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Optical phase measurement is critical for many applications, and traditional approaches often suffer from mechanical
instability, temporal latency, and computational complexity. In this paper, we describe compact phase sensor arrays
based on integrated photonics, which enable accurate and scalable reference-free phase sensing in a few measurement
steps. This is achieved by connecting multiple two-port phase sensors into a graph to measure relative phases between
neighboring and distant spatial locations. We propose an efficient post-processing algorithm, as well as circuit design
rules to reduce random and biased error accumulations. We demonstrate the effectiveness of our system in both simu-
lations and experiments with photonics integrated circuits. The proposed system measures the optical phase directly
without the need for external references or spatial light modulators, thus providing significant benefits for applications
including microscope imaging and optical phased arrays. © 2023 Optica Publishing Group under the terms of the Optica Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.494612

1. INTRODUCTION

Optical phase measurements are important in imaging [1–5],
environmental sensing [6,7], optical communications [8–11], and
optical neural networks [12–15]. Previous approaches for optical
phase measurement can be divided into two categories: reference
based and reference free. The first approach is based on homo-
dyne/heterodyne interference between the detected optical field
and a reference signal directly routed from the light source [16,17].
Such systems benefit from the improved detection signal-to-noise
ratio (SNR) while suffering from any instabilities in the reference
arm [17–20]. The reference-free approach avoids the need for an
external reference by interfering different components of the inci-
dent field with one another [21–23]. Phase contrast microscopy
exploits a phase shifting aperture to interfere the incident light
field with a plane wave and acquires an approximate phase profile
for transparent samples [1]. Modern reference-free wavefront
measurements typically use a programmable spatial light modu-
lator (SLM) together with post-processing with phase retrieval
algorithms that lead to significant computational cost [23–25]. In
a special case, the Shack–Hartmann (SH) wavefront sensor [26]
employs a micro-lens array instead of an SLM.

Recently, a reference-free optical field measurement based
on a photonics integrated circuit (PIC) has been proposed and
demonstrated [27,28]. During operation, Mach–Zehnder inter-
ferometers (MZIs) in the PIC are progressively configured through
power minimizations, and the relative input optical phase over all
the inputs is calculated based on the phase settings. This approach
is robust against vibrations [29], but it requires that the MZIs are

controlled by analog voltages of high precision, and its progressive
nature of successive minimizations introduces significant time
delay.

In this paper, we propose a compact photonics phase sensor
array for reference-free phase sensing requiring only a few measure-
ments. This is achieved by connecting multiple two-port phase
sensors (Section 2) into a graph to measure relative phases (phase
gradients) between both neighboring and distant spatial locations.
Due to the versatile PIC platform, all measurements are conducted
in parallel in a single photonics focal-plane [3]. Compared to the
progressive PIC phase measurement, our system has lower latency
and requires less hardware.

To minimize measurement errors caused by sensor noise,
we add post-processing, formulated as a least squares problem.
Compared with non-convex phase retrieval algorithms, the
post-processing in our system is fast and robust (Section 3).

We analyze the phase sensor array’s robustness to noise and
hardware errors for large numbers of input ports (Sections 4 and 5).
Phase sensing accuracy is shown to be determined by the connec-
tivity of the photonics circuit. Errors can be significantly reduced
by (1) introducing distant relative phase measurements, (2) appro-
priately placing phase shifters in phase sensors, and (3) introducing
redundant relative phase measurements. We demonstrate the
effectiveness of our designs both with simulations and through
experiments. The proposed system is promising in various appli-
cations, including phase imaging in microscopy and in optical
phased arrays (OPAs) [30]; we simulate two example applications
in Section 6. In Section 7, we systematically compare the proposed
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phase sensor array to the progressive approach [27] in various
metrics, including scalability, speed, and complexity.

2. INTEGRATED PHASE SENSOR

We start with the description of a single two-port phase sensor,
which detects the relative phases between two input optical fields
x1, x2 that enter the phase sensor in single mode waveguides.
Similar devices have recently been applied in reference-based
detection systems [3,29]. As shown in Fig. 1(a), a straightforward
implementation uses in-phase and quadrature (I/Q) interferomet-
ric detection [29] with a 50/50 beam splitter and a tunable phase
shifter. The system can be modeled as a 2-in, 2-out linear system
with transmission matrix H:

H = B R(ζ )=
1
√

2

[
1 i
i 1

] [
e iζ 0
0 1

]
. (1)

Here B , R are the transmission matrices of the 50/50 beam
splitter and phase shifter, respectively. When the phase shift ζ is set
to zero (b+ and b− outputs) and π/2 (h+ and h−), the detected
optical powers in the two photodetectors are

h± = (|x1|
2
+ |x2|

2
± 2|x1||x2|cosγ )/2,

b± = (|x1|
2
+ |x2|

2
± 2|x1||x2|sinγ )/2, (2)

where γ is the relative phase between x1, x2. Equation (2) gives
the estimate γ = arctan((b+ − b−)/(h+ − h−)). This active
sensor design requires two measurement steps and utilizes one
phase shifter whose phase delay is switched between zero and π/2.
To avoid the delay of actively tuning the phase shifter, we use the
passive sensor shown in Fig. 1(b), in which h± and b± are measured
in one step, although the optical power in each photodetector is
reduced. (In the following, we assume all directional couplers in the
circuit are 50/50 beam splitters unless mentioned, while the two on
the sides can be designed to have beam splitting ratios other than
50/50.)

To simplify the following discussions and visualizations, we
abstract the phase sensor into a graph without the physical imple-
mentation details [31]. As shown in Fig. 1(c), each input port is
represented by a vertex in the graph, and each phase sensor is repre-
sented by an edge. Since the phase shifter is applied to only one arm
in the sensor, the phase sensor, and hence the edge that represents

Fig. 1. (a) Active phase sensor using a phase shifter followed by a beam
splitter. (b) Passive phase sensor. (c) Graph representation of a single phase
sensor. The vertex (circle) represents an input port, while the edge rep-
resents a phase sensor. The polarity of the edge represents the placement
of the phase shifter in the sensor. Formally, the white end of the edge in
(c) corresponds to the port or side of the phase sensor that has the phase
shifter, as in (a), or theπ/2 phase shift, as in (b).

it, is asymmetrical, and we define the input port on the side with
the phase shifter or on the side with theπ/2 phase shift path to have
positive polarity (the white end of the white–black edge). While a
more standard concept in graph theory is a directed edge, we use
polarity to represent this asymmetry to avoid confusion with the
optical power propagation direction.

3. PHASE SENSOR ARRAY

Multiple phase sensors can be integrated into an array to measure
the phase profile across multiple input ports, as shown in Fig. 2(a).
When the system is used to measure a free-space light field, an
optical interface converts free-space incident light to the phase
sensor using grating couplers (GCs), photonics lantern, or other
free-space optical interface [32–34] (please refer to Supplement 1
for a polarization sensitive interface). At each input port of the
sensor, the received optical signal is split into multiple single-mode
waveguides [35] and then fed into the phase sensors, as shown by
the black arrows in Fig. 2(a). Following the conventions defined
in Section 2, we also show the corresponding graph representation
in Fig. 2(b). Each phase sensor is accessed independently, and the
input light is routed to the photodetectors and converted into
electronic signals. The electronic readout circuitry can be similar to
that of common image sensors [36].

From the readout of photodetectors, the phase measure-
ment of each phase sensor is calculated using Eq. (2). For the
example shown in Fig. 2, the sensor array has four input ports
{x1, x2, x3, x4} (without loss of generality, we select x1 to be zero
phase). We need to find three unknown phase differences relative
to the phase of x1, p= {p2, p3, p4}, and there are four phase
sensors {H1, H2, H3, H4} in the array with measurement results
pH = {pH1 , pH2 , pH3 , pH4}. The measurement process can be
expressed in a matrix M:

pH M p eH pH1

pH2

pH3

pH4

 =
 1 −1 0 0

0 1 −1 0
0 0 1 −1
−1 0 0 1


 0

p2

p3

p4

 +
 eH1

eH2

eH3

eH4

 , (3)

where eH = {eHi } are the phase measurement errors. When the
number of phase sensors is one less than the number of input ports

Fig. 2. (a) Simple example of phase sensor array with four input
ports and four phase sensors (not to scale) and (b) corresponding graph
representation. Black arrows in (a) show the optical power propaga-
tion directions, and black/white colored edges in (b) represent the
phase sensors with polarities. To handle the measurement errors, a least
squares method is used to compute the phase profile from phase sensor
measurements.
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(we call it a “non-redundant” array in Section 5.A), p can be recov-
ered from pH by algebraic calculations. However, in more general
cases (e.g., Fig. 2), the number of phase measurements exceeds the
number of unknown phases. In those cases, we solve a least squares
problem to better account for measurement errors, with the
pseudo-inverse of the measurement matrix M+ = (MT M)−1 MT

[37]: 
p̂= argminp|pH −Mp|2 =M+pH,

p= (0, p2, p3, p4)
T ,

pH =
(

pH1 , pH2 , pH3 , pH4

)T
,

(4)

where p̂ is the estimated phase profile. In our system, each row in
M corresponds to the measurement made by one phase sensor.
The measurement matrix has a +1 element and −1 element in
each row, with all other elements zero. Switching the position of
the phase shifter from one arm to the other arm in the phase sensor
results in a change of sign in the corresponding row in matrix M.
Since matrix M is determined once the device is fabricated, so is
the pseudo-inverse M+ (which can be deduced from the singular
value decomposition of M). Solving this least squares problem
then requires only a simple matrix–vector multiplication between
M+ and the vector of measurements pH .

Note that due to the 2π ambiguity of phase, the first line
of Eq. (4) should be expressed as p̂= argminp|mod[(pH −

Mp), 2π ]|2, where mod[ , 2π ] is the modulo operation. This is
different from a normal least squares problem. However, a simple
workaround converts it into a normal least squares problem (please
refer to Supplement 1 for more details). Therefore, we still use the
normal least squares optimization formula for simplicity.

4. PHASE SENSING ERROR

There are two major sources of error in the phase measurements.
The first is noise in photodetection, including photon shot noise
[38,39], dark current [40], and amplifier readout noise [41]. The
second source is systematic hardware errors, including incorrect
beam splitting ratios and phase shifts [42,43], and non-uniform
photodetector gain [20]. Such systematic errors can be partially
removed by calibration (similar to that in free-space interfer-
ometers [19,20]; detailed calibration process is described in
Supplement 1). Typical residual errors in the beam splitting ratio
reported in the literature are ∼1% to 10% [12,42]. Note that
hardware errors can be random or biased. Random hardware error
means every single element in the system has different imperfec-
tions [44,45], while biased hardware error means all elements
in the system are biased to the same erroneous state. Such biased
error can be due to temperature, optical wavelength, fabrication,
or other global factors. In the following, we discuss only beam
splitting errors, while all the conclusions can be straightforwardly
applied to other types of hardware errors (e.g., phase shifter error).
Please refer to Supplement 1 for details.

We use simulations to evaluate the influence of noise and
hardware errors on phase sensing accuracy. We first consider a
single phase sensor. Under specific noise and hardware errors, we
use the expectation of absolute error of measured relative phase
E[RMS] =E[|| p̂ − p||] to characterize the average phase sensing
error. Following the convention in [42], the expectation is taken
over a set of random input fields:

Fig. 3. Single sensor phase measurement error (absolute values aver-
aged over 1000 random input fields simulations) with (a) photodetection
noise, (b) random beam splitter error, and (c) biased beam splitter error.
Second row: corresponding measurement error histograms at the red dot
indicated settings (over 1000 random input field simulations).

x ∼ (N (0, 1)+ iN (0, 1))/
√

2, E[|x |2] = 1,

h ′
±
= h± + σnN (0, 1), b′

±
= b± + σnN (0, 1),

SNR : =E[|x |2]/σn = 1/σn, (5)

where N (0, 1) is the normal distribution with mean zero and
standard deviation one, h ′

±
and b′

±
are noisy measurements, and

σn is the magnitude of measurement noise. For simplicity, we use
a simple noise model and define the overall SNR of the system
as 1/σn . For hardware errors, we simulate random and biased
beam splitter errors (BSE). Similar to Eq. (1), the imperfect beam
splitter with an uneven splitting ratio is modeled by the 2× 2

matrix B ′ = 1
√

2

[ √
1+ ε i

√
1− ε

i
√

1− ε
√

1+ ε

]
, where ε is the error. For

the random error case, we assume ε ∼ σεN (0, 1). For the biased
error case, we use the same ε for all beam splitters. For all hardware
error simulations, we still include photodetection noise.

The simulated average phase sensing errors in Figs. 3(a)–3(c)
show several important results. First, except under extremely low
SNR, average phase sensing error is inversely proportional to the
SNR when no hardware error is present. Second, hardware errors
significantly increase phase sensing errors. Third, biased hardware
errors cause biased phase sensing error [as shown in Fig. 3(c), with
median∼−0.02].

5. PHASE SENSING ERROR IN ARRAY

We denote the phase sensing error at phase sensor i as eHi.
Following the simulation results in Fig. 3, we can decompose
the statistical distributions of phase sensing error into a standard
deviation σe and a bias e0. Since the phase profile in a sensor array
is estimated by Eq. (4), we characterize the average estimated phase
sensing accuracy with the expected root mean square error (RMSE)
E[RMS] =E[|| p̂− p||]. Similar to Section 4, the expected value
is taken over random input fields following Eq. (5).

Figure 4, left side (“1D chain” configuration), shows an exam-
ple of the phase sensor array. The expectation of phase RMSE for a
phase sensor array with N input ports can be expressed as
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1D “Chain” 1D “Chain + flip”

Fig. 4. Left: “1D chain” configuration. Right: “1D chain+ flip” con-
figuration. While random error accumulation remains the same, biased
error accumulation is eliminated.

E[( p̂i − pi )
2
] =

i∑
j=1

E[e 2
Hi] = iσ 2

e + i2e 2
0,

E[RMS] =

√√√√E

[
1

N

N−1∑
i=1

( p̂i − pi )
2

]

=

√
σ 2

e (N − 1)/2+ e 2
0(N + 1)(2N + 1)/6

=

√
E2

r + E2
b . (6)

We can divide E[RMS] into contributions from the random
error in each sensor σe [Er , scales with O(

√
N)] and the bias error

e0 [Eb , scales with O(N)]. This error becomes intolerable with
moderate N thus prohibiting scaling up.

Equation (6) also indicates that the expected error at the i th
port {E[( p̂i − pi )

2
]} depends on the number of intermediate

connections (path length in graph theory) between it and the
reference port, as shown in Fig. 4. The shorter the path length, the
fewer accumulated errors. The key difference between random and
biased errors lies in their dependencies on the polarities of the phase
sensors. Er does not change when the polarities of the connections
change, while Eb largely depends on the polarities. By flipping
the edge (phase sensor) polarities in the 1D chain configuration,
Eb = e0 (constant w.r.t N) is achieved in the “1D chain + flip”
configuration (Fig. 4 right side).

For more complex circuit configurations, analytical relation-
ships between N and Er , Eb are difficult to obtain. Nonetheless,
following Eq. (4), we can establish a simple relationship between
the RMSE and M+, the pseudo-inverse of measurement matrix M
(derivations are presented in Supplement 1):

Er = σe

√∑
ij

M+[i j ]2,

Eb = e0

√∑
ij
(M+T M+)[i j ],

(7)

M+ = (MT M)−1 MT .

Note that
√∑

ij M+[i j ]2 and
√∑

ij(M
+T M+)[i j ] are the

Frobenius and L2,1 norms of matrix M+, respectively, and are
related to “graph spectrum” in graph theory [46]. From Eq. (7),
we again observe that flipping signs of the rows in matrix M will
not change Er , but has an influence on Eb . Therefore, these two
metrics are decoupled and can be considered separately in the
circuit configuration design: we first ignore the polarities in the
circuit graph and minimize Er by placing edges (phase sensors)
at proper positions. In particular, we want to minimize the path
lengths from the reference port to other ports in the circuit graph.
Then we flip the polarities for part of the edges to minimize Eb .
Due to this decoupled design rule, in the following, we ignore the
phase sensor polarity when discussing Er , and we always assume

that there exists a phase sensor polarity arrangement to minimize
Eb .

A. Non-redundant Array

The minimum number of phase sensors needed to measure a full
phase profile with N input ports is N − 1. We denote this type of
circuits as non-redundant. Several examples are shown in Fig. 5(a)
(polarities of phase sensors are ignored, as discussed above). Since
only one path exists between the phase reference input to any
other input, the design rule of “shorter path, lower error” holds.
The most naive chain configuration has Er ∼ O(

√
N), which

becomes intolerable with moderate N. By breaking the long path
into shorter ones, Er is reduced to O(N1/4) in a “split chain”
configuration. With N = 1000, this is ∼6× smaller than the
simple 1D chain configuration of Fig. 4. Similar configurations can
also be implemented with input ports arranged in 2D. Through
bi-sectioning the long path, the “bi-section” configuration achieves
O(
√

logN) RMSE. However, this configuration requires compli-
cated waveguide routings that increase the footprint significantly.
In all these configurations, Eb can be reduced to O(1) (constant)
by flipping the polarities of edges.

We simulate the average phase sensing accuracy with photode-
tection noise [Fig. 5(b)] SNR= 30 dB. The simulation results fit
well with the theoretical analysis.

B. Redundant Array

Redundant phase sensing elements can be introduced into the
circuit as shown in Fig. 5(a). In the redundant array, multiple paths
exist between the phase reference input and other unknown phase
inputs, so the least squares optimization is effectively performing
an averaging over phase estimation results accumulated along all
paths. With more redundancies, more paths are involved in the
averaging and thus provide a more accurate estimate. On the other
hand, with more redundancies, each input port is connected to
more phase sensors, and each phase sensor is receiving less optical
power, resulting in lower SNR.

We show two representative cases in Fig. 5(b). In the best case,
O(logN) is achieved in the grid configuration with flipped edges.
The “grid+ diag” configuration has 50% more edges (phase
sensors) compared to the grid configuration. However, the phase
sensing accuracies are similar, due to the trade-off discussed above.
We also show an example with biased BSEs [Fig. 5(c)]. Similar to
single phase sensor simulations, we use biased BSE= 1%, 4% in
this simulation. It can be seen that with correctly flipped edges,
phase sensing error maintains O(logN) scalability, while failing to
do so results in phase sensing error∼O(

√
N).

C. Experimental Results

We demonstrate the effectiveness of redundant phase sensor arrays
on a fabricated silicon PIC platform [a single active phase sensor is
shown in Fig. 6(a)] [12]. We use a reconfigurable photonics circuit
to detect optical power, and emulate different connection configu-
rations between phase sensors (refer to Supplement 1 for detailed
hardware implementation). We use tap GCs as an alternative for
integrated photodetectors, following the design in [12]. The tap
GC couples out 3% optical power from the waveguide and emits to
an IR camera sitting on top of the device. Our circuit consists of five
input ports, and the non-redundant configuration consists of four



Research Article Vol. 10, No. 9 / September 2023 / Optica 1169

Fig. 5. (a) Configurations categorized into 1D, 2D, non-redundant, and redundant. (b) RMS phase sensing error with respect to the number of input
ports N when photodetection noise is present (SNR= 30 dB). Designs following the design rule (e.g., “split chain,” “grid”) achieve better scalability com-
pared to the naive chain configuration. (c) Impact of phase sensor polarity selection with biased error. Grid configuration achieves better scalability by flip-
ping the edge polarities in “Grid w/o flip” configuration.

Fig. 6. Experimental demonstration of redundant phase sensor array with five input ports. (a) A single fabricated active phase sensor on silicon PIC with
thermal phase shifter and tap grating coupler (tap GC) [12]. The measurement circuit consists of multiple phase sensors, as shown in Supplement 1 Fig. 3.
(b) Non-redundant circuit configuration with four phase sensors and redundant configuration with six phase sensors. (c), (d) Absolute phase sensing error
distributions over 1000 experiments with random input light field. Six connection configuration reduces error by∼2× compared to non-redundant four
connection configuration, while eight connection configuration leads to slightly worse accuracy due to the trade-off between system redundancy and per-
sensor SNR with a small number of ports.

phase sensors [Fig. 6(b) lower], while the redundant phase sensor
array utilizes six phase sensors [Fig. 6(b) middle]. We generate
1000 random input light fields following Eq. (5) and measure the
phase profile following Eq. (4). Despite the optical power in each
phase sensor being lower, the redundancy reduces the average phase
sensing error by∼2×. As shown in Fig. 6(c), the redundant circuit
design is beneficial in this proof-of-concept demonstration, con-
sistent with the simulation results discussed in Section 5.B. As the
PIC scales, the benefit from the redundant circuit configuration is
expected to be more significant.

Note that an excessive amount of redundancy can also be
unfavorable. As shown in Figs. 6(b) and 6(d), we tested another
configuration with eight connections [more redundant relative
phase measurements, Fig. 6(b) upper]. However, the eight con-
nection configuration achieves slightly worse accuracy compared
to the six connection configuration. This is due to the trade-off
between system redundancy and per-sensor SNR. With excessive
redundancies, the input optical power is too distributed and SNR
in each phase sensor is low. With a small number of input ports, this
effect overwhelms the benefit from robustness in the phase profile
estimation process, thus leading to less favorable performance.

In Fig. 7, we further demonstrate measuring the phase profile
of free-space incident light with the PIC phase sensor array. We
shine a plane wave onto three input ports (two phase sensors) and
use a gimbal to control the angle of the incident beam. We use
a fiber array to couple light off the chip and measure the optical
power with off-chip photodetectors to avoid stray lights from
the incident beam. As shown in Fig. 7(b), our system achieves a
good linear relationship between the relative phase measurements

and the beam incident angle, especially after averaging to remove
distortions induced by hardware errors. Considering the errors in
manually tuning the gimbal rotation, our result demonstrates the
accuracy and stability of the proposed reference-free phase sensors
when measuring the free-space light field.

6. APPLICATIONS

Here we show two example applications of the proposed phase sen-
sor array with simulated photonics circuits with larger scales.

A. Application 1: Phase Imaging

The most natural application of the phase sensor array is in
microscopic phase imaging. Phase unwrapping is an impor-
tant technique that solves the 2π phase ambiguity in the measured
phase (wrapped between [0, 2π ]). In an ideal system without
measurement errors (noise), this process can be accurately resolved
based on simple differentiation. However, small errors in the
raw measurements are exaggerated in the unwrapping process
[47,48]. As an example, we simulate a 128× 128 resolution scene
in Fig. 8(a), with SNR= 20 dB. Both the 2D “split chain” sensor
array and the 2D grid sensor array achieve close to the ground truth
wrapped phase image. We use a phase unwrapping library based
on the noncontinuous path algorithm [49]. The small errors in the
2D “split chain” measurement result leads to large deviations from
ground truth in the unwrapped phase images. On the other hand,
the phase measurement of the redundant 2D grid design remains
robust in the unwrapping process.
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Fig. 7. (a) Free space phase sensing setup: experimentally measuring the phase of an incident plane wave at three input ports (two phase sensors). We use
a gimbal to control incident angle of the beam. (b) Our setup presents a good linear relationship between the relative phase measurement and the beam inci-
dent angle.

Fig. 8. (a) Comparisons on 128× 128 resolution phase imaging and unwrapping with photodetection noise. The redundant 2D grid sensor array
achieves more robust performance. (b) Schematic showing the application of proposed phase sensor array in optical phased array (OPA) phase monitoring.
A dual-layer photonics circuit is used for simpler routing. Small amount of power is tapped out from the first layer into the second layer for phase moni-
toring. We use black arrows to visualize the optical power propagation. (c) Optical phase profile and far field pattern in N = 1024 1D OPA, with “chain,”
“split chain,” and “bisection” phase sensor arrays for phase monitoring. With better phase monitoring design, phase error is significantly reduced and far
field pattern has better sidelobe suppression.

B. Application 2: On-Chip Phase Monitoring

Apart from measuring the optical phase of a free-space light field,
the proposed system can also be applied in on-chip phase mon-
itoring. Here we show one simulated example in an OPA [30].
OPAs are widely applied in communication [10,11], remote
sensing [3–5], and augmented reality [50]. An OPA consists of
multiple light-emitting antennas, and by adjusting the phase
and amplitude in each antenna, an optical power distribution
(pattern) is projected to the far field. Accurate phase monitoring
is required to generate the desired far field pattern. We show an
example in Fig. 8(b). The phase monitoring is here proposed to
be implemented with a dual-layer photonics circuit [51] for sim-
pler waveguide routing. A small amount of power is tapped out
from the first layer into the second layer for phase monitoring,
and we use black arrows to visualize the optical power propaga-
tion. Previously, chain configuration phase sensor arrays have
been demonstrated for this application, in a relatively small OPA
[52,53]. When the number of antenna elements increases, error
accumulation becomes more significant. We simulate a 1D OPA
with N = 1024 antennas. We assume low SNR= 7 dB in each
phase sensor, since only a small amount of optical power is tapped
out for phase monitoring to keep the optical efficiency of OPA
high. As shown in Fig. 8(c), with more robust phase sensor array
configurations (“split chain,” “bisection”), both the phase profile
and far field patterns have significantly higher quality compared to
the naive chain configuration.

Table 1. Summary of Metrics
a

Progressive [27] Phase Sensor Array

Redundant No
Time complexity 8t0 + 5t1logN
Scalability O(logN)
Computational cost O(N)
Electronics complexity DAC required

Yes
2(t0 + t1)ort0

O(logN)
O(N2)

Digital only or passive
aRed color indicates worse; green color indicates better.

7. DISCUSSION

Here we perform a similar phase sensing accuracy analysis on the
progressive self-configuration approach [27] (most relevant prior
art) and summarize the comparisons with the proposed approach
in Fig. 9 and Table 1. A schematic of the architecture used in the
progressive approach is shown in Fig. 9(a). The circuit consists of
logN layers of MZIs, each containing two tunable phase shifters
and two 50/50 beam splitters.

We suppose the photodetector exposure time is set to t0 to
achieve a specific SNR, and the phase shifter tuning time is t1
due to the electronic/thermal bandwidth limit. The proposed
low-latency phase sensor requires 2(t0 + t1) (active) or t0 (pas-
sive) measurement time. In the progressive approach, the phase
measurement process is conducted by nullifying optical pow-
ers in each circuit layer progressively [27]. A single nullification
process can be implemented with a phase shifter sweeping+ local
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Fig. 9. Comparison between progressive approach [27] and proposed
phase sensor array approach. (a) Schematic showing the photonics cir-
cuit of the progressive phase measurement approach [27] with a binary
tree architecture. (b) Scalability comparisons between progressive and
proposed phase sensor array (grid configuration).

feedback control [54]. Although this process is able to generate
accurate measurement results, it involves at least tens or hundreds
of phase shifter tuning and photodetector exposure periods. To
make a fair comparison, we use five measurement steps for each
nullification process. Also, since optical power accumulates after
each nullification step, the exposure time used in the next layer
can be reduced accordingly (we assume the exposure time can be
arbitrarily short for simplicity. This results in a total time complex-
ity ∼2t0 + 5t1logN. When t1 is longer than or comparable to t0
(which is typical in current systems), this is a considerable increase
in latency compared to the proposed phase sensor array.

Other important metrics include computational cost and
electronics complexity. Since the progressive approach relies on
tunable MZIs, it is hard to reduce the form factor, especially for
tunable phase shifters, as discussed in Section 2. Also, analog
control of the phase shift with high enough precision is required.
On the other hand, the proposed phase sensor array can be either
totally passive or have a binary phase shifter control (switching
between zero and π/2). The progressive approach requires one
optical field backpropagation simulation, which takes O(N) com-
putational cost, while the proposed phase sensor array requires one
matrix–vector multiplication, which takes O(N2) computational
cost. This is a comparatively minor drawback since computation in
the digital domain is comparatively cheaper.

As shown in Fig. 9(b), when only photodetector noise is present,
scalability of the progressive approach can achieve O(

√
logN),

better than the designed configurations. With biased hardware
error, the scalability is comparable to the proposed phase array
[both O(logN)] but with a slightly higher coefficient. The good
scalability of the progressive approach is due to the short error
accumulation path length in the binary tree architecture (simi-
lar to the “bisection” configuration in Fig. 5), and to the optical
power accumulation in the progressive programming process.
Concentrated optical power leads to high SNR and low phase sens-
ing errors in each element. We discuss applying the low-latency,
passive phase sensors in such binary tree architecture in more detail
in Supplement 1: although the path length remains short, without
progressive optical power accumulation, such a system does not
possess satisfying accuracy or scalability.

Apart from the hardware error and measurement noise analysis,
there is another advantage of having redundant elements in the
phase sensor array. As an example, suppose the right-most MZI
node in Fig. 9(a) is malfunctioning; the entire measurement fails,
while there is no method to easily tell which part of the circuit is
causing the error. However, a redundant phase sensor array (as pro-
posed in Fig. 5) is not influenced by a few malfunctioning/broken
elements. Also, from the least squares solving process [Eq. (4)], it
is easy to distinguish malfunctioning elements with the residual
error. We show in Supplement 1 that such a system is still robust
with>10% malfunctioning/broken elements.

8. CONCLUSION

Fast and simple optical phase measurement is important in optical
communication and sensing. In this paper, we propose a low-
latency, reference-free optical phase sensor based on integrated
photonics. We demonstrate post-processing algorithms and circuit
design rules (e.g., connection path length, redundancies, and
polarities of phase sensor elements) that enable high accuracy and
scalability in the presence of measurement noise and hardware
errors. This leads to improved accuracy and robustness in appli-
cations across disciplines, including microscopy, remote sensing,
optical computing, and optical communication.
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