence, there exist some u ∈ Uad

and a triple (µ, ϕ, σ) such that, as n→∞,

un → u weakly star in L∞(Q),

µn → µ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ∩ L∞(Q),

ϕn → ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ),

σn → σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ).

Moreover, standard compactness arguments (see, e.g., [37, Sec. 8, Cor. 4]) yield
that, possibily up to a not relabeled subsequence, as n→∞,

ϕn → ϕ strongly in C0(Q) (3.10)

and also that there exists τ ∈ [0, T ] such that, as n→∞,

τn → τ . (3.11)

Next, by using estimate (3.5), the strong convergence (3.10), and the properties of
F and P , we realise that

F ′(ϕn)→ F ′(ϕ), P (ϕn)→ P (ϕ) strongly in C0(Q).

Thus, it is then a standard matter to pass to the limit, as n→∞, in the variational
formulation of (1.1)–(1.5) written for (µn, ϕn, σn) and conclude that (µ, ϕ, σ) =
S(u). Moreover, (3.11) ensures that, as n→∞,

χ
[0,τn](t)→ χ

[0,τ ](t) for a.a. t ∈ (0, T ). (3.12)
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Hence, we claim that the limit (ϕ, σ, u, τ) is indeed the minimiser we are looking
for. Before showing how to pass to the limit term by term, let us point out that∫

Qτn

| · |2 =

∫ τn

0

‖·‖22 =

∫ T

0

‖·‖22 χ[0,τn].

As a matter of fact, it follows from the above convergences that ϕn−ϕQ → ϕ−ϕQ
strongly in L2(0, T ;H) so that, as n→∞,∫

Qτn

|ϕn − ϕQ|2 →
∫
Qτ

|ϕ− ϕQ|2. (3.13)

In fact, we have that∫ T

0

(
‖ϕn − ϕQ‖22 χ[0,τn] − ‖ϕ− ϕQ‖22 χ[0,τ ]

)
≤
∫ T

0

‖ϕn − ϕQ‖22
(
χ

[0,τn] − χ[0,τ ]

)
+ χ

[0,τ ]

∫ T

0

(
‖ϕn − ϕQ‖22 − ‖ϕ− ϕQ‖22

)
,

where both the terms on the right-hand side go to zero by combining the Lebesgue
convergence theorem with the pointwise convergence (3.12) and the strong conver-
gence of ϕn − ϕQ. Next, let us claim that the second term of the cost functional
verifies that, as n→∞,∫

Ω

|ϕn(τn)− ϕΩ|2 →
∫

Ω

|ϕ(τ)− ϕΩ|2. (3.14)

In fact, it holds that∣∣∣ ∫
Ω

|ϕn(τn)− ϕΩ|2 −
∫

Ω

|ϕ(τ)− ϕΩ|2
∣∣∣ ≤ ‖ϕn(τn) + ϕ(τ)− 2ϕΩ‖2‖ϕn(τn)− ϕ(τ)‖2.

Moreover, the convergences (3.10)–(3.11), along with the triangular inequality and
the fundamental theorem of calculus, allow us to handle the last term as

‖ϕn(τn)− ϕ(τ)‖2 ≤ ‖ϕn(τn)− ϕn(τ)‖2 + ‖ϕn(τ)− ϕ(τ)‖2

≤ |τn − τ |
1
2

(∫ τn

τ

‖∂tϕn‖22
) 1

2

+ ‖ϕn(τ)− ϕ(τ)‖2

≤ |τn − τ |
1
2 ‖∂tϕn‖L2(0,T ;H) + ‖ϕn(τ)− ϕ(τ)‖2.

Notice that the first term on the right-hand side vanishes accounting for the bound
(3.4) and for the convergence (3.11). Meanwhile, the second term goes to zero
due to the strong convergence (3.10) so that (3.14) follows. Furthermore, owing to
(3.11), we easily infer that, as n→∞,

|τn − τ∗|2 → |τ − τ∗|2.

The remaining terms can be handled arguing in a similar fashion. Lastly, the weak
sequential lower semicontinuity of J , entails that

J (ϕ, σ, u, τ) ≤ lim inf
n→∞

J (ϕn, σn, un, τn) = inf
(ϕ,σ,u,τ)∈Aad

J (ϕ, σ, u, τ),

so that (ϕ, σ, u, τ) is indeed a minimiser for (CP ), as we claimed.
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3.3. The linearised system. Once the existence of minimisers has been obtained,
we aim at pointing out some first-order necessary conditions for optimality by ex-
ploiting the theoretical conditions (1.13). In this direction, we first show the op-
erator S is Fréchet differentiable between suitable Banach spaces and then use the
chain rule and the definition of the reduced cost functional to develop the abstract
variational inequalities (1.13).

The first step consists in investigating the linearised system of (1.1)–(1.5). For
a fixed control u ∈ UR with the corresponding state (µ, ϕ, σ), and for an arbitrary
h ∈ L2(Q) the linearised system to (1.1)–(1.5) reads as

α∂tη + ∂tϑ−∆η = P ′(ϕ)(σ − µ)ϑ+ P (ϕ)(ρ− η) in Q, (3.15)

η = β∂tϑ−∆ϑ+ F ′′(ϕ)ϑ in Q, (3.16)

∂tρ−∆ρ = −P ′(ϕ)(σ − µ)ϑ− P (ϕ)(ρ− η) + h in Q, (3.17)

∂nρ = ∂nϑ = ∂nη = 0 on Σ, (3.18)

ρ(0) = ϑ(0) = η(0) = 0 in Ω. (3.19)

The expectation is as follows: for every h ∈ L2(Q), provided to find the proper
Banach space Y, the operator S is Fréchet differentiable in Y and its directional
derivative along h is given by the corresponding solution to the linearised system
above, i.e., DS(u)h = (η, ϑ, ρ). Since the linearised system is independent of the
choice of the cost functional, but only depends on the state system (1.1)–(1.5), the
well-posedness for the above system directly follows from [36].

Theorem 3.6 ([36, Thm. 2.4]). Assume that (2.1)–(2.14) are fulfilled. Then, for ev-
ery h ∈ L2(Q), the linearised system (3.15)–(3.19) admits a unique solution (η, ϑ, ρ)
satisfying

η, ϑ, ρ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ⊂ C0([0, T ];V ). (3.20)

In addition, there exists a positive constant C6, which depends on the data of the
system, and possibly on α and β, such that

‖η‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

+ ‖ρ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ C6.

Now, we can rigorously formulate our expectation concerning the Fréchet differ-
entiability of the map S.

Theorem 3.7 ([36, Thm. 2.5]). Assume that (2.1)–(2.14) are satisfied and let u
and (µ, ϕ, σ) be an optimal control for (CP ) with the corresponding state. Then,
the control-to-state operator S is Fréchet differentiable at u as a mapping from UR
into the space Y, where

Y :=
(
H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

)3
. (3.21)

Moreover, for any u ∈ UR, the Fréchet derivative DS(u) is a linear and continuous
operator from L2(Q) to Y such that

DS(u)h = (η, ϑ, ρ) for every h ∈ L2(Q),

where (η, ϑ, ρ) is the unique solution to system (3.15)–(3.19) corresponding to h
obtained from Theorem 3.6.

To derive an explicit representation from (1.13) we are left with the task of
proving the Fréchet differentiability of the reduced cost functional Jred with respect
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to the treatment time τ . This can be performed rigorously by virtue of the improved
regularity results obtained from Theorem 3.2.

Theorem 3.8. Suppose that (2.1)–(2.13) and (2.16) hold, and in addition to (2.3),
we assume (2.15). Moreover, let (u, τ) be an admissible control pair with the corre-
sponding state (µ, ϕ, σ). Then, the reduced cost functional Jred is Fréchet differen-
tiable with respect to time and

DτJred(u, τ) =
b1
2

∫
Ω

|ϕ(τ)− ϕQ(τ)|2 + b2

∫
Ω

(ϕ(τ)− ϕΩ)∂tϕ(τ)

+
b3
2

∫
Ω

|σ(τ)− σQ(τ)|2 +
b4
2

∫
Ω

∂tϕ(τ) + b5

+ b6(τ − τ∗). (3.22)

Proof. It readily follows from computing the derivative. Moreover, let us notice
that the terms b2

∫
Ω

(ϕ(τ) − ϕΩ)∂tϕ(τ) and b4
2

∫
Ω
∂tϕ(τ) are meaningful by virtue

of the refined result Theorem 3.1. For more details we refer to [23], where the
authors showed how the time derivative for time-dependent cost functionals can be
performed in a general setting.

Theorem 3.9. Assume that (2.1)–(2.13) and (2.16) are fulfilled. Furthermore, in
addition to (2.3) we assume (2.15), and let (u, τ) be an optimal control for (CP )
with the corresponding optimal state (µ, ϕ, σ) obtained from Theorems 3.1, and 3.2.
Then, (u, τ) necessarily fulfils the following variational inequality

b1

∫
Qτ

(ϕ− ϕQ)ϑ+ b2

∫
Ω

(ϕ(τ)− ϕΩ)ϑ(τ) + b3

∫
Qτ

(σ − σQ)ρ+
b4
2

∫
Ω

ϑ(τ)

+ b0

∫
Q

u(v − u) ≥ 0 for every v ∈ Uad, (3.23)

where (η, ϑ, ρ) is the unique solutions to the linearised system (3.15)–(3.19) corre-
sponding to h = v − u obtained from Theorem 3.6. Moreover, we have that

DτJred(u, τ)


≥ 0 if τ = 0,

= 0 if τ ∈ (0, T ),

≤ 0 if τ = T ,

(3.24)

where DτJred(u, τ) is given by (3.22) evaluated at the optimum pair (u, τ). In
addition, setting

Λ(u, τ) :=
b1
2

∫
Ω

|ϕ(τ)− ϕQ(τ)|2 + b2

∫
Ω

(ϕ(τ)− ϕΩ)∂tϕ(τ)

+
b3
2

∫
Ω

|σ(τ)− σQ(τ)|2 +
b4
2

∫
Ω

∂tϕ(τ) + b5,

it follows that DτJred(u, τ) = Λ(u, τ) + b6(τ − τ∗). Hence, if b6 6= 0, the condition
(3.24) can be implicitly characterised as

Λ(u, 0) ≥ b6τ∗ if τ = 0,

τ = τ∗ − b6−1Λ(u, τ) if τ ∈ (0, T ),

Λ(u, T ) ≤ b6(τ∗ − T ) if τ = T .

(3.25)

Proof. As already mentioned, the variational inequalities (3.23) and (3.24) directly
follow by exploiting the abstract conditions (1.13). As (3.23) is concerned, let us
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notice that, loosely speaking, Jred is the composition of J with S so that it suffices
to combine the Fréchet differentiability of the two operators with the chain rule to

get (3.23). In this direction, let us introduce the auxiliary operator S̃ : UR → X×UR,
where

X := (H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ))2,

defined by S̃(u) := (S2(u),S3(u), u) so that Jred(u, τ) = J
(
S̃(u), τ

)
. Then, from

Theorem 3.7 we infer that

DS̃(u) : h 7→ (ϑ, ρ, h) for every h ∈ UR,

where (η, ϑ, ρ) is the unique solution to the linearised system (3.15)–(3.19) corre-
sponding to h obtained from Theorem 3.6. Moreover, it is straightforward to realise
that J is Fréchet differentiable with respect to u and that, for every τ ∈ [0, T ], it
holds that

[DuJ (ϕ, σ, u, τ)](Φ,Ψ, h, τ) = b1

∫
Qτ

(ϕ− ϕQ)Φ + b2

∫
Ω

(ϕ(τ)− ϕΩ)Φ(τ)

+ b3

∫
Qτ

(σ − σQ)Ψ +
b4
2

∫
Ω

Φ(τ) + b0

∫
Q

uh

for every (Φ,Ψ, h) ∈ X × UR.

Thus, we invoke the chain rule to obtain that

[DuJred(u, τ)](h, τ) = [DuJ
(
S̃(u), τ

)
]
(
[DS̃(u)](h), τ

)
= [DuJ (ϕ, σ, u, τ)](ϑ, ρ, h, τ)

= b1

∫
Qτ

(ϕ− ϕQ)ϑ+ b2

∫
Ω

(ϕ(τ)− ϕΩ)ϑ(τ)

+ b3

∫
Qτ

(σ − σQ)ρ+
b4
2

∫
Ω

ϑ(τ) + b0

∫
Q

uh,

which leads to (3.23).
As for the second inequality (3.24), it readily follows from the second of (1.13)

along with the characterisation given by (3.22). Lastly, the first and the last condi-
tions of (3.24) are consequences of the fact that we cannot exclude the cases s = 0
and s = T , while the middle one follows from the fact that, whenever τ ∈ (0, T ),
we can simply take s = τ ± ζ, with ζ > 0, to argue that DτJred(u, τ) = 0.

Let us emphasise that the above characterisation (3.25) is new with respect to the
previous contributions [3] and [23], where just the condition (3.24) was obtained.
In fact, the more explicit condition (3.25) can be now obtained by virtue of the
additional tracking-type term b6

2 |τ − τ∗|
2 that we have added in the cost functional.

3.4. Adjoint system and first-order optimality condition. This section is
devoted to the introduction and discussion of the adjoint system to (1.1)–(1.5)
which is a key argument in simplifying the variational inequality (3.23). Only
straightforward modifications are in order with respect to [36] and it can be easily
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shown that the (formal) adjoint system to (1.1)–(1.5) reads as

− β∂tq − ∂tp−∆q + F ′′(ϕ)q + P ′(ϕ)(σ − µ)(r − p)
= b1(ϕ− ϕQ) in Qτ , (3.26)

− α∂tp−∆p− q + P (ϕ)(p− r) = 0 in Qτ , (3.27)

− ∂tr −∆r + P (ϕ)(r − p) = b3(σ − σQ) in Qτ , (3.28)

∂nq = ∂np = ∂nr = 0 on Στ , (3.29)

βq(τ) = b2(ϕ(τ)− ϕΩ) + b4
2 , p(τ) = 0, r(τ) = 0 in Ω. (3.30)

The main differences with respect to [36] are:

(i) The system (3.26)–(3.30) has to be considered for a.a. t ∈ (0, τ) instead of
a.a. t ∈ (0, T ).

(ii) In the final condition of βq(τ) there appears a new term b4
2 which is due to

the presence of b4
2

∫
Ω

(1 + ϕ(τ)) in the cost functional.
(iii) The final condition for r is zero since we are not considering any term involving

the contribution
∫

Ω
|σ(τ)− σΩ|2 in the cost functional.

It is worth noting that the above system is a backward-in-time problem with
terminal data for q only belonging to L2(Ω) (see assumption (2.3)). Therefore, the
first equation (3.26) has to be considered in a weak sense, i.e., we require that

− V ∗〈∂t(p+ βq)(t), v〉V +

∫
Ω

∇q(t) · ∇v +

∫
Ω

F ′′(ϕ(t))q(t)v

+

∫
Ω

P ′(ϕ(t))(σ(t)− µ(t))(r(t)− p(t))v

=

∫
Ω

b1(ϕ(t)− ϕQ(t))v for every v ∈ V and, a.a. t ∈ (0, τ).

Theorem 3.10. Assume that the assumptions (2.1)–(2.14) are verified. Then, the
adjoint system (3.26)–(3.30) admits a unique solution (q, p, r) such that

q ∈ H1(0, τ ;V ∗) ∩ L∞(0, τ ;H) ∩ L2(0, τ ;V ) ⊂ C0([0, τ ];H), (3.31)

p, r ∈ H1(0, τ ;H) ∩ L∞(0, τ ;V ) ∩ L2(0, τ ;W ) ⊂ C0([0, τ ];V ). (3.32)

Proof. As before, we proceed formally since the approach is standard and the system
is linear.

First estimate. First, we add to both sides of (3.27) and (3.28) the terms p and r,
respectively. Then, we multiply (3.26) by q, the new (3.27) by ∂tp, the new (3.28)
by ∂tr, add the resulting equalities, integrate over Qτ and by parts. After some
rearrangements and a cancellation, we obtain that

β

2

∫
Ω

|q(t)|2 +

∫
Qτ

|∇q|2 + α

∫
Qτ

|∂tp|2 +
1

2
‖p(t)‖2V +

∫
Qτ

|∂tr|2 +
1

2
‖r(t)‖2V

=
β

2

∫
Ω

|q(τ)|2 +

∫
Qτ

b1(ϕ− ϕQ)q −
∫
Qτ

b3(σ − σQ)∂tr

−
∫
Qτ

F ′′(ϕ)|q|2 −
∫
Qτ

P ′(ϕ)(σ − µ)(r − p)q +

∫
Qτ

P (ϕ)(p− r)∂tp

−
∫
Qτ

p ∂tp+

∫
Qτ

P (ϕ)(r − p)∂tr −
∫
Qτ

r ∂tr,
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where we denote by I1, ..., I9 the integrals on the right-hand side. Using the Young
inequality and recalling (2.7) and (3.5), we easily obtain that

|I1|+ |I2|+ |I3|+ |I4|+ |I7|+ |I9|

≤ δ
∫
Qτ

(|∂tp|2 + |∂tr|2) + cδ

∫
Qτ

(|q|2 + |p|2 + |r|2) + c,

for a positive δ yet to be determined and for a positive constant cδ which only
depends on δ. Furthermore, using the Hölder and Young inequalities we infer that,
for every δ > 0,

|I5|+ |I6|+ |I8| ≤ c
∫ τ

0

(‖σ‖4 + ‖µ‖4)(‖r‖4 + ‖p‖4)‖q‖2

+ c

∫
Qτ

(|p|+ |r|)(|∂tp|+ |∂tr|)

≤ c
∫ τ

0

(‖σ‖V + ‖µ‖V )(‖r‖V + ‖p‖V )‖q‖H

+ δ

∫
Qτ

(|∂tp|2 + |∂tr|2) + cδ

∫
Qτ

(|p|2 + |r|2)

≤ c
∫ τ

0

(‖σ‖2V + ‖µ‖2V )(‖r‖2V + ‖p‖2V ) + c

∫
Qτ

|q|2

+ δ

∫
Qτ

(|∂tp|2 + |∂tr|2) + cδ

∫
Qτ

(|p|2 + |r|2),

where we also used the continuous embedding V ⊂ L4(Ω) and that µ and σ, as
solutions to (1.1)–(1.5), satisfy (3.4) so that (‖σ‖2V + ‖µ‖2V ) ∈ L∞(0, T ). Lastly,
adjusting δ ∈ (0, 1) small enough, a Gronwall argument yields that

‖q‖L∞(0,τ ;H)∩L2(0,τ ;V ) + ‖p‖H1(0,τ ;H)∩L∞(0,τ ;V ) + ‖r‖H1(0,τ ;H)∩L∞(0,τ ;V ) ≤ c.

Second estimate. Next, comparison in (3.27) and then in (3.28), along with the
above estimate, and the elliptic regularity theory allow us to deduce that

‖p‖L2(0,τ ;W ) + ‖r‖L2(0,τ ;W ) ≤ c.

Third estimate. Lastly, by comparison in (3.26) we immediately realise that

‖∂tq‖L2(0,τ ;V ∗) ≤ c,

which conclude the proof since the uniqueness directly follows from the above a
priori estimates by classical arguments since the adjoint system (3.26)–(3.30) is
linear in (q, p, r).

Here, let us point out that the terminal condition of the adjoint variable q given
by (3.30) allows us to rewrite the sum of the second and fourth terms of (3.22),
i.e., b2

∫
Ω

(ϕ(τ) − ϕΩ)∂tϕ(τ) + b4
2

∫
Ω
∂tϕ(τ), as β

∫
Ω
∂tϕ(τ)q(τ). This latter can

be characterised also in different ways. In fact, upon multiplying by β the weak
formulation of (1.1) and the weak formulation of (1.2) by q, we infer that, for all
t ∈ [0, T ],

β

∫
Ω

∂tϕ(t)q(t) =

∫
Ω

∆ϕ(t)q(t)−
∫

Ω

F ′(ϕ(t))q(t) +

∫
Ω

µ(t)q(t),
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as well as

β

∫
Ω

∂tϕ(t)q(t) = β

∫
Ω

P (ϕ(t))(σ(t)− µ(t))q(t)

− αβ
∫

Ω

∂tµ(t)q(t) + β

∫
Ω

∆µ(t)q(t).

These are completely meaningful in a pointwise sense if we can guarantee that

σ, q ∈ C0([0, T ];H), ∂tµ, ∂tϕ ∈ C0([0, T ];H), and µ, ϕ ∈ C0([0, T ];H2(Ω)).

Indeed these requirements are fulfilled under the framework of the refined regularity
results expressed by Theorem 3.2 and Theorem 3.3.

Next, by using the adjoint variables (q, p, r) we can eliminate the linearised vari-
ables from the variational inequality (3.23) producing a simpler formulation for the
first-order necessary conditions for optimality.

Theorem 3.11. Suppose that (2.1)–(2.13) and (2.16) are satisfied. Let (u, τ),
(µ, ϕ, σ) and (q, p, r) be an optimal control pair with the corresponding state and
adjoint variables obtained from Theorems 3.1, 3.2, and 3.10, respectively. Then,
(u, τ) necessarily satisfies∫

Qτ

r(v − u) + b0

∫
Q

u(v − u) ≥ 0 for every v ∈ Uad. (3.33)

Corollary 1. Let the assumptions of Theorem 3.11 be satisfied. Moreover, let us
set r̃ as the zero extension of r in [0, T ]. Then, the optimal pair (u, τ) necessarily
satisfies ∫

Q

(r̃ + b0u)(v − u) ≥ 0 for every v ∈ Uad. (3.34)

Moreover, if b0 6= 0, the optimal control u is nothing but the L2(0, T ;H)-orthogonal
projection of −b0−1 r̃ onto the closed subspace Uad.

Remark 1. Note that the case τ = 0 covers a special and trivial role. In fact, in
this case the above variational inequality (3.33) reduces to

b0

∫
Q

u(v − u) ≥ 0 for every v ∈ Uad,

which, whenever b0 > 0, yields that u is the orthogonal projection of 0 onto the
closed subspace Uad. The same consequence can be drawn from evaluating the
variational inequality (3.23) at τ = 0 and using that ϑ(0) = 0.

Remark 2. As a consequence of (3.34), we can identify, via Riesz’s representation
theorem, the gradient of the reduced cost functional as

∇Jred(u, τ) = r̃ + b0u.

This fact is extremely important from the numerical viewpoint since it implies the
possibility to analyse the optimal control problem (CP ) as a constrained minimi-
sation problem via standard techniques (e.g., by applying the conjugate gradient
method).
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Proof of Theorem 3.11. Comparing the two variational inequalities (3.23) and
(3.33), we realise that it suffices to check that∫

Qτ

rh = b1

∫
Qτ

(ϕ− ϕQ)ϑ+ b2

∫
Ω

(ϕ(τ)− ϕΩ)ϑ(τ)

+ b3

∫
Qτ

(σ − σQ)ρ+
b4
2

∫
Ω

ϑ(τ), (3.35)

where h is taken as h = v − u and (η, ϑ, ρ) is the unique solution to (3.15)–(3.19)
associated to h obtained from Theorem 3.6. In this direction, we multiply (3.15)
by p, (3.16) by q, (3.17) by r, and integrate over Qτ to get

0 =

∫
Qτ

p[α∂tη + ∂tϑ−∆η − P ′(ϕ)(σ − µ)ϑ− P (ϕ)(ρ− η)]

+

∫
Qτ

q[β∂tϑ−∆ϑ+ F ′′(ϕ)ϑ− η]

+

∫
Qτ

r[∂tρ−∆ρ+ P ′(ϕ)(σ − µ)ϑ+ P (ϕ)(ρ− η)− h].

Then, we move the last term to the left-hand side and integrate by parts to obtain
that ∫

Qτ

rh =

∫
Qτ

η[−α∂tp−∆p− q + P (ϕ)(p− r)]

+

∫
Qτ

ϑ[−β∂tq − ∂tp−∆q + F ′′(ϕ)q + P ′(ϕ)(σ − µ)(r − p)]

+

∫
Qτ

ρ[−∂tr −∆r + P (ϕ)(r − p)]

+

∫
Ω

[αη(τ)p(τ) + ϑ(τ)p(τ) + βϑ(τ)q(τ) + ρ(τ)r(τ)],

where we also owe to the homogeneous Neumann boundary conditions for the lin-
earised and adjoint variables, and to the initial conditions for the linearised vari-
ables. Finally, accounting for the adjoint system (3.26)–(3.30), we conclude that
the above equation reduces to (3.35).

4. Some possible generalisations. In the remainder of the paper, we aim at
providing some indications concerning some further generalisations. First, we will
show how to possibly overcome the issue already mentioned regarding the control
of the nutrient variable σ at the given time τ . Next, we will spend some words
concerning a similar minimisation problem in which the role of the control variable
sligthly differs from our choice.

4.1. A relaxation argument. From the mathematical viewpoint, a natural term
to be considered in the cost functional is

∫
Ω
|σ(τ) − σΩ|2. However, as already

emphasised, to give meaning to the necessary conditions that will eventually appear,
further temporal regularity for σ has to be established. This will force us to demand
the control u to be more regular in time, say H1(0, T ;H), which is unrealistic in
the application. Anyhow, a possible way to overcome this issue could be to follow
the relaxation strategy employed in [23]. To this aim, let us fix a positive constant
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ε and define the relaxed cost functional Jε as follows

Jε(ϕ, σ, u, τ) := J (ϕ, σ, u, τ) +
γ

2ε

∫ τ

τ−ε

∫
Ω

|σ − σΩ|2,

for a non-negative constant γ and for a given target function σΩ. Note that the
factor 1

ε is due to normalisation since 1
ε

∫ τ
τ−ε = 1. With this adjustement on the cost

functional, we can control the final configuration of the nutrient without demanding
any additional regularity for the nutrient variable σ. Hence, instad of considering
(CP ) we consider

(CP )ε inf
(ϕ,σ,u,τ)∈Aad

Jε(ϕ, σ, u, τ).

The most part of the results follow in the same way. Hence, we proceed schematically
just mentioning the main differences.

Existence. The first arrangement to be done concerns the existence of a minimiser
(cf. Section 3.2). The proof can be reproduced using the direct method of calculus
of variations provided to explain how the new term of the cost functional can be
handled. In this direction, let us point out that, along with (3.12), we also have, as
n→∞,

χ
[τn−ε,τn](·)→ χ

[τ−ε,τ ](·) for a.a. t ∈ (0, T ).

Hence, by similar reasoning, we also conclude that, as n→∞,

γ

2ε

∫ τn

τn−ε

∫
Ω

|σn(τn)− σΩ|2 →
γ

2ε

∫ τ

τ−ε

∫
Ω

|σ(τ)− σΩ|2,

while the rest of the proof is exactly the same as in the proof of Theorem 3.5.

Fréchet differentiability of the reduced cost functional. As expected, the
main differences are related to the Fréchet differentiability of the corresponding
reduced cost functional. In fact, the corresponding of (3.23) becomes

b1

∫ τ

0

∫
Ω

(ϕ− ϕQ)ϑ+ b2

∫
Ω

(ϕ(τ)− ϕΩ)ϑ(τ) + b3

∫ τ

0

∫
Ω

(σ − σQ)ρ

+
γ

ε

∫ τ

τ−ε

∫
Ω

(σ − σΩ)ρ+
b4
2

∫
Ω

ϑ(τ) + b0

∫
Q

u(v − u) ≥ 0 for every v ∈ Uad.

As the time derivative is concerned, we have to adjust a little the framework by
assuming that σΩ ∈ H1(−ε, T ;H) and that the variable σ is meaningful for negative
time. Hence, we simply postulate that σ(t) := σ0 if t < 0. Thus, the corresponding
Fréchet derivative with respect to time reads as

DτJred(u, τ) =
b1
2

∫
Ω

|ϕ(τ)− ϕQ(τ)|2 + b2

∫
Ω

(ϕ(τ)− ϕΩ)∂tϕ(τ)

+
b3
2

∫
Ω

|σ(τ)− σQ(τ)|2

+
γ

2ε

(∫
Ω

|(σ − σΩ)(τ)|2 −
∫

Ω

|(σ − σΩ)(τ − ε)|2
)

+
b4
2

∫
Ω

∂tϕ(τ) + b5 + b6(τ − τ∗).
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The adjoint system. Lastly, the adjoint system slightly differs and becomes

− β∂tq − ∂tp−∆q + F ′′(ϕ)q + P ′(ϕ)(σ − µ)(r − p) = b1(ϕ− ϕQ) in Qτ ,

− α∂tp−∆p− q + P (ϕ)(p− r) = 0 in Qτ ,

− ∂tr −∆r + P (ϕ)(r − p) = b3(σ − σQ) + γ
ε
χ

(τ−ε,τ)(·) (σ − σΩ) in Qτ ,

∂nq = ∂np = ∂nr = 0 on Στ ,

p(τ) + βq(τ) = b2(ϕ(τ)− ϕΩ) + b4
2 , αp(τ) = 0, r(τ) = 0 in Ω.

Notice that the only difference is the right-hand side of the third equation which,
however, still belongs to L2(0, T ;H) and therefore the well-posedness of the above
system easily follows adapting the lines of argument of Theorem 3.10.

4.2. A different control variable. Let us conclude the paper by pointing out that
another popular choice for the control variable u is the one employed in [23, 14, 13].
There, the control variable u is placed in equation (1.1) and it models the elimination
of tumour cells by the effect of a cytotoxic drug. Namely, we can consider the
following state system

α∂tµ+ ∂tϕ−∆µ = P (ϕ)(σ − µ)− κuh(ϕ) in Q,

µ = β∂tϕ−∆ϕ+ F ′(ϕ) in Q,

∂tσ −∆σ = −P (ϕ)(σ − µ) in Q,

∂nµ = ∂nϕ = ∂nσ = 0 on Σ,

µ(0) = µ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω,

where κ is a positive constant, whereas the symbol h stands for an interpolation
function which vanishes at −1 and attains value 1 at 1. Moreover, the control u
ranges between 0 and 1 in order to model no dosage and full dosage of the drug,
respectively. So, when ϕ = −1 no drug is dispensed, when ϕ = 1 there is a full
dosage of the drug, and in between there is an intermediate supply.

It is worth noting that κh(ϕ)u ∈ L∞(Q) so that the same arguments employed in
[36] can be reproduced in the same manner to obtain the corresponding of Theorem
3.1. However, notice that Theorem 3.2 cannot directly be reproduced. In fact,
since the control variable is now placed in the phase equation, it will be necessary
to require that u ∈ H1(0, T ;H). Therefore, in the spirit of the above section one is
reduced to consider a relaxed cost functional

Jε(ϕ, σ, u, τ) :=
a1

2

∫
Qτ

|ϕ− ϕQ|2 +
a2

2ε

∫ τ

τ−ε

∫
Ω

|ϕ− ϕΩ|2 +
a3

2

∫
Qτ

|σ − σQ|2

+
a4

2

∫
Ω

|σ − σΩ|2 +
a5

2ε

∫ τ

τ−ε

∫
Ω

(1 + ϕ) + a6τ +
a7

2
|τ − τ∗|2

+
a0

2

∫
Q

|u|2,

for some non-negative constants a0, ..., a7. Let us claim that, providing to require
some natural assumptions, the variable σ may enjoy higher temporal regularity so
that the third term in the cost functional above can be considered without any
relaxation arguments. Let us claim that, after proving higher temporal regularity
for the variable σ, the expected optimality conditions read as

a7

∫
Q

u(v − u)− κ
∫
Qτ

h(ϕ)p(v − u) ≥ 0 for every v ∈ Uad,
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where p stands for the associated adjoint variable and

a1

2

∫
Ω

|ϕ(τ)− ϕQ(τ)|2 +
a2

2ε

∫
Ω

(
|(ϕ− ϕΩ)(τ)|2 − |(ϕ− ϕΩ)(τ − ε)|2

)
+
a3

2

∫
Ω

|σ(τ)− σQ(τ)|2 + a4

∫
Ω

(σ(τ)− σΩ)∂tσ(τ)

+
a5

2ε

∫
Ω

(ϕ(τ)− ϕ(τ − ε)) + a6 + a7(τ − τ∗)


≥ 0 if τ = 0,

= 0 if τ ∈ (0, T ),

≤ 0 if τ = T .

The details are left to the reader.
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