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ARTICLE INFO ABSTRACT

Recommended by Matthias Weidlich One of the main DevOps practices is the automation of resource provisioning and deployment of complex
software. This automation is enabled by the explicit definition of Infrastructure-as-Code (IaC), i.e., a set of

I];eg;/[virds: scripts, often written in different modeling languages, which defines the infrastructure to be provisioned and

Infrastructure-as-Code applications to be deployed.

DevOps We introduce the DevOps Modeling Language (DOML), a new Cloud modeling language for infrastructure

IaC Modeling languages deployments. DOML is a modeling approach that can be mapped into multiple IaC languages, addressing

Multi-layer modeling approach infrastructure provisioning, application deployment and configuration.

Evaluation The idea behind DOML is to use a single modeling paradigm which can help to reduce the need of deep
technical expertise in using different specialized IaC languages.

We present the DOML’s principles and discuss the related work on IaC languages. Furthermore, the
advantages of the DOML for the end-user are demonstrated in comparison with some state-of-the-art IaC
languages such as Ansible, Terraform, and Cloudify, and an evaluation of its effectiveness through several
examples and a case study is provided.

1. Introduction In this paper, we propose a low-code approach to IaC, which makes

the creation of infrastructural code more accessible and friendly to de-

Employing Infrastructure-as-Code (IaC) means creating and manag- signers, developers and operators. We introduce the DevOps Modeling

ing an IT infrastructure, typically composed of computational resources Language (DOML), which hides the specificity and technicalities of the
and multiple software layers, by defining and executing code written in current IaC solutions.

some special-purpose programming languages [1]. The DOML allows for a complete specification of a deployment from

Defining an entire IT infrastructure deployment through IaC intro- its applications and software services to the infrastructural components

duces several advantages in terms of repeatability of actions, reusabil- and services supporting them. DOML models are mainly structured in

ity, and speed. However, it requires deep knowledge of multiple IaC three layers. Specifically, software components (e.g., web servers and
languages and frameworks, since each specific framework covers a spe- databases) are described in the application layer, abstracting away from

cific aspect of the whole problem [2]. This causes a steep learning curve the infrastructure on which they are supposed to run. Infrastructure
for non-technical users and even for expert practitioners migrating from components are specified in the abstract infrastructure layer, and then
other technologies. Moreover, the selection of a specific set of IaC linked to the applications they are supposed to host. This layer mod-

frameworks, given the peculiarities of each individual language, tends els infrastructural facilities, such as virtual machines, networks, and
to foster vendor lock-in. containers, without referring to their actual concretization in specific
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technologies (e.g., AWS or OpenStack VMs, Docker containers). This
aspect is tackled by the concrete infrastructure layer, where the user
specifies the infrastructure components offered by the Cloud Service
Provider (CSP).

This modeling approach comes out from a careful analysis of re-
lated works concerning IaC languages, as well as other Cloud model-
ing approaches [2] and a critical review of the requirements for the
DOML, provided by practitioners from several companies, including
HP Enterprise, Ericsson, and Prodevelop.

Following the idea of generating code from an abstract model
that is at the heart of Model Driven Development (MDD) [3], DOML
models are turned into actual deployments by the Infrastructural Code
Generator (ICG), which produces IaCs executable in the existing and
well-supported frameworks. Our first target IaCs are Terraform, Ansi-
ble, and the configuration of Docker Compose. Nevertheless, the same
ICG could be extended to generate other IaC languages to target more
applications and CSPs.

In this paper, we present the DOML language and its advantages,
and an overview of the extension mechanisms, called DOML-e. These
allow expert users to introduce new elements in the DOML, for instance,
new cloud resources, and to modify the existing ones. We evaluate our
approach by comparing its usage with the direct use of [aC languages
such as Terraform [4] and Cloudify [5], which is a TOSCA dialect [6].
We show that DOML is complete enough to model a whole deployment
by itself, while the other approaches require the simultaneous use
of more than one IaC language. Moreover, we show that DOML is
generally more concise than the competing approaches.

The DOML language and the ICG were introduced in an article
presented at CAiSE 2023 [7]. In that publication we have presented
also their preliminary evaluation by answering two research questions,
the first one, RQ1, concerning DOML’s adequacy for representing de-
ployments and the second, RQ2, concerning the DOML’s ability to
target multiple CSPs or deployment execution platforms. The evalua-
tion was based on a Wordpress deployment example. The present paper
extends [7] with the following contributions:

» We present the latest version of the DOML language and the ICG,
which have been improved and consolidated.

We present the requirements that led to the development of the
DOML, illustrating the reasons for our design choices.

We introduce a Model Checker (DMC) to support the verification
of DOML models.

We introduce the extension mechanisms that allow users to add
support for new components and resources to the language.

We extend and improve the DOML experimental evaluation. In
particular, we split RQ1 into two sub-RQs concerning DOML’s
adequacy for representing deployments and its comparison with
the state-of-the-art, respectively. RQ2 now evaluates our frame-
work’s ability to map to different existing cloud frameworks
and technologies, not only in terms of execution platforms (RQ2
in [7], now renamed RQ2a), but also in terms of generated IaC
languages (RQ2b). We answer RQ2b through a new example
that employs a container group, which requires the configuration
and usage of Docker Compose. We also add an assessment of
the newly introduced verification approach (RQ3). Finally, we
investigate how users perceive the adoption of the DOML (RQ4)
by presenting the results of a new real-world case study conducted
in collaboration with the IT Directorate of the Slovenian Ministry
of Public Administration.

The DOML and all components of the software framework supporting it
are open source and available in a public repository.' They have been
developed as part of the European project PIACERE.?

1 https://git.code.tecnalia.com/piacere/public
2 https://piacere-project.eu/
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Paper structure. In Section 2 we review some of the state-of-the-art
IaC approaches, highlighting the motivation behind ours. Section 3
provides an overview of the DOML by presenting the requirements
that have guided its development, a simple case study that will be
used as running example, the principles behind the DOML, and the
corresponding modeling abstractions; Section 4 contextualizes the
usage of the DOML in a workflow, presents the correctness verification
approach adopted for the DOML based on a model checker, and the IaC
generation mechanism. Section 5 describes the mechanisms defined
in DOML to enable the possibility to extend the language. Section 6
presents an evaluation of the DOML and compares it with a number
of state-of-the-art IaC approaches, and Section 7 provides discussion of
the evaluation part. Finally, Section 8 concludes the paper.

2. Related work

Choosing the right approach for automating the provisioning of
computational resources and deployment of application components is
not an easy task. In fact, each of the available IaC frameworks covers
different parts of the whole problem. As a result, multiple frameworks
must be combined, resulting in the need for the DevOps teams to
understand all such frameworks. IaC frameworks can be divided into
the following four categories.

*» Deployment and configuration management frameworks focus on
automating the installation, setup and life cycle of software ap-
plications deployed on top of an existing infrastructure. Examples
of such tools are Chef [8], Puppet [9] and Ansible [10]. While
they have similar purposes, they are quite different from each
other in terms of the defined IaC language and the corresponding
execution semantics.

Infrastructure provisioning frameworks focus on describing the in-
frastructural topology, defining the virtual or physical infrastruc-
tural elements and their configurations, and providing automated
means of managing their life cycles. For example, Terraform [4]
is a proprietary language with an associated executor. It allows
users to define an infrastructure configuration; it keeps track
of the actual configuration of the managed infrastructure and,
when needed, aligns it with the defined configuration. TOSCA [6],
instead, is an OASIS standard modeling language that aims at
allowing users to specify any type of IT system through powerful
abstraction mechanisms, consisting of abstract node templates that
can be combined through inheritance. The TOSCA language is
adopted by a variety of executors that define its operational
semantics in different ways [2,11].
Virtualization/Containerization tools provide automation in build-
ing and managing VM or container images. An example of such
tools is Docker [12] that has become the de-facto standard for
running container-based applications on-premises, in public and
private cloud providers [13]. Docker solves issues related to ap-
plication portability, as containerized applications carry on their
dependencies. It lets users define the recipe to build a container
image using a custom, domain-specific language.

Runtime Orchestration tools automate the whole life cycle of
container-based deployments, including scaling and other man-
agement operations. An important representative of this category
is Kubernetes [14], which also provides its own IaC language.

In general, when managing a complex application, multiple of the
mentioned frameworks must be used. For instance, the infrastructure
to be provisioned (e.g., VMs, network elements, and firewalls) could
be modeled and then created with Terraform or TOSCA plus its execu-
tors. Ansible (or Chef/Puppet) playbooks could be executed to deploy
and configure applications on top of the created infrastructure. Given
that most of the application components rely on external preexisting
software layers, it is typically advisable to embed all needed elements
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within some containers. This calls for the usage of Docker or of a similar
approach. Finally, if the user wants to have a dynamic management of
the application at runtime, an orchestration framework will have to be
adopted.

This scenario clearly requires experienced users who are proficient
with multiple IaC languages and tools, and that are able to take
advantage of the ample and scattered offers.

An initial approach that aims at reducing the learning curve in
adopting any DevOps-relevant platform is presented in [11]. The basic
idea is to model DevOps processes, platforms and languages and to
exploit these models within the context of low-code environments to
let non-experienced users exploit the defined platforms and languages.
Other approaches apply model-driven engineering in the specific con-
text of IaC development. For example, DICER [15] focuses on deploy-
ment and operation of big data applications. It consists of a UML-based
Domain-Specific Language (DSL) and a generator to derive TOSCA code
from it. The limit of this approach is that it assumes the existence
of additional low-level scripts (in Chef or Ansible) taking care of the
configuration of applications. Such scripts work underneath and are
not exposed to nor are modifiable by the DevOps team through the
DICER modeling framework. SODALITE [16] is another framework
based on TOSCA. Its aim is to offer support and guidance in the
creation of TOSCA blueprints through the usage of its defined DSL.
Additionally, it supports the creation of Ansible scripts for deployment
and configuration, and exploits semantics reasoning to help users in the
modeling task. Despite this, the SODALITE approach still requires users
to be proficient in both Ansible and TOSCA.

A more sophisticated approach is EDMM [17], an Essential Deploy-
ment MetaModel. It defines the main concepts that are common to
multiple deployment and configuration management frameworks and
allows users to exploit such concepts to define application models.
Then, through some transformations, EDMM supports the generation
of code in various IaC languages.

In the DOML approach proposed in this paper, we follow the
EDMM idea of targeting multiple [aC languages, but we try to ex-
tend the scope of the approach beyond deployment and configuration.
Currently, we are also able to handle infrastructure provisioning as
well as containerization and runtime orchestration of containers. We
offer a single modeling language and a smart IaC generation approach
allowing inexperienced DevOps teams to manage all aspects of deploy-
ment and operation on different types of infrastructures. So, from the
same model, we are able to produce IaC code in multiple pre-existing
languages.

Radius [18] is a brand new open-source project that appears to
share the objectives of the PIACERE DOML for what concerns the def-
inition of a software model and the needed resources and its usage for
supporting proper deployment. Radius builds on the top of Kubernetes,
focusing mainly on the containerized applications. Compared to it,
DOML seems to be more flexible and advanced as it can model both
containerized and normal applications on general cloud infrastructures,
and supports model verification and [aC code generation. Besides,
DOML has its own extension mechanism DOML-e that allows its users
to extend the modeling language.

Recently, new endeavors aiming at producing infrastructural code
from natural language by exploiting some kind of generative Al are
under development [19]. Such approaches have a significant potential
in terms of reducing the time and effort needed to develop IaC. At the
moment, though, they are able to deal only with specific tasks, such as,
“create a Terraform code for provisioning a VM on AWS”, but not with
the more general task to create all it is needed to support the operation
of a complex application.
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Table 1
Requirements on the general characteristics of DOML.
Req ID Description Priority
REQ63 DOML must be unambiguous High
REQ62 DOML must support different views High
REQ70 DOML should allow users to state correctness properties Medium
in a suitable sub-language (possibly, formal logic)
REQ76 DOML should allow the user to model information High
needed for each of the four considered DevOps activities
(provisioning, configuration, deployment, orchestration)
REQ57 The DOML core engine could enable both forward and Low
backward translations from DOML to IaC and vice versa
REQ58 DOML should offer the modeling abstractions to define High
the outcomes of the optimization component
REQ59 DOML should allow users to define rules and constraints High
for redeployment, reconfiguration, and other mitigation
actions
REQ36 DOML should enable writing infrastructure tests Low
REQ111 Users should be given the possibility to incorporate in  High

DOML the external custom IaC

3. The DevOps modeling language (DOML)
3.1. Requirements

The DOML modeling language has been conceived starting from the
requirements that have been identified and expressed by the PIACERE
project® team. The team is composed of technical partners aiming at
developing the whole PIACERE framework and of case study owners
that apply the PIACERE results, and the DOML in particular, to their
application domain.

The PIACERE framework is composed of the DOML itself, the mod-
eling tools (the IDE, the DOML Model Checker, the optimizer, the
IaC Generator (ICG), the IaC scan runner) and the tools supporting
deployment orchestration, monitoring and self-healing. The PIACERE
case studies include complex systems in three different application
domains: public administration information systems, port and marine
logistic, and public safety on IoT devices connected to a 5G network.

Both technical and case study partners have contributed to the for-
mulation of requirements for the DOML, each from its own perspective.
The process adopted for requirement gathering and analysis has been
an iterative one, where each requirement has been formulated by one
of the partners and assigned to a unique label, analyzed and discussed
by the whole group and, if accepted, assigned to a specific PIACERE
component together with a priority level.

Table 1 lists the requirements concerning the general characteristics
expected from DOML, together with their prioritization, while Table 2
presents those requirements that concern specific elements to be in-
cluded in the modeling language, for instance, security groups and
rules or non-functional requirements. Some requirements may appear
cryptic because they contain terms that were agreed upon separately.
In particular, in Table 1, REQ63 means that the semantics of DOML
models should be defined so that each model describes a uniquely-
identifiable set of deployed components. Moreover, REQ62 means that
DOML models must describe a deployment by different abstraction
layers, which results in the three layers described later in Section 3.4.

Industrial partners, such as HPE and 7Bulls, experts in cloud ap-
plication deployment and in the use of IaC for customer projects,
contributed requirements based on their experience, such as REQ36 and
REQ76. Partners responsible for specific tools of the PIACERE frame-
work, such as XLAB and TECNALIA, expressed requirements focused
on modeling their tools’ input information, such as REQ58 and REQ59.

3 https://piacere-project.eu/
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Fig. 1. Component diagram of the NGINX case study.

Table 2
Requirements on the specific elements to be modeled in DOML.

Req ID Description Priority

REQO1 DOML must be able to model infrastructural elements High

REQ27 DOML should support modeling, provisioning, High
configuration, and usage of container engine
execution technologies (e.g., docker-host)

REQ28 DOML should support modeling of containerized High
application deployment (e.g., pull/run/restart/stop
docker containers)

REQ29 DOML should support modeling of VM provisioning High
for different platforms such as (OpenStack, AWS) for
canary and production environments

REQ25 DOML should support modeling of security rules (e.g., High
by typing ingress/egress rules for network flow)

REQ26 DOML should support modeling of security groups High
(containers for security rules)

REQ60 DOML should support modeling of security metrics High
both at the level of infrastructure and application

REQ61 DOML must support modeling of NFRs and of SLOs High

REQ30 DOML should enable support for policy definition High

constraints for QoS/NFR requirements

Academic partners, such as POLIMI, expert in modeling and formal
logic, contributed more general requirements about fundamental DOML
properties, such as REQ62, REQ63 and REQ70 that have been agreed
upon during the project’s work package meetings. Finally, use case
partners, such as Prodevelop and Ericsson, formulated requirements
linked to specific needs of their pilot (e.g., REQ111).

Some of the requirements, in particular, those to which a low
priority has been assigned have not been implemented in the DOML
yet. This is due to the incrementality of the process that led to the
definition of the DOML language. We started from the structure, the
basic elements and the higher priority requirements, then progressively
adding more elements and refining the syntax. For each version of
the language we implemented the related features in the PIACERE
framework’s tools: the ICG, translating DOML into executable IaC code,
the Model Checker, to verify a DOML model, the Integrated Devel-
opment Environment, with its syntax-directed DOML editor, and the
DOML Optimizer. Adding new features took time and we tried to avoid
defining a new version of the language until the previous one was
implemented and supported by all the tools, possibly with tests from
the use cases.

Lower priority requirements have been left for future versions of
the language and the related tools. Anyhow, all the requirements in
Tables 1 and 2 have been the basis for the analysis that conducted to
the definition of the DOML design principles presented in Section 3.3.

3.2. Running example

To illustrate our approach, we use a simple deployment as a case
study. It consists of a website hosted by an instance of the NGINX
web server [20] deployed on a VM. More sophisticated examples,
involving more components, will be demonstrated in Section 6. This
example, though, is representative of typical deployments, because
it contains some of the most common components (see Fig. 1 for a
component diagram representation). The NGINX server instance is the
execution environment for the website and runs on a VM with a GNU/

Linux-based operating system (Ubuntu 20.04). To ensure the website
scalability with respect to the number of connected users, multiple
instances of the VM are spawned and managed by an auto-scaling
group. The network interface that links the VMs to the Internet is
managed by a security group, containing the security rules that enable
HTTP, HTTPS and ICMP network traffic. The standard SSH port is
enabled, giving direct access to the VMs, protected by an RSA key pair
for authentication.

An infrastructure like this can be implemented by relying either on
a private cloud or on public cloud providers, such as Amazon Web
Services, Google Cloud Platform, and Microsoft Azure. Initially, in our
case study we choose to deploy the application on OpenStack [21],
which is an open source industry standard. Further on, in Section 6
we show how we can change the underlying provider.

3.3. DOML design principles

In this section, we present the principles underneath the designing
of DOML.

3.3.1. A single model for multiple IaC fragments

The DOML is defined to support the creation of models resulting
in IaC codes written in different languages and dedicated to different
operations. For instance, let us consider the system outlined in Fig. 1.
The following steps must be performed to deploy the modeled system:

1. A VM with the correct OS must be retrieved if preexisting, or
created;

2. The VM must be set up for access through SSH;

3. The NGINX server with the website sources must be installed on
the VM;

4. The autoscaling group must be set up with the VM image;

5. The network must be configured with the required security rules;

6. The deployment process must be planned and executed.

To execute the above listed steps adopting the current technologies, we
would need some Ansible playbooks or other scripts executing steps 2
and 3, together with a Terraform or TOSCA blueprint to orchestrate
all other steps. Such scripts have their inherent complexities, and they
are all written in different languages featuring different programming
models. With the DOML approach, we aim to derive such scripts from
a high-level model, and to reduce the need for the end users to work
with the low-level target languages as much as possible.

3.3.2. Multiple modeling layers

Another objective we target is to support separate modeling of the
application-level components from their execution environments (for
instance, containers and VMs). In fact, we argue that different users,
with different skills and roles, should focus on the specific aspects that
fall within their expertise. Typically, the application designer will focus
on the application structure definition in terms of software components
and their connections, while an operations expert will oversee the
allocation of software components within proper computing nodes.

Furthermore, multiple providers and technologies offering the same
IaaS (Infrastructure-as-a-Service) and in some cases, compatible PaaS
(Platform-as-a-Service) solutions are available. Thus, we want to offer
the possibility to provide an abstract definition of the infrastructure to
be used to run an application, and then to define different concretiza-
tions, so as to support deployment and execution of applications into
multiple contexts.
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Fig. 2. The NGINX case study represented in different DOML layers.

Referring to the example of Figs. 1, 2 shows a distribution of
components into three layers: one describes the application, and the
remaining two layers describe the infrastructure at different levels. In
particular, the same abstract infrastructure can be implemented by two
different concrete infrastructures, respectively based on OpenStack and
AWS.

3.4. Language overview

The DOML language implementation [22] consists of two parts: the
DOML metamodel, described using Ecore from the Eclipse Modeling
Framework (EMF) [23], and the textual syntax used to create models,
based on Xtext [24].

We organize all modeled entities in the following layers, which
aggregate the modeling abstractions in coherent groups:

« Application Layer (AL): concepts required to define an applica-
tion, e.g., software components, interfaces, connectors between
components, services, and specific subcategories thereof.

« Abstract Infrastructure Layer (AIL): concepts associated to the def-
inition of the infrastructure (e.g., computing nodes) without ref-
erencing a specific provider.

* Concrete Infrastructure Layer (CIL): concepts associated to the
definition of infrastructure elements within a specific provider,
e.g., a Docker container or an Amazon VM.

In Section 3.4.1, we provide an overview of the main concepts
pertaining to each layer. We do not include the complete definition of
the DOML language, which is available in [25,26], because it would
be excessively long, but we illustrate it in Section 3.4.2 through an
example.

3.4.1. Components of doml layers

Table 3 shows selected concepts of the DOML metamodel. The
details are explained as follows.

A DOMLModel is composed of an AL, an AIL, one or more CILs, and
a Configuration. A Configuration is a list of one or more Deployments
that consist of the associations between ApplicationComponents (from
the AL) and InfrastructureElements (from the AIL) on which they are
deployed. Only one Deployment can be active at a time. All other
components derive from a base DOMLElement class, which gives them
the ability to have custom Properties encoding some of their features.

Application layer (AL). The ApplicationLayer is composed of many
ApplicationComponents, which can be SoftwareComponents, Softwareln-
terfaces, or SaaS (Software-as-a-Service) components. A SaaS can be,
e.g., a SaaSDBMS if it implements a database. ApplicationComponents
may expose or consume different Softwarelnterfaces, providing or re-
quiring services from other ApplicationComponents. For instance, a
database SoftwareComponent can expose a SQL-based interface, and a
web application component can consume it, meaning that the latter
will communicate with the former to retrieve and write data.

Abstract infrastructure layer (AIL). The InfrastructureLayer is composed
of ComputingNodes, Networks, SecurityGroups, and AutoScalingGroups. A
ComputingNode models any infrastructure element that can run soft-
ware: it can be a Container, a PhysicalComputingNode or a VirtualMa-
chine. ComputingNodes can have multiple NetworklInterfaces that link
them to a Network. A Container can be generated from a ContainerImage,
and a VirtualMachine from a VMImage. A Network can have many Sub-
nets, and its configuration is represented by a SecurityGroup containing
firewall rules. Containers can be organized in ContainerGroups that, at
runtime, can be managed by the same controller, e.g., technologies such
as Docker Compose or Kubernetes. This feature has been introduced
in the latest version of the DOML language and will be extended to
account for the fact that any set of ComputingNodes can be organized
and managed as a group.

Concrete infrastructure layer (CIL). This layer provides the concretiza-
tions for the AIL, mapping the abstract infrastructure elements to the
concrete ones from the supported cloud service providers. Most ele-
ments of the AIL have a corresponding “concrete” version with the
same name. For instance, the VirtualMachine class appears both in the
AL and the CIL, but the two classes are distinguished by the containing
package.

The CIL contains one or more RuntimeProviders (which can be, for
instance, Amazon AWS or OpenStack). Each RuntimeProvider contains
the concrete elements which are linked to the AIL elements via the
maps association. For instance, an OpenStack provider can provide
VirtualMachines, Networks, and Containers.

3.4.2. Doml model of the running example

To illustrate the syntax of the DOML, we show and comment the
DOML model of the case study of Section 3.2. The entire model can be
found in [27].
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Table 3
Classes of the DOML metamodel, grouped into packages (reported on the left).

Class Type Extends class Extends metaclass
Configuration Concrete DOMLElement None
DeployableElement Abstract None ecore.EObject
Deployment Concrete None ecore.EObject

Common DOMLElement Abstract None ecore.EObject
DOMLModel Concrete DOMLElement None
Property Abstract None ecore.EObject
Source Concrete DOMLElement None
ApplicationComponent Abstract ApplicationLayer None
ApplicationLayer Concrete DOMLElement None

- SaaS Concrete ApplicationComponent None

Application L. SaaSDBMS Concrete SaaS None
SoftwareComponent Concrete ApplicationComponent None
Softwarelnterface Concrete ApplicationComponent None
AutoScalingGroup Concrete ComputingGroup None
ComputingGroup Abstract DOMLElement None
ComputingNode Abstract Node None
ComputingNodeGenerator Abstract DOMLElement None
Container Concrete ComputingNode None
ContainerGroup Concrete ComputingGroup None
ContainerImage Concrete ComputingNodeGenerator None
InfrastructureElement Abstract DOMLElement, None

Abstract Infrastructure Layer DeployableElement
InfrastructureLayer Concrete DOMLElement None
Network Concrete DOMLElement None
NetworkInterface Concrete InfrastructureElement None
Node Abstract InfrastructureElement None
PhysicalComputingNode Concrete ComputingNode None
SecurityGroup Concrete DOMLElement None
Subnet Concrete Network None
VirtualMachine Concrete ComputingNode None
VMImage Concrete ComputingNodeGenerator None
AutoScalingGroup Concrete ConcreteElement None
ConcreteElement Abstract DOMLElement None
Concretelnfrastructure Concrete DOMLElement None
ContainerImage Concrete ConcreteElement None

Concrete Infra. Layer GenericResource Concrete ConcreteElement None
Network Concrete ConcreteElement None
RuntimeProvider Abstract DOMLElement None
VirtualMachine Concrete ConcreteElement None
VMImage Concrete ConcreteElement None

Application layer. In Listing 1 we show the AL of the DOML model for 3 autoscale_group ag {
the deployment of Fig. 1. It only contains a SoftwareComponent for the 4 vm Vm{ { )
NGINX server, with a Property indicating the website’s sources. > G L S o

6 iface i1 {

7 address "10.0.0.1"
Listing 1: DOML Application Layer 8 belongs_to netl

9 security sg

1application app {
2 software_component nginx { 1 credentials ssh_key
3 properties { 12
< source_code="/.../html/index.html"; } 13}
4} 14}
5} 1sdeployment config {
16 nginx -> vml
17}
Abstract infrastructure layer. The AIL is partially shown in Listing 2.
It defines the infrastructure topology that supports the execution of L. .
application components. We define the VM that hosts the NGINX Listing 3: I?art Of. the concrete infrastructure layer.
instance in the autoscaling group that manages it. We declare its guest g Ee e

. . . . . o 2 concrete_infrastructure con_infra {
operating system, its credentials, and its network interface, which is

3 provider openstack {

linked to a network called netl and controlled by a security group 4 autoscale_group concrete_ag {
called sg (we do not show all components here for the sake of brevity, 5 properties { . .
but they are defined in this layer too [27]). 6 vm_key_name = "userl

The deployment configuration, at the bottom of Listing 2, provides ; resource_name '"nginx-host"
the link between the AL and AIL: it assigns the NGINX instance to the 9 vm_type '"small"
VM. 10 maps ag
1 }

Listing 2: Autoscaling group in the AIL, and deployment configuration. i 3}

1infrastructure infra { 14}

2 “ .. 15
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16 active con_infra

17}

Concrete infrastructure layer. The last step needed to make this DOML
model functional is to assign all components in the AIL to a cloud
service provider. This is done by defining one or more CILs (only one of
which will be active at a time). To simplify the presentation, in Listing
3 we show only one of such layers for the autoscaling group.

We create a concrete infrastructure configuration called
con_infra. We could assign different components of the AIL to
different providers. For the sake of space, in this section we use only
OpenStack. Thus, we create a block for the OpenStack provider con-
taining a component for each of the abstract infrastructure elements.
In Listing 3 we show the concretization of autoscaling group. Its maps
attribute links it to the corresponding one in the AIL. Moreover, in
the CIL we can customize aspects that cannot be described in the AIL
because they are provider-specific. Here we choose the name and size
of the VM with the autoscaling group.

The information in this model is enough for the ICG to produce IaC
scripts that can create VMs on OpenStack, the autoscaling group and all
other required features and install NGINX on top of such infrastructure.

4. Modeling workflow and supporting tools

4.1. Modeling workflow

The DOML is used by DevOps teams within the context of the
iterative workflow shown in Fig. 3, where models are created starting
from the definition of the system to be deployed in the Al, mapping
it to an abstract infrastructure in the AIL, and then introducing the
instantiation of one or more concrete infrastructures in the CIL.

At any stage of this process, the internal consistency of the model
can be verified with the DOML Model Checker (DMC) (see Section 4.2),
which can be executed multiple times in a continuous process where
the DMC may highlight possible problems in the model and the user
can fix or add elements till model completion. At this point, the
DOML model can be submitted to the ICG component, which gener-
ates Infrastructure as Code in the languages adopted to define and
execute the operations of provisioning, deployment, configuration, and
orchestration (see Section 4.3). The resulting code can be executed with
the standard executors of the selected languages or with the PIACERE
project-specific runtime environment (this environment is not the focus
of this paper; interested readers can refer to [28]). In the following we
describe in further details the characteristics of both DMC and ICG.

This process is supported by an Integrated Development Environ-
ment (IDE) [29], which consists of a graphical user interface including
an editor with syntax highlighting, and allows users to easily invoke the
DMC and the ICG. The IDE parses DOML models and serializes them in
an XML-based format called DOMLX [29], before sending them to other
components.

4.2. Verifying the correctness of DOML models

Like all code-based artifacts, deployment configurations defined
through an IaC language such as DOML can contain errors and bugs.
Such defects can introduce very serious issues in deployments, possibly
undermining availability, or introducing security vulnerabilities. In
order to help DOML users write higher-quality models, we offer the
DOML Model Checker (DMC), a tool aimed at detecting infrastructural
inconsistencies and other issues that may be present in DOML mod-
els. Such issues are thus caught before attempting the deployment,
preventing them from reaching the testing — or worse, production
— environment, and therefore reducing the overall time needed to
develop the deployment configuration.

The main aspects of a DOML model that the DMC verifies are
its topology and architecture. The layered structure of DOML models
itself acts as a specification of the deployment to obtain. In fact, the
application layer describes the software components that are supposed
to be run on the infrastructure. Thus, the DMC checks several aspects
of the infrastructure specified in the AIL to make sure it is adequate to
run the software components. Similar consistency checks are performed
on the CIL to ensure consistency with the AIL.

In more detail, the following default requirements are always chec-
ked by the DMC on all DOML models:

MC1. All VMs are linked to a network (to prevent them from being
locked-in).

MC2. All software components that share interfaces in the AL must be
deployed to infrastructure nodes that can communicate among
each other through a network.

MC3. There are no duplicated network interfaces (e.g., no two nodes
are assigned the same IP address in the same network).

MC4. All software components in the AL have been deployed to some
components in the active AIL.

MCS5. All components in the AIL are mapped to a concrete element
assigned to a cloud service provider in the CIL.

MC6. All security groups in the AIL protect at least one network
interface.

The DMC also supports a requirement specification language based on
First-Order Logic. This is used to encode the requirements listed above
and also to allow users to specify custom requirements to be checked
automatically. To demonstrate the usage of this language, we show
how it can express requirement number MC1 from the list above:

forall vm (
vm is class abstract.VirtualMachine
implies
exists iface (
vm has abstract.ComputingNode.ifaces iface

)

First, we introduce a universally quantified variable vm. Through
the implies keyword, we state that if it isa VirtualMachine node
from the AIL (abstract), then there exists an interface iface such
that vm is linked to iface. If the model contains a VM that has no
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Fig. 4. Architecture of the DOML Model Checker.

interface, then this requirement is false, and the DMC detects this fault
and shows it to the user.

The internal architecture of the DMC is shown in Fig. 4. First, the
DOML model is encoded as a first-order formula. This formula contains
relations representing attributes and relationships between different
components. For instance, the formula may state that a VM component
is linked to a specific interface which, in turn, belongs to a certain
network. The requirements, also expressed as a first-order logic formula
as shown above, contain the same relations. The DMC then checks
for satisfiability of the conjunction of the formula encoding the DOML
model and the one encoding the negation of the requirements. If the
check succeeds - i.e., the conjunction of the two formulas is found
to be satisfiable — then there is a mistake in the model. For instance,
for requirement MCI, this means that there is a VM without network
interfaces. Otherwise, the requirement is satisfied.

The satisfiability check is performed by means of the Z3 Theorem
Prover [30,31], which can check the satisfiability of quantified first-
order logic formulas containing only terms from decidable theories, in
our case abstract data types and uninterpreted functions [32]. Solvers
like Z3, called SMT solvers, are widely used in formal methods and
program verification, in which they are exploited to solve proof obliga-
tions [33]. Giving a detailed explanation of the inner workings of SMT
solvers is out of the scope of this paper: we refer the interested reader
to automated theorem proving and formal methods literature [33].

The implementation of the DMC is available at [34]. We demon-
strate the use of the DMC through a case study in Section 6.4.

4.3. IaC generation mechanism

To generate executable IaC code from DOML, we have built a tool
named Infrastructural Code Generator (ICG) [35]. The ICG receives a
DOML model as input and generates IaC code targeting Terraform,
Ansible, or a similar framework, as output.

The generation of code from an abstract model is one of the main
advantages of MDD [3], but the benefit is real when the generated code
is complete and executable, i.e., not just a skeleton or something that
needs manual editing. Generating code from a model can be done using
Template-Based Code Generation (TBCG), a technique that transforms
input data into structured text by using templates [36]. The process
is simple: our template engine uses templates that contain code in
the target language and substitutes values taken from the input for
placeholders. Each template has a static part, that is transferred as-is
in the output, and a dynamic part whose result depends on the input.
Most template engines support control structures in the dynamic part
of their templates, which allows part of the transformation logic to be
embedded in the template itself.

Template engines can be classified according to the input they rely
on: according to Luhunu [37], there are model-based engines, such
as Acceleo [38], that are based on an input metamodel, and code-
based tools, such as Velocity [39], which rely on a DSL to express
the dynamic part of their templates. The ICG uses the code-based
Jinjia2 library [40], which is a simple but powerful template engine

Listing 4: ICG template for OpenStack VMs.
1resource "openstack_compute_instance_v2"

< "{{infra_element_namel}}"

2{

3  name = "{{name}}"

4 image_name = "{{os}}"

s flavor_name = "{{vm_flavor}}"
6 key_pair =

< openstack_compute_keypair_v2.{{credentials}}.name
7 mnetwork { ... }
8}

that supports plain placeholder substitution, and also several control
structures, such as loops, conditionals and functions, to build dynamic
templates (see Listing 4).

We implemented the ICG in Python. Its internal architecture, rep-
resented in Fig. 5, is inspired by the classic structure of a compiler
(see e.g. [41]) and consists of separate modules for parsing the input
and for generating the output, with an Intermediate Representation
(IR) in between. The parser reads the DOML model using the PyEcore
library [42] and generates an IR as a JSON document. Then, different
Code Generator plug-ins, one for each language to be generated, read
the input data from the IR and substitute values in the templates. The
whole flow is driven by the Controller, that selects the right templates
and activates the corresponding plug-in, depending on the information
included in the IR itself.

The IR created by the Parser is structured as a sequence of steps,
representing the main code blocks to be generated. Each step includes
general information, such as the target language, the target cloud
provider, the type of DOML object for which code should be generated,
and attributes specific to the target DOML object, in the form of
key/value pairs, to be substituted in the template for the corresponding
placeholder.

The Controller selects the template to be used depending on the
information indicated above (target language, cloud provider, and
type of DOML object), and then activates the Code Generator plug-in
specific to the desired target language. Template selection and plug-in
activation are repeated for each one of the steps in the IR, therefore
the ICG can generate code in multiple IaC languages at the same time.
The ICG starts creating [aC code for the concrete DOML elements (CIL
layer) and navigates up in the model to find other resources for which
there is enough information for generating the related code.

When generating code for the example of Fig. 1, the ICG first learns
from the CIL of Listing 3 that the VM should be deployed on OpenStack.
Then, it selects the template shown in Listing 4, and populates the
fields it finds in the CIL (e.g., name with the value of vm_name). The
remaining fields (network and key-pair) are populated by looking at
the AIL.

The generated IaC code is intended to create an infrastructure in the
selected provider or to configure it in some way, in short, to modify
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the target environment. Our aim is to create a stateless code generator,
i.e., one that does not take into consideration the current status of
the target environment. This works well when the target language is
declarative, such as Terraform, but it is not the case when generating
code for an imperative language. In the latter case, the target code
(better, its template) should be idempotent, i.e. such that the status
of the target system does not change even if the code is run multiple
times.

ICG can generate both Terraform and Ansible code, depending on
the specific activity that is intended to be performed. We use Ter-
raform for provisioning and Ansible for configuration. The aim is to
have a code generator that can be configured to produce code also
for other IaC tools, and can be extended also to support new model
abstractions. For example, in the latest ICG version, Docker Compose
code generation has been added for orchestrating containers, defined
in the AIL and grouped in container groups. An example of this will be
shown in Section 6.3.2. ICG can also get as input a folder (we refer to
it as asset folder) containing user-provided preexisting IaC code, that
ICG integrates with the IaC code generated from DOML in a single
multi-language zipped package. This feature has been required by the
partners experimenting with DOML, as described in Section 6.5.

Lastly, the templates currently available with the ICG have some
parameters that are definable using DOML, while other parameters are
set to defaults given by the service provider or based on the most
common use for the specific service. DOML-definable parameters are
generally optional, and the ICG chooses for them appropriate defaults
in case they are not specified. This helps inexperienced users to achieve
functional deployments easily. We will see an example of this aspect of
the ICG in the evaluation, in Section 6.3.1.

To account for the limitations posed by unsupported parameters,
the ICG allows for easy editing, change or addition of the templates,
where the only requirement for the integration of a new template in the
ICG is the editing of a properties file. This functionality integrated with
the DOML extension mechanism, which will be presented in Section 5,
allows the user to define his/her own set of parameters and to adapt
the code generation to specific use cases if necessary.

5. Extension mechanisms for the DOML (DOML-e)

DOML-e is the set of extension mechanisms defined for the DOML.
It includes the language elements that allow users to personalize a
DOML model with specific characteristics, presented in Section 5.1,
and also a more sophisticated approach that allows users to extend the
DOML metamodel and to automatically modify the DOML syntax and
the ICG templates to account for such changes. This will be presented
in Section 5.2.

5.1. Internal extension mechanisms
The extension mechanisms already embedded in the language in-

clude the elements Properties, Source, and GenericResource that we
explain below.

Properties. DOML allows for the definition of different types of prop-
erties that can be added to the definition of any DOMLElement, thus
increasing the DOML’s expressive power. The following Properties sub-
classes are defined: IProperty, FProperty, SProperty, and BProperty repre-
sent respectively integer-, float-, string-, and Boolean-valued features;
ListProperty allows to define custom, multi-valued properties, including
sub-fields of any Properties type.

The example in Listing 5 demonstrates how properties can be used
to extend the characteristics of a general SoftwareComponent. In the
example, to completely characterize the ElasticSearch* component, we
added six properties, four of type SProperty and two of type IProperty,
thus being able to incorporate in the model the necessary information
to properly personalize the configuration of the component.

Listing 5: DOML Properties Example
1application app {
2 software_component ElasticSearch {
3 properties {
4 es_cluster_name =
5 es_data_dirs =

< "/opt/elasticsearch/data"

"custom-cluster"

6 es_log_dir =
< "/opt/elasticsearch/logs"
7 es_http_port = 9201
8 es_transport_port = 9301
9 es_discovery_seed_hosts =
< "localhost:9301"
10 }
1 provides { search }
12 consumes { dbAccess }
13 }
14}

Source. Another internal extension mechanism accounts for the pos-
sibility to reuse as part of DOML IaC fragments written in other
languages. This need has been expressed by the PIACERE end users as
REQ111 (see Section 3.1). The solution we propose is the introduction
in the DOML of the Source element, which enables the import of
external IaC to configure a software component. Listing 12 shows
an example of usage of such element where the software component
niod is defined as having as source a mail.yml file which is inter-
preted by the backend Ansible. This example will be contextualized
and described in further details as part of the SI-MPA case study in
Section 6.5.

GenericResource. A third internal extension mechanism is offered by
the concept of GenericResource defined within the CIL. It is used to
exploit in a specific DOML model resources that are already available
on some infrastructure, i.e., an already running VM or an operating
datastore. To address this case, a special class, named GenericResource,

4 https://www.elastic.co/elasticsearch
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has been introduced. In the DOML syntax, GenericResource are iden-
tified by the field preexisting true. An example can be seen in
Listing 15 in Section 6.5, where template and database are two
generic resources representing, respectively, a VM image and a storage
system.

5.2. Metamodel extension

Even though the extension mechanisms described in Section 5.1
may satisfy most of users’ needs, they may not be sufficient to achieve
the full extensibility of the language. Therefore, we have analyzed the
problem of how to support users in extending the DOML metamodel to
incorporate new concepts in the language. In the following, we focus,
in Section 5.2.1, on presenting the specific requirements that should
be fulfilled by the offered mechanism to make it usable in the context
we are considering. Then in Section 5.2.2 we discuss the way we have
adapted and used an existing library, Eclipse Edapt, to allow users to
keep existing DOML models consistent with the possible evolution of
the corresponding metamodel and, finally, we focus on the automatic
extension of the DOML syntax in Section 5.2.3.

5.2.1. Requirements

The DOML consists of both an EMF Ecore-based metamodel and
an Xtext-based syntax, allowing users to easily create models in a
programmatic way.

Introducing a new element in the DOML - for instance, a special-
purpose application-level component such as a specific SaaS or even a
new type of computing environment or of network — means extending
the metamodel but also updating the DOML syntax to offer new key-
words that identify the new type of element together with all its specific
characteristics. The update of these two elements has to be perfectly
synchronized to prevent the language from becoming quickly useless.

Another important aspect concerns ensuring the compatibility be-
tween DOML models developed with a previous version of the lan-
guage and the new versions resulting from the metamodel evolution
approach.

In the following, we present the approach we adopted for the
metamodel extension and the automatic creation of the corresponding
syntax that takes these two points into account.

5.2.2. Metamodel extension through eclipse edapt

Over the years, various approaches have been developed to update
Ecore-based metamodels [43-45], but only a few of them offer the
capability to automatically migrate existing models to align them with
the updated metamodel, which, as discussed in the previous section,
is an important requirement to keep the compatibility between the
evolved language and the models defined before the evolution. The
approaches offering support to this co-evolution can be classified in
two main categories [46]: difference-based approaches, which capture,
a posteriori, explicit changes at the metamodel level and apply spe-
cific corresponding changes at the model level, and operator-based
approaches that use predefined transformation operations to evolve the
metamodel and propagate these changes to the models.

A popular tool within the EMF community that adopts an operator-
based approach is Eclipse Edapt [47]. This framework gives users the
flexibility to select from a wide range of operators for co-evolution of
metamodels and models.

Although operator-based approaches limit the range of changes to
metamodels only to those defined by their operators, they provide
standardized migration strategies, minimizing the need for human
intervention to the handling of exceptional cases. The Edapt Operation
Browser offers an extensive set of operators [48] for co-evolution,
providing sufficient options to perform necessary modifications to the
DOML metamodel.

Among the provided operators, some of the simplest ones include
Create Class and Create Attribute, shown in Fig. 6 and Fig. 7 respectively.
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It is worth to mention that even some of these implement migration
strategies for existing models: for example, Rename changes all the
occurrences of the involved element. Edapt also provides users with
complex operators, such as Fold Super Class, through which a number of
features are replaced by features of a new super class. The advantage of
an approach employing coupled operators [46] as Edapt mainly resides
in the possibility to automatically migrate existing models when using
complex operators. In this case, for example, the values of the affected
features are moved to the new features based on a mapping.

To adopt the Edapt approach within the DOML approach, we had to
define special behavior for some specific cases. One of them concerns
the need, in Edapt, to change the namespace URI to distinguish between
different releases of a single metamodel and, while migrating models,
allowing them to apply operators to evolve metamodels. Since the
DOML URI is intended to remain unchanged, this has led to the need
to develop a specific mechanism: the Edapt framework has been mod-
ified to handle DOML metamodel as a special case, using the version
attribute within the DOMLModel class, instead of the URI, to distinguish
between different releases of the language, both at the metamodel and
at the model level.

Another issue concerned the creation of the DOML-X, that is, the
XML serialization to be used for communication with the DMC and ICG.
Normally, the XML resource saving process in EMF discards default
contents, which could result in the loss of important values during
model migration. Since in DOML we use default value literals to store
key values, including the version name, to prevent them from being
discarded, an option to include such values in the resulting XML file
during the saving process has been added.

To see how the approach works, let us consider the case of ex-
tending the metamodel to introduce a new element representing the
ElasticSearch software that we have already mentioned in Section 5.1.
In this case, the user would interact with Edapt as shown in Fig. 6,
where the Create Class operator is used and the ElasticSearch class is
created, extending the SoftwareComponent. The user would then create
specific attributes for this class. For instance, in Fig. 7, the Create
Attribute operation of Edapt is used for creating a new httpPort attribute.
Analogously, both containment and non-containment references can be
added through the Create Reference operation. Fig. 8 shows the result
of creating the class by adopting this approach.

After defining the new concept, two steps are needed. One, dis-
cussed in Section 5.2.3, concerns the generation of the syntax to let
the end user exploit the ElasticSearch element in a DOML model, the
other concerns the creation of a proper ICG template, as presented
in Section 4.3, to enable the generation of proper IaC for the new
element. In Listing 6, the ElasticSearch template is presented. Being
this a SoftwareComponent, it will be based on Ansible, which is the
language generated by the ICG for software configuration.

Listing 6: Ansible template used to model the ElasticSearch component
[
2
3— name: Elasticsearch with custom

< configuration
4 hosts: servers_for_elasticsearch
5 roles:
6 - role: elastic.elasticsearch
7 vars:
8 es_data_dirs:
9 "{{,dataDirs }}"
es_log_dir: "{{,logDir }}"
11 es_config:
node .name: "{{ nodeName }}"
cluster .name: "{{_,clusterName }}"
discovery.seed_hosts:

o "{{ discoverySeedHosts }}"
http.port: {{ httpPort }}
transport.port: {{ transportPort }}
node.data: false
node.master: true
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Fig. 6. Using Edapt to create a new class.
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Fig. 7. Creating a new httpPort attribute for the ElasticSearch class.

v B ElasticSearch -> SoftwareComponent
= dataDirs : EString
= logDir: EString
= nodeName : EString
clusterName : EString
= discoverySeedHosts : EString
= httpPort : ElntegerObject
= transportPort : EIntegerObject

i

Fig. 8. ElasticSearch class in the Ecore metamodel.

bootstrap.memory_lock: true

es_heap_size: 1g
es_api_port: {{ httpPort }}

In the listing, some parameters, e.g., es_heap_size, assume de-
fault values while the others assume the values end users assign to the
corresponding attributes enclosed in the double brackets and defined
in the metamodel.

Note that the main advantage of introducing the ElasticSearch
concept in the metamodel as opposed to the usage of the properties to
specify its application-specific parameters is mainly in the possibility to
reuse the new definition in other models and to have the development
environment highlighting the syntax to be used. These points make the
new concept usable also by newcomers not fully knowledgeable about
the specifics of the ElasticSearch technology.

11

5.2.3. An ad hoc solution to update concrete syntax

The consistent update of the DOML metamodel and the corre-
sponding syntax is not straightforward due to an unwise design choice
we adopted at the beginning of the project. In fact, not being fully
proficient with metamodeling and Xtext, we decided to proceed with
the development of these two parts in a manually coordinated way.
In other terms, the DOML syntax was not automatically generated
from the metamodel, but the grammar rules used to generate it were
created manually. To overcome this problem, we experimented with
the existing generation mechanisms offered by Xtext framework, but
the resulting syntax often differs significantly from the actual DOML
syntax. This can affect both the presentation of content and the overall
operation of DOML, such as the correct functioning of the conversion
mechanism from DOML to DOMLX (XML-based representation) and
vice versa. Therefore, adopting this approach would necessitate re-
structuring the language and several existing tools within the PIACERE
framework.

One potential solution is to update only the parts of the syntax
related to the changed content and affected classes. However, linking
metamodel operations in the Edapt framework with Xtext rules requires
significant effort and may still result in specific solutions that struggle
with misalignment between components.

Given these limitations, an ad hoc solution has been developed
to generate fully compliant syntax based on Eclipse Xtext directly
from the updated Ecore metamodel. This solution, implemented as an
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Eclipse plugin, is integrated into the PIACERE IDE. The plugin, visible
when selecting Ecore files, includes a command to generate the Xtext
grammar file from the metamodel.

The code structure follows the Eclipse command schema, with a
default handler managing utility classes and executing the workflow
for generating the Xtext syntax file. A single class is responsible for
building various sections of the grammar, which are then concatenated
into a single string. The handler directly manages the writing process.

Content generation relies on rules to handle different types of
objects in the metamodel, creating corresponding Xtext code fragments.
These rules were empirically developed to align elements of the DOML
Ecore metamodel with existing DOML syntax rules. This heuristic ap-
proach highlights the challenge of managing exceptions, as the DOML’s
syntax was not designed for automated content generation and became
highly specific over time. To create a generic solution capable of
handling multiple exceptions and special cases, the syntax structure was
deeply analyzed to find common patterns and group similar cases.

However, some aspects still require human intervention. For exam-
ple, most component classes are identified in the DOML syntax by a
fixed keyword similar to the class name. The definition of security rules
in a security group is, however, different: each rule is introduced by
either the keyword egress or ingress, which are the possible values
of the RuleKind enum. Both keywords denote an instance of the Rule
class, differing only in the value of their RuleKind field.

Moreover, some rules represent an exception for both their structure
and content. For instance, while most classes require the specification
of a user-chosen name after the introductory keyword, the syntax for
the ContainerHostConfig class requires a reference to an existing hosting
computing node.

To address the potential mismatch between class names in the meta-
model and the resulting elements in the syntax and to allow users to
generate rules such as the one mentioned above for the RuleKind class,
a simple JSON configuration file must be defined. This file contains:

» Keywords for classes, attributes, and references;

» Enumeration attributes to replace specific keywords;

» Symbols for lists of multiple values;

» Fixed content including language declaration, datatype and ter-
minal rules, and special unchangeable rules.

In Listing 7, an example of JSON configuration for ElasticSearch
keywords is shown. The keywords on the left-hand side correspond
to the attribute names defined in the metamodel while those on the
right-hand side are the ones that will be used in the DOML syntax.

The syntax generation process will generate the Xtext definition
shown in Listing 8. For instance, the keyword cost at line 5 in
the listing is generated considering the definition at line 2 in the
JSON configuration, while the keyword is_persistent at line 4
in Listing 8 is generated according to the standard rules defined by
the generation mechanism. In both cases, the types defined for the
attributes within the metamodel (FLOAT and Boolean, respectively) are
properly reported in the Xtext definition and can be used to support
syntax checks within a DOML-specific editor.

Listing 7: ElasticSearch JSON configuration for the Syntax Generator

1"ElasticSearch" : {

2 "licenseCost": "cost",

3 "exposedInterfaces": "provides",
4 "consumedInterfaces": "consumes",
5 "clusterName": "cluster"

6

Listing 8: Xtext definition of the new DOML syntax for ElasticSearch
components

1ElasticSearch returns app::ElasticSearch:

2 'elastic_search' name=ID '{' DOMLElement

3 (
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('is_persistent' isPersistent=Boolean)? &
('cost' licenseCost=FLOAT)? &
(src=Source)? &

N o o a

('provides' '{'
< exposedInterfaces+=InterfaceDefinition+
= '})7 &
8 ('consumes ' '{'
< consumedInterfaces+=[app::SoftwareInterfacel+
= '})7 &
'data_dirs' dataDirs=STRING)? &
'log_dir ' logDir=STRING)? &
'node_name ' nodeName=STRING) &
'cluster ' clusterName=STRING)? &
'discovery_seed_hosts' discoverySeedHosts=STRING)?
< &
'http_port' httpPort=INT)? &
'transport_port ' transportPort=INT)?

-
sy
~N AN~~~

_ e
(IS
~ ~

This approach enhances customizability and durability, enabling
users to update the syntax as needed while maintaining the necessary
fixed contents for the PIACERE environment.

6. Evaluation

We evaluate the DOML by using it in a concrete case study and
against other state-of-the-art IaC approaches, with the objective to
demonstrate its capabilities and shortcomings. We provide a discussion
of the evaluation in Section 7. We identify the following research
questions (RQs):

» RQ1: How effective is DOML at modeling deployments?
We answer this question by splitting it into two sub-RQs evaluat-
ing DOML from two different points of view:

— RQla: Can a DOML model represent the information re-
quired to generate executable IaC tackling both provisioning
and configuration?

- RQ1b: How does DOML compare with state-of-the-art ap-
proaches?

» RQ2: How effective are DOML and the ICG at targeting different
existing cloud frameworks and technologies?
We also answer this RQ by splitting it into two more specific RQs:

- RQ2a: Is a DOML model able to target multiple execution
platforms?

— RQ2b: Is the ICG able to generate code in different IaC
languages required to implement different components of
the deployment?

» RQ3: Can the model checking component (the DMC) detect fre-
quent mistakes during the definition of a DOML model?

» RQ4: Is the DOML approach perceived as useful in a real-world
case?

We answer the RQs in separate subsections Section 6.2-6.5. First,
however, in Section 6.1 we present a cloud deployment that we use
while answering the RQs in the next sections.

6.1. A wordpress deployment

This example is taken from existing literature [49], and allows us
to compare the DOML to state-of-the-art IaC languages. We use it to
answer RQ1, RQ2 and RQ3 in Sections 6.2, 6.3 and 6.4, respectively.
This example is available in [50] and is described in the component
diagram of Fig. 9.
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Fig. 9. Component diagram of the Wordpress application deployment from [49].

hosted

£

Network

%O
Internet

hosted

The application to be deployed is the Wordpress content manage-
ment system, which runs on a VM. Wordpress depends on a database
hosted on a separate VM. The two VMs communicate with each other
as well as with the Internet through a common network.

6.2. RQ1: How effective is DOML at modeling deployments?

We answer RQ1a and RQ1b separately, both based on the Wordpress
deployment introduced in Section 6.1.

6.2.1. RQla: Can a DOML model represent the information required to
generate executable IaC tackling both provisioning and configuration?

We answer RQ1 through the Wordpress example presented in
Section 6.1, which is larger in scope and more similar to real-world
deployments than the NGINX case presented in Section 3.

We write a DOML specification of the Wordpress deployment tar-
geting OpenStack as the CSP and successfully running the correspond-
ing IaC code generated by the ICG.

We do not show the whole DOML model for the sake of brevity,
but it is available in [27]. Similarly to the NGINX example, this DOML
model closely resembles the diagram of Fig. 9. The model is small
enough to be represented in a single file, and its subdivision into com-
ponents is very natural: two components in the application layer for
Wordpress and the database, and two corresponding VMs, one key-pair
for the VM credentials, and one network in the abstract infrastructure
layer.

An advantage brought by the DOML is that the ICG is capable of au-
tomatically generating certain common components from its templates,
so that they need to be specified in the DOML only if a non-default
configuration is required. One of such components is the Security
Group: in the Wordpress example, the ICG creates it automatically
thanks to the information included in the AL, so it is not necessary to
include the Security Group in the DOML model. In fact, the Wordpress
component has to be exposed to the Internet by default, and the AL
states that it needs to be able to communicate with the database: the
security group is created accordingly.

This DOML specification leads to a successful deployment of Word-
press on the selected infrastructure. This constitutes evidence that
we can positively answer RQla, by means of this particular case.
In Sections 6.5 and 6.3.2, we show two more deployments that we
successfully encode as DOML models, further confirming this answer.

6.2.2. RQ1b: How does DOML compare with the state-of-the-art appro-
aches?

We compare the DOML specification of the Wordpress example
with two equivalent specifications in the state-of-the-art languages:
the Terraform and Cloudify implementations written by the authors
of [49].

We first answer RQ1b from a qualitative point of view, by highlight-
ing the main differences in the design philosophy of each language.
Next, we compare the three approaches in terms of conciseness.

13
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Table 4

Metrics on the IaC in Section 6.2.2.
Approach #LOC # Files # Languages Available at
DOML 125 1 1 [27]
Terraform + Shell 305 3 2 [50]
Cloudify + Ansible 506 9 2 [50]

Terraform [49]. The Terraform definition of the deployment is cen-
tered around the provisioning of VMs. First, the provider is set, in this
case AWS. This enables the use of AWS-specific components, such as
aws_instance to define the VMs. The VMs are defined in this way,
with their features set as properties (e.g., size, image to be run); the
network to which VMs are attached is defined similarly.

The applications (Wordpress and the database) need to be deployed
to their respective VMs. Terraform does not support application deploy-
ment directly, but a configuration language — Bash scripts in this case
— is needed. The two Bash scripts, one for Wordpress and another one
for the database, are stored as templates, that are instantiated, sent to
the VMs through SSH, and automatically executed during deployment.

Cloudify [49]. The Cloudify definition of the deployment starts by
importing plugins related to the targeted cloud platform. These allow
to use provider-specific node types to define the VMs and the net-
works. Again, the Ansible configuration language is needed to deploy
applications to the VMs.

Qualitative analysis. The main difference between the analyzed ap-
proaches is that Terraform and Cloudify are centered around infras-
tructure components, while in DOML applications and computational
environments running on top of VMs (e.g., containers) have a central
role. In IaC languages other than DOML, the fact that Wordpress is
deployed on the VM can only be inferred by reading an Ansible or shell
script. In DOML, Wordpress is a first-class component, and it is a task
of the ICG to ensure that it is correctly deployed on a VM, instead of
the user. This makes the whole deployment more robust.

Conciseness. In Table 4 we provide a summary of the metrics we have
collected. The DOML appears to be more concise than other languages,
with a total of 125 lines of code used for the complete definition of the
deployment model and a single language used. The use of one single
language also influences the number of files in which the model is split,
which is much lower for DOML.

6.3. RQ2: How effective are DOML and the ICG at targeting different
existing cloud frameworks and technologies?

We answer this RQ by considering two orthogonal aspects: the
ability of the ICG to generate code in different [aC languages that tackle
different components of the same deployment, within the same target
CSPs (RQ2a), and its ability to generate code targeting different CSPs
for the same deployment (RQ2b).

6.3.1. RQ2a: Is a DOML model able to target multiple execution platforms?

DOML supports multi-platform deployment and operation. We show
this by modifying the OpenStack-based Wordpress DOML model in-
troduced in Section 6.1 to incorporate a new deployment on AWS
EC2 [51] other than the one on OpenStack we have presented in
Section 6.2.

This can be accomplished by introducing in the CIL a new concrete
infrastructure definition, including the specification of the new VM
and network. In the CIL, the VM image name is specified by the
Amazon Machine Images (AMI) format, e.g., name = ‘ ‘ami-xxx’’,
which provides the information required to launch a VM instance. In
the VM block, we specify other vendor-specific settings, such as the
location information (e.g., region = ¢ ‘eu-central-1’’) and the
instance_type. These parameters are optional, and the ICG chooses
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default values if they are not specified. Another issue caused by switch-
ing to AWS concerns the network. Amazon provides Virtual Private
Cloud (VPC) for controlling the virtual networking environment, which
requires defining a subnet into any network. If no subnet has been
defined in the AIL, the ICG creates a default one. This way, a user not
familiar with AWS requirements can still create a working deployment.
Listing 9 shows the new CIL, while everything else is unchanged.
Different concrete infrastructures can coexist in the same DOML model
and the currently selected one is identified by the active keyword.

Listing 9: VM definition in the concrete infrastructure layer.
1concrete_infrastructure con_aws_infra {

2 provider aws {

3 properties { }
4 vm concrete_vml {

5 properties {

6 vm_flavor = "t2.micro";
7

8

9

}

maps vml
vm concrete_vm2 {
properties {
vm_flavor =
13 }

maps vm2

"t2.micro";

net concrete_net {
properties {}
cidr "10.10.10.0/24"
subnet concrete_subnet {
cidr "10.100.1.0/24"
maps subnetl

maps netl
24 }
25}

active con_aws_infra
27}

The code generated by the ICG for the AWS provider successfully
deploys the application. This provides evidence supporting a positive
answer for RQ2b.

Moreover, this example also answers RQ1b from a different point of
view, comparing the ability of IaC languages to support different CSPs
for the same deployment. The same DOML model can define how a
deployment is run on different CSPs, collecting settings specific to each
CSP in a separate, well-marked section of the code. Aspects of the de-
ployment that are common to all providers are abstracted and factored
away in the AL and AIL. Thus, DOML minimizes redundancy which, in
turn, results in better consistency between the actual deployment on the
different providers, and better readability. Conversely, Terraform and
Cloudify do not offer the same abstraction mechanisms. Each supported
provider offers a different set of components, that are syntactically
different, even if they represent the same kind of deployment node
(e.g., VM, network, or application). To port a deployment to a different
CSP, its whole description has to be changed, by translating compo-
nents from one provider into corresponding (or similar) components of
the other.

6.3.2. RQ2b: Is the ICG able to generate code in different IaC languages
required to implement different components of the deployment?

The focus of this example is to show how we can use DOML to
model a containerized MongoDB deployment and to generate, besides
the usual Terraform code for VM provisioning, Ansible and Docker
Compose code to orchestrate the execution of the whole system.

Fig. 10 shows the component diagram for this example: a MongoDB
server and the corresponding client are running within containers
cont_mongodb and cont_hello_mongo, respectively. The two
containers are hosted on a single VM and communicate among each
other and with the Internet through a network, which is protected by a
security group. The firewall rules in the security group allow for access
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Fig. 10. Component diagram of the MongoDB application deployment.
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to the VM from the Internet through the HTTP, HTTPS, SSH and ICMP
protocols. The target cloud service provider is OpenStack in this case.

Listing 10 shows an excerpt of the corresponding DOML model
where, as part of the abstract infrastructure layer, a ContainerGroup
is defined, which includes the two aforementioned containers. The
components shown in Fig. 10 are part of a larger deployment; the
corresponding completed DOML model can be found in [52].

During the IaC generation phase, the ICG detects the presence of
the container group and produces the Docker Compose configuration
shown in Listing 11, together with the Terraform code to provision the
VM and the Ansible code to install the Docker Compose layers and then
launch the generated configuration.

Listing 10: Container group definition in DOML.
1cont_group vml_cont_group {

2 services {

3 container cont_hello_mongo {
4 host wvml {

5 cont_config {
6 cont_port 5003
7 vm_port 5002

8 iface vml_iface
9

10 }

un  }

container cont_mongodb {

host vml {
cont_config {
cont_port 85
vm_port 8085
iface vml_iface

18 }

19 }

20 }

21}

2}

Listing 11: Docker Compose file generated by the ICG.

iversion: '3

2services:

3 cont_mongodb:

4 image: .../mongo:4.2

5 restart: on-failure

6 ports:

7 - "27.0.0.1:85:vml_iface:8085"
8

9 cont_hello_mongo:

10 image: .../hello-mongo:latest
11 restart: on-failure
12 ports:

13 -

"127.0.0.1:5002:vml_iface:5003"

The ICG is thus capable of automatically determining which target
framework should be used for each component. Thus, it generates IaC
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Table 5
Results of the DMC on the Wordpress deployment model. The numbers in the first
column refer to requirements from Section 4.2.

# Original Defective
Time (s) Satisfied Time (s) Satisfied

MC1 0.016 Yes 0.207 No
MC2 0.118 Yes 0.227 No
MC3 0.001 Yes 0.001 Yes
MC4 0.016 Yes 0.015 Yes
MC5 0.089 Yes 0.203 No
MC6 0.001 Yes 0.001 Yes

files in the main target language (Terraform in this case), referencing
files in other languages needed to deploy and configure specific com-
ponents (Ansible and Docker Compose). This example shows that RQ2b
can be answered positively, at least for the given case.

Moreover, the DOML model representing the deployment of Fig. 10
further substantiates the positive answer to RQ1la.

6.4. RQ3: Can the DMC detect frequent mistakes during the definition of
a DOML model?

We illustrate the DMC’s capabilities on the DOML model of the
Wordpress deployment described in Section 6.1. We ran the DMC on
two versions of the Wordpress example: the original one, which we
used in Section 6.2.1, and another one where we introduced some
errors on purpose, to test the DMC’s ability to detect them. All tests
were run on a PC equipped with an AMD Ryzen 7 7700X CPU and 64
GiB of RAM running Ubuntu 23.10. We display the results in Table 5,
where we reference, in the first column, requirements from Section 4.2
by their numbers.

The original version of the model is functional, as we saw in
Section 6.2, and thus satisfies all requirements in Section 4.2.

In the defective version, we made the following modifications:

» we removed the network interface of the VM hosting Wordpress;
» we removed the maps attribute of the concrete network.

These modifications lead to three requirements from Section 4.2 not
being satisfied:

* REq. MC1, because without its network interface, the Wordpress
VM is linked to no network;

» REq. MC2, because according to the AL, the Wordpress VM should
communicate with the database; but without being linked to the
same network as the VM hosting the database, this is impossible;

» REq. MCS5, because after removing the maps attribute of the
network in the CIL, the network specified in the AIL is not
associated to any element in the CIL.

The DMC also outputs helpful error messages identifying the offending
components: for instance, for Req. 2 it outputs:

Software components ‘mysql’ and ‘wordpress’ are supposed to com-
municate through interface ‘DB_interface’, but they are deployed to
nodes that cannot communicate through a common network.

All requirements in Section 4.2 are checked in less than one second on
the Wordpress example, which makes the DMC suitable for performing
frequent checks, anytime the user wishes to check that a modification
made to the model does not introduce other issues.

One of the common features of requirements MC1-MC6 is that
they involve multiple DOML layers, checking that the lower ones
are compatible with the upper ones. In fact, the different levels of
abstraction of DOML layers allow them to act both as deployment de-
scriptions and requirements for layers below. More specifically, the AL
describes the overall application focusing on the roles and features of
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its components. Thus, we can check that the AIL and CIL are adequate
to fulfill the requirements implicitly declared in the AL. This partially
solves the problem of requirement specification by the user, one of
the most relevant usability issues of verification solutions. The user
can simply describe the application without thinking about verification:
the requirements can be elicited from the AL by means of pre-defined
properties.

6.5. RQ4: Is the DOML approach perceived as useful in a real-world case?

Recently, DOML has been used by the PIACERE project case study
owners to model their systems deployment. In this section we provide
an overview of the experiment carried out by the IT Directorate of the
Slovenian Ministry of Public Administration (SI-MPA).

6.5.1. Case study overview

SI-MPA is hosting information systems on a centralized IT infras-
tructure based on WebSphere [53]. Resource provisioning, infrastruc-
ture configuration and deployment of new systems on such infras-
tructure are the Directorate’s main challenges from an operational
and security perspective. In this context, SI-MPA has experimented
with the usage of DOML, providing feedback for its further extension.
The focus of the experiments has rotated around NIO — National
Interoperability Framework Portal system [54]. The challenging aspects
have concerned, in particular, the microservice-oriented architecture
adopted for NIO and the DevOps delivery style, which targets different
types of infrastructures for different phases of the software lifecycle.
The purpose was, in fact, to define a DOML model able to support
continuous local deployment during the development process, contin-
uous deployment on the private cloud during the staging process and,
eventually, deployment on the production environment (private cloud
or public cloud). NIO as such requires constant delivery and/or upgrad-
ing (due to new features, modules, and bug fixes). Having automated
modeling and verification of IaC is expected to provide the following
advantages:

» moving from a traditional to an agile way of delivering informa-
tion systems, with short delivery times and less human resources
for deploying, maintaining, and managing information systems;

+ being able to reduce the cost of deploying IT solutions on various
infrastructure platforms;

- greatly alleviating the delivery processes and reducing the num-
ber of errors;

+ accurately documenting through models the main aspects of the
deployment process, thus improving compliance with the re-
quirements from IT management standards, guidelines, and good
practices.

The team that experimented with the DOML usage was composed of
five members: the team leader, who is also one of the authors of this
paper, three system engineers, two of which experts in VMWare and
one with expertise in LAMP webhosting, integration and maintenance
of PHP open-source CMS systems, and an enterprise architect. All
team members had a basic knowledge of Terraform and Ansible and
between 10 and 40 years experience in their respective roles. The
team exploited the DOML approximately for a one year period and
had weekly meetings with the DOML developers to discuss encountered
issues and new requirements. The objectives of the experiments were
to model the case study, check its correctness with the DMC, generate
the corresponding IaC code with the ICG, test the resulting code and
verify that the system deployed as expected. This activity has proceeded
incrementally, starting from simple modeling tasks, fixing bugs in the
models, in the DOML as well as in the various components of the
system, and adding new details at every iteration. The meetings have
been highly beneficial for both parties and have resulted, on the one
side, in the development of two versions of the S-MPA DOML model
presented in the following sections, and, on the other side, in new
improvements in the language itself.
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6.5.2. The SI-MPA case DOML model: First version

The DOML model developed by the SI-MPA team includes at the
application level the components pertaining to the NIO system. Since
each component was already associated to a corresponding Ansible
code managing its configuration, SI-MPA decided, initially, to keep
these pieces of code and link them from the DOML model as artifacts
belonging to the corresponding component. In fact, Listing 12 shows
that component nio3 is associated to some codebase, rl, whose
starting element is main.yml (the Ansible code) and that should be
executed by an Ansible engine using inventory.j2 as a source of
information about the resources available. The r1 codebase is packaged
in the same project including the DOML model, in a special purpose
directory called assets.

Listing 12: nio3 software component.
1software_component nio3 {

2 source rl {

3 entry "main.yml"

4 backend "ansible"

5 inventory "inventory.j2"
6

7

}
}

Listing 13: Part of the NIO abstract infrastructure layer.
ivm vml {

2 os '"centos7_64Guest"
3 cpu_count 4

4 mem_mb 16384.00

5 iface i1 {

6 address "10.83.18.81"
7 belongs_to netl

8

9 credentials ssh_key
10}

nnstorage disk0 {

12 label "diskO"

13 size_gb 100

14}

In general, this same approach in DOML can be used in all cases we
want to associate to a software component a specific piece of code and
the corresponding executor.

In the abstract infrastructure, nio3 is mapped into a virtual ma-
chine having 4 CPUs and 16 GB of memory that is accessed through an
SSH key (see Listing 13).

In the DOML concrete layer, SI-MPA abstract infrastructure is map-
ped into resources available in the WebSphere datacenter owned by
SI-MPA itself. Listing 14 shows the definition of the concrete VM
used for the execution of nio3 on WebShpere. It includes as DOML
properties some parameters specific of WebSphere VMs and refers to
three resources that are preexisting in the datacenter. Listing 15 shows,
in particular, the definition of template, which is the preexisting
image used to create the VM, and datastore, which is preexisting
as well.

Listing 14: VM definition in the NIO concrete infrastructure layer.
1vm con_vml {
2 properties {

3 host_name = "piac-0"

4 domain = "ad.sigov.si"

5 disk = "diskO"

6 disk_size = "100"

7 guest_id = "centos7_64Guest"
s}

9 refs_to {

10 pool

11 datastore

12 template

14 maps vml

15}
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Listing 15: Definition of the template and datastore preexisting
resource

1vm_image template {

2 preexisting true

3 refs_to { dc }

4 image_name '"c7tmp"

5 maps img

6}

7

sstorage datastore {

9 properties {

10 vsphere_datastore_name =
11

12 preexisting true

13 refs_to { dc }

14 maps diskO

15}

'NFSShareO1'

In general, explicitly identifying preexisting resources in DOML is
important to let the ICG know that provisioning is not required in that
case.

The DOML model includes also a second concrete infrastructure
running within an OpenStack cloud provider. The two can coexist in
the same model, but only one at a time can be defined as active.

The created model can be verified successfully and can then be
transformed into IaC organized in a .zip file which, in this case, includes
the Terraform outcome of the model together with the original Ansible
files associated to each individual NIO component.

This DOML model also corroborates the positive answer to RQla
and demonstrates the usefulness of the internal extension mechanisms
presented in Section 5.1.

6.5.3. The SI-MPA case DOML model: Second version

The development of the DOML model described in Section 6.5.2 was
satisfactory from the viewpoint of the SI-MPA team who has addressed
the problem of handling provisioning of the needed resources and, at
the same time, has been able to reuse the preexisting Ansible scripts to
manage deployment of components. It, however, opened up a debate
with the DOML developers that were arguing about the importance of
incorporating in the DOML model the information about the application
structure without hiding it in the Ansible scripts. To demonstrate to the
professionals the usefulness of this approach, as a further step in the
experiment, we hired a Master’s student, who had never collaborated
with the DOML development team, and trained him on the DOML
framework. He was given the task of employing the DOML-e extension
mechanism to extend the DOML with new components required by the
NIO platform deployment. Then, it took for him two days to understand
the involved frameworks and to write a new DOML model in which
several application and infrastructure components have been extracted
from the Ansible file, and are now explicitly represented as DOML
elements. Fig. 11 shows the component diagram of the new model,
which is available at [27].

Starting from the AL, compared to the base model described in
Section 6.5.2, in the new one the nio3 software component was broken
down into several components, increasing the degree of explicitness
of the model. The first introduced element is RabbitMQ [55] (Listing
16), a message broker software that facilitates communication between
distributed systems by enabling asynchronous messaging. RabbitMQ
revolves around the concepts of queue, exchange and binding. A queue
is a buffer storing messages awaiting processing by consumers. An
exchange is a routing mechanism that directs messages from producers
to queues based on specified rules. A binding defines the relationship
between exchanges and queues, determining how messages are routed
and delivered. This model contains an instance of each one of them,
highlighting their most significant attributes. In this deployment, the
role of RabbitMQ is to support message exchange between the front-end
and back-end components of the application. The front-end application
is still setup by an external Ansible file. An important application
component in the back-end is Redis [56], an open-source, in-memory
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Fig. 11. Component diagram of the deployment of the NIO system.

data structure store, used as a database, cache, and message broker,
known for its high performance and versatility. Here some of its main
configuration parameters are specified, including replication mode and
storage engine. Finally, an Oracle DBMS providing a software interface
named dbAccess is defined.

Listing 16: RabbitMQ definition in the AL.
1irabbit_mqg rb {

2 rabbit_mq_queue nio_queue {

3 arguments {

4 message_ttl = "6000"

5 }

6 durable true

7}

8

9 rabbit_mq_exchange nio_exchange {
10 exchange_type "direct"

1 durable true

14 rabbit_mq_binding bind {

15 queue nio_queue

16 exchange nio_exchange
17 routing_key "#"

18

19}

Listing 17: Definition of the Docker Swarm hosting RabbitMQ in the
AIL.

1swarm docker_swarm {

2 manager mg {

3 vm mgl {

4 os "centos7_64Guest"
5 cpu_count 8

6 mem_mb 16384.00

7 iface iface_mgl {

8

9

address "10.83.18.131"
belongs_to sub_swarm

10 }

1 }

12}

13

14 worker wk {

15 vm wkl {

16 os "centos7_64Guest"

17 cpu_count 4

17

18 mem_mb 8192.0

19 iface iface_wkl {

20 address "10.83.18.132"
21 belongs_to sub_swarm
22 ¥

23 }

24

25 vm wk2 {

26 os "centos7_64Guest"

27 cpu_count 4

28 mem_mb 8192.0

29 iface iface_wk2 {

30 address "10.83.18.133"
31 belongs_to sub_swarm
32 }

33 }

4}

36 network_mode

37}

"overlay"

Moving to the AIL, some new concepts were introduced, while some
minor changes were performed on some elements already present in
the original version of the model. First, a Docker Swarm was modeled
to allow the execution of the RabbitMQ software (Listing 17). The
swarm consists of one manager node and two worker nodes, which are
VMs having different characteristics. The network mode configured for
this swarm is an overlay network, the most common configuration for
Docker Swarms [57]. To isolate network traffic in the swarm from the
database, the existing network was divided into two subnets. Moreover,
a security group was introduced to define traffic rules for the Oracle
database [58] service, including some standard rules for both ingress
and egress.

While the RabbitMQ component is deployed onto the swarm, all
the other application components are deployed onto a single virtual
machine, defined in the same way as in the original model, only having
one more network interface.

In the CIL, the three vSphere resources previously modeled as
preexisting generic resources were defined as first-class elements, in-
troducing the Datacenter, ComputeCluster and ResourcePool classes at
the metamodel level. The concrete network mapping the one defined
at the AIL was then updated to be coherent with the new abstract
structure, defining two subnets. Finally, the virtual machines defined
for the Docker Swarm were concretized in an analogous way to the one
used for the already existing virtual machine.
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Table 6
Results of the DMC on the second version of the SI-MPA case DOML model. The
numbers in the first column refer to requirements from Section 4.2.

# Defective Final
Time (s) Satisfied Time (s) Satisfied

MC1 6.031 No 0.199 Yes
MC2 1.352 Yes 1.846 Yes
MC3 0.010 Yes 0.021 Yes
MC4 0.152 Yes 0.200 Yes
MC5 6.172 No 1.590 Yes
MC6 0.153 Yes 0.201 Yes

After writing a preliminary version of the model, the student chec-
ked it with the DMC. The check highlighted two issues: the VMs in the
swarm were not linked to any network (rEq. MC1 from Section 4.2),
and no corresponding concrete VMs had been defined in the CIL
(rEq. MC5 from Section 4.2). After fixing these issues, the final version
of the model was ready.

Table 6 reports the time taken by the DMC to check the two models
on the same machine used in Section 6.4 (the student did not record
check timings: those reported here have been obtained by one of the
authors by repeating the experiment on the student’s models).

6.5.4. Results

The adoption of DOML has helped the SI-MPA DevOps team in
creating a model that fulfills their need to accurately document the
main aspects of the deployment process. The team agreed that this
has confirmed their hypothesis concerning the possibility to keep com-
pliance with IT management standards, guidelines, and good practices
under control, through the adoption of the DOML.

The team has also experimented with the possibility to deploy their
system both on WebSphere and OpenStack by simply changing the
active infrastructure field in the DOML model, running again the IaC
generation and then executing the resulting code.

We could not measure the time saving introduced by the usage of
the DOML in this case study as the SI-MPA team collaborated with
the DOML development team through multiple iterations during the
experiment. This has been necessary to align the language and the
generation mechanism to the team’s needs.

At the end of all iterations, we interviewed the SI-MPA team to
acquire their feedback about the usability of the DOML approach.
They acknowledged its utility, especially to easily deploy on different
providers, and usability, but highlighted that, having them already
acquired a significant experience in the development of Ansible and
Terraform IaC, they were not in real need of adopting the DOML, which
could be, instead, suitable for less experienced teams.

After having shown the student’s model of their deployment (cf.
Section 6.5.3), they were favorably impressed by the possibility to
express, as part of the DOML and by exploiting the extension mech-
anisms, the many components of their system in an explicit manner.
They realized that the obtained model could have been considered also
as an architectural documentation and that it would be beneficial to
help newcomers in the team understanding their system. Moreover,
the experiment with the student highlighted the benefits of analyzing
models and checking their consistency through the DMC.

The development of this case study has been also beneficial to the
improvement of the DOML that has been extended to incorporate the
following aspects:

» The possibility to associate components to a codebase of any
complexity and to specify the corresponding executor (see Sec-
tion 5.1). The initial version of the DOML, in fact, was working
under the assumption of simple codebases constituted by a single
file leaving the executor completely unspecified.
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+ The possibility to map abstract infrastructure elements on top of
preexisting ones. In fact, in the SI-MPA WebSphere infrastructure
some resources, i.e., the VM images to use, network, datastore,
and some clusters were already up and running, while VMs
needed to be provisioned as part of the deployment process. To
accommodate this aspect, we have realized the importance of
explicitly specifying as preexisting those resources for which we do
not need to generate the corresponding provisioning code, and,
to this end, we have introduced the GenericResource concept as
explained in Section 5.1 and we have tested also the possibility to
express them as proper extensions of metamodel elements. Such
resources, of course, must to be properly correlated with the ones
to be provisioned through the execution of the IaC resulting from
the model, as shown in Listing 14 where VM con_vml is not
preexisting, but, when created, refers to the pool, datastore
and template other resources.

7. Discussion

The evaluation in Section 6 has demonstrated the capabilities and
shortcomings of DOML by means of two examples, a concrete case
study, and a benchmark set of IaC languages.

7.1. Answers to the research questions

We summarize the answers to the four research questions RQ1-RQ4
below:

» RQ1: How effective is DOML at modeling deployments?
We divided RQ1 into two sub-RQs (RQla and RQ1b). Their
answers are based on the Wordpress deployment introduced in
Section 6.1 and also on deployments introduced in the rest of
Section 6.
RQ1la: Can a DOML model represent the information required to gen-
erate executable IaC tackling both provisioning and configuration? To
answer RQ1la, we wrote a DOML specification of the Wordpress
deployment targeting OpenStack as a CSP (Section 6.2.1). The
ICG is able to successfully deploy Wordpress on the infrastructure
described by the DOML model, suggesting a positive answer to
RQla. Moreover, in Section 6.3.1 we show that DOML can repre-
sent the information needed to deploy on different CSPs. Through
this example we can also observe that the ICG can automatically
generate commonly used components from its templates when
needed, even when they are not explicitly defined in the DOML.
This is a feature that can be of considerable help to inexperienced
users. For instance, in the Wordpress deployment, the ICG creates
automatically the SecurityGroup, so it is not necessary to include
it in the DOML model.
The experiment in Section 6.3.2 (i.e., the MongoDB application
deployment) demonstrates that DOML can represent a deploy-
ment containing an application running on a container group,
while the case study in Section 6.5 shows that it can represent a
real-world cloud application with multiple VMs (the NIO platform
of SI-MPA) and that it can enable the reuse of existing IaC
fragments if needed.
RQ1b: How does DOML compare with the state-of-the-art approaches?
We answered RQ1b from a qualitative and a conciseness point
of view. We compared the DOML specification of the Wordpress
example with two equivalent specifications in Terraform and
Cloudify. The comparison shows that, in DOML, the structure
of the application and its mapping to the infrastructure is ex-
plicit and clearer, taking advantage of the modeling abstractions
offered by the language. On the contrary, the Terraform and
Cloudify scripts alone do not provide complete information and
a complete overview can be obtained only by analyzing also the
other Shell and Ansible scripts.
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According to the metrics collected in Table 4, the DOML model for
the Wordpress deployment is smaller than the ones in Terraform
and Cloudify in terms of number of lines of codes and files. More-
over, both alternative approaches require using an additional
language for application configuration.

RQ2: How effective are DOML and the ICG at targeting different
existing cloud frameworks and technologies?

We answered RQ2 along two lines: the ICG’s ability to generate
code targeting different CSPs (RQ2a), and to integrate different
IaC languages (RQ2b).

RQ2a: Is a DOML model able to target multiple execution platforms?
In Section 6.3.1 we show that the abstraction mechanisms offered
by DOML allow for having the AIL decoupled from the CSPs
targeted by the deployment, which makes it easier to switch
between different CSPs by just adding and activating a new
concrete infrastructure. On the contrary, switching CSPs requires
extensive rewriting in Terraform and Cloudify. Moreover, DOML
provides better consistency between the actual deployments on
the different providers and better readability.

RQ2b: Is the ICG able to generate code in different IaC languages,
required to implement different components of the deployment? The
experiment in Section 6.3.2 shows that the ICG can generate
and integrate code in different IaC languages. In particular, to
deploy the infrastructure hosting a MongoDB application, the ICG
generates Terraform, Ansible and Docker Compose code, thus
supporting the steps of provisioning, configuration, deployment
and orchestration.

RQ3: Can the DMC detect frequent mistakes during the definition of
a DOML model?

In Section 6.4, we check an erroneous version of the DOML
model introduced in Section 6.2.1 with the DMC. Moreover, in
Section 6.5.3 we show the benefit of the DMC when it is used
in an iterative mode during the development of a DOML model.
This shows how the DMC can help users ensure the correctness
of their DOML models by detecting frequent mistakes during its
definition. This gives a positive answer to RQ3.

RQ4: Is the DOML approach perceived as useful in a real-world case?
In Section 6.5, DOML has been used by PIACERE use case owners
to model a real-world system deployment. The SI-MPA system has
been deployed both on Websphere and OpenStack by changing
only the active infrastructure field in the DOML model, then
running the IaC generation and executing the resulting code. The
SI-MPA team has acknowledged the utility and usability of the
DOML approach, stating that it would be particularly useful for
less experienced users.

Moreover, we show how the DOML was extended to better model
the deployment of this case study. The resulting DOML model
shows how DOML allows even relatively inexperienced users to
define more complex real-world deployments.

7.2. Comparison of DOML with state-of-the-art approaches

To compare DOML with the other state-of-the-art approaches, we
have tried to analyze to what extent they are able to fulfill the require-
ments we have defined for the DOML. Table 7 provides a summary of
our analysis. Besides Terraform and Cloudify, which we have compared
directly with the DOML in Section 6, we consider here also Ansible,
which focuses on configuration and deployment; Docker Compose and
Kubernetes, which focus on orchestration; and Radius that, as men-
tioned in Section 2, appears to share the same goals as DOML in terms
of ability to abstract from the details of the individual IaC languages.
Of course, when referring to other approaches, in each requirement
definition, DOML is meant to be replaced by the name of the considered
approach. We note the complete fulfillment of the requirement by a
check-mark while the symbol +stands for a partial fulfillment. In the
case of REQ76—DOML should allow the user to model information needed
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Table 7
Fulfillment of requirements by DOML and the most well-known tools (T/C stands for
TOSCA/Cloudify, DC for Docker Compose, and K8s for Kubernetes).

ReqID T/C Ansible DC K8s Radius
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for each of the four considered DevOps activities (provisioning, configura-
tion, deployment, orchestration)—we specify the supported activities as
follows: P is for provisioning, C for configuration, D for deployment
and O for orchestration.

From the table, we can see that DOML is the only one supporting
different views on a deployment (REQ62), as it offers the possibility
to model it at different abstraction levels. Moreover, DOML is the
only one offering a complete model checking approach (REQ70), while
Terraform and Ansible offer static analysis and linting tools helping
with syntactical and code smells checks [59]. As for REQ76, DOML is
the only approach that is able to address all the four DevOps activities,
while the others tend to specialize to a subset of them. REQ57 is not
fulfilled by the current version of the DOML but is planned for a future
iteration; to our knowledge, it is not fulfilled by Radius, while it is not
relevant for the other approaches are they do not offer mechanisms
for translating from a high-level representation to a lower-level one.
REQ36, concerning the ability to write infrastructure tests, is addressed
only by Terraform and Ansible, for which testing frameworks have been
defined. REQ111, that is, the ability of an approach to incorporate
other IaC, is — to a certain extent — fulfilled by all approaches, while
REQO1 is fulfilled only by DOML, Terraform, and Cloudify, as they
describe infrastructural elements. REQ27 and REQ28 are fulfilled by
all approaches, because they all allow for containers to be used and
containerized applications to be modeled. Concerning the ability to
model VM provisioning for different platforms (REQ29), we argue that
the fulfillment is partial for Cloudify since the target provider cannot be
specified in a script, even if the Cloudify executor can be configured to
run Compute nodes on different providers; it is also partial for Ansible
since anything can be done procedurally, but provisioning is not the
main task for which Ansible has been developed; similar considerations
apply to Radius, which can exploit Terraform to this purpose. Security
rules (REQ25), security groups (REQ26), and security metrics (REQ60)
can be modeled by all approaches, even though in different manners
and at different levels of detail, considering the specific focus of each
approach.

To sum up, with reference to the requirements identified within the
PIACERE project, DOML seems to be the most complete approach, ex-
cept for requirements REQ36 and REQ57 which could not be addressed
so far. The DOML has been developed with the purpose of simplifying
the definition of cloud deployments, both to help inexperienced users,
and to give professionals a technology that offers powerful abstraction
mechanisms that can help in creating and maintaining even complex
deployments. The cloud computing landscape is, however, much wider
than what is currently supported by our framework (according to
Section 3.4), and commercially-supported tools of course offer a much
wider array of features and components—although, as we saw in the
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previous sections, multiple languages and tools must often be combined
together. Indeed, the DOML implementation presented in this paper is
a proof of concept, developed to the extent that was possible with the
limited resources available for the project. Its purpose is to demonstrate
that the ideas behind the approach, and in particular the organization
of the language in three abstraction layers, are beneficial for specifying
deployments.

To account for the need to support more components in more com-
plex deployments, we have introduced the DOML extension mechanism
(Section 5), and demonstrate its use with an extension of the case study
in Section 6.5.3. This extension mechanism is made possible by the
modularity of the ICG, as we explain in Section 4.3. Thus, experienced
users can use DOML to model complex deployments by extending it,
and they can access all configuration options offered by CSPs by adding
attributes to the concrete infrastructure layer (CIL). It is true that this
requires considerable knowledge of technicalities specific to these CSPs,
but we argue that the DOML still offers benefits in terms of robustness
and especially a more structured way of describing a deployment,
which constitutes an architectural documentation useful for helping
newcomers understand the deployment and learning incrementally how
to extend it. This was acknowledged by the SI-MPA team involved in
the case study of Section 6.5. However, less experienced users are still
able to create less complex deployments, but with considerably less
expertise than competing approaches. This is due, in particular, to the
ICG’s ability to automatically fill-in CSP settings with sensible defaults
when they are not specified by the user.

7.3. Limitations and threats to validity

The experimental evaluation conducted in Section 6 has some lim-
itations that will be addressed through further research.

In particular, we compared the definition of the Wordpress deploy-
ment in DOML with some specific definitions in other IaC languages.
The main conclusion we inferred from the evaluation is that the DOML-
based definition is more concise than the benchmark approaches. This
represents a threat to internal validity, because the analysis of a few
specifications does not allow us to exclude the possibility of making
more concise ones. Nonetheless, such specifications were written by
experts, and we argue that it is unlikely that such a large conciseness
gap can be recovered.

Another threat to internal validity is that we have only compared
metrics concerning code size as a measure of both ease of writing
and maintaining code. In part, the ease of use has been demonstrated
through the SI-MPA case study presented in Section 6.5. However, a
more precise evaluation of such features would require a complete
empirical study.

The last — but not least — threat to external validity is that the
evaluation is performed on a few typical application deployments, so
the claims we make may not generalize to other more complex cloud
applications. One of our next research steps will be the evaluation on
a larger benchmark suite.

8. Conclusion

We have presented the DOML, a novel approach for cloud deploy-
ment modeling and it has been shown that the approach works for
relatively simple but complete systems with practical significance.

This paper shows that the DOML can decrease the expertise re-
quired to create cloud application deployments, and its abstraction
mechanisms can be helpful even in large deployments that inherently
require greater expertise. For the most complex deployments, a certain
domain knowledge is still required, but we believe that the model-
based approach and the possibility to extend the language bring definite
benefits also in this case, and are a tangible step in the direction of
improving the user experience of DevOps teams.
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The proposed approach offers the functionality to write the DOML
model only once and then use it to deploy the same complex system on
different cloud service providers or physical machines. This has resulted
in the definition of the DOML as a multi-layer modeling language (see
Section 3), where the application and abstract infrastructure layers
include a platform-independent specification of the application and
its underlying infrastructure, while the concrete infrastructure layer
specifies the details associated to the actual deployment on a specific
platform. By means of the examples presented in Section 6, we demon-
strated that DOML is complete enough to model a whole deployment
by itself. Moreover, the DOML has been developed keeping in mind
the need for extensibility, and includes an extension mechanism called
DOML-e (see Section 5), which will be analyzed in more detail in a
future work.

Ultimately, our next challenge is to check whether the approach
is usable and works with other case studies different from the ones
that have guided its development and that have used application and
infrastructure-level components that we have not considered so far.

What is presented in this paper is only part of the PIACERE frame-
work, which also includes components that handle performance opti-
mization, monitoring, and runtime adjustment of deployments. Their
presentation is available in the project deliverables® and will be de-
tailed in separate publications.
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