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Abstract

Cloaks for underwater applications designed for actual submarine acoustic stealth
are still far from the technological advancement needed for being put in prac-
tice. Several challenges are to be overcame such as dealing with weight or
non-axisymmetric shapes. In this paper, we introduce the use of elliptical co-
ordinates to define quasi-symmetric transformations to retrieve the material
properties of pentamode cloaks for elliptical shaped targets, along with a quan-
tifiable approximation introduced by the rotation tensor being different from
the identity. This is done analitically adopting transformation theory, in an
attempt to generalize the usual approach for axisymmetric cloaks, with the aim
of dealing with shapes closer to those of the actual cross section of a subma-
rine. With respect to existing techniques for dealing with arbitrarily shaped
pentamode cloaks, the introduced technique allows for a priori control on the
principal directions of anisotropy and for enlarged design space in terms of pos-
sible combinations of material property distributions for the same geometry of
the problem.
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1. Introduction

As a powerful tool for acoustic wave control, Transformation Acoustics has
attracted considerable interest over the past decade, primarily because of its
association with acoustic cloaking [1, 2]. The development of perfect acoustic
cloaking devices could in principle have a major impact on underwater acoustics,
where it could be used to avoid detection of submarines by active sonars [3].
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However, whether such technology can actually be implemented in real-world
applications remains a challenge with several open questions.

Soon after the appearance of the first papers dealing with cloaking in acous-
tics [4, 5], Norris [6, 7] pointed to the non-uniqueness of the material properties
which the cloak, as a fundamental difference between the acoustic case and the
optical case from which the theory was originally initiated [8]. In this context,
he also pointed out that the cloaks derived directly by analogy with the original
theory, which exploit an anisotropic distribution of density, are characterized
by a total mass tending towards infinite. This phenomenon, referred to as mass
catastrophe, makes such inertial cloaks (IC) impractical for actual implementa-
tions, since the ideal underwater cloak would obviously not affect the buoyancy
of the submarine being concealed. At the other end of the spectrum of practi-
cable material distributions, cloaks comprising pure pentamode materials (PM)
[9] do not suffer from such problem; more than that, they can be implemented
adopting solid metafluids. This makes them more suitable for actual implemen-
tation with respect to the anisotropic density metafluids, that are in principle
obtainable with a layered distribution of conventional fluids [10, 11]. In contrast,
the peculiar degenerate stiffness tensor characteristic of PM materials can be
achieved by structural optimization of latticed microstructures driven by long
wavelength homogenization [12, 13, 14, 15, 16]. Based on this idea, Yi Chen et
al. [17] have shown promising experimental results for a broadband underwater
cloak, obtained by optimization of a layered pentamode-inspired microstructure.
Recently [18], they also analyzed the impact of the non-zero shear modulus in-
herent in actual cloaks and showed how sensitive the performance is to different
boundary conditions imposed at the inner side of the cloak.

A major challenge in designing practical cloaking devices is related to the
shape of the target: indeed, the vast majority of the literature deals only with
cases such as the spherical or axisymmetric cloaks, which can be easily treated in
an analytical way. Moreover, most of the works dealing with arbitrarily shaped
acoustic cloaks refer to the case of IC [19, 20, 21, 22] and end up in designs
involving complicated distributions of layered fluids that would hardly be used
in practical applications.
The only paper dealing with arbitrarily shaped PM cloaks [23] proposes a numer-
ical method for obtaining quasi-symmetric transformation gradients to design
approximate cloaks. This being a very powerful and general tool that can be ap-
plied to any shape of target without restriction, there appears nonetheless to be
no a priori control over the distribution of the principal directions of anisotropy
within the cloak. This can potentially lead to material distributions that would
be not trivial to implement with a microstructure. Moreover, the numerical
problem has a unique solution once the geometry and the degree of non-ideality
of the cloak are specified, in contrast to the usual analytical solutions which in
principle admit an infinite number of solutions, since there is an infinite set of
transformations by which the undeformed region is mapped onto the deformed
one. Thus, the greater freedom offered by the numerical method in terms the
ability to deal with arbitrary shapes, is paid for with a restricted design space
in terms of material distributions.

2



In this paper, we instead focus the attention on the ”ellipse in ellipse” cloak-
ing problem and introduce an analytical approach based on the use of the orthog-
onal elliptic coordinate system, leading to quasi-symmetric transformations that
can be used to systematically tackle the design pure pentamode cloaks. Along
with this, the maximum and mean local rotation inside the cloak are used as
metrics of the non-ideality of the considered design. The idea is to introduce
a technique that stands between the exact analytical solution, which is easy to
handle for a limited set of shapes, and the numerical approach, with the aim of
providing a tool that could facilitate the design of cloaking devices for elliptically
shaped targets, which are of interest for underwater applications. Indeed, the
introduced set of transformations features a left stretch tensor showing every-
where within the cloak principal directions aligned with local coordinate lines,
i.e. normal and tangential to confocal ellipses. This facilitates the construction
of the microstructure of the cloak: once the lattice is designed and optimized
in rectangular Cartesian coordinates, it can then be ”accomodated” around the
target by adopting an analytic deformation that automatically aligns the princi-
pal directions of anisotropy along the coordinate lines. Moreover, as mentioned,
the analytical approach allows infinitely many designs for a given assigned ge-
ometry, resulting in an increase of the design space for a given configuration.

The work is organised as follows: in the next section, the transformation in
elliptic coordinates is presented and discussed. A measure of the local rotation
introduced by the quasi-symmetric transformation is defined, to quantify the
approximation introduced by considering it as a pure stretching. A set of special
maps are given as examples such as to obtain constant PM stiffness properties
within the cloak, or bulk moduli varying according to power laws. Numerical
examples of the performance of the cloak are given to verify the reduction of
scattered power achievable even with high approximation introduced. Before
conclusions are drawn, Section 3 also discusses the problem of accommodating
a microstructure designed in rectangular coordinates around the target adopting
conformal maps, such that the principal directions of anisotropy are aligned as
required.

2. Transformation in elliptic coordinates

The key idea behind Transformation Acoustics is the definition of a point-
wise transformation χ from X ∈ Ω to x = χ(X) ∈ ω between points in
the so called virtual undeformed domain Ω to points in the deformed virtual
one ω (Figure 1). Cloaking is achieved when the map is the identity on the
outer boundaries of the domains ∂Ω+ = ∂ω+, and the inner boundary of the
cloak ∂ω− is mapped through the inverse transformation to a small surface with
vanishing scattering cross section. Adopting the language of finite deformations,
the deformation gradient F has determinant J = det(F ) equal to the ratio of
volume elements in the two configurations and can be decomposed according
to F = V R where R is an orthogonal tensor (det(R) = 1, RRT = RTR =
I) representing local rotations while the symmetric and positive definite V ∈
Sym+ represents local stretches. It has been previously shown [6] [23] that
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Figure 1: Graphical representation of the transformation x = χ(X) from the undeformed
domain Ω (left), to the virtual deformed one ω (right). Coordinate lines for the elliptic
coordinates system are superposed in grey color. Constant µ coordinate lines correspond to
confocal ellipses, allowing easy handling of elliptic boundaries. The location of the two foci is
±a and is indicated by a.

the fundamental requirement for obtaining a pure pentamode cloak is that the
transformation is a pure stretch, i.e. R = I and F = V is symmetric.

Let us briefly recall the relationship between cartesian coordinates and el-
liptic coordinates: {

x = a sinhµ sin ν

y = a coshµ cos ν
(1)

For constant µ, coordinate lines are ellipses with vertical semi-axis equal to
a coshµ and horizontal semi-axis equal to a sinhµ, as shown in Figure 1. The
location of the two foci is y = ±a for any choice of µ. For constant values of ν,
hyperbole are obtained with focal distance coincident with that of the ellipses.
As a consequence, the use of elliptic coordinates allows to handle easily trans-
formations between domains whose boundaries are ellipses. Indeed, referring to
Figure 1, undeformed and deformed domains can be described respectively as:

Ω = {X : (X,Y ) = (a sinh(R) sin Θ, a cosh(R) cos Θ), R ∈ [R1, R3],Θ ∈ [0, 2π]}
(2)

and

ω = {x : (x, y) = (a sinh(r) sin θ, a cosh(r) cos θ), r ∈ [R2, R3], θ ∈ [0, 2π]} (3)

having adopted capital letters for coordinates in the undeformed configuration
and plain letters for the deformed one. The use of R, r and Θ, θ is introduced
to enforce intuitive similarity between elliptic and polar coordinates. Indeed
Θ, θ span between 0 and 2π and behave like the polar angle, while R, r are
non negative variables that play a role similar to a radial coordinate. Polar
coordinates can indeed be seen as a limit where the focal distance 2a tends
to zero. The cloak is here obtained in analogy with the usual approach for
axisymmetric cloaks, considering 0 < R1 < R2 < R3, where R1 is a small non
vanishing value and the ellipse defined by r = R2 corresponds to the outer
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surface of the object to be concealed. On the other hand, the coordinate line
corresponding to r = R3 corresponds to the outer surface of the cloak. It is thus
evident at this point that the approach poses a restriction on the shape of the
outer boundary ∂Ω+ and on the shape of the equivalent acoustic target ∂Ω−:
they both have to be confocal to the ellipse describing the shape of the target.
Indeed, when the horizontal and vertical semi-axis H and V of the target are
specified, then the focal distance is univocally defined by:

a =
H

sinh(R2)
=

V

cosh(R2)

R2 = atanh

(
H

V

) (4)

There are thus similarities in this approach to what is done for the usual axisym-
metric cloak, where a small circular hole of vanishing scattering cross-section
is ”enlarged” to occupy the entire area of the object to be cloaked, resulting
in radial and tangential stretching of space into a doughnut that occupies the
area of the cloak. Nevertheless,there are differences worth pointing out. First,
in the undeformed configuration the hole tends to be a linear segment rather
than a point when the parameter R1, which controls the apparent acoustic size
of the cloaked target, approaches zero. Indeed, R, r = 0 corresponds to the line
connecting the focal points. This in turn leads to the fact that the performance
of the cloak is strongly dependent on the direction of incidence. In the limit for
R1 = 0, the line has zero dimension for plane waves propagating in the direction
parallel to it, so that in this case perfect cloaking is achieved. In contrast, for
plane waves whose wavevector is aligned perpendicularly to it and thus aligned
with the minor axis, the cloaked object behaves as if it were a rigid, flat obstacle
with dimensions 2a. This in turn means that the scattering reduction in this
latter case has an upper bound set by the shape of the object to be cloaked,
that uniquely determines the focal length 2a, as first indicated by Eq. (4). In
particular, as the ratio between minor and major axes of the ellipse becomes
smaller, the ratio of the focal length over the vertical semi-axis becomes larger,
decreasing the upper limit of scattering reduction. The aforementioned trend is
shown in Figure 2(a), where the location of the focal points a, normalized with
respect to the major axis, is plotted against the ratio H/V , which is used as a
measure of the ellipticity of the target. The direct mapping x = χ(X) at this
point can thus be written as: {

r = g(R)

θ = Θ
(5)

with the inverse transformation X = χ−1(x) corresponding to:{
R = f(r)

Θ = θ
(6)
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Figure 2: Figure 2(a): Ratio of the half focal distance to the vertical semi-axis as a function
of the ellipticity of the target to be cloaked, expressed as the ratio of the horizontal to the
vertical semi-axis. Figure 2(b) Pictorial representation of the rotation of coordinate basis
vectors after transformation for a point located on the inner boundary ∂Ω−

The deformation gradient reads:

F =
1

f ′(r)
gr ⊗G

R + gθ ⊗G
Θ (7)

being gi the covariant basis in the deformed configuration, and Gi the set
of contravriant basis vectors in the undeformed one (see Appendix A). The
components of the transpose of the deformation gradient can be found according
to [24]:

(F T )Aa = gabF
b
BG

AB (8)

where gab and GAB stand for the components of the metric tensors. It follows
that:

F T =
1

f ′(r)

sinh2(r) + sin2 θ

sinh2(f(r)) + sin2 θ
GR ⊗ gr +

sinh2(r) + sin2 θ

sinh2(f(r)) + sin2 θ
GΘ ⊗ gθ (9)

The left stretch tensor can be then found with the definition V 2 = FF T :

V 2 =
1

f ′(r)2

sinh2(r) + sin2 θ

sinh2(f(r)) + sin2 θ
gr ⊗ gr +

sinh2(r) + sin2 θ

sinh2(f(r)) + sin2 θ
gθ ⊗ gθ (10)

V is diagonal and expressed with respect to an orthogonal basis, thus principal
directions of stretch can be identified as:

n1 =
1

|gr|
gr

n2 =
1

|gθ|
gθ

(11)
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i.e. everywhere tangent to confocal ellipses and hyperbolae. Thus:

V = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 (12)

Where the principal stretches read:

λ1 = F r R
|gr|
|GR|

=
1

f ′(r)

√
sinh2(r) + sin2 θ√

sinh2(f(r)) + sin2 θ

λ2 = F θΘ

|gθ|
|GΘ|

=

√
sinh2(r) + sin2 θ√

sinh2(f(r)) + sin2 θ

(13)

Then:

F = V R = (λ1n1⊗n1+λ2n⊗n2)(n1⊗N1+n2⊗N2) = λ1n1⊗N1+λ2n2⊗N2

(14)
beingN1 andN2 the principal directions of the right stretch tensorU according
to the alternative polar decomposition F = RU . Comparing Eq.(14) with Eq.
(7) it is possible to find:

N1 =
GR

|GR|
=
GR

|GR|

N2 =
GΘ

|GΘ|
=
GΘ

|GΘ|

(15)

from which the rotation tensor can be evaluated as:

R = n1 ⊗N1 + n2 ⊗N2 =
|GR|
|gr|

gr ⊗G
R +
|GΘ|
|gθ|

gθ ⊗G
Θ (16)

Being, in general, ni 6= N i (without summation implied) the transformation
is not a pure stretch. Nonetheless, it is possible to show that under certain
assumptions the maximum and mean rotation remain bounded to low values
and can be neglected. If such condition is met, material properties can be
considered to correspond to that of a pure pentamode material:

ρ = J−1 = (λ1λ2)−1 = f ′(r)
sinh2(f(r)) + sin2 θ

sinh2(r) + sin2 θ

K = J = λ1λ2 =
1

f ′(r)

sinh2(r) + sin2 θ

sinh2(f(r)) + sin2 θ

S = J−1V =

√
sinh2(f(r)) + sin2 θ√

sinh2(r) + sin2 θ
n1 ⊗ n1 + f ′(r)

√
sinh2(f(r)) + sin2 θ√

sinh2(r) + sin2 θ
n2 ⊗ n2

C = KS ⊗ S
(17)
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The angle of rotation α can be evaluated by the scalar product n1 ·N1 = cosα,
which gives:

cosα =
sin2(θ) cosh(r) cosh(f(r)) + cos2(θ) sinh(r) sinh(f(r))√

sinh2(r) + sin2(θ)
√

sinh2(f(r)) + sin2(θ)
(18)

Figure 2(b) shows the boundaries of the deformed and undeformed domains
overlaid with coordinate lines. Unit vectors N i and ni are shown for a point
along the inner boundaries ∂Ω− ∂ω−, the visualization of which provides a bet-
ter understanding of the nature of local rotations (the length of the unit vectors
is magnified for illustration). Since the first principal direction is everywhere
tangent to the hyperbolas, the local rotation follows from the curvature of the
hyperbolas near the foci. Since hyperbolas far from the foci tend asymptotically
to straight lines, it follows that for transformations where g(R) > R everywhere,
the maximum of local rotation is expected for points originally lying on ∂Ω−.
Such maximum rotation is thus related both to the parameter R1, which defines
the location of ∂Ω−, and to the ratio H/V , which gives the shape of the target,
on which the ratio a/V depends. The smaller the focal distance with respect to
the vertical semi-axis, the smaller the region of space in which hyperbolas are
characterized by high curvature, while the higher R1 is, the farther the inner
boundary ∂Ω− is from this region.

It might appear that satisfying the low rotation condition imposes some
significant constraints both on the applicability of the approach, since it is re-
stricted to low ellipticity targets, and on the performance of the solution, since
a lower bound on R1 is imposed. In fact, actual submarine shapes are never
characterized by extreme differences between major and minor semi-axes, due
to symmetry reasons related to the structural resistance of the hull [25]. On the
other hand, very low values of R1 are ruled out in principle for buoyancy rea-
sons: considering the material properties of a pure pentamode cloak, the density
is proportional to the reciprocal of the Jacobian, i.e., the remaining Archimedes
thrust available to the target after subtracting the weight of the cloak from the
total thrust is equal to the weight of the water volume contained in ∂Ω−. Thus,
R1 → 0 would ideally correspond to a cloak weight exactly equal to Archimedes
total thrust. For this reason, most actual feasible implementations will be char-
acterized by rotations limited to negligible values.

2.1. Special Transformations for Elliptic Cloak

Once the geometry of the problem at hand is specified in terms of R1,R2

and R3, the analytic approach allows infinitely many solutions as the infinitely
many possible transformations that can be written between the deformed and
undeformed domains. This allows to control the distribution of material prop-
erties, giving the possibility to obtain different combinations of density and bulk
moduli. Therefore, in the following we give as an example a set of special trans-
formations in elliptic coordinates. It shuould be noted that the scaling factors
of the elliptic coordinate system are the same (Appendix A: |GR| = |GΘ|,
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Figure 3: Figure 3(a): Calculated maximum local rotation for linear transformation when
considering combinations of the geometrical parameter H/V ∈ [0.2, 1] and the design param-
eter R1/R2 ∈ [0.2, 1]. Figure 3(b): Local rotation averaged over the cloak domain for linear
transformation and same range of parameters as in Figure 3(a). Figure 3(c): Geometrical
reduction of vertical semi-axis. Figure 3(d) Geometrical reduction of horizontal semi-axis.

|gr| = |gθ|), so that the stiffness tensor turns out to depend only on the deriva-
tive of the mapping between R and r:

[C] =


1

f ′(r)

|gr|
|GR|

|GΘ|
|gθ|

1 0

1 f ′(r)
|GR|
|gr|

|gθ|
|GΘ|

0

0 0 0

 =


λ1

λ2
1 0

1
λ2

λ1
0

0 0 0

 =

=


1

f ′(r)
1 0

1 f ′(r) 0
0 0 0


(19)

This results in ease of tuning of the definition of f(r) upon requirements on the
stiffness properties of the cloak.

Transformation for constant bulk moduli. To obtain constant Kr,Kθ it is suffi-
cient to use a linear transformation subjected to the constrains:{

f(R2) = R1

f(R3) = R3

(20)
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Figure 4: Figure 4(a): Distribution of local rotation angle α for a linear transformation when
H/V = 0.8, R1/R2 = 0.6 and the outer vertical semi-axis of the cloak is selected to be 1.5V .
Figure 4(b): Direct map r = g(R). Figure 4(c) Deformation of straight lines inside the cloak
when the direct mapping r = g(R) is applied. Figure 4(d)-(e)-(f) Calculated density and bulk
moduli in principal directions. The shown values are normalized on the background fluid’s
physical properties.

which results in

f(r) =
R3 −R1

R3 −R2
(r −R2) +R1 (21)

This transformation is interesting for the implementation of microstructures,
since the gradient of material properties is related to only one parameter, namely
density. The maximum and average rotation within the cloak can be taken as
a measure of the introduced non-ideality of the cloak and the approximation
introduced in the solution by considering the transformation gradient equal to
the left stretch tensor. As mentioned before, such figures of merit depend on
both theH/V ratio, which specifies the shape of the target to be cloaked, and the
R1/R2 ratio. Figure 3(a) and (b) represent the maximum and average value of
α, respectively, for combinations of such independent parameters. Each possible
combination leads to a different associated geometric reduction v/V and h/H,
which are shown in Figure 3(c)-(d), being v and h the vertical and horizontal
semi-axes of ∂Ω−. This provides a better intuition on the equivalent apparent
reduction in size of the target: note that while h can take values tending to
zero, v must be boundedly larger than a. Horizontal planes are introduced for
a better visualization of the results.

Figure 4(a) shows the calculated distribution of rotation α inside the cloak
for a target characterized by V = 1, H/V = 0.8, and R1/R2 = 0.6. The outer
boundary of the cloak ∂ω+ is chosen so that its vertical semi-axis is 1.5 times V .
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Figure 5: Figure 5(a): Calculated maximum local rotation for power law transformation
when considering combinations of the geometrical parameter H/V ∈ [0.2, 1] and the design
parameter R1/R2 ∈ [0.2, 1]. Figure 5(b): Local rotation averaged over the cloak domain for
power law transformation and same range of parameters as in Figure 3(a).

The dashed line marks the location of ∂Ω−. Besides, in Figure 4(b) the direct
mapping g(R) is shown, while in Figure 4(c) straight lines in Ω are deformed
according to the direct transformation for graphical visualization of χ. Finally,
Figures 4(d)-(e)-(f) show the calculated corresponding distributions of density
and bulk moduli.

Power law for bulk modulus. The aim is now to find a constant K1 such that
the bulk moduli can be defined as:

Kθ = K1

(
r

R2

)β
Kr =

1

Kθ

(22)

The transformation must satisfy the following differential equation:

f ′(r) = K1

(
r

R2

)β
(23)

subjected to the usual boundary conditions f(R2) = R1, f(R3) = R3. The
solution is thus:

f(r) =
K1

β + 1

(
r

R2

)β+1

R2 +K2 (24)

with

K1 =
(R3 −R1)(β + 1)

R2

[(
R3

R2

)β+1

− 1

]

K2 = R1 −
R2

β + 1
K1

(25)
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Figure 6: Figure 6(a): Distribution of local rotation angle α for a power law transformation
when β = −10, H/V = 0.8, R1/R2 = 0.6 and the outer vertical semi-axis of the cloak is
selected to be 1.5V . Figure 6(b): Direct map r = g(R). Figure 6(c) Deformation of straight
lines inside the cloak when the direct mapping r = g(R) is applied. Figure 6(d)-(e)-(f)
Calculated density and bulk moduli in principal directions. The shown values are normalized
on the background fluid’s physical properties.

For illustration purposes Figure 5 shows the calculated maximum and average
values of the local rotation α for combinations of geometric and design param-
eters H/v and R1/R2, when the exponent is set to β = −10.

The increased freedom in the choice of the transformation given by the an-
alytical approach allows the design to be tailored to the needs of the specific
application, e.g., to obtain simpler material distributions to be implemented
with a microstructure or to pursue minimization of local rotation. As an ex-
ample, in Figure 6, a cloak with the same geometric features assumed for the
numerical example shown in Figure 4 is now designed using a power law with
β = −10. As can be seen in Figure 6(a)-(b)-(c) this particular transformation
allows for reduced average rotation within the cloak, due to the smaller tangent
of g(R) near ∂Ω−. On the other hand, one pays for this with a more compli-
cated distribution of density and bulk moduli compared to those obtained with
the linear mapping, as shown in Figure 6(c)-(d)-(e). Note that for this type of
transformation, g(R) is not everywhere larger than R. Thus, there are points
that decrease their distance from the origin. This is the reason why the maxi-
mum rotations shown in Figures 3(a) and 5(a) are not the same. even though
the geometry of the problem is the same.

At this point, it is logical to ask whether it is possible to obtain cloaks with
constant isotropic density. Considering that the problem is not axisymmet-
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ric, it is reasonable to expect that the dependence on θ in the distribution of
anisotropic propagation velocities

vr =

√
Kr

ρ
; vθ =

√
Kθ

ρ
(26)

cannot be eliminated. Since no dependence on θ is found for the components of
the elasticity tensor C, it follows that the density inside the cloak can never be
constant, since the dependence of the solution on θ is required.

To assess the difference in performance introduced by considering the trans-
formation to be symmetric when instead the rotation is different from zero,
numerical finite element simulations are conducted of the scattering of acous-
tic plane waves on a cloak designed for a target characterized by H/V = 0.85
and R1 = 0.1R2. The outer ellipse is characterized by vertical semi-axis equal
to 1.5 V . These parameters are set such that the maximum rotation reaches
almost 50 [o], with an average µα ≈ 7 [o], as shown by Figure 7(a). The goal
is to assess if scattering reduction is still observed with such high rotation val-
ues. For a frequency range corresponding to V/λ ∈ [0.5, 3] a plane wave is sent
with different angles of incidence and the scattered power is integrated from the
resulting scattering intensity to evaluate the total scattering cross section

TSCS =
Wsc

Iinc
(27)

being Wsc the scattered power and Iinc the incident intensity. This procedure is
repeated for the target provided with cloak, the bare target without cloak and
a target shaped as the reference obstacle ∂Ω− for comparison. The TSCS of the
cloaked case and the reference obstacle are normalized with respect to the TSCS
of the target obstacle without cloak, obtaining the reduction in scattered power,
and plotted in Figure 7 for comparison. Figure 7(b) refers to the case of vertical
incidence, Figure 7(c) to incidence at π/4 angle and Figure 7(d) to horizontal
incidence. As expected, the best case scenario is the vertical incidence, that
still shows a broadband scattering reduction of approximately 80% despite the
neglected rotation, while the worst case scenario is the horizontal incidence,
for which a 50% reduction is calculated. The difference between the curve of
the cloaked obstacle and the reference obstacle follows from the non-ideality of
the solution, introduced by neglecting the rotation to obtain pure pentamode
material properties. Figure 8 shows the calculated acoustic fields for V/λ = 2.

3. Microstructure alignment to principal directions of anisotropy

Pentamode cloaks are usually implemented with solid microstructures after
discretization of the continuous material distribution inside the cloak. Within
each discretized domain, the specification of a constant density and a constant
anisotropic elasticity tensor is obtained. Such material properties are then
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Figure 7: Figure 7(a) Calculated local rotation angle α for the cloak’s performance numerical
assessment. The selected parameters are: H/V = 0.85, R1/R2 = 0.1 outer vertical semi-axis
is 1.5V . The transformation is obtained with a linear map. Figure 7(b) Performance in terms
of the scattered power normalized with respect to the scattered power of the uncloaked target,
when a plane wave impinges from the vertical direction. The results of the cloak are plotted
along with the calculated scattering for the reference behavior, i.e. an elliptical object shaped
as ∂Ω−. Figure 7(c) Oblique incidence with 45o angel with respect to the horizontal direction.
Figure 7(d) Horizontal incidence.

achieved by optimization of band diagrams in the long wavelength limit for
unit cells showing the required symmetries, e.g. in 2D settings, centered rectan-
gular lattices are usually employed because they posses the needed orthotropic
elasticity tensor [13] [12]. Each designed pentamode microstructure should then
be ”housed” within the respective part of the discretized cloak, aligning the
principal directions of anisotropy with those prescribed by the transformation,
while ensuring connectivity with the rest of the cloak.

This phase of the design can be greatly facilitated if the lines along which
the main directions of anisotropy lie can be described by analytical functions:
in this case, a direct mapping between the grid of the straight principal lines
of the optimized rectangular lattice and the curvilinear grid of the principal
directions in the cloak can indeed be set, which allows the accomodation of
the microstructure in place to be mathematically performed at once. In the
specific case at hand horizontal straight lines in a cartesian grid can be mapped
to ellipses and vertical lines to hyperbolas by

r = r(Y )

θ = θ(X)
(28)

where r, θ are elliptic coordinates describing points in the cloak, and X,Y is the
set of cartesian coordinates used in the design of the microstructure.

For illustrative purposes consider to know the optimized geometry of the
microstructure of the centered rectangular lattice for a given portion of the
cloak (Figure 4): the four corners will be label with capital letters A-D, to
easily identify their coordinates. A simple linear map as:

r = rA +
rD −RA
YD − YA

(Y − YA)

θ = θA +
θB − θA
XB −XA

(X −XA)

(29)
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Figure 8: Total pressure field and pseudo-pressure calculated for the numerical assessment
of performance illustrated in Figure 7, for V/λ = 2. from left to right the fields of the bare
target without cloak, the cloaked obstacle and the reference obstacle are compared. From
top to bottom the vetical incidence case, the oblique and the horziontal one are depicted,
respectively.

will put the microstructure in place inside the portion of the cloak defined by
the corresponding coordinates ri, θi, aligning principal directions of anisotropy
to the coordinate lines of the elliptic system. The new cordinates of points in
the cloak, according to a cartesian system can then be recovered as:

ξ = a sinh(rA +
rD − rA
YD − YA

(Y − YA)) sin(θA +
θB − θA
XB −XA

(X −XA))

η = a cosh(rA +
rD − rA
YD − YA

(Y − YA)) cos(θA +
θB − θA
XB −XA

(X −XA))

(30)

The underlying hypothesis is that after this procedure the geometry of the
microstructure ideally remains unchanged, so that the previously optimized dis-
persion remains the same after the cloak is assembled. At this point we show
that the important property of the elliptical system to have equal scaling fac-
tors can be exploited to easily guarantee that no distortion occurs during the
transformation. Note that the gradient of the deformation defined by Eq. 29 is

F =
rD −RA
YD − YA

gr ⊗E
Y +

θB − θA
XB −XA

gθ ⊗E
X (31)
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Figure 9: Deformation of a latticed microstructure to fit inside the geometry of the cloak,
in such a way that principal directions of anisotropy remain aligned with coordinate lines
of the elliptical system. Capital letters A, B, C, D are adopted for the four corners of the
microstructure.

thus if
rD −RA
YD − YA

=
θB − θA
XB −XA

or

rD −RA
θB − θA

=
YD − YA
XB −XA

(32)

since |gr| = |gθ| everywhere, it follows that

F = V R = λisoR (33)

with

λiso =
rD −RA
YD − YA

a

√
sinh2(r) + sin2(θ)

R = er ⊗EY + eθ ⊗EX

(34)

Thus, the transformation is represented everywhere by a rotation in combination
with an isotropic expansion/contraction, i.e. it is a so-called conformal map that
preserves angles and relative distances by points. Equation 32 can thus be used
as a design rule to set up the discretization of the cloak together with the design
of the associated unit cells so that they can retain their shape after adaptation
to the target.

4. Concluding Remarks

In this manuscript the design problem of elliptical-shaped cloaks is tack-
led analytically, showing a strategy to write quasi-symmetric transformations
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adopting elliptic coordinates. The symmetry of the deformation gradient is the
fundamental requirement for pure pentamode cloaking, which is crucial to ob-
tain design that can be implemented with solid microstructures. A quantifiable
approximation is introduced when considering the quasi-symmetric transforma-
tion for the design of pentamode cloaks with isotropic inertia, and can be related
to the local rotation, which is analytically calculated. The peculiarities of the
approach illustrated in this manuscript are discussed and compared with re-
spect to the usual axisymmetric cloaking, such as the sensitivity of performance
with respect to the direction of incidence, for targets showing high ratios of
vertical to horizontal semi-axis. Fully-coupled acusto-elastic numerical simula-
tions of the scattering problem are performed to show the broadband nature
of the performance of the solution, even in presence of non-negligible levels of
approximation.

The property of the elliptic coordinate system having equal scale factors is
exploited to underline the ease in setting transformations for specified distribu-
tions of stiffness properties in the cloak, given that the elasticity tensor depends
on the mapping function alone. In addition, analytical ways of conformally acco-
modate previously optimized microstructures to the shape of the cloak to match
the required principal directions of anisotropy are also discussed. In this way,
we try to overcome some limits of the previously developed numerical approach
for designing arbitrarily shaped pentamode cloaks, while at the same time this
is paid with a restriction on the shape of the target that can be treated, putting
itself in between the aforementioned numerical method and classical exact ana-
lytical solutions. Such restriction is justified by the relevance of elliptical shapes
for underwater applications. In this respect, this work paves the way for ex-
perimental validation of the cloaking concept for non-axisymmetric targets in a
feasible way.
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Appendix A. Elliptic coordinates

Recall the definition of elliptic coordinates:{
x = a sinhµ sin ν

y = a coshµ cos ν
(A.1)

From this relationship it is possible to obtain the basis vectors as:
gµ =

∂x

∂µ
ex +

∂y

∂µ
ey = a sin ν coshµex + a cos ν sinhµey

gν =
∂x

∂ν
ex +

∂y

∂ν
ey = a sinhµ cos νex − a sin ν coshµey

(A.2)
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Thus the metric tensor can be evaluated as:

[gij ] =

[
a2(sinh2 µ+ sin2 ν) 0

0 a2(sinh2 µ+ sin2 ν)

]
(A.3)

The contravariant metric tensor reads:

[gij ] =


1

a2(sinh2 µ+ sin2 ν)
0

0
1

a2(sinh2 µ+ sin2 ν)

 (A.4)

Contravariant base vectors are thus:
gµ = gµ

1

|gµ|2

gν = gν
1

|gν |2
(A.5)
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