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Abstract: This work presents a multi-node lumped parameter model able to predict the steady and
transient behavior of capillary heat pipes, taking into account the effects of gravity (orientation
angle) and the real gas effects in the vapor modeling. The model was validated against experimental
results acquired by Leonardo S.p.A., which were obtained by simulating the behavior of a heat pipe
embedded in a chassis cover, subject to seven cycles of transient thermal loading. After the validation,
the analysis is focused on the model accuracy when using the ideal and real gas assumptions, using
different working fluids (water, ammonia, acetone, HFC134a). The results showed that when using
water or ammonia as working fluid, the error in modeling the vapor as an ideal instead of as real gas
is negligible, both for the vapor temperatures and pressures predictions. On the contrary, when using
acetone or HFC134a as working fluid, modeling the vapor as a real gas leads to a significant increase
in the accuracy of the vapor pressure predictions.

Keywords: heat pipe; lumped parameter approach; transient analysis; real gas effects

1. Introduction and State of the Art

Heat pipes (HP) are very attractive components in the area of spacecraft cooling and
temperature stabilization due to their low weight penalty, very low maintenance, and high
reliability [1]. Nowadays, heat pipes have been studied for more than fifty years, and they
are one of the most popular passive thermal control devices for many engineering fields.

The structure of a heat pipe consists of a sealed system containing a fluid, the so-
called working fluid, which cyclically evaporates and condenses. Through the evaporation
process, the working fluid removes heat from the component to cool down. This thermal
power removed is dissipated into the external environment by means of the condensation
process. Therefore, the heat pipe is a device with very high thermal conductivity that
enables the transportation of heat whilst maintaining almost uniform temperature along its
heated and cooled sections [2]. This means that it works in nearly isothermal conditions.

The capillary driven heat pipe (CHP) is the most commonly used and known type of
heat pipe. In fact, it is used in many industrial applications, such as computer cooling [3]
and spacecraft thermal control [1]. This type of heat pipe consists of a sealed container,
whose inner surface is covered with a porous structure, the wick. The container is partially
filled with a working fluid [4]. One end of the container, the evaporator, is heated by a
heat source. Thus, the working fluid evaporates, and the vapor moves to the other end
of the HP, the condenser, possibly passing through an adiabatic zone. The condenser
area is cooled so that the vapor can condense. The function of the wick material on the
inner surface of the heat pipe is to guide the condensate back to the evaporator [4]. This
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process occurs mainly because of the action of capillary forces. However, gravitational
force can have a great influence on the behavior of the CHP. In fact, its presence can make
the HP operation orientation-dependent, and only a proper design of the wick can allow
the HP to operate in all directions and to reach the requested performance [3]. The material
composing the wick must be compatible with the working fluid, in order to avoid undesired
effects, such as corrosion or generation of non-condensable gas. For this reason, the most
common wick/fluid couplings are: copper/water, mainly used for electronics applications;
aluminum/ammonia, and aluminum/acetone, mainly used for spacecraft applications;
copper/HFC134a refrigerant, mainly used for energy recovery applications.

In the past decades, there have been many attempts to model the different types of
heat pipes.

A possible way to model both the steady-state and transient behavior of a loop heat
pipe was described by Cullimore and Baumann [5]. This is done by using the NASA-
standard thermohydraulic analyzer, SINDA/FLUINT, to design and simulate thermal/fluid
systems that can be represented in networks corresponding to finite difference, finite
element, and/or lumped parameter equations. The only disadvantage of this model is
that it requires a good knowledge of loop heat pipe operation and of the thermophysical
processes involved in those devices, at least for detailed studies.

A transient model for microgrooved heat pipes by using a macroscopic approach was
presented by Suman et al. [6]. This model was developed by using an equilateral triangular
heat pipe as test case, but the equations are suitable to be used with heat pipes of any
polygonal shape. The flow is modeled as unsteady, incompressible, and one-dimensional
along the length of the heat pipe. The coupled non-linear governing equations of heat, mass,
and momentum transfer are simultaneously solved to obtain the transient and steady-state
profiles of the main parameters which characterize the heat pipe behavior (temperature,
pressure, flow velocity). However, this model can be used only for microgrooved heat
pipes with a polygonal shape.

A lumped parameter model for capillary heat pipes was developed by Ferrandi
et al. [7,8]. This model, based on the electrical analogy, divides the heat pipe in two parts,
the solid network and the fluidic network, that are connected by coupling equations. The
model considers the vapor as an ideal gas and it does not take into account the influence of
gravity (and therefore of the orientation angle) on the heat pipe behavior.

Another lumped parameter model for loop heat pipes was developed by Bernagozzi
et al. [9]. As the previous one, this model is based on the electrical analogy and it does not
consider the real gas effects in the vapor modeling and the gravity effects.

A model able to predict the heat transfer performances of a closed vertical meandered
pulsating heat pipe, filled with water, was proposed by Wang et al. [10], and it is based
on artificial neural networks. This model can be used to predict the thermal resistance of
the pulsating heat pipe, given filling ratio and related geometric parameters, at different
heat fluxes. The analysis showed a good agreement between numerical and experimental
results. However, in order to use artificial neural networks for predicting the pulsating heat
pipe behavior, some other studies with different working fluids and more experimental
data are necessary.

A simple model able to predict the thermal performance and working temperature of
a multi-channel flat plate heat pipe was developed by Guichet et al. [11], and it includes
the cooling manifold to estimate the characteristics of the complete system. However, this
model was developed only for a very specific type of heat pipe, so it could be difficult to
use in different applications.

An advanced conduction-based heat pipe model was recently developed by Zimmer-
mann et al. [12]. An analytic expression to calculate the pressure drop inside the vapor core
was developed, and the results were validated through CFD simulations. This model is
quite easy to implement and it showed good results, but it is designed for steady conditions.
Thus, there is no evidence that it also works in transient conditions.
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The aim of this work is to build and validate a simple, multinode, lumped parameter
model, which is able to predict the steady and transient behavior of capillary heat pipes,
including the gravity (orientation angle) effects and the real gas effects in the vapor mod-
eling. The model was built to be quite versatile, in fact, it can be used for heat pipes of
every possible shape and geometry that can be described and/or modeled analytically, as
well as for all the solid–fluid couples whose thermophysical properties are known. The
model was validated by using a real dataset provided by the company Leonardo S.p.A.,
referring to an experiment performed by using a flat heat pipe made of copper and filled
with water as working fluid. After the validation, the model was used for predicting
the heat pipe behavior, when four different solid–fluid couples are used (copper–water,
aluminum–ammonia, aluminum–acetone, copper–HFC134a refrigerant). A specific focus
is placed on assessing for which fluids and working conditions the ideal gas assumption
grants a good accuracy, and for which ones, on the contrary, its use is not suitable, and real
gas properties must be included in the model.

2. Heat Pipe Model Description

Figure 1 shows the conceptual model of the heat pipe used in this work. To use the
lumped parameter approach, the heat pipe scheme can be conceptually divided into two
major parts, the solid network and the fluid network, as in [7–9]. Each of these networks can
be further divided into different minor parts, called nodes or lumps. Each node represents
a section of the complete heat pipe, and all its thermophysical properties are considered
uniform across the whole section, and equal to their average value in the section, which
is assumed to be the one at the center of the volume of the node which represents the
considered section (midpoint rule).

Figure 1. Heat pipe scheme.

The solid network is modeled through the use of the electrical analogy, in which the
currents are represented by the heat transfer rates, and the voltages are represented by the
temperature differences between two nodes. All the nodes are connected to the adjacent
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ones, to the fluid network, and to the external environment through thermal equivalent
resistors and capacitors.

Since the fluid network must also take into account the presence of gravitational terms,
it cannot be modeled by the electrical analogy, because it is not a passive network as it
would have been without gravitational forces. Therefore, this part of the system is modeled
through the one-dimensional Navier–Stokes equations and the equations of real gases.

Then, the coupling between the solid and fluid networks, and the one between the
liquid and the vapor must be considered in order to obtain the complete set of equations
describing the behavior of the entire heat pipe.

2.1. Solid Network

The scheme of the solid network is represented in Figure 1, where dashed lines separate
the vapor zone, wick, solid wall, and external regions (evaporator and condenser).

The solid network is modeled using a total of six nodes, three in the solid wall (TPE,
TPA, TPC), and three in the wick (TWE, TWA, TWC). For both the wall and the wick, there is a
node representing the evaporator section (subscript E), a node representing the adiabatic
section (subscript A), and a node representing the condenser section (subscript C). These
nodes are connected to three nodes in the vapor zone (TVE, TVA, TVC), which belongs to
the fluid network, and to two nodes on the external walls, namely, TE at the evaporator,
TC at the condenser. The latter is in its turn connected to a node representing the external
environment (TF).

In Figure 1, the symbol T represents the temperature of a node, the symbol Q̇ represents
a heat power, which can be the one entering the system from the evaporator wall, Q̇IN , or
the one exiting the system from the condenser wall, Q̇OUT . The symbol R represents the
resistance of a thermal equivalent resistor, and the symbol C represents the capacitance
of a thermal equivalent condenser. The resistances in the solid wall and in the wick are
conductive, the ones connecting the wick to the vapor zone are convective, and the one
connecting the condenser wall to the external environment is mixed, which means that it
can be conductive, convective, radiative, or a combination, depending on the boundary
conditions of the specific case.

The resistances R1PA, R2PA, R1WA, and R2WA are axial, in fact, they model what hap-
pens along the longitudinal dimension of the heat pipe, namely, from the evaporator to the
condenser. Conversely, all the other resistances are radial, describing the thermal behavior
along the radial direction of the heat pipe, namely, from the center of the vapor zone to the
solid wall.

The resistance and capacitance of each branch of the network depend on the geometry
of the heat pipe section. Therefore, the equations used to describe them will be analyzed in
Section 3, where the geometry of the case study is described.

At this point, writing an energy balance on each solid node, it is possible to draw six
equilibrium equations.

For the evaporator wall node, the equilibrium equation is:

CPE ·
dTPE

dτ
= Q̇IN +

TPA − TPE

R1PA
+

TWE − TPE

R2PE + R1WE
(1)

where τ is time. In Equation (1), either the input thermal power, Q̇IN , or the evaporator
wall temperature, TE, has to be known. In this second case, the input thermal power to be
used in Equation (1) is:

Q̇IN =
TE − TPE

R1PE
(2)

For the condenser wall node, the equilibrium equation is:

CPC ·
dTPC

dτ
= −Q̇OUT +

TPA − TPC

R2PA
+

TWC − TPC

R2PC + R1WC
(3)
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In Equation (3), either the output thermal power, Q̇OUT , or the external environment
temperature, TF, has to be known. As before, in this second case, the output thermal power
to be used in Equation (3) is:

Q̇OUT =
TPC − TF

R1PC + RM
(4)

For the adiabatic wall node, the equilibrium equation is:

CPA ·
dTPA

dτ
=

TPE − TPA

R1PA
+

TPC − TPA

R2PA
+

TWA − TPA

RPA + RWA
(5)

For the three wick nodes (evaporator, condenser, and adiabatic zone), the equilibrium
equations are respectively:

CWE ·
dTWE

dτ
=

TPE − TWE

R1WE + R2PE
+

TWA − TWE

R1WA
+

TVE − TWE

R2WE + REF
(6)

CWC ·
dTWC

dτ
=

TPC − TWC

R1WC + R2PC
+

TWA − TWC

R2WA
+

TVC − TWC

R2WC + RCF
(7)

CWA ·
dTWA

dτ
=

TPA − TWA

RWA + RPA
+

TWE − TWA

R1WA
+

TWC − TWA

R2WA
+

TVA − TWA

R3WA + RAF
(8)

The vapor temperature in the evaporator zone, TVE, in Equation (6), and the vapor
temperature in the condenser zone, TVC, in Equation (7), are taken from the fluid network.
Moreover, in Equation (8), the vapor temperature in the adiabatic zone, TVA, has to be
known. It is computed as a weighted average of temperatures TVE and TVC, as shown in
System (9): 

TVA = wE · TVE + wC · TVC

wE =
LC
2 + LA

2
Le f f

wC =
LE
2 + LA

2
Le f f

(9)

where LE, LA, and LC are the evaporator, adiabatic zone, and condenser lengths, respec-
tively; Le f f is the effective duct length (Le f f = LE/2 + LA + LC/2), wE and wC are the
weights that take into account the fact that the center of the adiabatic zone can be closer to
the condenser than to the evaporator, or vice versa.

Therefore, Equations (1), (3) and (5)–(8) are the six equilibrium equations which
describe the temperatures evolution in the solid network.

2.2. Fluid Network

In order to write the equations which describe the fluid network, six assumptions are
necessary. It is assumed that:

• the fluid flow is one-dimensional and laminar for both phases;
• vapor transformations in the evaporator/condenser tanks are isoentropic;
• evaporation and condensation only occur in the evaporator and condenser zones,

therefore, the mass flow rates of the phases do not change in the adiabatic region;
• the liquid temperature is exactly equal to the wick temperature for each point along

the wick length;
• the thermophysical properties of the liquid, the surface tension, and the latent heat of

vaporization are evaluated in saturation conditions;
• All the condensing fluid reaches the wick, with no “accumulation” before it.
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With reference to Figure 1, heat enters the fluid network arriving from the external heat
source into the evaporator liquid tank, so that the working fluid in liquid state evaporates
and conceptually flows into the vapor tank, thanks to the capillary pressure jump. Then,
the vapor formed flows through the adiabatic vapor duct and arrives to the condenser
vapor tank, from which a certain quantity of heat is removed. This phenomenon causes the
vapor to condense and flow back to the evaporator, where the cycle restarts.

At this point, it is possible to analyze each piece of the fluid network, and to write the
equations which describe its behavior. In such equations, the mass flow rate of the vapor is
indicated with ṁV , the one of the liquid is indicated with ṁL, the one that evaporates is
indicated with ṁE, and the one that condenses is indicated with ṁC.

2.2.1. Condensed Liquid

For the last assumption in Section 2.2, it is possible to state that:

ṁL = ṁC (10)

Equation (10) highlights the fact that there is no accumulation of liquid in the con-
denser.

It represents the first of the nine equations for the fluid network.

2.2.2. Vapor Tanks

In order to write the equations that link the vapor pressures and mass flow rates, it is
necessary to start from the continuity equation. For the vapor, it can be written as:

VV ·
dρV

dτ
=

N

∑
i=1

ṁVi (11)

where VV is the volume of the vapor tank considered, ρV is the vapor density, ṁVi are the
N vapor mass flow rates crossing the tank boundaries (taken as positive when entering).
However, it is possible to write the vapor density derivative with respect to time as a
function of the vapor pressure pV , as:

dρV

dτ
=

∂ρV

∂pV

dpV

dτ
(12)

For the second assumption in Section 2.2, the vapor in the tanks undergoes isoentropic
expansion or compression. In isoentropic conditions, it is possible to state that:

∂pV

∂ρV
= a2

V (13)

where aV is the speed of sound in the vapor at the current temperature and pressure.
Therefore, substituting Equation (13) in Equation (12), we obtain the two equations which
link the vapor pressures and mass flow rates, from the point of view of the evaporator and
condenser tanks, respectively:

VVE

a2
VE
·

dpVE

dτ
= ṁE − ṁV

VVC

a2
VC
·

dpVC

dτ
= ṁV − ṁC

(14)

where pVE and pVC are the vapor pressures in the evaporator and condenser zones, respec-
tively; VVE and VVC are the volumes of the evaporator vapor tank and condenser vapor
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tank, respectively; aVE and aVC are the sound speeds in the vapor in the evaporator and
condenser zones, respectively.

The two equations in System (14) must be added to the complete set of equations for
the fluid network.

2.2.3. Vapor Pressure–Temperature Relation

The general relation between the vapor temperature and pressure is not trivial. How-
ever, since the considered vapor transformations are isoentropic, it is possible to write the
entropy differential, ds, as a function of T and p, and to impose this differential equal to
zero. In particular [13]:

ds =

(
∂s
∂T

)
p

dT +

(
∂s
∂p

)
T

dp =
cp

T
dT −

kp

ρ
dp (15)

where cp is the specific heat at constant pressure of the considered gas, and kp is the
isobaric expansion coefficient. Imposing the entropy differential equal to zero, dividing
Equation (15) by the time differential, dτ, and referring the terms of Equation (15) to the
vapor in the evaporator and condenser, one obtains:

dTVE

dτ
= TVE

(
kpVE

ρVE · cpVE

)
dpVE

dτ

dTVC

dτ
= TVC

(
kpVC

ρVC · cpVC

)
dpVC

dτ

(16)

where kpVE and kpVC are the vapor isobaric expansion coefficients in the evaporator and
condenser zones, respectively; ρVE and ρVC are the vapor densities in the evaporator
and condenser zones, respectively; cpVE and cpVC are the vapor specific heats at constant
pressure in the evaporator and condenser zones, respectively.

The two equations of System (16) are two of the nine equations that must be added to
the complete set for the fluid network.

2.2.4. Evaporation and Condensation

Since the evaporation and condensation phenomena are lumped in the evaporator
and condenser zones, for the third assumption in Section 2.2, the mass flow rates which
evaporate and condense can be computed as:

ṁE =
Q̇E

hLVE

ṁC =
Q̇C

hLVC

(17)

where Q̇E is the thermal power going from node TWE to node TVE, namely, the effective
thermal power used for evaporation; Q̇C is the thermal power going from node TVC to
node TWC, namely, the effective thermal power extracted for condensation; hLVE is the
latent heat of vaporization computed at an intermediate temperature between TWE and
TVE; and hLVC is the latent heat of vaporization computed at an intermediate temperature
between TWC and TVC.

The equations of System (17) have to be added to the complete set of equations for the
fluid network.
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2.2.5. Vapor Line

Considering the vapor line, it is possible to write the one-dimensional and laminar
form of the Navier–Stokes equations describing the conservation of momentum, as:

ρ ·
∂u
∂τ
− µ ·

∂2u
∂x2 +

∂p
∂x

+ ρg sin(α) = 0 (18)

where u is the vapor velocity, g is the gravity acceleration, µ is the vapor dynamic viscosity,
and α is the heat pipe orientation angle. In particular, α can range between −90° and 90°: it
is equal to 0° when the heat pipe is oriented horizontally; it is negative when the evaporator
is above the condenser; it is positive when the evaporator is under the condenser. In most
cases, this last condition is the most favorable for heat pipe operation because gravity helps
the liquid to flow from the condenser to the evaporator. Conversely, when α is negative, the
liquid pressure in the condenser must be high enough to compensate the gravity pushing
the liquid back to the condenser zone.

Equation (18) can be integrated over the effective duct length, Le f f , as:

∫
Le f f

(
ρ ·

∂u
∂τ

)
dl −

∫
Le f f

(
µ ·

∂2u
∂x2

)
dl +

∫
Le f f

(
∂p
∂x

)
dl +

∫
Le f f

(ρg sin(α))dl = 0 (19)

Starting with the time derivative term, it is possible to write (using the relation
ṁV = ρuAV in the last step):

∫
Le f f

(
ρ ·

∂u
∂τ

)
dl = ρVA · Le f f ·

duV

dt
=

Le f f

AV
·

dṁV

dt
(20)

where uV is the vapor velocity, ρVA is the vapor density in the adiabatic section, and AV is
the cross-sectional area of the vapor duct.

As the flow is assumed as laminar (first assumption), the second term of Equation (19)
can be rewritten as:

−
∫

Le f f

(
µ ·

∂2u
∂x2

)
dl = ρVA ·

64
Re
·

Le f f

dh
·

u2
V
2

=
32µVALe f f

ρVAd2
h AV

· ṁV (21)

where dh is the hydraulic diameter of the vapor duct, µVA is the vapor dynamic viscosity in
the adiabatic section, and Re is the Reynolds number (Re = ρVAdhuV/µVA).

The third term of Equation (19) can be rewritten as:

∫
Le f f

(
∂p
∂x

)
dl = pVC − pVE (22)

Finally, the last term of Equation (19) can be rewritten as:∫
Le f f

(ρg sin(α))dl = ρVAgLe f f sin(α) (23)

Therefore, the equation for the vapor line to be added in the complete set of equations
for the fluid network is:

Le f f

AV
·

dṁV

dτ
+

32µVALe f f

ρVAd2
h AV

· ṁV = pVE − pVC − ρVAgLe f f sin(α) (24)

Equation (24) expresses the relation between the vapor mass flow rate, the pressures
in the vapor tanks, and the gravitational contribution.
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2.2.6. Liquid Line

Analyzing the liquid line, first of all, it is possible to write the liquid mass flow rate
ṁL as a function of the wick porosity ε, that is, the liquid fraction capability of the wick,
namely, the ratio between the volume of voids in the wick and its total volume:

ṁL = ρLAεAWuL (25)

where uL is the liquid velocity; ρLA is the liquid density in the adiabatic zone; and AW is
the cross-sectional area of the wick.

Next, the pressure drop in a porous medium can be expressed through Darcy’s law [14]:

µ

K
ux = −

∂p
∂x

+ fx (26)

where ux is the velocity in the x direction, µ is the dynamic viscosity, fx is the body force
in the x direction, and K is the wick permeability, which can be estimated by using the
Blake–Kozeny equation [15,16]:

K =
4r2

pε3

150(1− ε)2 (27)

where rp is the pore radius. Consequently, the equation describing the liquid line can be
written as

µLALe f f

KρLAεAW
· ṁL = pLC − pLE + ρLAgLe f f sin(α) (28)

Therefore, the complete system of equations which describe the behavior of the fluid tem-
peratures, pressures, and mass flow rates in the fluid network, is composed of Equations (10),
(24), (28) and Systems (14), (16), (17).

2.3. Solid–Fluid Coupling

The solid–fluid coupling is described by four equations. The first two equations
describe the coupling between the wick temperature and the liquid temperature, which,
given the forth assumption in Section 2.2 are always equal, so that the equations read:

TLE = TWE

TLC = TWC

(29)

where TLE and TLC are the liquid temperatures in the evaporator and condenser zones,
respectively.

The other two equations for the solid–fluid coupling are those that define the heat
transfer rates Q̇E and Q̇C, as functions of some temperatures and resistances, which are
taken from both the solid and fluid networks. In particular, by looking at Figure 1, it is
possible to state that: 

Q̇E =
TWE − TVE

R2WE + REF

Q̇C =
TVC − TWC

R2WC + RCF

(30)

The two equations of System (30) describe the mathematical expression of the heat
transfer rates that is necessary to give (Q̇E) or extract (Q̇C) from the fluid, in order to make
it evaporate or condense.
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Therefore, the four equations of Systems (29) and (30) constitute the complete set of
equations which describe the coupling between the fluid and the solid part of the heat
pipe model.

2.4. Liquid–Vapor Coupling

The liquid–vapor coupling is described by only one equation, namely, the Laplace–
Young equation [17]. It describes the capillary pressure jump in the evaporator as a function
of the liquid surface tension at the evaporator temperature, σ, the contact angle, θ, and the
capillary radius, rc, as:

pVE − pLE =
2σ cos(θ)

rc
(31)

In Equation (31), the contact angle θ is assumed to be constant during the operation
(neglecting contact angle hysteresis), but dependent on the fluid–solid couple, while the
effective capillary radius, rc, is computed as a function of the pore radius, rp, as [8]:

rc = 0.41rp (32)

Equation (31) is the last one to be taken into account for the description of the com-
plete model.

2.5. Implementation of the Complete Set

From the previous sections, it is possible to conclude that the heat pipe behavior
is described by twenty equations, namely, eleven ordinary differential equations and
nine algebraic equations, which contain twenty unknowns. Therefore, the system is
fully determined.
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The equations are:

CPE ·
dTPE

dτ
= Q̇IN +

TPA − TPE

R1PA
+

TWE − TPE

R2PE + R1WE

CPC ·
dTPC

dτ
= −Q̇OUT +

TPA − TPC

R2PA
+

TWC − TPC

R2PC + R1WC

CWE ·
dTWE

dτ
=

TPE − TWE

R1WE + R2PE
+

TWA − TWE

R1WA
+

TVE − TWE

R2WE + REF

CWC ·
dTWC

dτ
=

TPC − TWC

R1WC + R2PC
+

TWA − TWC

R2WA
+

TVC − TWC

R2WC + RCF

CPA ·
dTPA

dτ
=

TPE − TPA

R1PA
+

TPC − TPA

R2PA
+

TWA − TPA

RPA + RWA

CWA ·
dTWA

dτ
=

TPA − TWA

RWA + RPA
+

TWE − TWA

R1WA
+

TWC − TWA

R2WA
+

TVA − TWA

R3WA + RAF
ṁL = ṁC
VVE

a2
VE
·

dpVE

dτ
= ṁE − ṁV

VVC

a2
VC
·

dpVC

dτ
= ṁV − ṁC

dTVE

dτ
= TVE

(
kpVE

ρVE · cpVE

)
dpVE

dτ

dTVC

dτ
= TVC

(
kpVC

ρVC · cpVC

)
dpVC

dτ

ṁE =
Q̇E

hLVE

ṁC =
Q̇C

hLVC
Le f f

AV
·

dṁV

dτ
+

32µVALe f f

ρVAd2
h AV

· ṁV = pVE − pVC − ρVAgLe f f sin(α)

µLALe f f

KρLAεAW
· ṁL = pLC − pLE + ρLAgLe f f sin(α)

TLE = TWE

TLC = TWC

Q̇E =
TWE − TVE

R2WE + REF

Q̇C =
TVC − TWC

R2WC + RCF

pVE − pLE =
2σ cos(θ)

rc

(33)

The unknowns can be classified as:

• Ten temperatures: TPE, TPC, TWE, TWC, TPA, TWA, TVE, TVC, TLE, TLC;
• Four pressures: pVE, pVC, pLE, pLC;
• Four mass flow rates: ṁE, ṁC, ṁV , ṁL;
• Two heat transfer rates: Q̇E, Q̇C.

In order to solve System (33), an explicit method is used. In particular, the eleven
differential equations are discretized by the forward finite differences approach and solved
for each time step. Then, the remaining nine algebraic equations are sequentially solved.

Since the forward finite differences approach is an explicit method, and since the
number of equations to be solved is quite large, the stability of the solution requires a very
low time step. However, this does not greatly affect the computational time, which remains
absolutely manageable.

In the solution process, the thermophysical properties of the liquid (saturation pres-
sure, density, viscosity, thermal conductivity), the surface tension, and the latent heat of
vaporization are evaluated by using a polynomial interpolation of the saturation table of the
working fluid (fifth assumption in Section 2.2). Conversely, the thermophysical properties
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of the vapor (density, viscosity, specific heat at constant pressure, isobaric expansion coeffi-
cient, sound speed) are evaluated at the current temperature and pressure, with the aid of
some look-up tables. Such tables were created using the REFPROP software (version 9.1),
from the National Institute of Standards and Technology [18]. The data contained in these
tables are extracted with a nearest neighbor approach, in order to obtain meaningful results
also near saturation conditions.

Further details about the numerical implementation method can be found in Appendix A.

3. Case Study

As already said, the model was first of all validated against experimental results
acquired by Leonardo S.p.A. The heat pipe used for the experimental test is shown in
Figure 2a. It is a copper heat pipe using water as the working fluid. In order to be easily
brazed to the aluminum chassis, the HP was covered by a very thin electrolytic nickel plate
(thickness 5÷ 8 µm).

(a)

(b)

Figure 2. Picture and dimensions of the heat pipe used in the experimental test (a) Heat pipe picture.
(b) Heat pipe dimensions.

The external dimensions of the HP are shown in Figure 2b. It is worth mentioning that
since the two ends of the heat pipe are not straight, but sharpened, the total length that will
be given as an input to the model is not 120 mm, but 115 mm, in order to compensate for
the loss of thermal exchange area due to the sharpening.

From Figure 2b, it is also possible to notice that the section of the HP is not cylindrical.
In fact, the thickness is much lower than the width. Concerning the internal dimensions:

• The thickness of the wall is equal to 0.296 mm;
• The thickness of the wick is equal to 0.500 mm;
• The wick porosity, ε, is approximately equal to 0.5;
• The average grain radius is approximately equal to 100 µm.

3.1. Description of the Experiment

In the experimental test, three heat pipes like the one shown in Figure 2 were embed-
ded in a chassis cover made of the aluminum alloy 6082, as shown in Figure 3. In particular,
the empty chassis with the three cavities can be seen in Figure 3a, the heat pipe ready to be
embedded in a cavity can be seen in Figure 3b.
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After the heat pipe embedding, a TGHLV1R00JE (Ohmite Manufacturing Company)
resistor was placed on the evaporator zones of the three heat pipes, to be used as thermal
source. The resistor was fixed with a bracket to ensure mechanical and thermal contact of
the power component.

Then, the front face of the chassis was entirely blackened, in order to perform a proper
measurement by using an infrared thermocamera, and two thermocouples were placed on
the two opposite sides of the central heat pipe.

(a) (b)

Figure 3. Test device (a) Aluminum chassis. (b) Heat pipe embedding.

Given the placing of the setup, it is possible to state that the heat pipes have a ver-
tical bottom-heating orientation, with the condenser over the evaporator. Therefore, the
orientation angle α to be used in the model is equal to 90°.

Furthermore, the heat pipe condenser zone is able to exchange thermal power by
conduction with the chassis cover, by natural convection with the air, and by radiation
with the room walls. Thus, the resistance connecting the condenser external wall and the
external environment, RM, is a mixed resistance.

The experiment was performed by turning on the resistor for 60 s, then turning it off
for 5 min, and repeating the same cycle of thermal charge and discharge six more times, for
a total of seven cycles, and a total time of 2520 s.

The total thermal power given by the resistor in the thermal charge phases is 115 W,
but only a part of it is taken by the heat pipes. In fact, a great part is directly dissipated by
the chassis cover to the external environment.

The results of this experiment, namely, the temperatures acquired by the thermocou-
ples, are the output to be compared with that from the model object of this study. However,
before this step, it is necessary to adapt the latter to the geometry of the real heat pipe, and
to extract the data of Q̇IN and RM to be given to the model as input parameters.

3.2. Model Adaptation

For the aim of this work, the shape of the heat pipe cross-section can be modeled as a
rectangle with two semicircles at the two ends, as can be seen in Figure 4. Therefore, the
formulas used for computing the resistances and capacitances of the solid network, and the
formulas for the quantities multiplying dṁV

dτ , ṁV , and ṁL in the fluid network equations
must be adapted to this geometry.

First, it is useful to define the cross-sectional areas of the wall, AP, wick, AW , and
vapor zone, AV , in the new domain:

AP = π
(

r2
ep − r2

ip

)
+ 2we f f tp

AW = π
(

r2
ip − r2

iw

)
+ 2we f f tw

AV = πr2
iw + 2we f f riw

(34)
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where:

• rep, rip, and riw are the external wall, internal wall, and internal wick radii of the
circular regions at the ends of the section, respectively;

• we f f is the effective width of the section, which corresponds to the total width minus
twice the external wall radius: we f f = wtot − 2rep;

• tp is the wall thickness: tp = rep − rip;
• tw is the wick thickness: tw = rip − riw.

At this point, it is possible to define all the aforementioned quantities in this specific
domain.

Figure 4. Scheme of the real heat pipe section.

3.2.1. Solid Network

For the capacitances of the solid network, the adaptation is straightforward.
The thermal capacitance, Cn, of a node n is defined as the product of the mass of the

node, mn, and its specific heat, cn. In its turn, the mass of the node can be expressed as
the product of its density, ρn, and its volume Vn. Thus, the thermal capacitance Cn can be
generically expressed as:

Cn = ρncnVn (35)

Starting from Equation (35), two cases have to be considered: the node n is in the solid
wall (CPE, CPA, CPC), and the node n is in the wick (CWE, CWA, CWC).

In case n is in the solid wall, the evaluation of the thermal capacitance is trivial. In fact,
ρn is the density of the material that constitutes the solid wall, ρW . The specific heat cn is, in
the same way, that of the material that constitutes the solid wall, cW . The volume Vn can be
computed as the product of the longitudinal dimension of the node, Ln, and the area of the
node section, An, which is AP for the considered case. Therefore, the thermal capacitance
of a node in the solid wall can be computed as:

CP = ρWcW Ln AP = ρWcW Ln

(
π
(

r2
ep − r2

ip

)
+ 2we f f tp

)
(36)

In case n is in the wick, since the wick is composed of a solid and a liquid part, it is
necessary to compute the effective value of the product ρncn, which is an average of the
one of the solid, ρWcW , and that of the liquid, ρLcL, whose properties vary depending on
the temperature. This average is weighted by the wick porosity, ε. Thus, in this case:

ρncn = (ρc)e f f = ε · ρLcL + (1− ε) · ρWcW (37)
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The volume Vn is computed exactly as in the previous case, but the area of the node,
An, is equal to AW . Thus, the thermal capacitance of a node in the wick can be written as:

CW = (ρc)e f f Ln AW = (ε · ρLcL + (1− ε) · ρWcW)Ln

(
π
(

r2
ip − r2

iw

)
+ 2we f f tw

)
(38)

At this point, knowing the heat pipe dimensions and the thermophysical properties of
its materials, all the six thermal capacitances shown in Figure 1 can be easily computed.

As previously mentioned, the resistances can be axial or radial; conductive or convec-
tive (radiation inside the heat pipe has been neglected); and, as with the capacitances, in
the solid wall or in the wick.

The convective resistances are all radial, and they are evaluated starting from the
convective coefficient, hF, and the area of the thermal exchange section, AF, namely:

RF =
1

hF AF
=

1

hF

(
2πriw + 2we f f

)
Ln

(39)

These convective resistances are assumed to be constant and known. In fact, it is
assumed that the variations of hF during the heat pipe operation are negligible. Convective
coefficients during phase change and in the adiabatic section were estimated by literature
correlations [19].

The mixed resistance from the external wall to the external environment, RM, can be
either constant or variable during the heat pipe operation. This resistance can be evaluated
using Equation (39), by estimating a possibly time-varying equivalent convective coefficient,
or through empirical correlations, or using Equation (40), if the thermal power of output,
Q̇OUT , is known for each time step:

RM(τ) =
TC(τ)− TF

Q̇OUT(τ)
(40)

The conductive resistances must be studied separately in case they are axial or radial.
Starting from the axial case, for each type of geometry of the section, the axial resistance,

RA12, connecting two nodes, 1 and 2, can be evaluated as:

RA12 =
L12

λA
(41)

where L12 is the distance between node 1 and node 2, λ is the thermal conductivity of
the material crossed by the resistance, and A is the cross-sectional area of the considered
section, which can be either the wall area, AP, if the considered resistance is in the wall
region, or the wick area, AW , if the considered resistance is in the wick region.

Considering the radial case and starting from the effective thermal conductivity, there
is a difference between those for the wall and for the wick. In case of a wall resistance, λ is
the thermal conductivity of the material that constitutes the solid wall, namely, λ = λW .
Conversely, in case of a wick resistance, λ can be evaluated as a weighted average of the
wall thermal conductivity, λW , and the liquid thermal conductivity, λL(τ), which varies
at each time step depending on the liquid temperature. For a sintered wick, the effective
thermal conductivity of the wick λe f f can be computed as [8]:

λe f f (τ) =
λW

(
2 + λL(τ)

λW
− 2ε

(
1− λL(τ)

λW

))
2 + λL(τ)

λW
+ ε
(

1− λL(τ)
λW

) (42)

Then, the expression for the radial resistances of the wall and of the wick are computed
by dividing the heat pipe section into four parts: two of them are concentric semicircles,
the other two are flat plates. Each of these parts has a radial resistance, and all these
resistances are in parallel configuration. However, the resistances of the two concentric
semicircles are equal, therefore, their equivalent resistance, ReqC, is equal to the value
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of each single resistance divided by two, which corresponds to the resistance of two
concentric circles. Moreover, the resistances of the two flat plates are equal too, therefore,
their equivalent resistance, ReqL, is equal to the value of each single resistance divided
by two, which corresponds to the resistance of a flat plate with double section area. At
this point, only two resistances, ReqC and ReqL, in parallel configuration, are left, so it is
straightforward to compute the final equivalent resistance, namely, the radial resistance of
the entire section, RR.

In particular, the resistance of each of the concentric semi-circles, RC, is:

RC =
log
(

re
ri

)
πλL

(43)

where re and ri are the external and internal radii delimiting the region under consideration,
respectively, L is the length of such region, λ is equal to λW for the wall, and λe f f for
the wick.

Therefore, the equivalent radial resistance of the two concentric semi-circles is:

ReqC =
RC

2
=

log
(

re
ri

)
2πλL

(44)

The resistance across a flat plate of width we f f and thickness t = re − ri, is:

RL =
t

λwe f f L
=

re − ri

λwe f f L
(45)

Therefore, the equivalent radial resistance of the two flat plates is:

ReqL =
RL

2
=

re − ri

2λwe f f L
(46)

At this point, it is possible to compute the equivalent radial resistance of the complete
section as:

RR = ReqC//ReqL =
ReqC · ReqL

ReqC + ReqL
=

log
(

re
ri

)
· (re − ri)

2λL
(

π(re − ri) + we f f log
(

re
ri

)) (47)

3.2.2. Fluid Network

The expression of the coefficient that multiplies dṁV
dt in Equation (24) is quite easy to

adapt. In fact, looking at Equation (20), it is possible to notice that it is the ratio between
the effective duct length and the cross-sectional area of the vapor duct. Therefore, in the
new domain:

Le f f

AV
=

Le f f

πr2
iw + 2we f f riw

(48)

The expression of the coefficient multiplying ṁV in the equation for the vapor line,
namely, again, Equation (24), involves the computation of the hydraulic diameter of the
vapor section, dh. In general, the hydraulic diameter is defined as the ratio between four
times the cross-sectional area of the vapor duct, AV , and the duct perimeter, PV . Therefore,
for the considered geometry, it can be computed as:

dh =
4AV

PV
=

4
(

πr2
iw + 2riwwe f f

)
2
(

πriw + we f f

) =
2
(

πr2
iw + 2riwwe f f

)
πriw + we f f

(49)

In this way, starting from Equation (21), the coefficient becomes:
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32µVALe f f

ρVAd2
h AV

=
8µVALe f f

(
πriw + we f f

)2

ρVA

(
πr2

iw + 2riwwe f f

)3 (50)

Finally, from Equation (28), it is possible to notice that the coefficient multiplying ṁL
in the equation for the liquid line can be expressed as:

µLA

KρLAεAW
=

µLA

KρLAε
(

π
(

r2
ip − r2

iw

)
+ 2we f f tw

) (51)

3.3. Extraction of Input Data

After the adaptation of the model to the real geometry, it is necessary to find the input
data for the model, namely, the initial conditions and the boundary conditions.

The only initial condition to define is the initial temperature, T0. In fact, the initial
mass flow rate is zero by definition and the initial pressure, p0, is computed by inverting
the Kelvin equation [20], as:

p0 =
psat0

e
(

2σ0Vm
RT0rm

) (52)

where:

• psat0 is the saturation pressure evaluated at temperature T0;
• σ0 is the liquid surface tension evaluated at temperature T0;
• Vm is the liquid molar volume, which is computed dividing the molar mass of the

working fluid by the liquid density evaluated at temperature T0;
• R is the universal gas constant;
• rm is the mean radius of curvature of the liquid–gas interface, and for this application,

it is equal to the capillary radius, rc.

In this case, the initial temperature is taken from the experimental data, and it is equal to
the ambient temperature, 19.5 °C.

Concerning the boundary conditions, also the temperature of the external environment,
TF, is provided by the experimental data for all the time steps of the thermal test. Even if
this temperature varies during the experiment, its variations are so small that they can be
neglected. Therefore, TF is assumed to be constant and equal to its measured value at the
first time step.

At this point, the only missing data are the input thermal power, Q̇IN , and the resis-
tance between the condenser wall and the external environment, RM. In order to obtain
their values, a preliminary computational fluid dynamics simulation was performed using
the finite element approach by means of Comsol Multiphysics [21]. The idea is to set a very
simple model of the chassis cover, heat pipes, and thermal source, to run a basic simulation
in order to find the temperature evolution of the heat pipe in the middle, and to process the
temperature data obtained in order to find the values of Q̇IN and RM.

In particular, at first, the geometry is set. The heat pipes are modeled as conductive
bars with the following features:

• An equivalent mass, computed as the sum of the masses of the solid, liquid, and vapor
parts;

• An equivalent thermal conductivity, estimated by a preliminary run of the heat pipe
model in a basic case;

• An equivalent thermal capacitance, computed as weighted average of the capacitances
of the solid, liquid, and vapor parts.

The heat source is modeled as a rectangular box, in contact the lower part of the three heat
pipes, and whose external dimensions are the ones of the TGHLV1R00JE resistor. The
chassis is modeled as a nearly rectangular box with raised edges, made of aluminum.
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After defining the geometry, the domain is meshed with a standard tetrahedral mesh.
Both the geometry and the mesh are shown in Figure 5.

(a) (b)

Figure 5. Geometry (in green and blue—the three heat pipes, in red—the heat source) and mesh used
for the preliminary CFD simulation (a) Geometry. (b) Mesh.

The heat pipes can exchange heat in different ways:

• Their sides and rear face can exchange by conduction with the chassis cover;
• Their front face can exchange by natural convection with the air in the room;
• Their front face can exchange also by radiation with the walls of the room.

Inside the chassis cover, heat is obviously transported by conduction. Then, all the
external surfaces of the chassis cover can exchange heat by convection and radiation
with the surroundings. Radiation is modeled with the simplifying assumption of “small
body exchanging with a large cavity”. Emissivity of the surfaces is assumed as 0.1 for
the nontreated aluminum parts, while it is assumed as 0.93 for the blackened faces. The
convective coefficient between the chassis cover and the surrounding air is roughly assumed
as uniform on all faces, and estimated by correlations for natural convection over a vertical
flat plate (resulting in a value of 4 W m−2 K−1).

The input thermal power given by the resistor is modeled as a periodic rectangular
wave with 1/6 duty cycle (60 s pulse width, 360 s total cycle duration) and maximum
power 115 W. The results of the simulation provide the temperature evolution of the whole
chassis with the embedded heat pipes.

The temperature distribution on the chassis at four significant instants of time is shown
in Figure 6 (at the end of the two phases of the first cycle) and Figure 7 (at the end of the
two phases in a stabilized cycle). In particular, Figure 6a shows the temperature at the
end of the first thermal charge phase, Figure 6b shows the temperature at the beginning of
the second thermal charge phase, Figure 7a shows the temperature at the end of the last
thermal charge phase, and Figure 7b shows the temperature at the end of the last thermal
discharge phase.

The temperature evolution of the central heat pipe is extracted and given as an input
to a MATLAB code. In this code, the heat pipe is modeled by using a single-node lumped
parameter approach, with the following assumptions:

• The input thermal power, Q̇IN , is constant and equal for all the thermal charge phases,
and it is null for all the thermal discharge phases;

• The value of the resistance RM is constant during the phases of charge and discharge of
the same cycle, while it changes between the cycles to take into account the equivalent
convective coefficient variation with temperature.
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(a) (b)

Figure 6. Temperature distribution obtained through the preliminary CFD simulation at two signifi-
cant instants of time in the first cycles (a) End of the first thermal charge phase: t = 60 s. (b) Beginning
of the second thermal charge phase: t = 360 s.

(a) (b)

Figure 7. Temperature distribution obtained through the preliminary CFD simulation at two signif-
icant instants of time in the stabilized cycles (a) End of the last thermal charge phase: t = 2320 s.
(b) End of the last thermal discharge phase: t = 2520 s.

Therefore, the two equations describing the temperature evolution of the heat pipe as
a function of Q̇IN and RM are:

• For the thermal charge phases: C ·
dT
dτ

= Q̇IN −
T − TF

RM
;

• For the thermal discharge phases: C ·
dT
dτ

= −
T − TF

RM
.

In the above, C is the equivalent heat capacity of the heat pipe.
In the previous equations, the equivalent heat capacity, the temperature, and the

temperature derivative are assumed as known for each time step—they are obtained by
sampling the temperature profile in time calculated by the transient CFD simulation in two
points, corresponding to the positions of the thermocouples in the real experiment, and
averaging them.

Consequently, for each thermal cycle, the MATLAB code computes RM from the
second equation and then Q̇IN from the first equation, thus returning the two needed
pieces of input data.

4. Results

In this section, the results obtained using the described model will be presented. The
section is divided in two parts: the first one describes the comparison between numerical
and experimental data for the case study, while the second one focuses on the analysis of
the model accuracy when using the ideal and real gas assumptions, for a representative
simulation with constant input power, using different fluids.
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4.1. Model Validation

By using the input parameters described in Section 3.3, the simulation is run. As
previously mentioned, the total time for the seven cycles is 2520 s, which corresponds
to 42 min. Since the ODEs of the model are approximated through the forward finite
differences method, which is an explicit method, a small time step is needed to keep the
simulations stable. After some preliminary tests, a fixed time step equal to 5 µs was selected.

In the experiment, two thermocouples were placed on the two opposite extremities
of the central heat pipe. In particular, the one closer to the resistor acquires a temperature
that will be indicated with the symbol Ta in the following, while the other one acquires a
temperature that will be indicated with the symbol Tb in the following.

Since the thermocouples are placed on the external wall of the heat pipe, at the two
opposite extremities, it is reasonable to compare Ta with the evaporator wall temperature,
TE, and Tb with the condenser wall temperature, TC. It is worth noting that the results are
partially biased by the fact that the real evaporator wall temperature is the one of the heat
pipe face below the resistor, so it is reasonably higher than Ta. Moreover, the condenser
wall temperature computed by the model is the temperature at the center of the condenser
wall. Thus, since more than the 70% of the heat pipe length is taken up by the condenser,
its center is not close to its end. Consequently, in practice, it must be taken into account
that TC cannot be exactly equal to Tb.

Figure 8 shows the comparison between numerical data computed through the model
and experimental data acquired by the thermocouples for the seven thermal cycles. In
particular, Figure 8a shows the comparison between Ta and TE, while Figure 8b shows the
comparison between Tb and TC.

From Figure 8, it is possible to see that the model provides results very close to the
experimental ones in the last three cycles, namely, the stabilized ones. In fact, in these
cycles, the error on the peaks of the evaporator temperature goes from 2.26 to 3.10%, with
an average value of 2.68%, while the error on the peaks of the condenser temperature
covers the range between 4.66 and 6.27%, with an average value of 5.36%. Conversely, in
the first four cycles, the maximum temperature of each cycle estimated by the model is
much higher than the measured one, even if the minimum temperature for each cycle is
very close to the experimental one. In these cycles, the error on the peaks of the evaporator
temperature goes from 21.9 to 25.0%, with an average value of 23.4%, while the error on
the peaks of the condenser temperature covers the range between 13.7 and 24.0%, with an
average value of 17.0%.
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Figure 8. Comparison between numerical data computed through the model and experimental data
acquired by the thermocouples for the seven thermal cycles. (a) Comparison between Ta and TE.
(b) Comparison between Tb and TC.

The temperature evolution computed by the model is more regular than the measured
one. This can be explained by the fact that when the heat pipe operation starts, the activation



Fluids 2022, 7, 109 21 of 31

process takes a certain time, which varies depending on the considered heat pipe. In its
present version, the activation process in the model is idealized, no activation resistances
are considered.

In the experimental test analyzed, the heat pipe activation process reasonably takes
a significant fraction of the total time for the first thermal charge phases, so, at the end,
the heat pipe has not reached a temperature as high as it would have with a lower or null
activation time. However, after four cycles, the temperature reached is high enough to
stabilize the following cycles, so the model becomes much more reliable.

From Figure 8b, it is possible to notice that in the last three cycles, the measured
temperature is higher than the one predicted by the model. This discrepancy is probably
due to how the input data are extracted. In fact, after a preliminary CFD simulation, the
boundary conditions are obtained by approximating the heat pipe through a single-node
lumped parameter approach. When using this method, it is assumed that each region of
the heat pipe exchanges the same amount of heat. However, in the real case, it is reasonable
to assume that the heat exchanged by the front face of the condenser, by natural convection
and radiation, is lower than the heat exchanged by the other faces of the condenser, by
conduction with the chassis cover. Therefore, the temperature of the condenser external
wall, which can be computed as an average of the temperatures of the whole external wall
of the condenser, may be lower than Tb.

Therefore, it is possible to state that, in view of the results of the comparison between
the numerical data computed through the model and experimental data acquired by the
thermocouples for the seven thermal cycles, the validation of the model can be considered
satisfactory, despite some predictable limitations.

4.2. Comparison between Ideal and Real Gas

In this subsection, four fictitious cases with constant evaporator heat power are con-
sidered. The heat pipe considered is the one used for the case study in terms of shape and
dimensions, but the analysis is performed by considering four different solid–fluid couples,
namely, copper–water, aluminum–ammonia, aluminum–acetone, and copper–HFC134a
refrigerant. For each case, the vapor temperatures and pressures obtained by using the
model proposed in this work are compared with the ones obtained by modeling the vapor
as an ideal gas, as in the work of Ferrandi et al. [8].

In order to perform such analysis, it is assumed that the considered heat pipe is subject
to a constant heat power input equal to 20 W, and the resistance RM is modeled as an
equivalent convective resistance. The initial temperature and the external temperature are
both set to be equal to 25 °C. Furthermore, it is assumed, without loss of generality, that the
heat pipe is oriented horizontally.

4.2.1. Copper-Water

Figure 9 shows the comparison between the vapor temperatures in case of using ideal
or real gas equations for the vapor modeling, in a heat pipe made of copper and filled with
water as working fluid. In particular, Figure 9a shows the comparison between the vapor
temperatures in the evaporator, TVE, while Figure 9b shows the comparison between the
vapor temperatures in the condenser, TVC.

It is evident how the vapor temperatures in the two cases are practically equal. Looking
at the vapor pressures in the evaporator, pVE in Figure 10a, and in the condenser, pVC in
Figure 10b, it is possible to notice a small difference in the results when the steady state
is reached.
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Figure 9. Comparison between the vapor temperatures obtained by modeling the vapor as ideal or
real gas, in a copper-water heat pipe (a) Comparison of the vapor temperatures at the evaporator.
(b) Comparison of the vapor temperatures at the condenser.
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Figure 10. Comparison between the vapor pressures obtained by modeling the vapor as ideal or
real gas, in a copper-water heat pipe. (a) Comparison of the vapor pressures at the evaporator.
(b) Comparison of the vapor pressures at the condenser.

Nevertheless, this difference leads to an error lower than 1% in the pressure estimation.
Therefore, for the given conditions, modeling the vapor as a real gas is not necessary when
the considered fluid is water. This is reasonable, as the compressibility factor of water in
the considered case is very close to the one in [22], confirming the fact that water vapor
behaves almost as an ideal gas.

4.2.2. Aluminum–Ammonia

As a second case, the same simulation was repeated using a heat pipe made of
aluminum and filled with ammonia as working fluid.

The difference between the vapor temperatures computed by approximating the vapor
as ideal or real gas are shown in Figure 11.
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Figure 11. Comparison between the vapor temperatures obtained by modeling the vapor as ideal
or real gas, in an aluminum-ammonia heat pipe. (a) Comparison of the vapor temperatures at the
evaporator. (b) Comparison of the vapor temperatures at the condenser.

Again, it is possible to notice that the temperature profiles are similar to the point that
it is hard to distinguish the respective curves.

The comparison between the vapor pressure curves in case of ideal and real gas shows
a difference of about 1.7%, as can be seen in Figure 12. This difference can be relevant in
some applications, but, in general, such an error will be much lower than those caused by
the use of the lumped parameter approach, so for this case also it can be concluded that
there is no relevant difference in modeling the vapor as ideal or real gas.
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Figure 12. Comparison between the vapor pressures obtained by modeling the vapor as ideal or real
gas, in an aluminum-ammonia heat pipe. (a) Comparison of the vapor pressures at the evaporator.
(b) Comparison of the vapor pressures at the condenser.

4.2.3. Aluminum–Acetone

At this stage, the same case as before is analyzed, but using a heat pipe made of
aluminum and filled with acetone as working fluid.

The comparison between the vapor temperatures obtained in case of modeling the
vapor as ideal or real gas is shown in Figure 13 and, as in the previous cases, the difference
between the curves is negligible.
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Figure 13. Comparison between the vapor temperatures obtained by modeling the vapor as ideal
or real gas, in an aluminum-acetone heat pipe. (a) Comparison of the vapor temperatures at the
evaporator. (b) Comparison of the vapor temperatures at the condenser.

However, comparing the vapor pressures in the two cases (Figure 14), it is possible to
notice that the error in modeling the vapor as an ideal gas rather than a real gas is close to
18%, and this is certainly not negligible.

Therefore, when acetone is used as working fluid, it is necessary to model the vapor
by using the real gas equations.
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Figure 14. Comparison between the vapor pressures obtained by modeling the vapor as ideal or real
gas, in an aluminum-acetone heat pipe. (a) Comparison of the vapor pressures at the evaporator.
(b) Comparison of the vapor pressures at the condenser.

4.2.4. Copper–HFC134a Refrigerant

Finally, again the same case is analyzed, but using a heat pipe made of copper and
filled with HFC134a as working fluid.

The results are the same of the acetone–aluminum case: the temperature profiles
(Figure 15) show a practically null difference, while the pressure profiles (Figure 16) evi-
dence a deviation of more than 13%.

Therefore, also when using HFC134a as working fluid of the heat pipe, modeling the
vapor as a real gas offers a significant increase in the accuracy.
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Figure 15. Comparison between the vapor temperatures obtained by modeling the vapor as ideal or
real gas, in a copper-HFC134a heat pipe. (a) Comparison of the vapor temperatures at the evaporator.
(b) Comparison of the vapor temperatures at the condenser.
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Figure 16. Comparison between the vapor pressures obtained by modeling the vapor as ideal or
real gas, in a copper-HFC134a heat pipe. (a) Comparison of the vapor pressures at the evaporator.
(b) Comparison of the vapor pressures at the condenser.

In summary, the results confirmed that when the working fluid and the operating
conditions are such that the intermolecular forces play a significant role, real gas equations
and properties should be used. The amount of deviation from the ideal gas behavior at a
certain temperature and pressure depends on the specific substance. To better evidence this
aspect, Figure 17 shows the paths followed by the four fluids (water, ammonia, acetone,
HFC134a) in the evaporator, during the transition from start-up to steady operation, in a
p− T chart (using reduced thermodynamic properties, pr and Tr).

As it can be seen, the fluids work in different regions. The average ratios between real
gas and ideal gas values for compressibility, speed of sound, isobaric specific heat, and
isobaric expansion coefficient are also reported. The latter evidence how for some fluids
the values are all close to unity, and this is reflected in a negligible difference between real
and ideal gas predictions, while for others the difference is large, resulting in the need for
real gas modeling.
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Figure 17. Paths followed by the four fluids in the evaporator during the thermal transient.

5. Conclusions

In this study, a multinode lumped parameter model for steady and transient analysis
of heat pipes was developed, starting from other models already existing in literature, but
including the effects of gravity (orientation angle) and modeling the vapor as a real gas.

The model was validated by using an experimental case study, in which three parallel
heat pipes were embedded in a chassis cover and heated by a resistor, during seven cycles
of 1 min of thermal charge and 5 min of thermal discharge.

The evaporator and condenser wall temperatures of the heat pipe in the middle,
measured by two thermocouples, were compared to the ones obtained through the model.
The results showed good agreement in predicting data in the stabilized thermal cycles,
while the model provides temperatures much higher than the measured ones in the first
cycles. This is probably due to the heat pipe activation process, the method through which
the boundary conditions were calculated, and also to the position of the thermocouples
which acquired the experimental results.

Additionally, it is analyzed whether, for some working fluids, it is important to model
the vapor as a real gas, rather than as an ideal gas. This analysis showed that the vapor
temperatures obtained by modeling the vapor as an ideal or real gas are almost the same,
for all the considered cases. However, the vapor pressures can be significantly different.

In particular, when using water or ammonia as working fluids, the difference between
the vapor pressures is negligible, while when using acetone or HFC134a as working fluids,
modeling the vapor as an ideal gas rather than a real gas leads to an error in the vapor
pressure prediction larger than 10%.

Therefore, it can be concluded that when the operating conditions are such that the
intermolecular forces play a significant role, it becomes important to model the working
fluid as a real gas, both in terms of relations and of values of the thermophysical properties
included in the model. Otherwise, the latter may be significantly under- or overestimated,
resulting in a bad prediction, particularly of the vapor pressures.
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Nomenclature
The following symbols and subscripts are used in this manuscript:

Symbols:
A Area

[
m2]

A 6× 6 diagonal matrix of the coefficients multiplying the
derivatives of the solid network unknowns

[
W s K−1]

a Speed of sound
[
m s−1]

B 6× 6 symmetric matrix of the coefficients multiplying the
solid network unknowns

[
K W−1]

C Capacitance of a thermal equivalent condenser
[
W s K−1]

C 6× 1 vector of the constant terms [W]
c Specific heat

[
J kg−1 K−1]

cp Specific heat at constant pressure
[
J kg−1 K−1]

dh Hydraulic diameter [m]
f Body force per unit volume

[
N m−3]

g Gravity acceleration
[
m s−2]

h Convective coefficient
[
W m−2 K−1]

hLV Latent heat of vaporization
[
J kg−1]

K Wick permeability
[
m2]

kp Isobaric expansion coefficient
[
K−1]

I 6× 6 identity matrix
L Length [m]
l Variable of integration [m]
ṁ Mass flow rate

[
kg s−1]

N Total number of vapor mass flow rates crossing the vapor
tank boundaries

n Current time step
P Perimeter [m]
p Pressure [Pa]
Q̇ Heat power [W]
R Resistance of a thermal equivalent resistor

[
W K−1]

r Radius [m]
Re Reynolds number
s Specific entropy

[
J kg−1 K−1]

T Temperature [K]
t Thickness [m]
u Vapor velocity

[
m s−1]

V Volume
[
m3]

w Weight/Width [m]
x One-dimensional coordinate [m]
x 6× 1 vector of the temperatures of the solid network [K]
α Heat pipe orientation angle [deg]
ε Wick porosity
θ Contact angle [deg]
λ Thermal conductivity

[
W m−1 K−1]

µ Dynamic viscosity [Pa s]
ρ Density

[
kg m−3]

σ Surface tension
[
N m−1]

τ Time [s]
Subscripts:
0 Initial
1 Node 1
2 Node 2
A Adiabatic zone/Axial
C Condenser zone/Condensing/Circular
c Capillary
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E Evaporator zone/Evaporating
e f f Effective
ep External wall
eq Equivalent
ew External wick
F Referred to a thermal exchange by convection
i Summation index
IN Entering the system
ip Internal wall
iw Internal wick
L Liquid/Linear
M Mixed
m Mean/Molar
n Referred to a generic node
OUT Exiting the system
P Solid wall
p Pore/Solid wall
R Radial
r Reduced
sat Saturation
tot Total
V Vapor zone/Vapor
W Wick
w Wick
x One dimensional coordinate

Appendix A. Details about the Numerical Implementation

In order to solve the twenty equations of System (33), the following numerical method
has been used.

The first six equations to be solved in the iterative cycle covering all the time steps
are the ones describing the solid network. For each time step, the vapor temperatures TVE,
TVC, and TVA (which is a linear combination of TVE and TVC) are evaluated at the previous
time step, so that the six equations for the solid network have six unknowns (TPE, TPC,
TWE, TWC, TPA, TWA), and can be solved all together before the others. In particular, they
are rewritten as:

CPE
dTPE

dτ
+

(
1

R1PA
+

1
R2PE + R1WE

)
TPE −

TPA
R1PA

−
TWE

R2PE + R1WE
= Q̇IN

CPC
dTPC

dτ
+

(
1

R1PA
+

1
R2PC + R1WC

)
TPC −

TPA
R2PA

−
TWC

R2PC + R1WC
= −Q̇OUT

CWE
dTWE

dτ
+

(
1

R1WE + R2PE
+

1
R1WA

+
1

R2WE + REF

)
TWE −

TPE
R1WE + R2PE

−
TWA

R1WA
=

TVE
R2WE + REF

CWC
dTWC

dτ
+

(
1

R1WC + R2PC
+

1
R2WA

+
1

R2WC + RCF

)
TWE −

TPC
R1WC + R2PC

−
TWA

R2WA
=

TVC
R2WC + RCF

CPA
dTPA

dτ
+

(
1

R1PA
+

1
R2PA

+
1

RPA + RWA

)
TPA −

TPE
R1PA

−
TPC

R2PA
−

TWA
RPA + RWA

= 0

CWA
dTWA

dτ
+

(
1

RWA + RPA
+

1
R1WA

+
1

R2WA
+

1
R3WA + RAF

)
TWA −

TPA
RWA + RPA

−
TWE

R1WA
−

TWC
R2WA

=
TVA

R3WA + RAF

(A1)

Defining a 6× 1 vector x, which contains the unknowns:

x = {TPE TPC TWE TWC TPA TWA}T (A2)

it is possible to write System (A1) in matrix form, as:

A
dx
dτ

+ Bx = C (A3)

where:

• A is the 6 × 6 diagonal matrix which contains the coefficients that multiplies the
derivatives of the unknowns, namely the capacitances;
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• B is the 6× 6 symmetric matrix which contains the coefficients that multiplies the
unknowns, namely the inverse of the solid resistances;

• C is the 6 × 1 vector of the constant terms, namely the one representing the heat
transfer rates entering and exiting the solid network.

At this point, using the forward finite differences approach, Equation (A3) can be
rewritten in discrete form as:

A(n) x(n+1) − x(n)

∆τ
+ B(n)x(n) = C(n) (A4)

where: the superscripts (n) and (n + 1) indicate the current and the following time steps,
respectively; and ∆τ indicates the time step.

Since matrix A is diagonal, its inversion is straightforward. In fact, A−1 is the diagonal
matrix whose coefficients are the inverse of the ones of A. This property makes the
computational cost of the inversion of A significantly lower.

Therefore, vector x at time (n + 1) can be computed starting from the same vector at
time (n), by inverting Equation (A4) as:

x(n+1) =

(
I− ∆τ

(
A(n)

)−1
B(n)

)
x(n) + ∆τ

(
A(n)

)−1
C(n) (A5)

where: I is the 6× 6 identity matrix.
After that, the fourteenth, eighth, ninth, tenth, and eleventh equations of System (33)

are rewritten as:

Le f f

AV
·

dṁV

dτ
+

32µVALe f f

ρVAd2
h AV

· ṁV = pVE − pVC − ρVAgLe f f sin(α)

VVE

a2
VE
·

dpVE

dτ
=

TWE − TVE

(R2WE + REF)hLVE
− ṁV

VVC

a2
VC
·

dpVC

dτ
= ṁV −

TVC − TWC

(R2WC + RCF)hLVC

dTVE

dτ
= TVE

(
kpVE

ρVE · cpVE

)
dpVE

dt

dTVC

dτ
= TVC

(
kpVC

ρVC · cpVC

)
dpVC

dt

(A6)

where the definitions of ṁE and ṁC, merged with the definitions of Q̇E and Q̇C, are
exploited.

At this point, System (A6) can be rewritten in discrete form by using the forward finite
differences, and solved similarly to the one for the solid network, as:
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ṁ(n+1)
V =

1− ∆τ
32µ

(n)
VA

ρ
(n)
VA d2

h

ṁ(n)
V + ∆τ

(
p(n)VE − p(n)VC − ρ

(n)
VA gLe f f sin(α)

) AV

Le f f

p(n+1)
VE = p(n)VE + ∆τ

(
a(n)VE

)2

VVE

 T(n)
WE − T(n)

VE(
R(n)

2WE + REF

)
h(n)LVE

− ṁ(n)
V



p(n+1)
VC = p(n)VC + ∆τ

(
a(n)VC

)2

VVC

ṁ(n)
V −

T(n)
VC − T(n)

WC(
R(n)

2WC + RCF

)
h(n)LVC



T(n+1)
VE =

1 +

 k(n)pVE

ρ
(n)
VE · c

(n)
pVE

 · (p(n+1)
VE − p(n)VE

)T(n)
VE

T(n+1)
VC =

1 +

 k(n)pVC

ρ
(n)
VC · c

(n)
pVC

 · (p(n+1)
VC − p(n)VC

)T(n)
VC

(A7)

Therefore, for each time step, the eleven equations of Systems (A5) and (A7) are solved,
in order to find eleven variables: TPE, TPC, TWE, TWC, TPA, TWA, ṁV , pVE, pVC, TVE, TVC.
The remaining nine variables are not computed in the iterative cycle, but for all the time
steps sequentially after it, as:

T(n)
LE = T(n)

WE

T(n)
LC = T(n)

WC

ṁ(n)
E =

T(n)
WE − T(n)

VE(
R(n)

2WE + REF

)
h(n)LVE

ṁ(n)
C =

T(n)
VC − T(n)

WC(
R(n)

2WC + RCF

)
h(n)LVC

ṁ(n)
L = ṁ(n)

C

Q̇(n)
E =

T(n)
WE − T(n)

VE

R(n)
2WE + REF

Q̇(n)
C =

T(n)
VC − T(n)

WC

R(n)
2WC + RCF

p(n)LE = p(n)VE −
2σ(n) cos(θ)

rc

p(n)LC = p(n)LE +
µ
(n)
LA Le f f

Kρ
(n)
LAεAW

· ṁ(n)
L − ρ

(n)
LA gLe f f sin(α)

(A8)

After solving System (A8), all the variables of the problem have been computed.
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