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A HYBRID STOCHASTIC-DETERMINISTIC INTEGRATOR FOR
SPACECRAFT DYNAMICS WITH UNCERTAINTY

Carmine Giordano* and Francesco Topputo†

High-fidelity spacecraft trajectory propagation can become a cumbersome task
when dealing with uncertainties modeled as random processes. The stochastic
differential equations describing the uncertain dynamics can be numerically inte-
grated, but they are challenging from the computational point of view. Traditional
methods usually require either the storage of a relevant amount of data or small
integration steps. In this work, an hybrid method, embedding a stochastic inte-
gration method in a deterministic higher-order scheme, is conceived to obtain fast
and stochastically correct results. Results show a reduction of at least one order of
magnitude for both computational time and memory usage with respect to state-
of-the-art techniques, while it is able to provide statistically correct results.

INTRODUCTION

In a real-life scenario, a spacecraft is unlikely to follow the prescribed nominal path, due to uncer-
tainty in the dynamics (e.g., gravitational parameters or radiation pressure noisy profiles), navigation
(i.e. imperfect state knowledge or approximations in measurement model), and command actuation
(i.e., thrust magnitude and pointing angles error).1 The correct quantification of these uncertainties
and their impact on a spacecraft trajectory are required tasks in space operations, e.g., to evaluate
the observability of a spacecraft trajectory or to assess the collision probability risk with another
object.2 In mission analysis, uncertainty quantification is of paramount importance to determine the
flyability of trajectories and as consequence the feasibility of a spacecraft mission. In fact, it is not
uncommon that, even if they could be nominally exploited, some trajectories are not usable after an
uncertainty assessment is performed due to the costs3 or the risks.4

Uncertainties related to spacecraft trajectory analysis are both random variables (e.g., measurement
errors, drag coefficient, mass parameters, usually modeled as Gaussian variables), and random pro-
cesses (e.g., solar radiation pressure, low thrust acceleration). While random variables usually do
not pose any additional complexity from the computational point of view, stochastic processes could
be difficult to handle, due to their noisy dynamics. However, their impact on the propagation un-
der uncertainty of space trajectory is relevant and an improper modelization can lead to under- or
over-estimate the stochastic characteristics of the given trajectory. For traditional spacecraft, errors
in the estimation of the dispersion, i.e., the distance between the real and the nominal trajectory,
are usually a minor problem, since they have the control authority and the propellant to compensate
them in flight. However, an increasing number of future space exploration mission is foreseen to
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exploit CubeSats,5, 6 characterized by limited-control authority, due to low thrust levels and reduced
propellant budget. In this case, dispersion misestimate can lead to discard feasible trajectories (in
case of over-estimation) or to select unflyable trajectories, requiring a large amount of propellant
when in flight (in case of under-estimation). For this reason, it is critical to be able to propagate the
trajectories in a high-fidelity setting considering properly their stochastic background.
To this aim, the integration of a system of stochastic differential equations (SDE) is required. In
recent times, numerical methods to obtain both weak and strong approximations for the solution
of stochastic differential equations have been developed,7, 8 with a special interest in derivative
free Runge-Kutta schemes.9–13 In the last years, the work by Rossler14 introduced some efficient
stochastic Runge-Kutta (SRK) schemes, that exploit the colored rooted tree analysis15 to reduce
significantly the number of function evaluation required for any single step. The possibility to cre-
ate natural embedded pairs, able to both perform the step and estimate the errors with no extra
function evaluation,16 increased the flexibility of the SRK and allowed to create efficient adapta-
tive methods. However, the complexity of the SRK methods grows with the approximation order,
since more terms should be considered in the generating Itô–Taylor expansions.17 Moreover, the
extra terms involve the computation of high-order iterated and cross-term Itô integrals, for which a
simple approximation, like the one by Wiktorsson,18 is still missing. For this reason, higher-order
SRK schemes could be impractical and, even though strong order 2.0 SRK methods have been in-
troduced,7 existing work mainly focused on order 1.5 schemes.
This limitation in the convergence order strongly reduces the use of pure SDEs solvers in astrody-
namics applications, since they usualy have great time horizons and stringent tolerances. Indeed,
in this case, the number of steps required to provide an accurate solution can be considerable and
massive Monte Carlo simulations can be unfeasible due to the unbearable amount of required com-
putational resources.
In this work, a hybrid integration methodology, combining a high-order deterministic method with
a lower-order stochastic scheme, is presented, in order to solve in a fast and efficient way the SDEs
associated to the orbital dynamics. The paper is organized as follows: in Section , the random
ordinary differential equations are illustrated and the approach for a general hybrid integrator is
presented in Section . Then it is specialized for a given combination of stochastic and deterministic
schemes in Section . The novel strategy is tested in Section 63 and Section 63 concludes the work.

THE RANDOM ORDINARY DIFFERENTIAL EQUATIONS

Generally speaking, a stochastic differential equation can be written in the Itô formulation as19

dxt = f (t,xt) dt+H (t,xt) dWt (1)

where xt represent the state at a given time t, f describes the deterministic dynamics, usually de-
fined as the drift function in the SDE framework, H measures the stochastic dynamics, i.e., it is the
diffusion function, and W is a Brownian motion.
Dynamical systems under uncertain external forces, as the spacecraft dynamics, however, can be
modeled as a combination of two sub-domains: 1) a deterministic state, whose dynamics is de-
scribed by an ordinary differential equation (ODE), that is perturbed by 2) a stochastic state, whose
dynamics is described by a stochastic differential equation, which in turn does not depend on the
deterministic part. This kind of dynamical systems are described by the so-called random ordinary

2



differential equations (RODE), and they can be formulated as

ẋ = f (t,x,ωt) (2a)

dωt = g (t,ωt) dt+H (t,ωt) dWt (2b)

where x is the state related to the ODE, ω is the stochastic state, and f represents the deterministic
dynamics. From Eqs. (2), it is clear that the noise is independent from the deterministic state, while
the noise acts as an external force for the deterministic dynamics. Ideally, Eq. (2b) can be integrated
a-priori and then the result can be fed to Eq. (2a). This procedure, even if effective, could require
to store a relevant amount of data, that must be later accessed during Eq. (2a) integration. From the
computational point of view, this slows down the code execution and can prevent the use of massive
Monte Carlo simulations due to memory saturation. Alternatively, the noise can be generated on the
fly, exploiting fixed-step scheme,20 thus potentially reducing the solution accuracy.
Exploiting the loose coupling between the spacecraft stochastic dynamics, an hybrid scheme, com-
bining a high-order ODE solver with an SDE scheme, can be conceived. It integrates the deter-
ministic part of the dynamics (Eq. (2a)) with a high-order Runge-Kutta scheme, while propagating
contemporary the stochastic part (Eq. (2b)) with a lower-order stochastic method. This class of in-
tegrators will be able to correctly integrate the process noise, feeding it to the spacecraft dynamics
at each integration step. Thus, it can exploits the accuracy of a high-order variable-step scheme,
without the need to store data or to perform small steps.

A GENERAL CLASS OF HYBRID INTEGRATORS

For the strong approximation of the solution of an SDE, with reference to Eq. (2b), an s-stage
SRK method takes the following form12
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i=1

αihg
(
tn + c

(0)
i h,Ω

(0)
i

)
+

s∑
i=1

∑
ν∈M

z
(ν)
i H

(
tn + c

(ν)
i h,Ω

(ν)
i

)
(3)

with ωn = ω (tn), h = tn+1 − tn, and

Ω
(ν)
i = ωn +

s∑
j=1

A
(ν)
ij hg

(
tn + c

(0)
j h,Ω

(0)
j

)
+

s∑
j=1

∑
µ∈M

Z
(ν,µ)
ij H

(
tn + c

(µ)
j h,Ω

(µ)
j

)
(4)

where
z
(ν)
i =

∑
λ∈M

β
(λ),(ν)
i θλ(h)

Z
(ν,µ)
ij =

∑
λ∈M

B
(λ),(ν,µ)
ij θλ(h)

with M a set of multi-indices with |M| = κ, and θν some random variables satisfying

E
[
θp1ν1 · . . . · θ

pκ
νκ

]
= O

(
h(p1+...+pκ)/2

)
for all pi ∈ N0 and νi ∈ M, 1 ≤ i ≤ κ.
Values of A, B, α, β, and c, are the coefficients of the SRK methods, defining the different schemes.
They can be organized in some extended Butcher tableau for their easy representation.
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On the other hand, for the approximation of the solution of an ODE, with reference to Eq. (2a), an
s-stage Runge-Kutta (RK) method takes the following form

xn+1 = xn +
s∑

i=1

αih f (tn + cih,Xi,ωn+ci) (5)

with xn = x (tn), ωn+ci = ω (tn + cih), and

Xi = xn +

s∑
j=1

Aijh f
(
tn + cjh,Xj ,ωn+cj

)
(6)

with A, α, and c being the coefficient of the ordinary RK methods. If Aij = 0 (= Bij in the SRK
case) for j ≥ i, than Eq. (5) (or Eq. (3)) represent an explicit RK (or SRK) method, that are the
focus of this work.
Additionally, both ordinary and stochastic Runge-Kutta methods can be written exploiting naturally
embedded higher-order and lower-order pair of temporal integrators, performing the same stage
evaluations. This means that the lower-order components are estimated, respectively, as

x̃n+1 = xn +
s∑

i=1

α̃ih f (tn + cih,Xi,ωn+ci) (7)

and
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with z̃
(ν)
i =

∑
λ∈M β̃

(λ),(ν)
i θλ(h), and Xi and Ωi evaluated using the same expressions in Eq. (6)

and (4), respectively. In this case, the higher-order scheme is used to advance the solution, while
a measure of its difference with the lower-order scheme (e.g., ϵx = ∥xn+1 − x̃n+1∥∞ and ϵω =
∥ωn+1−ω̃n+1∥∞, respectively) is employed to estimate the local integration error, that is later used
to adapt the time-step if it exceeds a threshold, following an adaptive time-stepping algorithm.
Thus, given the RODE system in Eqs. (2) and its local solution given by Eqs. (3)–(5), a general
hybrid scheme is devised. At a given time tn ∈ [t0, tf ], where t0 and tf are the time boundaries of
the simulation, a forward integration step of length h = tn+1 − tn of the hybrid integrator can be
summarized as:

1) the stochastic dynamics is propagated forward from tn to tn+1 using Eq. (3) with a time step
hSRK ≤ h to obtain ωn+1;

2) the error ϵω is estimated. If it exceeds a prescribed tolerance, hSRK is reduced exploiting an
appropriate adaptive time-stepping algorithm and the procedure restart from Step 1);

3) the stochastic state is interpolated on the time grid tn + cih, i ∈ {0, s}, identified from the
ordinary Runge-Kutta scheme, to obtain ωn+ci ;

4) the deterministic state is propagated forward from tn to tn+1 using Eq. (5) to obtain xn+1;

5) the error ϵx is estimated. If it exceeds a prescribed tolerance, h is reduced exploiting an
appropriate adaptive time-stepping algorithm and the procedure restart from Step 3).
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An outline of this hybrid integration scheme is provided in Figure 1. From this general outline,
different hybrid integrators can be constructed by changing the method associated to each step,
specifically:

1) the SRK method from Eq. (3), varying the number of stages s and the coefficients,

2) the SRK adaptive time-stepping algorithm,

3) the interpolation method, projecting the noise into the ordinary differential equation scheme,

4) the RK scheme from Eq. (5), and

5) the RK time-stepping algorithm, associated to the deterministic step.

The choice of each of these items is bound to the characteristics of the differential equations
system to be solved, the required accuracy, and the available computational resources.

EULER-MARUYAMA-RUNGE-KUTTA SCHEME

The Euler-Maruyama-Runge-Kutta (EMRK) algorithm is an integration scheme, based on the
general stochastic-deterministic method, conceived to solve problem with a simple stochastic dy-
namics, but requiring stringent tolerances, such as the RODE system associated to the uncertain
spacecraft dynamics. In this case, high-order stochastic Runge-Kutta schemes and stochastic step-
varying algorithm are not needed. The stochastic dynamics is then integrated by exploiting a fixed-
step Euler-Maruyama scheme, i.e.,

ωn+1 = ωn + hEM g(tn,ωn) +H(tn,ωn)∆Wn (9)

where ∆Wn ∼ N (0, hEM ) is the increment in the Brownian path. The step-length size hEM

is selected a-priori. On the other hand, dynamics in Eq. (2a) is integrated exploiting an ordernary
Runge-Kutta scheme, such as Dormand-Prince method21 or the Verner’s most efficient Runge-Kutta
8(7) pair,22 as done in this work. However, the deterministic time-stepping algorithms used com-
monly for solving ODEs cannot be exploited, since they will throw away information about the
future Wiener process which biases the sample statistics for the path. For this reason, a method
preserving information about the future path is built, adapting the Rejection Sampling with Mem-
ory (RSwM) algorithm16 to the hybrid integrators. The main differences are that the step-size is
determined by the deterministic part of the RODE and the interpolation of the SDE solution onto
the deterministic one must be taken into account. The Brownian bridge23 will be exploited both to
manage the variable step-size and the noise interpolation. By the properties of the Brownian bridge,
considering a general Wiener process with W (t1) = a and W (t2) = b, then

W (t) ∼ N
(
a+

t− t1
t2 − t1

(b− a) ,
(t2 − t) (t− t1)

t2 − t1

)
(10)

for t ∈ [t1, t2].
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START

Given t0, tf , x0, ω0, hSRK , and h

Set tn = t0, xn = x0, and ωn = ω0

tn ≤ tf

Compute ωn+1 (Eq. (3)) and ϵω

ϵω < tolω
Reduce

step hSRK

Interpolate ω onto tn+ci

Compute xn+1 (Eq. (5)) and ϵx

ϵx < tolx
Reduce
step h

Update n = n+ 1

Return xf = xn

END

Yes

Yes

No

Yes

No

No

Figure 1: Outline of the general deterministic-stochastic hybrid integrator with double adapting
time-step.

6



Modified Rejection Sampling with Memory

Following the scheme outlined by the RSwM, the odified Rejection Sampling with Memory (mR-
SwM) algorithms uses two stacks S1 and S2, with the first containing future information and the
latter the re-popped ones. Each element of the stacks is a tuple containing the integration time at
which it is associated and the values of the Wiener process in Eq. (9), e.g., S1,n = (tn,∆Wn). It is
important to note that the value of the noise ω is not saved in the stacks, but rather re-computed from
scratch when needed. This is related to the fact that the Brownian bridge can be applied directly
only to Wiener paths and not on other type of processes.
An overview of the mRSwM is given in Figure 2:

(a) At a general time 0, the stacks S1 and S2 are not empty and contains future (i.e., after the
time-span h) and re-popped information (i.e., within the time-span h, respectively. Note that
even if S1 could be empty, S2 contains at least 2 elements, that are the values of the process
at 0 and h;

(b) The Wiener process is interpolated in the time instants required by the ordinary RK algorithm
(red dots in the figure) by exploiting the Brownian bridge and inserted into S2. Eq. (2b) is
integrated using Eq. (9) and the information contained in S2. Later, Eq. (2a) is solved by Eq.
(5). The acceptable error is computed by

τ = tol · ∥x∥∞ (11)

where tol is the desired tolerance, and the step-size variation as

q = 0.9

(
τ

ϵx

) 1
8

(12)

If τ ≤ ϵx, the step is accepted:

(c) S2 is emptied. The information from S1 within the new step-length hnew = qh are later
moved onto S2. Additionally, in general, the element associated to the end of the new step
should be added on top of S2 by interpolating its last element with the first element of S1.
If τ > ϵx, the step is rejected:

(d) The information from S1 within the new step-length hnew = qh are moved onto S2, and the
element associated to the end of the new step is added on top of S2 by interpolating its last
element with the first element of S1.
After that this cycle is repeated until the final time is reached.

Moreover, special care should be paid when adding new elements to S2. Since the integration step
for the stochastic part must be equal or lower than hEM , if two elements in S2 are separated in time
by a greater interval, additional time-step should be added by exploiting the Brownian bridge. A
pseudocode version of the mRSwM is given in Algorithm 1.

RESULTS

In order to evaluate the validity of the hybrid Euler-Maruyama-Runge-Kutta method, test on
both correctness and efficiency are performed. The dynamics under test is a 2-body problem, with
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Figure 2: Scheme for the adaptive time-step algorithm embedding the modified Rejection Sampling
with Memory.
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Algorithm 1: Euler-Maruyama-Runge-Kutta scheme
Set the values ϵx , ϵω , hmax , hEM
Set the initial values x = x0 , ω = ω0
Take an initial h
Initialize the time vector tEM = (0, hEM , . . . , NhEM )/h with N = h/hEM
Initialize ∆W ∼ NN (0, hEM )
Initialize S1 empty and S2 = (tEM ,∆W )
while tn ≤ tf

for j = 1, . . . , s ▷Find the interval in S2 for cj and interpolate the noise
1 for k = 1, . . . , N
2 Set P = S2,k

3 if P1 − cj ≥ 0
4 break
5 end
6 end
7 Set Q = S2,k+1

8 Take ∆W ∼ N
(

cj−P1
Q1−P1

P2,

(
cj−P1

)(
Q1−cj

)
Q1−P1

h

)
9 Insert (cj ,∆W ) into S2

10 end
11 for k = 1, . . . , length(S2) ▷Integrate ω with time steps given by S2
12 Advance from S2,k to S2,k+1 according to Eq. (9)
13 end
14 Attempt the step with h and ωcj

to get xtmp according to Eq. (5) and (7)

15 Estimate the error ϵx and the acceptable error τ = tol · ∥x∥∞
16 Update q = 0.9 (τ/ϵx)1/8

17 if ϵx ≤ τ ▷Accept the step
18 Update t = t + h, and x = xtmp
19 Update c = min (hmax, qh), h = min(c, tf − t)

20 Set S = S1 , and empty S1 and S2
21 for k = 1, . . . , length(S)
22 Set P = Sk
23 Update P1 = (P1 − 1)q ▷Scale for the new time
24 if P1 < 1 ▷If below 1 is a repopped time
25 Push P onto S2
26 else
27 if S1 is empty ▷Switching from S2 to S1
28 Pop the bottom of S2,end as Q

29 Let ∆Wtmp ∼ N
(

1−Q1
P1−Q1

Q2,
(1−Q1)(P1−1)

P1−Q1
h
)

30 Push (Q1,∆Wtmp) onto S2
31 Push (1, Q2 − ∆Wtmp) at the bottom of S1

32 else
33 Push P onto S1
34 end
35 end
36 end
37 if S1 is empty ▷If there is no time after 1, extend S2
38 if S2 is empty ▷If there is no repopped time, create S2 from scratch
39 Set the time vector tEM = (0, hEM , . . . , NhEM )/h with N = h/hEM
40 else ▷Or from the last point
41 Set P = Send
42 Set the time vector tEM = (1 − P1, hEM , . . . , NhEM )/h with N = (h − P1)/hEM

43 end
44 Set ∆W ∼ NN (0, hEM )
45 Push (tEM ,∆W ) onto S2

46 end
47 else ▷Reject the step
48 Set h = qh ▷Scale for the new time
49 Merge S1 and S2 in S and empty them
50 while S is not empty
51 Pop the top of S as P
52 Update P1 = P1q
53 if P1 < 1 ▷If below 1 is a repopped time
54 Push P onto S2
55 else
56 Push P onto S1
57 end
58 end
59 Pop the top of S2 as Q and the bottom of S1 as P ▷Create the switch point from S2 to S1

60 Let ∆Wtmp ∼ N
(

1−Q1
P1−Q1

Q2,
(1−Q1)(P1−1)

P1−Q1
h
)

61 Push (Q1,∆Wtmp) onto S2
62 Push (1, Q2 − ∆Wtmp) at the bottom of S1

63 end
end
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uncertainty associated to unmodeled accelerations, cosidered as a Gauss–Markov process24[
ṙ
v̇

]
=

[
v

−µ r
∥r∥3 + ωt

]
(13)

and
dωt = −1

τ
ωtdt+ σI2dWt (14)

with I2 being the identity matrix, and relevant parameters listed in Table 1.

Table 1: Perturbed two-body dynamics parameters.

Parameter Symbol Value
Sun gravitational parameter µ 1.327× 1011 km3/s2

Noise correlation time τ 1 d
Noise standard deviation σ 10−10 km/s2

Solutions of the EMRK are compared against two different schemes: 1) a 1.5-order stochastic
scheme by Rossler14 (labeled SRIW2), exploiting its adaptive-step implementation in Julia,25 and
2) a standard Runge-Kutta(8)7 scheme (labeled ODE78). For the ODE78 case, the process noise is
computed iteratively a-priori20 in some prescribed points, meaning that the values

ωk+1 = ωke
−β(tk+1−tk) + uk

√
1

2β

(
1− e−2β(tk+1−tk)

)
(15)

with k = 0, . . . , N , and uk ∼ N (0, 2βσ2). These values are later interpolated during the integra-
tion runtime at the time requested by the integrator, exploiting the same formula.
Both accuracy and efficiency have been tested by running a Monte Carlo simulation with 1000 sam-
ples of an Hohmann transfer from the Earth to Mars.
Figure 3 shows the statistics of the position. As shown both in the histograms and the swarm chart,
all the schemes are able to retrieve the same statistics for the transfer. A two-way Kolmogorov-
Smirnov test has been performed to confirm this result. Since SWIR2 has been proven to be effec-
tive in retrieving the correct statistics of a generic SDE,16 it is possible to conclude that EMRK is
accurate to solve RODE problems under the assumptions made in Section .
Figure 4 shows the statistics of the computational time for EMRK and ODE78 on a Intel i7@2.9
GHz with 16 GB RAM. SWIR2 has not been shown since it is implemented in Julia and the com-
parison of its computational time with the other methods would not have been significant. However,
for completeness’s sake, it was about 1.5 times slower than EMRK. It can be inferred from the box
plot that EMRK is able to integrate a single transfer in about 1 s, while ODE78 20 times more.

CONCLUSIONS

In this work, a hybrid stochastic-deterministic integrator, labeled Euler-Maruyama-Runge-Kutta,
has been presented. It is devised to solve random ordinary differential equations characterized by
simple stochastic dynamics and requiring moderate-to-high tolerances, exploiting a modified RSwM
algorithm to allow the step-size and increase the efficiency of the method.
EMRK is able to provide solutions that are statistically correct, while reducing of at least one order
of magnitude the computational time with respect to state-of-the-art SDE solvers. Its implementa-
tion will be beneficial in running massive Monte Carlo simulations for astrodynamics application,
such as risk assessments, end-of-life evaluation and dispersion analysis.
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(a) Histogram for the x-component of the state (b) Swarm chart for the x-component of the state

(c) Histogram for the y-component of the state (d) Swarm chart for the y-component of the state

Figure 3: Relevant statistics for the uncertain 2-body problem.
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Figure 4: Computational time statistics for the uncertain 2-body problem.
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