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a b s t r a c t

Playing games between humans and robots have become a widespread human–robot confrontation
(HRC) application. Although many approaches were proposed to enhance the tracking accuracy by
combining different information, the problems of the intelligence degree of the robot and the anti-
interference ability of the motion capture system still need to be solved. In this paper, we present an
adaptive reinforcement learning (RL) based multimodal data fusion (AdaRL-MDF) framework teaching
the robot hand to play Rock–Paper–Scissors (RPS) game with humans. It includes an adaptive learning
mechanism to update the ensemble classifier, an RL model providing intellectual wisdom to the
robot, and a multimodal data fusion structure offering resistance to interference. The corresponding
experiments prove the mentioned functions of the AdaRL-MDF model. The comparison accuracy and
computational time show the high performance of the ensemble model by combining k-nearest
neighbor (k-NN) and deep convolutional neural network (DCNN). In addition, the depth vision-based
k-NN classifier obtains a 100% identification accuracy so that the predicted gestures can be regarded
as the real value. The demonstration illustrates the real possibility of HRC application. The theory
involved in this model provides the possibility of developing HRC intelligence.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the last decade, Human–Robot Interaction (HRI) has be-
ome more prevalent in scientific research and applications, such
s collaborative robots, human-like robots, and entertainment
obots (Qiao, Zhong, Chen, & Wang, 2022; Qureshi, Nakamura,
oshikawa, & Ishiguro, 2018). Especially, achieving HRI using
and gestures has gotten much attention due to its various appli-
ations, such as remote control, helping people with hearing im-
airments, and pick-and-place in the factory, where emotions and
ody postures cannot replace (Fiorini et al., 2021). Different Hand
esture Recognition (HGR) sensors, such as Red, Green, and Blue
RGB) cameras, Leap Motion controllers (LMC), mechanic gloves,
urface EMG (sEMG) sensors, and radars, have been popularly
sed and successfully applied in many research fields (Park et al.,
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2021). For example, HGR was used for sign language transla-
tion based on edge detection and cross-correlation, which imple-
mented an automated translation system (Joshi, Sierra, & Arzuaga,
2017). For amputee patients, HGR can be utilized for exoskeleton
controls to assist with daily living (Jiang, Kang, Song, Lo, & Shull,
2021). Recently, multi-model sensors have been utilized in HGR
to improve recognizing accuracy. Meanwhile, more intelligent
algorithms are proposed to solve complex HRI problems, such as
reinforcement learning (RL).

However, most recent research needs to meet the require-
ments of HRI, which needs real-time interaction (Qiao, Chen,
& Huang, 2021). They typically have problems with frequent
interruptions and long response delays that lead to lousy per-
formance (Skantze, 2021). To satisfy different users and robots
in different environments, multi-modal sensors are extensively
used (Matsufuji, Sato-Shimokawara, Yamaguchi, & Chen, 2019)
in An Augmented Reality HRI multimodel system using a leap
motion sensor controller to track the movement of the operator’s
hands and using a Kinect V2 camera to measure the correspond-
ing motion velocities in 3D directions (Nishimura, Nakamura, &
Ishiguro, 2020). Finally, Unreal Engine 4 creates an AR environ-
ment for the user to monitor the control process (Li, Fahmy, &
Sienz, 2019). In addition, to make the robots more autonomous
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The schematic diagram of multimodal data fusion based rock–paper–scissors game for human–robot interaction using reinforcement learning approach.
and innovative, unsupervised learning strategies like RL grad-
ually replace traditional machine learning (Zhang et al., 2022).
Although this field is explored at high speed, there are only some
typical HGR systems to ensure stability and universality (Ito,
Sueishi, Yamakawa, & Ishikawa, 2016).

In our previous work, we proposed different HGR and HRI
architectures by designing multimodal data fusion (Qi, Wang, Su,
& Aliverti, 2022), multiple sensors fusion-based data collection
platform (Qi, Ovur, Li, Marzullo, & Song, 2021; Su et al., 2022),
control theory-driven remote robot arm motions (Qi & Su, 2022;
Su, Qi, Chen, & Zhang, 2022). Although our previous contributions
had solved some mentioned problems, the labeling burden, low
identification accuracy, and intelligence level of the HRI system
still affect human–robot confrontation (HRC) research.

This paper demonstrates an adaptive RL-based multimodal
data fusion framework (AdaRL-MDF) to boost identification ac-
curacy and teach the robot to play games, as shown in Fig. 1.
It includes an offline training module to capture multimodal
sensors fusion, an updating module to retrain the old ensemble
classifier, and an RL model for teaching the robot hand playing the
Rock–Paper–Scissors (RPS) game with humans. We collect depth
vision data and sEMG signals to build the ensemble classifier;
the experimental results prove an excellent performance of the
presented AdaRL-MDF model. The following statements highlight
the main contributions of this paper.

1. It provides a new multimodal fusion-based ensemble clas-
sifier combining depth data and sEMG signals.

2. A RL model is built to teach the robot to play the RPS game
with humans.

3. A hierarchical trigger mechanism is designed to control the
updated procedure.

The rest of the paper is organized into the following six sec-
tions. The state-of-the-art HRI and HGR techniques are discussed
in Section 2. Section 3 explains the proposed AdaRL-MDF frame-
work by illustrating each module. The designed hardware system
is shown in Section 4. Section 5 prove the excellent performance
of the AdaRL-MDF modal by the designed experiments and re-
sults. The last section conducts a conclusion and also explains our
future work.

2. Related works

The HRI application scenarios have become broader and more
varied as the research goes into great depth (Onnasch & Roesler,
2021)—many methods to achieve HRI, such as emotion, voice, and
hand gestures. Hand gesture was a meaningful way for humans to
convey information and express intuitive intention, which had a
490
high degree of differentiation, efficient information transmission,
and robust flexibility (Wang et al., 2022). These benefits made
HGR a research hotspot in HRI (Guo, Lu, & Yao, 2021). A dynamic
HGR framework was proposed to improve the performance of
each model by using a multimodal training or unimodal testing
scheme, where the fused modalities consist of RGB and Optical
flow (Abavisani, Joze, & Patel, 2019).

A multi-features sensor device was designed to obtain capac-
itance values on fingers and processed based on Error Correction
Output Code Support Vector Machines (ECOC-SVM) and k-Nearest
Neighbor (k-NN) (Wong, Juwono, & Khoo, 2021). In addition,
a novel Few-Shot learning-Hand Gesture Recognition (FS-HGR)
architecture using an sEMG sensor could work on a few training
observations with less training time and mitigate the variability
of sEMG signals (Rahimian et al., 2021). In addition, the optimal
control problems restrict the performance of general nonlinear
systems, so it needs to build a novel stability analysis for tracking
control (Wang, Ha, & Zhao, 2022). Although many multiple sen-
sors system and novel methods were proposed to achieve high
recognition accuracy, the following three drawbacks remain the
setback for the performance.

1. Time-consuming: Most models used supervised learning
algorithms and public datasets. But in real applications,
collecting, labeling, and training data would take a lot of
time.

2. Limited categories: These classification methods only could
classify finite gestures.

3. Sensor restriction: Single type of sensor always had lim-
itations. Wearable sensors were unstable and must keep
worn, such as capacitance glove (Wong et al., 2021) and
Myo band Rahimian et al. (2021). Besides, vision sensors
were easily influenced by the environment (Abavisani et al.,
2019).

The RPS game was a typical HRI task achieved by hand ges-
tures. It requested a combination between high-speed active hand
tracking and fast sign recognition in a dynamic environment (Ito
et al., 2016). A lot of work about HRI using RPS games has been
done. An RPS interaction experiment used a machine vision sen-
sor to recognize hand gestures by threshold (Yoon & Chi, 2006).
However, the accuracy would become unstable if the environ-
ment changed, such as the camera angle and light. Moreover, it
mainly focused on classification and did not consider the specific
playing situation and rule.

To perfect this experiment, a better vision classification al-
gorithm, HSV color space, was used for hand motion recogni-
tion (Ahn, Sa, Lee, & Choi, 2011). Using a four-fingered robot hand
in this system, the game’s setup was exhaustively considered.
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Fig. 2. The adaptive RL-based multimodal data fusion (AdaRL-MDF) model pipeline.
t
n
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Nevertheless, the limitation of the camera still existed (Chen,
Zhang, Karimi, Deng, & Yin, 2022). One of the methods that could
improve the stability of the vision-based recognition method was
using light and mirrors to reflect hand motion signals to the
camera so that it could be suitable to acquire non-blurry images,
which achieves hand gesture classification in a high speed (Ito
et al., 2016). The algorithm was based on the length of fin-
gertips. However, misclassification would occur if the light was
influenced in the room. The Leap Motion devices were used to
build the platform, which performs better than the usual cam-
era (Ahmadi, Pour, Siamy, Taheri, & Meghdari, 2019). There were
two playing strategies to compare the results of prediction. The
recognition results could reach 93%. But in this research, the game
strategy needed to find and generalize more participants to make
strong claims.

Brock, Chulani, Merino, Szapiro, and Gomez (2020) presented
an RPS interaction system with a social robot using leap motion
in the recognition system. Machine learning was used to train
multiple dimensions finger joint data from LMCs. This experi-
ment was run in a high-speed response environment, and the
results showed that popularly used classifiers perform well in
shape recognition but poorly in movement segmentation. In-
stead of concentrating on different collection environments, an
experiment mainly focused on implementing upgraded Markov
chain (Jiang, Wu, & Karimi, 2022) mode and artificial NN on
human behavior patterns during RPS game (Wang, Huang, Li,
Evans, & He, 2020).

3. Methodology

Fig. 2 illustrates the whole structure of the proposed AdaRL-
MDF framework, namely offline training, updating module, and
RL learning model. The former aims to build an ensemble clas-
sifier by combining the collected dataset. The updating module
updates the previous classifier when a change is triggered. The RL
mechanism seeks to give the robot hand wisdom. The raw data is
processed by Kalman filter, kinematic analysis, and segmentation
steps to eliminate noises and improve stability. We also adopt
both Sarsa and Q-learning to build the RL model to evaluate its
feasibility. The following sections have described the details of
each module.
491
Fig. 3. The positions and angles of finger joints.

3.1. Data preprocessing

The multimodal data collection module uses LMC and Myo
Armband to capture depth vision data and sEMG signals. Fig. 3
shows the position and angles of five finger joints, where DIP
is the distal interphalangeal point, PIP is the proximal interpha-
langeal point, and TIP is the interphalangeal tip point. They are
computed based on the Kalman filter and angle calculation.

The Kalman filter aims to estimate θ ∈ R, minimizing the
squared error. The θ is the state that can be governed by Kong,
Payne, Council, and Johnson (2021)

θt = Atθt−1 + Btut + ωt−1. (1)

The matrices At and Bt are related to the angle θ at time t − 1
and the optional input u ∈ R at time t , respectively. ωt−1 means
he process noise. When adding a driving function or process
oise, the current angle θ can be calculated.
The measurement angle z ∈ R is zt = Htθt + vt at time

. Where H represents the observation matrix. The independent
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n

P

Fig. 4. The data stream to establish the ensemble classifier combining with k-NN and DCNN model.
Fig. 5. Baseline setting on the forearm muscles by wearing the Myo Armband.

oise vt is a random variable in measurement because it is a
normal probability distribution as

p(v) ∼ (0,R). (2)

Hence, the Kalman filter is summarized into time update

θ̂−

t = Aθ̂t−1 + But−1

P−

t = APt−1AT
+ Q , (3)

and measurement update steps

K = P−

t HT (HP−

t HT
+ R)−1

θ̂t = θ̂−

t + K (ẑt − H θ̂−

t )

t = (I − KH)P−

t (4)

where P means the error covariance and Q is variance of process-
ing noisy. In the second equations group, K notes the Kalman gain
matrix, and ẑt are the real (noisy) measurements at each time step
t . The θ̂−

t notes the "super minus’’, a priori state estimate at time
t .

By collecting finger joints direction data, θ of adjacent joint on
each finger can be calculated by Fu et al. (2022):

θ
F ij = cos−1 V⃗1 · V⃗2

| V⃗1 || V⃗2 |
(5)

where V⃗i(i=1,2) is the adjacent direction vector of the finger joint,
see Fig. 3. Finally, the raw data X = {S; V } has been processed
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by Kalman filter, kinematic analysis, and segmentation steps. The
segments x∗

= {s; φ} are regarded as the inputs for ensemble
classifier building.

3.2. Offline modeling

Fig. 4 describes the whole procedure of offline modeling. It
aims to establish the gesture recognition model based on the
collected datasets. To enhance the classification accuracy, we
build the designed DCNN model consisting of two DCNN-based
modules.

The acquired inputs x∗
= {s; φ} is used to build the ensemble

classifier f (x∗, Θ) = {f (s, Θs); f (φ, Θφ)} (shown in Fig. 4). We
adopt the k-NN method and a designed DCNN model to train the
ensemble classifier. The former can save computational time by
analyzing each finger’s angle, while the latter aims to identify the
gestures using sEMG signals.

The 8D sEMG signals s ∈ R8 are captured by wearing Myo
Armband, which can accurately locate each muscle on the fore-
arm. The baseline setting and anatomical details on the forearm
muscles are illustrated in Figs. 5 and 6. They capture the primary
activities of surface muscles by using the device.

3.3. Updating module

The updating module is to improve the recognition accuracy
by modifying some parameters of the DCNN classifiers. Hence,
The updating module includes two threshold-based discriminant
modules. In Algorithm 1, the first step is to find the predicted
abnormal gestures by comparing the yφ

t and yst . Because we re-
gard the yφ

t as the real gestures, the inconsistent results will
be selected to save into the training dataset. The second step
tries to retrain the DCNN model f̂ (xs) and combine the previous
angle-based classifier with building the new ensemble classifier
f̂ (xD) = {f̂ (xs); f̂ (xφ)}.

To achieve the updating mechanism, it needs to build two
steps hierarchical trigger modules. The former is to select the
predicted results which are not equal to the real gesture, while
the latter tries to set up a threshold η to verify if the length of the
new dataset is more extended than to be saved into the training
dataset. In detail, the classifier will be updated when there are
too many categories of errors.

3.4. Reinforcement learning model

An RL model is adopted to teach the robot hand-playing RPS
gaming with humans. In this paper, we adopt both Q-learning
and Sarsa to train the Q matrix, which can be regarded as the
intelligent brain of the robot hand. It aims to build a learning map
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Fig. 6. Anatomical details of forearm muscles.
Algorithm 1: Updating Module.

Input: Predicted gestures sequence yt = {yφ
t ; yst}; old

model f (xD); threshold η.
Output: Updated model f̂ (xD).

1 if yφ
t ̸= yst then

2 Update the training dataset {(sold, ysold); (snew, ysnew)};
3 Compute the length of new data Ldnew = length(ysnew)
4 if Ldnew > η then
5 only retrain the DCNN model f̂ (xs);
6 Combine the new ensemble classifier

f̂ (xD) = {f̂ (xs); f (xφ)}
7 end
8 end

and a training mechanism to teach the hand robot to play games
with humans. The learning map can be regarded as a recognition
classifier, while the training procedure is to build the classifier.
The RL technology provides a method to avoid the problem of
insufficient training caused by fewer datasets. It can use fewer
inputs to establish the HGR model.

The Q-learning is an off-policy and value-based control method
n reinforcement learning that uses Bellman optimal equations
nd the ε-greed policy to update the action selection, which
eparates learning policy from the deferral policy (Jang, Kim,
arerimana, & Kim, 2019). The specific updating processing is as
ollow (Spano et al., 2019):

new(st , at ) = (1 − α)Q (st , at ) + α(rt + γmaxaQ (st+1, a)) (6)

The step size α, ε in ε-greed policy and reward matrix R
hould be confirmed before updating. It means that the newest
nowledge can replace the older. Meanwhile, the long-run re-
ards have a more prominent role than the immediate rewards.

n addition, the agent chooses the state s and action a at time t
nd t + 1.
The Sarsa approach is another RL method, which means state–

ction–reward–next state–next action. It has the same four at-
ributes: states S, actions A, discount γ , and step size α. However,
he difference between the Sarsa method by comparing with Q-
earning is that the Sarsa method adopts the current step and
olicy to compute the next step as (Mohan, Sharma, & Narayan,
021):

new(st , at ) = (1 − α)Q (st , at ) + α(rt + γQ (st+1, at+1)) (7)

The next state and action (st+1 and at+1) are selected by
-greedy.
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Fig. 7. Overview of the designed human–robot confrontation system.

According to their different updating ways, it is faster for Sarsa
to get ideal performance than Q-Learning, but the Sarsa algorithm
is easily stuck in the local minimum (Wang, Li, & Lin, 2013).

4. System description

Fig. 7 displays the designed hardware system consisting of
data collection and robot interaction modules. The former aims to
collect 8D sEMG signals and depth vision simultaneously, while
the latter makes the robot hand play a game with the human.
The multimodal data collection module aims to capture both
sEMG and direction data from Myo Armband and Leap Motion
Controller. The robot hand response module is to play the game
with a human when a gesture is triggered. To achieve this goal,
the whole platform is assembled as follows.

Data Collection Module: Leap Motion Controller (Leap Motion
Inc, California, United States) capture depth data of fingers and
connect to the host computer by using a USB cable. Myo Arm-
band (Thalmic Labs, Kitchener, Canada) collect eight channels of
sEMG signal of muscles of the forearm with Bluetooth. 200 Hz
Synchronous data transfer and processing are ensured by means
of timestamps at MATLAB on an IPC with a 15-6500T(2.5 GHz)
processor and 8 GB of RAM.

Robot Interaction Module: a data processing center is used
to identify hand gestures by connecting the IPC by Wi-Fi. It
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Fig. 8. The quantitative analysis of the changes of Q values (Q-Learning) when
γ = 0.1, γ = 0.3, and γ = 0.5.

Table 1
The comparison accuracy and computational time among the ensemble, k-NN,
and DCNN classifier.
Method Accuracy (%) Computational time (t)

Training Testing

Ensemble 100% 123.25 s 0.42 s
k-NN 100% 1.44 s 0.05 s
DCNN 92.22% 121.48 s 0.47 s

also provides a Reinforcement Learning environment with a 15-
12400F (2.5 GHz) processor and 32 GB of RAM. A UhandPi Robot
hand (Hiwonder, Shenzhen, China) is the interaction object which
can be triggered on a given gesture by serial. It has five finger
degrees of freedom in total using an Anti-blocking steering gear
controlled by a 4B Raspberry pie.

5. Experiments and results

We designed several experiments to evaluate the performance
f each AdaRL-MDF model, namely offline modeling, updating
odule, and RL model. The first experiment aims to prove the
ccuracy of the k-NN and DCNN classifiers by comparing the
dentification rate among k-NN, DCNN, and the ensemble model.
he second one is to evaluate the updating capability by set-
ing interference. The last aims to test the performance of three
ifferent RL-based RPS models.
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Fig. 9. The quantitative analysis of the changes of Q values (Sarsa) when
γ = 0.1, γ = 0.3, and γ = 0.5.

Table 2
The comparison accuracy and computational time based on updating strategy.
Method Accuracy (%) Computational time (t)

Training Testing

Ensemble 100% 145.46 s 0.36 s
k-NN 100% 0 0.36 s
DCNN 100% 145.46 s 0.36 s

We collected both sEMG signals and depth vision data from
10 subjects (3 females and 7 males), and each person held the
gesture for one minute. Due to the sampling rate being 200 Hz,
we get 12000 samples from each subject making one gesture. The
detection length and overlap are 100 Hz and 50 samples. Finally,
it acquires 723 segments (241 for each gesture). The experiment
is implemented in Python with i5 Core, 16.0-GB RAM, and a
2.80-GHz CPU hardware platform.

5.1. Ensemble updating model performance

Table 1 shows the comparison results of accuracy and compu-
tational time among the ensemble, k-NN, and DCNN classifiers.
It aims to prove that the ensemble classifier can get higher
accuracy and lower computational time than only adopting the
k-NN method or DCNN model. We use the training dataset from
the ten subjects to build the three classifiers. The testing dataset is
acquired from two new subjects. The results in Table 2 show that
the DCNN classifier cannot always identify the three gestures,
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Table 3
The comparison percentage (%) of between Q-learning and Sarsa based RL model (γ = 0.1).
Epoch Method 3:2:1 3:1:0 3:0:0

Win Draw Lose Win Draw Lose Win Draw Lose

1000 QL 24.84 38.20 36.97 65.33 34.67 0 100 0 0
Sarsa 25.83 41.00 33.17 61.50 38.50 0 100 0 0

2000 QL 36.17 31.83 32.00 57.50 42.50 0 100 0 0
Sarsa 28.83 36.33 34.84 64.17 35.83 0 100 0 0

3000 QL 36.67 33.17 30.16 60.83 39.17 0 100 0 0
Sarsa 41.17 27.50 31.33 59.17 40.83 0 100 0 0

4000 QL 38.83 34.17 27.00 59.00 41.00 0 100 0 0
Sarsa 39.67 32.33 28.00 58.33 41.67 0 100 0 0

5000 QL 42.83 32.33 24.84 59.67 40.33 0 100 0 0
Sarsa 42.83 31.83 25.34 59.33 40.67 0 100 0 0
Fig. 10. The examples of human–robot confrontation gaming.
while the k-NN model can keep a higher accuracy even if a new
dataset is obtained.

5.2. RL model

We use two methods to build the RL model: Q-learning and
Sarsa. Three different Q values tables are also designed according
to other incentive mechanisms. We set the win, draw, and loss
ratios as ’3 : 2 : 1’, ’3 : 1 : 0’, and ’3 : 0 : 0’. Table 3 shows
the comparison results between Q-learning and Sarsa. However,
it must find the best iterations by comparing these two methods.

Figs. 8 and 9 demonstrate the comparison results with dif-
ferent parameters γ , which means the discount factor of the
learning. It is relevant to the weight of rewards earned earlier and
received later. Therefore, we choose a small γ value to balance
the values of all actions and observe learning processing rather
than just finding the optimal policy. It can train the Q table more
quickly when γ = 0.1 than the other two values. Meanwhile, the
ratio will be close to the final value after 5000 epochs.

Fig. 10 displays several scenes when a human plays the RPS
game with a robot hand.

6. Conclusion

We presented a new adaptive RL-based multimodal data fu-
sion framework (AdaRL-MDF) for human–robot confrontation
gaming, including an offline training step, an updating module,
and an RL model. It builds an ensemble classifier to avoid some
interference, such as occlusion, artifact, and insufficient sampling.
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The updating model remedies the problem of classification accu-
racy caused by a small sample array. Finally, the RL model can
teach the robot to play games with humans by establishing the
Q-learning or Sarsa model. Although the designed experiments
show the excellent performance of the presented AdaRL-MDF
model, some limitations also exist. For example, the activity space
limits people’s actions, and the current multimodal data fusion
modal has low identification numbers. The multiple LMCs fusion
system and multimodal network should be considered in our
future work to manage the existing problems.
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