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Abstract: Due to their cost-effectiveness, pulsator tests are widely adopted as a testing methodology
for the investigation of the effects of material and heat and surface treatment on the gear strength
with respect to tooth root fatigue fracture. However, since no meshing contact is present in pulsator
tests, there are differences between the test case and the real-world application scenario where gears
are rotating under load. Those differences are related to both statistical and fatigue phenomena. Over
the years, several methodologies have been developed in order to handle this problem. This article
summarizes them and proposes a first comparison. However, no complete comparison between
the different estimation methodologies has been conducted so far. This article aims to partially
cover this gap, first by presenting and comparing the methodologies proposed in the literature
and then via a deeper comparison between two different elaboration methodologies. Those two
methodologies, which have been developed by examined to the same test rig configuration, are also
discussed in detail. The comparison is performed based on an actual database composed of 1643 data
points from case-hardened gears, divided into 76 experimental campaigns. Good agreement between
the estimated gear strengths was found. The database is also adopted in order to make further
considerations about one methodology, providing additional validation and defining the specimen
numerosity required.

Keywords: gears; fatigue in gears; gear testing; tooth root bending fatigue; SN curve

1. Introduction

Gears are machine elements that, as a result of the meshing of their profiles, allow the
transmission of power between two rotary axes while maintaining a (nominal) constant
ratio between the rotational velocity of the two axes [1–3]. Their working principle implies
the presence of a loaded sliding/rolling contact condition that is located far from the
base of the tooth (i.e., the tooth root). The contact implies the co-presence of several
failure modes, such as tribological damages (i.e., scuffing and wear) and fatigue damages
(e.g., (macro)pitting, micropitting, tooth flank fracture, and tooth root fatigue fracture).
The latter (also called tooth root bending fatigue or tooth root breakage) is related to the
pulsating normal force that acts on the tooth flanks, which causes a bending stress history
in the tooth root that starts from a small negative value (when the previous tooth pair is
in mesh) up to a maximum (ideally when the contact is at the outer point of the single
tooth contact) [4,5]. Furthermore, the root radius works as a notch, further increasing
the maximum stress [5]. Amongst all the failures that can affect a gear, tooth root fatigue
fracture is considered to be the most critical one. Indeed, the failure of a single tooth implies
the stoppage of the power flow within the gearbox and typically leads to a total failure of
the gear system.

Fortunately, standards such as ISO 6336-3 [6] and ANSI AGMA 2001-D04 [7] provide
gear designers with standardized analytical tools that can be used to assess a gear pair with
respect to this failure mode. The assessment is based on the comparison of the occurring
tooth root stress with the permissible tooth root stress. The first is primarily based on the
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maximum tensile stress at the surface in the tooth root fillet, typically for external gears at
the 30◦ tangent, and depends on the gear pair meshing characteristics and the tooth root
shape. The latter is based on typical gear material (together with the treatments) strength
data and is defined at 1% gear failure probability. Typical resistance data are also part of
these standards (i.e., [7,8]).

However, due to their intrinsic limitations, the standards cannot cover all possible
varieties of materials and (heat or surface) treatments. Moreover, as Figure 1 shows, even
the standards do not provide a comprehensive gear SN curve but rather a scattering range
(see the shaded area) for >3 ∗ 106 load cycles, leaving the designer to assume strength
in the long-life region. Indeed, the standards themself strongly recommend performing
experimental campaigns to properly estimate the gear load-carrying capacity.
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Three main testing methodologies for tooth root fatigue fracture are present in the
literature: The Meshing Gear (MG) test (e.g., [9]), the pulsator test (e.g., [10–15]), also
known as the Single Tooth/Teeth Bending Fatigue (STBF) test, and the test of notched
specimens (e.g., [16–20]). The most common testing methodology is the pulsator test [21];
indeed, the tests are performed on a gear, rather than a notched specimen, while using a
generic uniaxial testing machine, rather than a full gearbox. Therefore, pulsator testing is a
cost-effective method that considers a representative test specimen. A description of the
typical testing rig is presented in Section 2.

ISO 6336-5 [8] strength number data have been obtained based on both industrial
experience and experimental investigations applying this kind of testing methodology.
In this context, it is important to mention that although pulsator tests are part of the ISO
6336 series, the standard does not provide any indications about how to perform pulsator
experimental campaigns and how to elaborate their outcome.

The fact that in pulsator tests, the teeth are loaded by anvils (clamping jaws) rather
than by gear meshing, implies that there are some differences between the pulsator test
and the real-world application scenario. Those differences are related to two main aspects:

1. From the fatigue point of view, the tooth root stress history is different. On the one
hand, in pulsator tests, the stress trend is sinusoidal with R > 0. On the other hand, in
the MG case, the tooth root stress presents a peculiar stress trend that is influenced
by the load sharing between teeth pairs (and the related tooth deformability). This
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difference is typically solved by means of corrective coefficients that modify the SN
curve (e.g., [22]).

2. From the statistical point of view, it must be considered that pulsator tests are per-
formed on selected teeth rather than on the complete gears. Furthermore, not all teeth
of a gear can be tested. Commonly, statistical tools are adopted here.

Pulsator tests are also affected by the typical difficulties of every fatigue experimental
campaign, that is, the proper estimation of the experimental SN curve, both in terms of test
planning and how to determine the SN curve while also taking into account the runouts
(i.e., specimens that overcome the runout level, that is, the number of cycles after which the
test is suspended).

To overcome all these difficulties, several methodologies have been proposed in the
literature. However, no systematic and holistic comparison between the outcomes of
different estimation methodologies has been made so far. This paper aims to partially cover
this gap.

First, a comparison between methodologies is proposed here. Then, focusing only
on the statistical aspect of the pulsator problem, a more detailed comparison between
the two estimation methodologies is discussed. This is performed by examining the gear
SN curves estimated starting from the pulsator test data. Those two methodologies were
developed by examining a symmetric test configuration together with a specific emphasis
on case-hardened gears. One method is currently adopted at FZG (Gear Research Center,
in German: Forschungsstelle für Zahnräder und Getriebesysteme) and is described in [23–26].
The second one, instead, had been recently developed at Politecnico di Milano (POLIMI
from now on) [27,28]. Both gear SN curve estimation methods have been developed by
the authors.

Here, after a short presentation of the testing methodology (Section 2) and a literature
review of how the literature deals with pulsator test data (Section 3), two estimation
procedures are described deeply in Sections 4 and 5. The comparison between the two
methodologies was performed based on the case-hardened gears experimental database
presented in Section 6. The comparison is reported in Section 7. In Section 8, the adopted
database is used to further evaluate the general behavior of the second model.

In this paper, all the mathematical discussions are discussed in the appendix for the
sake of simplicity. Furthermore, as the problem of a different tooth root stress history is
not discussed here, the term “gear SN curve” refers to the gear under pulsator test loading
conditions (and not under MG conditions).

2. Experimental Procedure for Tooth Root Bending Fatigue Testing

Pulsator or STBF tests are performed with the idea of loading one or two teeth at a fixed
location to ensure tooth root bending fatigue is the only present failure mechanism. This
approach leads to a variety of testing configurations such as the one adopted by Seabrook
and Dudley [29], where torque is applied to a toothed shaft that is in contact with a fixed
anvil, the three-point bending configuration (e.g., [1,30]), and the one-tooth (also known as
asymmetric) and two-teeth pulsator (also known as symmetric) test configurations; the last
two seem to be the most commonly adopted.

The one-tooth test configuration was first described by Buenneke et al. in 1982 [31]
and is now included in the SAE recommendation practice J1619 [32]. Here, the force is
applied only on a single tooth while another tooth and a centering pin provide the reaction
to the applied load. Therefore, only a single tooth is fully loaded. Hence, this configuration
is typically called asymmetric (the same is applied here). It is worth mentioning that
STBF (Single-Tooth Bending Fatigue) has been developed to describe this type of test.
However, now this term is also adopted as synonymous with a pulsator test (e.g., [15,33]),
therefore describing all the possible test methodologies that aim to perform tooth root
bending fatigue tests by loading the gear teeth (or tooth) by an anvil(s) (rather than in
MG conditions).
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In the two-teeth configuration, the load is transmitted from one tooth to the other
without the interaction of any other parts of the testing equipment. Here, the force is
applied by two clamping jaws, typically spanning over three to five teeth. As a result of
the principle involved in the Wildhaber measurement [34] and by proper design of the
text fixture (i.e., the distance between the anvils and the gear hub centerline equal to the
span measure over two), these jaws load the teeth at the same time at the same nominal
diameter in a direction that is tangential to the base diameter. Therefore, both the tested
teeth are subject to the same nominal tooth root bending stress. Hence, this configuration
is typically called symmetric (the same is applied here). This configuration can still be
referred to as STBF but, differently from the previous case, represents Single-Teeth Bending
Fatigue. Research is now underway with the aim to investigate the effect of dynamic loads
on tooth root stress via a specific testing rig (e.g., [35]).

Here, it is worth mentioning that by properly setting the distance between the anvils
and the gear hub centerline, it is possible to obtain an asymmetric two-teeth test configura-
tion (e.g., [33]). This configuration is adopted to maximize the toot root stress of one of the
two tested teeth; it is rarely used.

Figures 2 and 3 show two examples of pulsator machines working in symmetrical
configurations. All the data discussed here have been obtained with this methodology.
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To maintain the specimen in position, pulsator tests must be run with a fixed preload.
For instance, the SAE recommendation practice J1619 [32] suggests performing tests at
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R = 0.1, while within FVA guideline no. 563 I [25] a load ratio between 0.03 and 0.075
is suggested.

3. The Pulsator to Running Gears Problem

In the previous section, the typical experimental pulsator test rig configurations were
presented. The fact that gear teeth are loaded by jaws rather than by rotating gear meshing
implies that differences occur between the pulsator test case and the actual application case
of MG. Recently, Hong et al. [37], whose testing rig is an asymmetric one, summarized
those differences as follows:

1. Pulsator tests and MG have different loading conditions, as, in the first, a sinusoidal
load is applied at a fixed position, while in the latter, the load changes both the
magnitude (due to the load sharing between teeth pairs) and the point of application
(as the contact point between teeth changes during gear meshing).

2. The stress ratio R is different as pulsator tests are required to work at R > 0, while in
the MG gear case, the tooth root stress moves to a positive maximum (typically when
the contact is at the outer point of a single tooth in contact) to a negative minimum
(due to the extension of the compression field from the adjacent tooth, e.g., [4,5,38]),
thus at a load ratio R < 0 (e.g., [39]).

3. The crack initiation location seems to be different. Indeed, certain experimental
findings of Winkler et al. [40] and Fuchs et al. [36,41–44] possibly imply that in the
pulsator test case, crack initiation is much more likely to occur at the surface, while in
the MG case, a slightly increased risk for subsurface crack initiation can be observed.
However, their findings are based on investigations on shot-peened gears made from
high-cleanliness steels. Furthermore, a different runout level was considered for
pulsator and MG tests. Moreover, considering all the data available [36,40–44], and
further results from experimental investigations at FZG that have not been published
yet, it can be assumed that there is not a different crack location for common case-
hardened gear steels for both compared testing methods (i.e., pulsator and MG).
Therefore, the effect of the crack initiation location will not be discussed here.

4. The statistical behavior of pulsator and MG tests is different. In pulsator tests, the
failed teeth are predetermined and are those that are loaded within the pulsator test
rig (for each test run, two teeth are in the symmetric configuration); furthermore, not
all the gear teeth can be tested. On the other hand, in the MG case, all the gear teeth
are loaded during a test run, and the gear failure is the result of the failure of the
weakest gear tooth (e.g., [22,29,37,45–47]).

Therefore, strength numbers determined by pulsator tests should be elaborated to
ensure a reliable estimation for gear design. In 1964, with a slightly different test rig,
Seabrook and Dudley [29] already suggested that pulsator experimental strength numbers
should be reduced by a factor of 0.77 to account for those differences.

In 1987, Rettig [22] dealt with the problem of the different loading conditions and stress
ratio between the test methods. He suggested that, in order to consider the differences
in the loading conditions, pulsator test results should be reduced by a factor of 0.9. The
validity of Rettig’s coefficient has also been reaffirmed recently by Concli et al. [48–50], who
adopted high-cycle multiaxial fatigue criteria to estimate the effect of the different stress
histories occurring at the tooth root.

In 1999, Rettig’s work [22] laid the groundwork for the estimation procedure reported
by Stahl et al. (FVA research project 304) [23]; this approach is discussed in detail in Section 4.
This method is completed by the FVA guideline 563 I [25], in which additional information
(e.g., the sampling strategy) is provided to the experimenter. According to Stahl et al. [23],
pulsator tests should be reduced by a factor of 0.83 for peened and 0.77 for unpeened gears.
Those values are completely comparable to what Seabrook and Dudley [29] found.

In 2003 and 2008, Rao and Mc. Pherson [45,46] proposed a different approach. On the
one hand, they used allowable stress range diagrams to evaluate the effect of the different
load ratios. On the other hand, statistical correlations, similar to the concepts of the return
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period, were used in order to deal with the statistical problem. A modified staircase
procedure was adopted to estimate the experimental procedure. They also observed a
difference between the pulsator and MG resembling the one discussed by Seabrook and
Dudley [29]. By extension, Rao and Mc. Pherson’s [45,46] findings are also similar to what
Stahl et al. [23] calculated.

Between 2021 and 2022, another framework was proposed in [27,28,51]. Two dif-
ferent tools were adopted. Firstly, due to a different load ratio than the one adopted by
Rettig [22], high cycle multiaxial fatigue criteria were adopted to deal with the different
stress trends [51]. Then, in [27,28], the maximum likelihood method (ML) was adopted to
estimate the experimental SN curve. Finally, by means of Statistics of Extremes (SoE), the
gear SN curve was estimated. This approach is discussed in detail in Section 5. As will be
shown in the following sections, this method yields results similar to that of Stahl et al. [23].

In 2022, Hong et al. [37] also proposed a different estimation procedure. They devel-
oped corrective coefficients in order to deal with the first three differences (i.e., the loading
condition, stress ratio, and crack initiation location) while statistical relationships (similar
to Rao and Mc. Pherson [45,46]) were exploited to develop a fourth coefficient dealing with
the statistical differences. They also adopted ML to estimate an experimental curve based
on the model of Pascual and Mekker [52]. However, as also discussed by Hong et al. [37],
this methodology still needs to be further improved.

It is worth also mentioning two recent works that focus on the topic of experimental
pulsator data elaboration. The first is the one of Mao et al. [53], where they developed
corrective coefficients to overcome some limitations of the traditional Dixon–Mood method
(whose description can be found in [54]). Similarly, to reduce the required specimen nu-
merosity, Alnahlaui and Tenberge [55] proposed a small-sample-size test program based
on the linear damage accumulation framework. However, in both works, no further discus-
sions had been made about the estimation of the gear strength starting from pulsator data.

Additional information about the different methodologies and their differences can
also be found in [27,37].

4. Method 1: FVA Approach Based on FZG Research

The first estimation method discussed here had been developed at FZG and is defined
as a recommended procedure within FVA (Research Association for Drive Technology, in
German: Forschungsvereinigung Antriebstechnik e.V.) research according to FVA guideline
563 I [25]. In [25], a practical approach for the evaluation of the tooth root load-carrying
capacity, including the gear specimen, pulsator equipment, and test planning, was de-
scribed. It is based mainly on the work of Stahl et al. (FVA research project 304) [23],
where data elaboration is discussed, laying the fundamentals on the analysis of a large
number of experimental data performed by FZG. The methodology according to [25] has
been developed by examining a symmetric pulsator test configuration for case-hardened
gears. Further investigations and detailed statistical analysis of an extended experimental
FZG database can be found in Hein et al. [24,26] and Geitner et al. (FVA research project
610 IV) [56]. Refs. [24,56] also reaffirmed the validity of this methodology.

The FVA approach based on FZG research aims to estimate a gear SN curve such as the
one described in Figure 4. Here, different considerations are made regarding the limited-
life and long-life regions. On the one hand, for each load level, the first region presents
a different lognormal deviation of the failure load cycle number. In other words, the
dependency of the variance with respect to the load level is considered (see also Figure 6).
On the other hand, the long-life region is described by an endurance limit, whose dispersion
is in the load/stress direction. For both the experimental and gear SN curves, these two
regions are estimated separately using two different calculation procedures.
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Figure 4. SN curves for different failure probabilities by assumption of separated consideration of
long-life (endurance) and limited-life ranges [24]. Extracted from AGMA 18FTM26, Reliability of
Gears—Determination of Statistically Validated Material Strength Numbers, with the permission of
the publisher, the AmericanGear Manufacturers Association, 1001 North Fairfax Street, Suite 500,
Alexandria, Virginia 22314.

According to this method, the experimental endurance limit is estimated according
to Hück [57]. It is assumed that the experimental endurance limit follows a normal distri-
bution. In the case of reduced sample size (n < 10), this method suggests estimating the
experimental endurance limit by adopting the modified probit method as defined by Hösel
and Joachim [58]. Figure 5 shows an example of the application of the Hück [57] approach,
displaying a staircase test sequence together with an additional theoretical test run. The
experimental endurance limit σF0∞,50% is defined starting from the determination of the
number of tests fi on load level i, leading to the sums F and A.
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Figure 5. Exemplary evaluation according to Hück staircase method; example extracted from [25].

According to Hück [57], σF0∞,50% is defined as:

σF0∞,50% = σF0,i=0 + d·∑ i· fi

∑ fi
= σF0,i=0 + d·A

F
(1)

Once the σF0∞,50% has been estimated, the gear endurance limit σF0∞,1%,MG (under the
MG loading condition) is calculated by means of corrective coefficients [23]:

σF0∞,1%,MG = f1%FD· fP→MG·σF0∞,50%,P (2)
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where f1%FD is equal to 0.92 for peened gears and 0.86 for unpeened gears according to
Stahl [23]. An additional coefficient fP→MG equal to 0.9, defined by Rettig [22], is adopted
to take into account the load differences. fP→MG was not applied in this paper; that is,
σF0∞,50% must be reduced by 0.77 or 0.83 to estimate σF0∞,1%,MG.

Within method 1, the limited-life region is estimated by calculating, for each load level,
the 50% experimental lifetime N50% by assuming a log-normal distribution of the failure
load cycle numbers [23]. This is performed using a log-normal probability grid, with the
definition of the single failure probability for each data point based on the order approach
defined by Rossow [59]. On the other hand, a more simplified approach is to calculate N50%
from the lifetime of the n individual tests according to Equation (3) [25]:

log(N50%) =
1
n

n

∑
i=1

log(Ni) (3)

That is, calculating the average lifetime.
Once the 50% curve has been estimated, the 1% gear failure probability lifetime N1% is

calculated for each load level as:

N1% = 10(log (N50%)−2.33·slog (4)

where slog is the typical logarithmic standard deviation, the trend of which is shown in
Figure 6. Then, both the 50% experimental and the 1% gear curve are calculated by fitting a
line through the estimated log(N50%) and log(N1%).
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Figure 6. Logarithmic standard deviation considering failure load cycle numbers in limited-life range
for peened gears according to Stahl [23].

According to this method, the standardized calculation method as per ISO 6336-3 [6]
can still be applied. Therefore, the life factor YNT is used to multiply σF0∞,1%,MG. The choice
between a horizontal endurance line and the presence of the secondary slope for a number
of load cycles > 3 million depends on the experience and the criticality within the field
of application.

The FVA guideline 563 I [25] also describes the sampling strategy adopted (i.e., al-
location and numerosity). According to this guideline, six different load levels are to be
selected (if possible), two of which should be in the limited-life range. The load levels
for the determination of the endurance limit must be equally distanced. Between 28 and
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38 data points are suggested for a high numerosity experimental campaign. However,
the standard allocation is between 20 to 24 test runs. The FVA guideline 563 I [25] also
suggests that half of the specimens should be located in the endurance limit region while
the remaining should be distributed among the load levels, aiming to have at least two
load levels with a higher numerosity. Experimental campaigns with low numerosity are
still possible, especially when the focus is primarily on the endurance limit. The runout
level (i.e., the limiting load cycle number) is set to 6 million load cycles in pulsator tests.

An example of the application of this procedure is shown in Figure 7, where the dotted
curve represents the 50% experimental SN curve while the continuous curve is the 1% gear
curve. Here it is possible to observe the effect of the hypothesis of a not-constant deviation
for the limited life. Indeed, the slopes associated with the limited life slightly vary. Similar
to Figure 1, a shaded area has been included to represent the possible choices of YNT. The
term “Exp” refers to the 50% curve estimated considering the experimental point while the
term “Gear” refers to the gear SN curve (at 1% failure probability).
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5. Method 2: Maximum Likelihood and Statistic of Extremes (ML&SoE)

Differently from the estimation approach presented in the previous section, in [27,28],
a gear SN curve estimation approach was proposed based on two different tools: The ML
method for the estimation of the experimental SN curve and SoE for its translation to the
gear SN curve. Here, a two-slope curve formulation is adopted to describe the SN curve
according to Spindel and Haibach [60]. According to this approach, the experimental SN
curve can be described as:

log(N) = log(Ne) +
1
2 (k1 + k2)(log(σ)− log(σe))+

+ 1
2 (k1 − k2)|log(σ)− log(σe)|

(5)

where Ne and σe are the coordinate of the knee, and k1 is the slope associated with the
limited-life region and k2 for the long-life region.

This model also features a constant standard deviation in the log(σ) direction slog (σF0)

that, due to the first-order approximation [61], results in two different standard deviations
in the log(N) direction s1,log (N) and s2,log (N) [60]. This model is also called the “bilinear
uniform scatter band” (e.g., [62]). Data points are considered log-normally distributed, and
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differently from method 1 (see Section 4), all the points are considered part of a unique
dataset. Therefore, here the distinction between limited-life and long-life regions depends
only on the estimation outcome.

In order to estimate the teeth SN curve according to Equation (5), it is necessary to
adopt the ML method due to the presence of survived specimens (i.e., specimens whose
failure has not been observed) [61,63,64]. By considering the symmetric pulsator test
configuration, depending on how the experimental data are considered, two different kinds
of data can be obtained:

1. If the experimental points are considered as they are, that is, if the fact that the
symmetric test configuration works on two teeth is not considered, the only observed
surviving specimen is the one that reaches the runout level. The elaboration performed
with such considerations is called “STBF” as they are the experimental points obtained
directly from the pulsator/STBF testing machine.

2. If the fact that the symmetric test configuration works on two teeth is considered, it
must be considered that the experimental point is not composed only of failed and
surviving specimens but by the compresence of both. This can be easily understood
by looking at the experimental points. On the one hand, if one of the two teeth fails
(i.e., a failure according to the STBF consideration), the other has survived. That is,
a failure occurring within the test is both an observed value (i.e., the failed tooth)
and randomly right-censored data (i.e., the survived tooth). On the other hand, if the
runout level is reached (i.e., a runout according to the STBF consideration), both tested
teeth have reached the runout level. Therefore, different statistical considerations
must be taken into account in the 2T case. The elaboration performed with such
considerations will be called “2T” as two teeth are taken into consideration.

Details about the ML estimation of Equation (5) curve (together with slog (σF0)
) are

reported in Appendix A. Once the initial curve parameters have been estimated, it is
necessary to estimate the curve describing the gear. This is achieved by considering the
hypothesis that in the case of tooth root bending fatigue, the gear fails when its weakest
tooth breaks [22,29,37,45–47]. Therefore, SoE is used to elaborate the teeth Cumulative
Distribution Function (CDF) to estimate the gear CDF. Through a mathematical passage, it
allows for the estimation of the CDF describing the lowest value that can be observed by
sampling n times from the same population. On the one hand, the term “lowest value that
can be observed” is the weakest tooth (that describes the gear). On the other hand, the “same
population” is represented by tested teeth and is described by a log-normal distribution
whose mean is defined according to Equation (5) and standard deviation σlog (σF0)

.
When the STBF curve is studied, it is necessary to consider that this curve is based on

a teeth pair, of which we observe the lifetime of the weakest one. By considering the gear
as a system of z/2 teeth pair, it is possible to estimate the gear CDF Fgear as:

Fgear = 1− (1− FSTBF)
z/2 (6)

Similarly, when the 2T curve is studied, Fgear is defined as:

Fgear = 1− (1− F2T)
z (7)

Different curves at different reliability levels can be obtained by calculating the corre-
sponding percentile for several load stages.

An example of the application of this procedure is shown in Figure 8; here, the
experimental points are the same as in Figure 7. The dotted curve represents the curve
that estimates the SN curve of the exemplary campaign according to the STBF and 2T
approximation, while the continuous lines are the gear SN curves, estimated according to
Equation (6) or Equation (7). On the one hand, the comparison between the STBF and 2T
curves allows us to understand the role of the 2T consideration. The 2T curve is slightly
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above the STBF one. On the other hand, focusing on the gear SN curves, it is possible to
notice that both estimation methods lead to (almost) completely identical curves.
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6. Adopted Database

The analysis presented in the following sections was carried out by taking advantage
of the case-hardened gear database present at FZG, combined with the one presented by
the gear research group at POLIMI. That is, all the data have been obtained by the authors’
research groups.

FZG points have been partially described and analyzed by Hein et al. [24] considering
the data contained in [40,65]. Focusing on the effects of materials and heat treatment
properties, FZG data have been also analyzed in [56]. All associated FZG test campaigns
described in [24] were performed after 2002 and were not available at the time of the work
performed by Stahl et al. (FVA research project 304) [23]. More precisely, most of them have
been performed in the last decade. POLIMI data points have been described in [27,28,66,67].
POLIMI test campaigns have been performed in the last two decades. Table 1 summarizes
the database references in chronological order.

Table 1. Database reference summary.

Year Reference Short Summary

2009 [66] Presentation and analysis of a part of POLIMI points

2017 [67] Presentation and analysis of a part of POLIMI points

2018 [24] Partial statistical analysis of FZG points

2019 [40] Presentation and discussion of selected FZG campaigns

2021 [56] Partial statistical analysis of FZG points with focus on effects of
materials and heat treatments properties

2022 [65] Presentation and discussion of selected FZG campaigns

2021–2022 [27,28] Presentation and analysis of a part of POLIMI points

Consequently, the analyzed test data represents up-to-date properties of commonly
used case-hardened steels for gears. The database also includes tests supported by in-
dustrial sponsoring. Due to the confidentiality and comparability of the test campaigns,
the exemplary test data are illustrated as anonymized and normalized. Furthermore, as
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will be subsequently mentioned in the paper, the test methodologies comparison has been
performed on several further cases, which are not shown in this paper for the sake of
simplicity. Figure 9 shows the database adopted here. It is composed of 1643 data points,
divided into 76 experimental campaigns.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 26 
 

simplicity. Figure 9 shows the database adopted here. It is composed of 1643 data points, 
divided into 76 experimental campaigns. 

 
Figure 9. Pulsator test database [24,27,28,56,65–68]. 

7. Evaluation Study: Comparison between the Two Models 
The simplest comparison between method 1 and method 2 is the direct comparison 

between the curves estimated with the two different approaches. Figures 10–14 show the 
outcomes of these two elaboration methods for five different pulsator test experimental 
campaigns. Several cases have been studied, obtaining similar results. For the sake of sim-
plicity, only five of them are shown. For all the experimental campaigns, the solutions of 
method 2 have been verified by adopting the Likelihood Profile (LP) and Likelihood Ratio 
(LR). Experimental points shown in Figure 10 to Figure 13 were taken from the FZG da-
tabase [24] while those in Figure 14 were obtained at POLIMI [27,28]. The SN curve com-
parison has not been extended to other Section 3 methodologies because they require spe-
cific data that are not available. 

 

Figure 9. Pulsator test database [24,27,28,56,65–68].

7. Evaluation Study: Comparison between the Two Models

The simplest comparison between method 1 and method 2 is the direct comparison
between the curves estimated with the two different approaches. Figures 10–14 show the
outcomes of these two elaboration methods for five different pulsator test experimental
campaigns. Several cases have been studied, obtaining similar results. For the sake of
simplicity, only five of them are shown. For all the experimental campaigns, the solutions
of method 2 have been verified by adopting the Likelihood Profile (LP) and Likelihood
Ratio (LR). Experimental points shown in Figure 10 to Figure 13 were taken from the FZG
database [24] while those in Figure 14 were obtained at POLIMI [27,28]. The SN curve
comparison has not been extended to other Section 3 methodologies because they require
specific data that are not available.
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Figure 12. Comparison of the two estimation methods for exemplary campaign C from experimental
FZG database [24].

By looking at the gear SN curves shown in Figures 10–14, it seems that there is no
relevant difference between the two estimation techniques as the estimated curves are close
to each other, especially if YNT according to ISO 6336-3 [6] is selected on the conservative
side in the long-life range. The good agreement between the models allows us to re-affirm
the validity of the two models: Despite the usage of completely different statistical tools,
the final gear curves are different but, most importantly, they are coherent with each other.
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The first difference between the two estimation methods is the different positions
of the fatigue knee. Especially for the Exp. curves, method 2 always estimates the knee
above the one estimated by method 1. This different position is related to the different
estimations of the complete SN curve. On the one hand, according to method 1, the fatigue
knee is estimated as the intersection of the line describing the limited-life and the long-life
regions. On the other hand, according to method 2, the fatigue knee location depends on
the two estimated CDF parameters (Ne and σe) and the CDF elaboration. However, neither
method 1 nor method 2 present a smooth passage between the two regions. This aspect is
taken into account within more complex SN curve estimation methods (e.g., [68–73]). Their
application within the case of pulsator test elaboration is the subject of current research.
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The main difference between the two estimation methods is the model sensitivity
concerning the presence of outliers, and method 2 results in being more sensitive than
method 1. This is depicted in Figure 13, where one experimental point (i.e., the one indicated
by the arrow) can be considered an outlier as it has a lifetime almost 5 times higher than
the one of the other experimental runs obtained at the same load level. This outlier has
been defined by a graphical analysis of the test data and adopted here as an example.

On the one hand, concerning method 1, the only effect the outlier has is that, at
such a load level, N50% (i.e., Equation (3)) changes, with consequences on the estimated
N1% (i.e., Equation (4)); the lines describing the experimental and gear-limited life vary
accordingly (see the relatively slight difference between the pink and the black line). As
limited-life and long-life regions are estimated differently, this outlier does not affect the
latter. Furthermore, as method 1 moves the estimated curves according to pre-defined
coefficients (based on the typical scatter), the presence of an outlier has a minor effect
as it affects only the estimated means. Indeed, both the original (i.e., the black one) and
modified curves (i.e., the pink one) remain close to each other.

On the other hand, in method 2, it is possible to note how the identification of outliers
is a crucial aspect. The two estimated curves are significantly different in both the limited-
life and long-life regions, especially in the latter. Here, if the outlier, whose lifetime is the
highest at the load level, is removed, the new gear SN curve indicates a higher resistance.
This counterintuitive behavior is related to the estimation of slog (σF0)

. As a unique standard
deviation is estimated by the model (i.e., slog (σF0)

), the presence of outliers implies an
overestimation of slog (σF0)

. Such overestimation leads to a higher variance associated with
the long-life region, with a detrimental effect on the gear SN curve. This aspect turns out to
be the most crucial one. Furthermore, it is also possible to note how, as the model considers
all the experimental points as a unique dataset, high load level points influence the long-life
region (and vice versa).

Nevertheless, once the outlier has been removed, both methods 1 and method 2 give,
once again, similar results.

8. Extended Investigations on Method 2

As mentioned in Section 4, the validity of method 1 had been reaffirmed in recent
works (i.e., [24,56]). Both in [27] and here, the initial validation of method 2 was performed
by comparing—partially—the outcome of the two models discussed here.

Further validation of method 2 can also be performed by comparing the outcome of
the model parameters (together with their confidence interval) with typical gear data. Such
validation is performed by examining the confidence intervals of k1 and k2. Confidence
intervals are then compared with the typical values, which are the slopes of the limited-
life and the long-life region for case-hardened materials according to ISO 6336-3 [6] and
ANSI-AGMA 2001 [7].

The parameters Ne and σe were not considered. On the one hand, it is clear that in the
database of Figure 9, the fatigue knee is not located at 3 million cycles (also see examples
from Figures 10–14). On the other hand, discussion about σe cannot be conducted for
two reasons. Firstly, different from ISO σF lim (i.e., the nominal bending stress number),
σe cannot be seen as either an endurance limit or as a fatigue limit. Indeed, σe is just a
parameter of Equation (5); therefore, it lacks all the statistical properties of an endurance (or
fatigue) limit. Secondly, if one supposes that σe is equivalent to σF lim (or to ANSI-AGMA
sat), the comparison will become a comparison between the estimated material endurance
limits and their standardized equivalent (which, in any case, is not the aim of this article).

The methodology adopted here takes inspiration from previous works. One example
is the work of Beretta et al. [74] in which they performed a Monte-Carlo simulation of a
fatigue database composed of 188 test data in order to investigate how to properly estimate
a SN curve. Then, several testing conditions were simulated and the convergency of the
parameter confidence interval was compared, aiming to define the best sampling strategy.
A similar procedure was adopted by Loren and Lundtröm [75,76], where 100 staircases
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were virtually simulated to validate their models by comparing the estimates. Similar
methodologies for the evaluation of the behavior of stress-lifetime models can also be
found in [53,55,77,78].

Here, to increase the number of available experimental campaigns, as well as the
numerosity of experimental campaigns with a high number of experimental points, some
test series about similar gears made with comparable materials and treatments were
combined. Twenty-seven new experimental campaigns were defined accordingly. Details
about the confidence interval calculation according to LR are shown in Appendix B.

Figures 15 and 16 show a comparison between the estimated slopes (and their two-
sided 95% confidence intervals) with their equivalent according to gear standards for both
STBF and 2T. For most cases, the standardized values lie within the confidence interval.
Based on this analysis, it is not possible to state that the estimated slopes are statistically
different from the ones suggested by the standards. This behavior is particularly true for k1
and k2 according to ISO 6336-3 [6] and for k1 and the highest (absolute) value k2 according
to ANSI-AGMA 2001 [7]. Therefore, it can be concluded that the parameters estimated by
method 2 are not different from the typical ones of case-hardened gears.
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As already mentioned, the FVA guideline 563 I [25] also provides indications about the
allocation and numerosity of specimens. Those values have been defined within the context
of data elaboration according to method 1. An indication of the number of experimental
points required by model 2 can be obtained by taking inspiration from Beretta et al. [74].

Here, the Figure 9 database is used to evaluate the convergency of the parameter’s
confidence interval. Only the parameter slog(σF0)

is shown here. The rationale for this is that
the variance is the crucial parameter for calculating the different percentiles. Furthermore,
the other parameters all show an earlier convergency. As the database is composed of
several materials, the comparison is performed by observing the normalized parameter.

Figure 17 shows the convergency of s̃log(σF0)
/ŝlog(σF0)

, that is, the convergency of the
LR-based confidence interval s̃log(σF0)

(bilateral at 95%) normalized over the estimated one
(i.e., ŝlog(σF0)

). Both STBF and 2T cases are shown. In total, 103 experimental campaigns
have been evaluated. Looking at the trend, after approximately 25–30 experimental points,
there is no significant reduction in the confidence interval. Thus, 25–30 experimental points
are the minimum number of points required for proper parameter estimation. In other
words, 25–30 experimental points are required for a proper gear SN curve estimation if
model 2 is adopted (30 to be on the conservative side).
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9. Conclusions

Pulsator/STBF test is a test method employed in the estimation of gear tooth root
load-carrying capacity with respect to the tooth root fatigue fracture phenomena. It is
widely adopted because it is a cost-efficient method that considers a representative test
specimen. Typical applications of pulsator tests are investigating the effects of material
heat and surface treatments in gears. However, the pulsator test procedure presents
several differences with respect to the real-world case where gears are meshing under load.
Therefore, pulsator test results must be elaborated before using them to design a gear pair.
Several methodologies have been developed over the years. Considering that all of them
have been developed for different test configurations, good agreement has been found.
That is, all of them suggest that, in the long-life region, pulsator test results should be
reduced by a factor of approximately ≈ 0.77− 0.83.
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Among all the methodologies, two of them have been developed by examining a
symmetric (double teeth) pulsator test configuration. These two methodologies are dis-
cussed here in detail. The first (method 1: FVA, based on FZG research) elaborates pulsator
test data based on typical scattering values obtained from a previous case-hardened gear
test, that is, it adopts pre-determined coefficients. It must be noted that this methodology
covers the whole testing procedure as additional information is also provided (e.g., gear
specimen, testing machine). Most importantly, it also provides the experimenter with
indications about the test planning. From a statistical and mathematical point of view, this
methodology can be considered the simplest one. The latter (method 2: ML&SoE) adopts
ML to estimate the experimental curve; then it estimates the gear SN curve by means of
SoE. Different from the previous one, this methodology relies only on the observed data
within the analyzed test series. However, no discussions about test planning have been
performed so far for method 2, especially concerning specimen numerosity.

The two approaches discussed in this paper have been defined, independently and at
different times, by all the authors of the paper. Both methodologies are described here in
detail. In this way, the designer who wants to undertake the task of gear testing can find
indications about the elaboration of pulsator test data.

The comparison of the methodologies has been performed on the basis of an actual
database composed of 1643 symmetric pulsator test results obtained during 76 different
experimental campaigns on case-hardened gears. The comparison was performed by
directly examining the final gear SN curve. It has been found that both methods yield
completely comparable results. The good agreement between the corresponding outcomes
allows us to reaffirm the validity of the two models. However, as it does not rely on
previously defined data, method 2 tends to be more sensitive to the presence of outliers.
Several cases have been studied; for the sake of simplicity, only a few of them are reported
in this paper.

As mentioned in Section 4, the validity of method 1 has been reaffirmed recently.
Nevertheless, for method 2, both here and in previous works, the validation of method 2
has been performed only by comparing the outcomes of method 1 and method 2. Further
validation of method 2 has been conducted here due to the availability of the case-hardened
gear database. Parameter confidence intervals have been compared with typical gear data,
finding good agreement between the model outcomes and their equivalents presented
by the standards. Furthermore, the minimum number of points required for the appli-
cation of the method has been calculated. This has been calculated as 30 to be on the
conservative side.
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Acronym
The following acronyms are used:

CDF Cumulative Distribution Function
ML Maximum Likelihood
MG Meshing Gear
LR Likelihood Ratio
PF Profile Likelihood
PDF Probability Density Function
STBF Single Tooth/Teeth Bending Fatigue
SoE Statistics of Extremes

Nomenclature

A Parameter of Hück method
d Stress/load step, mainly considered in Hück method
γ1 Generic model parameter
γ̂1 Estimated parameter
γ1 Constrained parameter
γ̃1 Confidence interval of the estimated parameter
F Parameter of Hück method
Fgear Gear CDF
FSTBF STBF CDF
F2T 2T CDF
fi Number of tests on the ith load level, Hück’s method
f1%FD Conversion factor acc. to Stahl for 50 % to 1 % failure probability
fP→MG Corrective coefficient acc. to Rettig
k1 Limited life slope
k2 Long life slope
L Likelihood
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The usage of PF allows for the description of the confidence interval of the parameter 

in its natural range [61,63,64] via the usage of the Likelihood Ratio (LR). It is possible to 

demonstrate that the ratio between ℓ̂ and ℓ�̅�1
 can be related to a 𝜒2 distribution with 

one degree of freedom [82]: 

Log-likelihood
N50% 50% experimental lifetime
N1% 1% gear failure probability lifetime
Ne Spindel-Haibach model coordinate (together with σe)
s− Standard deviation
slog Logarithmic standard deviation
slog (σF0) Spindel-Haibach standard deviation in the log(S) direction
s1,log (N) Spindel-Haibach standard deviation in the log(n) direction, limited life region
s2,log (N) Spindel-Haibach standard deviation in the log(n) direction, long life region
σ− Stress
σe Spindel-Haibach model coordinate (together with Ne)
σF0∞,50% Experimental endurance limit for 50 % failure probability
σF0∞,1%,MG Gear endurance limit for 1 % failure probability
YN Life factor acc. to ANSI/AGMA 2001
YNT Life factor acc. to ISO 6336-3

Appendix A. Maximum Likelihood Estimation of the Experimental Tooth Root Fatigue
Fracture SN Curve

ML is a parameter estimation technique based on finding distribution parameters that
are most likely to describe the collected data. Mathematically, those estimated parameters
are the ones that maximize the likelihood. Such an estimation technique is typically adopted
to estimate the stress–life relationship of components (e.g., fatigue specimens, insulations,
etc.). More complete details about this estimation method can be found in [61,63,64,79].

One of the greatest advantages of ML is its capability to deal with different kinds of data.
Indeed, within the same statistical framework, it is possible to take into account, together
with its statistical meaning, failures (i.e., observed data), survivals (i.e., right-censored data),
failures occurring within different inspections intervals (i.e., interval-censored data), and
failures occurring before the first inspection interval (left-censored data). In the case
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discussed here, only observed data and right censored data are present. For the Spindel–
Haibach model (i.e., Equation (8)), the likelihood L can be described as:

L =
n

∏
i=1

(
fxi ;µ,σ

)δi ·
n

∏
i=1

(
1− Fxi ;µ,σ

)1−δi (8)

where fxi ;µ,σ and Fxi ;µ,σ are the PDF/CDF describing the phenomena and µ and σ are the
parameters of the normal distribution (i.e., mean and standard deviation). δi is equal to
1 in the case of observed data and 0 in the case of right-censored data. ∏n

i=1
(

fxi ;µ,σ
)δi is

the term used to refer to observed data and ∏n
i=1
(
1− Fxi ;µ,σ

)1−δi is the one referring to
right-censored data. Here, µ and σ are defined according to Section 5.

However, in order to facilitate the parameter estimation procedure, it is typical to
work on the log-likelihood
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According to Equation (12), it is possible to express the confidence interval of the
parameter γ1 with a 1− α confidence level (i.e., γ̃1) by finding the value of γ1 that satisfies
Equation (13) [61,63,64].
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Figure A1 also shows the confidence interval s̃log (σF0)
evaluated according to Equation (13).

It is worth mentioning another utility of the LR framework. Indeed, most minimization
tools such as (e.g., MatLab’s fminsearch) require an estimation of the solution as an input
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parameter. By calculating the LP, several guess solutions are provided, thus allowing one
to properly investigate, whereas the solver has calculated a proper solution.
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