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Abstract: The prevalence of pediatric obesity is rising rapidly worldwide, and “omic” approaches
are helpful in investigating the molecular pathophysiology of obesity. This work aims to identify
transcriptional differences in the subcutaneous adipose tissue (scAT) of children with overweight
(OW), obesity (OB), or severe obesity (SV) compared with those of normal weight (NW). Periumbilical
scAT biopsies were collected from 20 male children aged 1–12 years. The children were stratified
into the following four groups according to their BMI z-scores: SV, OB, OW, and NW. scAT RNA-Seq
analyses were performed, and a differential expression analysis was conducted using the DESeq2 R
package. A pathways analysis was performed to gain biological insights into gene expression. Our
data highlight the significant deregulation in both coding and non-coding transcripts in the SV group
when compared with the NW, OW, and OB groups. A KEGG pathway analysis showed that coding
transcripts were mainly involved in lipid metabolism. A GSEA analysis revealed the upregulation
of lipid degradation and metabolism in SV vs. OB and SV vs. OW. Bioenergetic processes and the
catabolism of branched-chain amino acids were upregulated in SV compared with OB, OW, and NW.
In conclusion, we report for the first time that a significant transcriptional deregulation occurs in the
periumbilical scAT of children with severe obesity compared with those of normal weight or those
with overweight or mild obesity.

Keywords: RNA-Seq; childhood obesity; overweight; lipid metabolism; long non-coding RNAs;
periumbilical subcutaneous adipose tissue

1. Introduction

The adipose tissue (AT) is a heterogeneous endocrine organ consisting of several
depots distributed throughout the human body [1]. The AT localized in the connective
tissue under the skin is termed subcutaneous AT (scAT), while the fat that surrounds
the internal organs is the visceral adipose tissue (VAT) [2]. However, the heterogeneity
of AT is not limited to its distribution as it also presents differences at the cellular level
which ultimately lead to differences in function [1]. In term of function and lifespan, it
is possible to differentiate three types of AT: brown adipose tissue (BAT), beige or brite
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adipose tissue (BeAT), and white adipose tissue (WAT) [3]. BAT, consisting of multilocular
mitochondria-rich cells, is abundant in newborns, where it has the principal function of
maintaining body temperature, providing energy in the form of heat [3]. BeAT presents
features of both brown and white adipocytes [4]. WAT, in contrast, is composed of large
unilocular white adipocytes whose role is to store energy as triglycerides. WAT has two
main physiological roles: (i) the metabolic function, i.e., it is responsible for lipogenesis,
fatty acid uptake, triglyceride synthesis, and lipolysis; and (ii) the endocrine function via
the secretion of hormones and cytokines [5]. However, when an abnormal or excessive
WAT accumulation occurs, either by hypertrophy in the scAT and/or by hyperplasia in the
VAT [6], obesity arises, leading to the impairment of AT functions, and ultimately resulting
in chronic inflammation [7].

Obesity is a growing and alarming disease worldwide, and it affects both adults and
children. In 2016, the World Health Organization (WHO) estimated that nearly 41 million
children below the age of 5 and over 340 million children and adolescents between 5 and
19 years of age were overweight or affected by obesity, respectively [8]. Pediatric obesity,
being a multisystemic condition, has potentially deleterious metabolic consequences, in-
cluding hyperinsulinemia and insulin resistance, type 2 diabetes, and dyslipidemia [9], and
it is closely linked to cardiovascular diseases (CVDs) and all-cause mortality in adults. Even
though managing obesity constitutes a primary health purpose, no efficient therapeutic
strategy exists to date. For this reason, there is a crucial need to keep investigating the
molecular mechanisms involved in obesity onset.

RNA sequencing (RNA-seq) is an approach which enables the study of changes in
global gene expression profiles and which can highlight the biological processes associ-
ated with different conditions [10]. It is fundamentally important to analyze the gene
expression changes responsible for AT dysfunction in order to characterize AT patho-
physiology. To date, transcriptomic studies focusing on the obese phenotype have been
performed on blood or AT, predominantly in adulthood or in animal models. In particular,
RNA-seq studies have been carried out on human adipocytes of scAT or VAT to assess
obesity-related modifications [11–13]. These transcriptomic analyses have highlighted
pathways relevant for adipocyte functions, e.g., Rey et al. have highlighted the importance
of long non-coding RNAs (lncRNAs) in the adipogenesis process, underlining the emerg-
ing role of non-coding epigenomes in the development of specific comorbidities [14–16].
However, the characterization of transcriptional changes in children affected by obesity
has not yet been undertaken and is currently limited to some microarray platforms [17].
Compared with arrays, the RNA-seq method enables the detection novel or rare tran-
scripts [18]. Thus, the purpose of this study is to explore the transcriptional profiles of
periumbilical scAT using the RNA-seq approach in pediatric patients stratified according to
their BMI z-scores.

2. Materials and Methods
2.1. Anthropometric Measurements and Biochemical Profile

The height, weight, pubertal stage, and waist circumference (WC) of each subject
was measured, in accordance with other similar studies [19]. BMI was calculated as
body weight (kilograms) divided by height (meters squared), and BMI values were trans-
formed into BMI z-scores using the Centers for Disease Control and Prevention (CDC)
reference values [20]. Pubertal stages were defined according to Tanner and classified as
follows: prepubertal stage = Tanner Stage 1; middle puberty = Tanner Stages 2–3; late
puberty = Tanner Stages 4–5 [21].

All patients underwent a blood draw in a fasting state between 8:30 a.m. and 9:00 a.m., and
plasma glucose, insulin, triglycerides (TG), and total and HDL cholesterol were analyzed
the same morning using standard methods.

As insulin resistance (IR) surrogates, we considered the following:

- Homeostatic model assessment for insulin resistance (HOMA-IR), calculated as insulin
resistance = (insulin × glucose)/22.5 [22];
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- Triglyceride–glucose index (TyG index), evaluated using the formula (ln[fasting triglyc-
erides (mg/dL) × fasting plasma glucose (mg/dL)/2]) [23].

2.2. Adipose Tissue Collection

For the study of the gene expression profile, periumbilical subcutaneous adipose
tissues (scATs) were surgically collected from 20 prepubertal male children (1–12 years
old) who were enrolled at the Buzzi Children’s Hospital (Milano, Italy). The samples were
divided into four groups according to the BMI-z scores of the subjects [24]:

• Normal weight (NW) −2 ≤ BMI-z score < 1 (n = 7),
• Overweight (OW) 1 ≤ BMI-z score < 2 (n = 3),
• Obesity (OB) 3 ≤ BMI-z score ≤ 2 (n = 8),
• Severe obesity (SV) BMI-z score > 3 (n = 2),

The institutional ethics committee approved the study (MI area 1–12/2016/2020), and
it was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2008.

2.3. RNA Isolation and Library Preparation

Total RNA was extracted from the SAT using the Trizol reagent (Invitrogen, Carlsbad,
CA, USA), according to the manufacturer’s instructions. RNA quantity and integrity were
estimated using the Qubit instrument (Invitrogen, Carlsbad, CA, USA) and the Agilent
4200 TapeStation System (Agilent, Santa Clara, CA, USA). RNA libraries were prepared
using the CORALL total RNA-Seq library Prep Kit (Lexogen, Vienna, Austria), and the
RiboCop rRNA Depletion Kit (Lexogen, Vienna, Austria) was used to remove rRNA. Li-
brary quality was assessed with a High Sensitivity D1000 ScreenTape Assay using the
4200 TapeStation System (Agilent, Santa Clara, CA, USA) and quantified using a Qubit ds-
DNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA). Libraries were sequenced using
75 bp paired-end reads on the Illumina NextSeq 500 platform (Illumina, San Diego,
CA, USA).

2.4. Bioinformatic Analysis and Quality Assessment of Raw Data

The quality of the raw data output was examined on a FastQC (last accessed on 31 May
2022). The bioinformatic data analysis pipeline processed with FASTQ was generated using
an Illumina NextSeq sequencer via unique molecular identifier (UMI) extraction, trimming,
alignment, and quality control steps. Because CORALL libraries contain N12 UMIs at the
start of Read 1, UMIs were removed in the first step using the UMI tools software. Adapter
sequences, poly(A) sequences at the 3′ end of Read 1, and poly(T) sequences at the 5′ end
of Read 2 were then trimmed using the Cutadapt software. Subsequent steps to assess gene
and transcript intensities were carried out using the STAR software.

For each sequenced sample, the total number of reads sequenced, the number of
reads mapped on the GRCh38, and the percentage of reads on target are reported in
Supplementary Table S1. The four samples (OB_12, OB_15, NW_22, and NW_23) with a
percentage of mapped reads below 70% were excluded from further bioinformatic analyses.
Gene and transcript abundance were computed using the FeatureCounts software, with
the “stranded forward” option.

A differential expression analysis was performed using R package DESeq.2; coding
and non-coding genes were considered differentially expressed and retained for further
analysis when |log2 group2/group1)| ≥ 1 and FDR ≤ 0.1 [25]. The raw data obtained
from the RNA-seq analysis are deposited in the Gene Expression Omnibus repository with
the accession number GSE228892.

The R software was used to generate heatmaps (the heatmap.2 function from the
R ggplots package), PCA plots (the prcomp function from the R ggplots package), and
volcano plots. An enrichment analysis of the differentially expressed genes (DEGs) was
performed using g:Profiler. A gene ontology and functional enrichment analysis of the
DEGs was carried out using the webtools Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.ad.jp/kegg, accessed on 15 December 2022), Reactome, and

http://www.genome.ad.jp/kegg
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WikiPathways. A protein–protein interaction (PPI) analysis was performed using STRING.
To evaluate global changes in gene expression, a gene set enrichment analysis (GSEA)
was carried out using iDEP (integrated differential expression and pathway analysis,
http://bioinformatics.sdstate.edu/idep96/, accessed on 15 December 2022).

3. Results

Periumbilical subcutaneous adipose tissues (scATs) were collected from Caucasian
male children to identify gene expression patterns associated with obesity. All samples
were stratified according to the BMI z-scores of the subjects.

3.1. Clinical and Biochemical Features of Enrolled Subjects

The clinical and biochemical parameters of the subjects whose AT was included in the
RNA-seq analysis are reported in Table 1.

Table 1. Clinical and biochemical features of subjects whose scAT was considered for RNA extraction
and RNA-seq study. nv: normal value. p-value < 0.001.

Feature NW n = 5 OW n = 3 OB n = 6 SV n = 2

Age 6.87 ± 4.77 10.05 ± 4.23 9.18 ± 2.35 9.90 ± 0.07

Weight (kg) 22.90 ± 11.27 35.76 ± 14.13 47.32 ± 18.22 62.5 ± 0.70

Height (cm) 118.20 ± 3.97 130.0 ± 20.88 134.06 ± 16.31 141.0 ± 1.41

Body mass index (BMI)

- kg/m2

- z-score
15.4 ± 2.27
0.11 ± 1.49

20.3 ± 2.5
1.68 ± 0.17

21.55 ± 2.19
2.63 ± 0.54

31.2 ± 0.56
3.4 ± 0.00

Fasting blood glycemia (mg/dL;
nv < 100 mg/dL) 79.0 ± 8.54 84.0 ± 1.81 98.33 ± 4.72 101.0 ± 1.41

Insulin 7.50 ± 0.70 15.5 ± 0.70 16.93 ± 7.04 21.1 ± 0.007

Triglycerides (mg/dL)
(nv ≥ 130 mg/dL if ≥ 10 years) 57.33 ± 9.29 67.5 ± 3.53 118.33 ± 21.07 130.5 ± 0.70

HDL cholesterol (mg/dL) (nv > 50 in males) 57.5 ± 3.53 47.0 ± 18.38 53.33 ± 6.65 49.5 ± 0.70

Triglycerides/HDL cholesterol ratio (nv < 2.2) 1.09 ± 0.12 1.57 ± 0.68 2.27 ± 0.63 2.63 ± 0.02

Triglyceride–glucose index (nv < 7.88) 7.75 ± 0.009 7.96 ± 0.03 8.65 ± 0.23 8.79 ± 0.008

HOMA-IR 1.38 ± 0.22 3.25 ± 0.09 4.26 ± 1.85 5.23 ± 0.07

3.2. RNA-Seq Data Analysis
3.2.1. Gene Expression Profiling

PCA plots summarizing the global variability in gene expression levels allowed us
to distinguish specific clusters between OW and NW (Figure S1A), while no difference in
cluster distribution was found between OB and OW (Figure S1B) or between SV and NW
(Figure 1A). In the SV vs. OB (Figure 1B) and SV vs. OW (Figure 1C) comparisons, specific
clusters were observed. The hierarchical clustering heatmaps show the 60 transcripts most
deregulated between SV and NW (Figure 1D), SV and OB (Figure 1E), and SV and OW
(Figure 1F).

http://bioinformatics.sdstate.edu/idep96/
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Figure 1. Gene expression profiling. (A–C): PCA plots obtained from the three comparisons SV vs.
NW, SV vs. OB, and SV vs. OW; (D–F): Heatmaps of SV vs. NW, SV vs. OB, and SV vs. OW. Green:
downregulated DEGs; red: upregulated DEGs.
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The comparison between OB and NW showed only 1 downregulated DEG: zinc finger
and AT-hook domain containing (ZFAT) (Table S2). In total, three DEGs, including two
protein-coding (one downregulated (ZFAT) and one upregulated (odd-skipped related
transcription factor 1, OSR1)) and one downregulated lncRNA, were obtained from the
comparison between OW and NW (Table S2). There were 178 DEGs between SV and NW,
including 166 coding genes (83 downregulated and 83 upregulated) and 12 non-coding
genes (4 downregulated and 8 upregulated), as is shown in Figure 2A. Different non-coding
biotypes were present, and, specifically, two were long non-coding RNAs (lncRNAs), two
were processed pseudogenes, one was a transcribed_unprocessed pseudogene, two were
small nuclear RNAs (snRNAs), and four were small nucleolar RNAs (snoRNAs) (Figure 2B).
In Figure 2C, the 12 most downregulated and upregulated DEGs in the SV vs. NW com-
parison are reported. The comparison between OB and OW revealed four downregulated
genes, (two coding and two non-coding genes). Of the two non-coding genes, one was a
processed pseudogene and one was an unprocessed pseudogene. As is shown in Figure 2C,
out of 537 total DEGs between SV and OB, 503 were coding genes (333 downregulated and
170 upregulated) and 34 were non-coding genes (10 downregulated and 24 upregulated).
Regarding the non-coding biotypes, 12 were lncRNAs, 3 were processed pseudogenes,
1 was a transcribed_unprocessed pseudogene, 4 were snRNAs, 9 were snRNAs, 1 was a
TEC, and 4 were misc_RNAs (Figure 2E). In Figure 2F, the 12 most downregulated and
upregulated DEGs in the SV vs. OB comparison are shown. The comparison between SV
and OW showed that 762 out of the 796 DEGs were coding genes (432 downregulated
and 330 upregulated) and 44 were non-coding genes (11 downregulated and 33 upreg-
ulated) (Figure 2G). Regarding the non-coding biotypes reported in Figure 2H, 12 were
lncRNAs, 8 were processed pseudogenes, 1 was a transcribed_unprocessed pseudogene,
1 was an rRNA_pseudogene, 7 were snRNAs, 10 were snoRNAs, 1 was a TEC, and 4 were
misc_RNAs. In Figure 2I, the 12 most downregulated and upregulated DEGs in the SV vs.
OW comparison are reported.

When focusing on lncRNAs, the analysis showed the presence of upregulated and
downregulated lncRNAs amongst the different comparisons. Specifically, the SV vs. NW
comparison revealed one upregulated lncRNA (OIP5-AS1) and one novel downregu-
lated lncRNA (ENSG00000285756). The SV vs. OB comparison showed six downregu-
lated lncRNAs, of which two had never been reported before (ENSG00000285756 and
ENSG00000260267), and five upregulated lncRNAs (ENSG00000261468 and
ENSG00000235609 were novel). Finally, in the SV vs. OW comparison, four downregulated
lncRNAs were found, of which two were novel (ENSG00000282057 and ENSG00000285756),
and seven upregulated lncRNAs were found, of which three were novel (ENSG00000272335,
ENSG00000261468, and ENSG00000235609). Notably, OIP5-AS1 and the novel
ENSG00000285756 lncRNA were found to be shared in all three comparisons. In con-
trast, SNHG5, MAP3K4-AS1, and the novel ENSG00000285756, ENSG00000261468, and
ENSG00000235609 lncRNAs were found in both the SV vs. OB and SV vs. OW comparisons.
Novel lncRNA DEGs are reported in Table 2.

Table 2. Novel lncRNAs found in the study. DEGs and their respective expressions (Log2FoldChange)
obtained from RNA-seq in the following comparisons: OW vs. NW, SV vs. NW, SV vs. OB, and SV
vs. OW.

Comparison ENSEMBL Log2FoldChange

OW vs. NW ENSG00000288900 −5.149906832

SV vs. NW ENSG00000285756 −2.980591461
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Table 2. Cont.

Comparison ENSEMBL Log2FoldChange

SV vs. OB

ENSG00000285756
ENSG00000260267
ENSG00000261468
ENSG00000235609

−1.955798388
−1.111281536
1.348606443
1.747909824

SV vs. OW

ENSG00000282057
ENSG00000285756
ENSG00000272335
ENSG00000261468
ENSG00000235609

−3.180240676
−2.327811635
1.388553119
1.990157997
2.196794819

Figure 2. Analysis of RNA biotypes. (A,D,G): bar charts indicating downregulated and upregulated
coding and non-coding DEGs found in the SV vs. NW, SV vs. OB, and SV vs. OW comparisons;
(B,E,H): pie charts representing the subtypes of non-coding protein DEGs; (C,F,I): bar charts repre-
senting the 12 most downregulated and upregulated genes. Green bars represent downregulated
DEGs; red bars represent upregulated DEGs.

3.2.2. Functional Enrichment Analysis

To gain insight into the biological pathways, a KEGG pathway analysis (Figure 3) to-
gether with Reactome and WikiPathways analyses (Figure S2) were performed, comparing
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the NW, OB, and OW groups with the SV group. The pathways involved in the metabolism
of different macromolecules, such as sphingolipids, lipids, and proteins, were found to be
deregulated. In addition, the hippo, oxytocin, and apelin signaling pathways were found
to be deregulated, as well as the cardiomyopathy pathways (Figure 3). In the PPI analyses,
relevant significant networks were only detected among the deregulated genes in the SV
vs. OW comparison. In particular, 762 nodes and 1885 edges were predicted, and the GO
was significantly enriched, resulting in the primary metabolic process (biological process;
GO:0044238; Figure S3).

Figure 3. SV group shows significant biologic deregulation. The dot plot shows the KEGG pathway
enrichment analyses of the DEGs in SV. The y-axis indicates the pathway name and the x-axis shows
the three comparisons: SV vs. NW, SV vs. OB, and SV vs. OW. The dot size represents the gene ratio
and the color bar indicates the adjusted p-value (blue represents higher values and red represents
lower values).

A KEGG pathway analysis was also conducted for the lncRNAs using the ncPath tool,
showing their likely roles in several biological processes. Of particular interest is their
involvement in metabolic pathways or pathways linked to events potentially related to
excess body weight, e.g., the regulation of lipolysis in adipocytes, the insulin signaling
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pathway, insulin resistance, type II diabetes mellitus, the GnRH signaling pathway, the
estrogen signaling pathway, the thyroid hormone signaling pathway, the TNF signaling
pathway, or the IL-17 signaling pathway.

3.3. Gene Set Enrichment Analysis

Further examination of the RNA sequencing data was carried out using GSEA for
GO and pathway analysis in order to evaluate global gene expression changes. The down-
regulated and upregulated pathways shared between the comparisons are reported in
Table 3. The lipid metabolism pathways were altered in the SV group when compared
with the OB and OW groups. In particular, fatty acid degradation and metabolism were
upregulated in SV vs. OB and SV vs. OW, while the regulation of lipolysis in adipocytes
was downregulated in OB vs. NW and upregulated in SV vs. OB (Figure 4A,B). More-
over, bioenergetic processes, such as pyruvate metabolism, the TCA cycle, and oxidative
phosphorylation, were upregulated in the SV group when compared with the other three
groups. In addition, the upregulation of branched-chain amino acid (BCAA) catabolism
was observed. Additionally, the NAFLD and myocardiopathy pathways were found to be
deregulated in children with severe obesity.

Table 3. GSEA analysis. Pathways deregulated in the SV vs. NW, OB, or OW comparisons. The
pathways are listed according to the grouping target involved in the same metabolic path. Green font
indicated downregulated pathways; red font indicates upregulated pathways.

SV vs. NW SV vs. OB SV vs. OW

Regulation of
lipolysis in
adipocytes

up

Fatty acid
degradation up up

Fatty acid metabolism up up

PPAR signaling
pathway up up

Pyruvate metabolism up up

Citrate cycle (TCA
cycle) up up

Oxidative
phosphorylation up up up

Valine, leucine, and
isoleucine

degradation
up up

Non-alcoholic fatty
liver disease up up

Dilated
cardiomyopathy down down

Hypertrophic
cardiomyopathy down down

Arrhythmogenic right
ventricular

cardiomyopathy
down down
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Figure 4. Regulation of lipolysis in adipocytes. (A): Schematic representation of the regulation of
the lipolysis pathway between OB and NW. Most of the DEGs were downregulated, except for NPY
and PKG, which were upregulated; (B): Schematic representation of the regulation of lipolysis in SV
vs. OB, in which most of the DEGs were upregulated. Green boxes indicate downregulated genes;
red boxed indicate upregulated genes; gray boxes indicate genes whose expression is not affected in
these conditions.
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3.3.1. Regulation of Lipolysis in Adipocytes

Regarding the regulation of lipolysis in the adipocyte pathway, the KEGG analysis
showed that almost all the proteins involved in this pathway were downregulated (shown
in green) in the OB vs. NW comparison (Figure 4A), except for neuropeptide Y (NPY) and
protein kinase G (PKG), which were upregulated (shown in red) (Figure 4A). In contrast,
in the SV vs. OB comparison, the latter proteins were downregulated (shown in green),
together with adenylate cyclase (AC), insulin receptor substrate (IRS), and Akt, while all
the others were upregulated (shown in red) (Figure 4B).

3.3.2. Obesity-Associated Diseases

Next, we investigated the gene expression changes in children with severe obesity
using the OMIM database in order to assess their possible association with mendelian
diseases. Between the SV vs. OB and SV vs. OW comparisons, several OMIM genes
associated with dilated cardiomyopathy (VCL, ABCC9, ACTN2, PSEN1, MYH7, DSP,
TAZ, FKTN, EYA4, TNNC1, TNNT2, TMPO, LDB3, TNNI3, MYBPC3, TPM1, PSEN2,
TTN, ACTC1, LMNA, SGCD, TCAP, DES, SCN5A, PLN, and DMD, all of which were
downregulated) and with obesity (SIM1, POMC, LEPR, PPARG, FTO, NTRK2, AKR1C2,
PPARGC1B, GHRL, SDC3, ADRB2, LEP, PCSK1, UCP3, UCP2, ADRB3, and ENPP1, all of
which were upregulated) were identified.

4. Discussion

Childhood obesity represents a serious challenge for global public health [8], and it
may also contribute to obesity in adulthood, leading to negative health outcomes. It is
known that during obesity, dysfunctional AT undergoes immune, metabolic, and functional
changes [26]. To date, microarray analyses of blood cells, isolated adipocytes, adipose
tissue, or stromal vascular fractions make up nearly all published studies, and, in some
cases, children are grouped together without considering the differences between normal
weight and obesity [27]. However, a few RNA-seq studies have been performed on the
AT of children or adolescents [28,29]. In their work, Sheldon and colleagues compared
intra-abdominal AT collected from severely obese adolescents in relation to different stages
of NAFLD [28]. In addition, a pilot study by Zingale et al. focused on the expression
of neuro-inflammatory markers, proposing a relationship between obesity and neuro-
inflammation [29].

Here, we explored for the first time the transcriptomic profile of scATs collected from
the periumbilical area in four different groups of pediatric subjects, showing differences in
expression according to the severity of ponderal excess and using BMI as a reliable indicator
of body fatness. However, since BMI scores vary with age and sex [20], it was necessary
to use BMI z-scores, i.e., BMI normalizations with respect to the two above indicated
parameters. Moreover, in our cohort, only prepubertal male children were considered in
order to limit the impact of sex hormones, sex chromosome complements, or developmental
hormonal variation. It has been demonstrated that during puberty, males and females
accumulate different types of lipids [30] in different body regions [31]. In addition, ethnicity
can also have an impact on body fat distribution [32], and for this reason our patients were
all of European origin.

It is well known that blood levels of triglycerides, cholesterol, glucose, and insulin
greatly differ between children with and without obesity [33], rendering these parameters
good biomarkers for metabolic derangement. In line with this, blood tests in our patients
revealed a pronounced increase in fasting glycemia, insulin, and triglycerides from NW
to SV, showing that the differences were already noticeable between NW and OW or OB.
However, such changes observed at the plasmatic level were not reflected in the AT gene
expression. In fact, no differences were found in the periumbilical scATs of children with
either obesity or overweight when compared with those of normal weight, as is shown
by the PCA and heatmap plots. Thus, we hypothesize that this could be due to the fact
that this type of adipose tissue is less metabolically active than visceral adipose tissue.
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Thus, it could be interesting to investigate visceral transcriptomic profiles, and to increase
the sample size. The most marked differences were observed in the comparisons with
the SV group, as demonstrated by the hundreds of coding and non-coding DEGs that
were found. The pathway analysis of the coding DEGs revealed their associations with
several signaling cascades, including the metabolic, hippo signaling, oxytocin, apelin, and
HIF-1α pathways, proving that our data are consistent with previous observations reported
in the literature [34–37]. A recent RNA-seq report on periumbilical scAT from children
with obesity and normal weight revealed a significant deregulation in several coding
DEGs implied in fatty acid and carbohydrate metabolisms, as well as in inflammatory
pathways [29]. In our study, we did not observe any differences between the OB and NW
groups. Moreover, even though inflammation is a characteristic feature of obesity [7], no
inflammatory pathway was found in any of our comparisons. This may be due to the
inflammation likely present in NW subjects undergoing surgery. Moreover, we report a
significant variation in non-coding DEGs, highlighting the important impact of epigenetic
regulation on obesity. Besides coding genes, a number of non-coding DEGs were also
found to be deregulated in the SV group compared with NW, OW, and OB groups. Notably,
OIP5-AS1 was found to be upregulated in the SV group when compared with the other
groups. Although it has been implicated in a wide variety of cellular processes, as well
as in chronic diseases (e.g., diabetes, myocardial ischemia) and the progression of several
cancers, we suggest that OIP5-AS1 plays a further role in pediatric obesity [38]. However,
further studies are needed to explore the molecular mechanisms involved in its association
with obesity, as well as to consolidate the evidence for its potential use in distinguishing
children with severe obesity from NW, OW, and OB children.

It is worth emphasizing that even if we notice a significant deregulation between
SV and NW, this difference is more pronounced between SV and OB or OW. Obesity is a
multifactorial disease, and adipose tissue expansion is a dynamic process that may already
have begun during intrauterine life [39]. Adipose tissue alterations depend on several
factors, such as eating behaviors, dietary components, the gut microbiome, drugs, and
physical exercise [40–42]. All of these factors can have epigenetic consequences which
impact the adipose tissue gene expression. Moreover, lipids have also been associated with
epigenetic regulation, since they can regulate chromatin structure and stability [43,44]. To
elucidate the reasons behind the differences in diversity among the groups, it could be very
interesting and helpful to study lipidomic profiles.

Furthermore, to achieve a global overview of transcriptional alterations, we compared
our data with a priori gene sets. In the SV group, three biological processes were found
to be deregulated in comparisons with the other three groups considered in this study:
lipid metabolism, bioenergetic processes, and pathways related to CVD. Regarding lipid
metabolism, it is interesting to note that while the regulation of lipolysis has been observed
to be upregulated in biopsies of the SV group, this pathway was downregulated in the
comparison between the OB and NW groups. Insulin was associated with fatty acid
synthesis and lipolysis inhibition [45]. However, insulin resistance promotes lipolysis [46].
In line with this, the elevated HOMA-IR index obtained from the SV group seems to
correlate with the increase in the lipolysis pathway. However, in the OB group, the lipolysis
regulation trend is inverted compared with that of the NW group. It has been reported that
TNF-alpha-mediated acute inflammation could accelerate lipolysis [47]. It is important to
consider that the NW patients enrolled in this study were subjected to emergency chirurgical
interventions, and their results were thus possibly obtained under acute inflammatory
conditions. Hence, we suppose that, even though insulin resistance is present in NW
children, inflammation could have a major effect on lipolysis regulation. However, more
evidence is needed to confirm this supposition. Regarding the bioenergetic processes, it is
well known that pyruvate metabolism, the tricarboxylic acid (TCA) cycle, and oxidative
phosphorylation are linked together. In fact, the metabolism of pyruvate supports the
citric acid cycle thanks to its conversion to acetyl-CoA. The reducing equivalent NADH
produced in the TCA is subsequently re-oxidized back into NAD+ in the electron transport
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chain (ETC) or oxidative phosphorylation, coupling this process with the export of protons
across the inner mitochondrial membrane [48]. However, it has been established that these
mechanisms are impaired in patients with obesity [49]. For instance, Sohn and colleagues
demonstrated that TCA metabolites were higher in children affected by obesity before 18
months of weight loss [50]. The catabolism of branched-chain amino acids (BCCAs) seems
to play a central role in all the lipid and energetic pathways. In fact, the degradation of
valine, leucine, and isoleucine yields acetyl-CoA molecules, thus feeding the TCA and
electron transport chain [51]. However, even though a relationship between BCAAs and
obesity has been proved, the functional role of BCAA metabolism in the white adipose
tissue of patients suffering from obesity still remains unclear and controversial [52]. In fact,
while Green et al. demonstrated that BCAA catabolism increased lipogenesis in adipocyte
differentiation [51], here we found an increase in lipolysis and fatty acid degradation. This
difference might be due to the fact that our patients were affected by severe obesity, and
where therefore in an exacerbated condition with respect to the in vitro model described
by Green et al. Lastly, it is known that cardiometabolic risk factors are closely associated
with obesity, not only in adulthood, but also in childhood [53]. As expected [54], the
triglyceride/HDL cholesterol ratios of our patients lead us to suppose that children with
severe obesity are more prone to develop CVD. On the other hand, the RNA-seq data
revealed that the cardiomyopathy pathways were deregulated in the SV group, contrary
to expectations [53]. However, since scAT has been reported to have fewer metabolic
implications than VAT [55], we could hypothesize, in line with the findings of Liu and
colleagues [56], that scAT is less associated with cardiovascular risk factors.

The restricted number of enrolled subjects could be considered the main limitation
of this study, as it led to the inclusion of only a few samples for each group, in particular
for the SV subjects. Even if this condition is very frequent, it is challenging to collect
periumbilical subcutaneous adipose tissue from children who do not undergo abdominal
surgery, and to harvest biopsies from normal-weight patients is even more challenging. For
this reason, here we collected biopsies from patients who needed a surgical intervention
not associated with obesity, and the same was done for the normal weight patients. The
age of NW subjects could be a second limitation. Hence, we considered children from 1 to
12 years old, avoiding alterations due to breastfeeding (infants >1 year old) or due to
puberty (>12 years old). Moreover, we stratified the subjects according to BMI z-score,
a parameter that already accounts for the age factor. However, in the future it could be
interesting to investigate the expression of the most deregulated genes in NW patients
whose ages are comparable with those of the patients in the other groups.

5. Conclusions

In conclusion, we report for the first time that a significant transcriptional deregulation
occurs in the periumbilical adipose tissue of children with severe obesity when compared
with children with overweight or mild obesity, or those of normal weight, with a specific
expression profile affecting lipid metabolism. Although this work is to be considered a
pilot study and will need to be applied using a wider cohort, it might be useful to integrate
our data with other omic approaches.
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