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Abstract
We consider the 2-Wasserstein space of probability measures supported on the unit-circle, and propose a framework for
Principal Component Analysis (PCA) for data living in such a space. We build on a detailed investigation of the optimal
transportation problem for measures on the unit-circle which might be of independent interest. In particular, building on
previously obtained results, we derive an expression for optimal transport maps in (almost) closed form and propose an
alternative definition of the tangent space at an absolutely continuous probability measure, together with fundamental char-
acterizations of the associated exponential and logarithmic maps. PCA is performed by mapping data on the tangent space at
theWasserstein barycentre, which we approximate via an iterative scheme, and for which we establish a sufficient a posteriori
condition to assess its convergence. Our methodology is illustrated on several simulated scenarios and a real data analysis of
measurements of optical nerve thickness.

Keywords Optimal transport · Directional Data · PCA · Weak Riemannian structure · Distributional data analysis

1 Introduction

Distributional data analysis (DDA) is an emerging subfield
of statistical learning dealing with probability distribution
as data elements. DDA presents some unique challenges in
that probability distributions are not easily embeddable in an
Euclidean space, so that techniques developed for multivari-
ate or functional data do not seamlessly translate to the case
of DDA. Several recent papers (Bigot et al. 2017; Cazelles
et al. 2018; Pegoraro and Beraha 2022; Chen et al. 2021;
Zhang et al. 2020; Zhu and Müller 2023) proposed to carry
out DDA for measures on the real line by considering data
points as elements of the 2-Wasserstein space. Contributions
include thedefinitionof principal component analysis (PCA),
linear regression and autoregressive models. In those works,
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the Wasserstein space is considered in close analogy to a
“Riemannian” manifold and the characterisation of the tan-
gent space at an absolutely continuous probability measure
(Ambrosio et al. 2008) is exploited to perform statistical anal-
ysis.

The focus of this paper is principal component analysis for
data living in the 2-Wasserstein space of probability mea-
sures supported on the unit-circle S1 := {(x, y) ∈ R2 :
x2 + y2 = 1}. PCA is popular among practitioners as it
produces both a set of orthogonal directions, usually inter-
preted as the main directions of variability in the dataset,
and a map from the space where data live onto the space
generated by such directions. Hence, PCA can be used to
visually interpret the variability in the dataset and to reduce
the dimensionality of the data, by projecting data on their
scores. In particular, classical multivariate statistical tools,
such as linear regression or clustering, can be carried out by
working on the scores. In the context of data living on non-
linear spaces, this latter feature is particularly appealing, as it
allows using out-of-the-box tools directly on the PCA scores.

The study of distributions on S1 is relevant in several
applied fields including biology, meteorology, and envi-
ronmental science to cite a few. In particular, directional
statistics is an active area of research. See Batschelet (1981),
Fisher (1995),Mardia and Jupp (2009), Landler et al. (2018),
Pewsey and García-Portugués (2021) for an overview. In
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this paper, we focus on a specific application in biolog-
ical research which originates from the analysis in Ali
et al. (2021) where measurements of the optical nerve head,
obtained via Optical Coherence Tomography (OCT), are
studied in connection to the development and progression
of optic neuropathies such as glaucoma. The OCT produces
a circular scan of the eye measuring neuroretinal rim (NRR)
thickness, so that each datapoint can be considered as a func-
tion supported on S1. These are then normalized to eliminate
undesired variability introduced by different magnitudes so
that data can be considered as probability densities on S1. A
clustering pipeline on the coefficients of the Fourier series
expansion of the densities is then developed, thus taking into
account the circular nature of the support but overlooking the
compositional nature of the data.

1.1 Related works on optimal transport on S1

Optimal transport for periodic measures was initially inves-
tigated by Cordero-Erausquin (1999) where existence of
optimal transport maps, as well as necessary conditions for
the optimality of transport maps are established. See also
Section 2.2 in Manole et al. (2021) for a summary of the
main results. Manole et al. (2021) establishes minimax opti-
mality for a class of plug-in estimates of the transport maps
when measures are approximated with the empirical coun-
terpart. By contrast, we assume here that measures are fully
observed and obtain an analytical expression for the opti-
mal transport maps. Delon et al. (2010) and Hundrieser et al.
(2022) study the optimal transport cost for circular measures.
Delon et al. (2010) propose efficient numerical algorithms for
the computation of the Wasserstein distance with arbitrary
cost function, as well as the definition of “locally optimal”
transport plans. We build on these results to define the opti-
mal transport maps in our setting. Hundrieser et al. (2022),
instead, focuses on the Wasserstein distance where the cost
is the geodesic distance on the circle (and not the squared
one as considered here). They derive central limit theorems
for the approximate transport cost obtained by replacing one
measure with its empirical counterpart.

1.2 Related works on PCA inWasserstein spaces

PCA for probability measures has been framed in different
contexts, but, to the best of our knowledge, the focus has
been either on analyzing histograms (or discrete measures)
or measures supported in R.

Different definitions of PCA (and related algorithms) for
distributions under the Wasserstein metric have been pro-
posed in Bigot et al. (2017), Cazelles et al. (2018), Pegoraro
and Beraha (2022) and Campbell and Wong (2022). In these
works, the space of square-integrable probability measures
on the real line, endowed with the 2-Wasserstein metric (also

called the Wasserstein space), is considered in close analogy
to a “Riemannian” manifold and the characterization of the
tangent space at an absolutely continuous probability mea-
sure (Ambrosio et al. 2008) is exploited to perform statistical
analysis.

When the statistical units are not embedded in a linear
space, classical tools from multivariate statistics need to
be generalised to take into account the nonlinearity of the
space. Think, for instance, about how the Frechét mean gen-
eralizes the notion of the sample mean. For data supported
on manifolds, the statistical tools can be subdivided into
extrinsic or intrinsic (Bhattacharya et al. 2012; Pennec 2006,
2008; Huckemann et al. 2010; Patrangenaru and Ellingson
2015; Fletcher 2013; Banerjee et al. 2015). The extrinsic
approach consists of finding a linear space (usually a tan-
gent space at a suitable centring point) that approximates
the manifold (or the region of the manifold where data are
located), and performing standard (Euclidean) PCA on the
projection of data onto the linear space. In the intrinsic case,
instead, the geodesic structure of the manifold is exploited
to define a PCA based on the distance between datapoints
and (geodesically) convex subsets of the manifold, whereby
one considers convex subsets as the natural generalisation of
linear subspaces. Note that extrinsic techniques introduce an
approximation that might significantly impact the results if
the manifold is not well approximated, while intrinsic tech-
niques are usually computationally intensive and not suitable
to analyse large datasets.

Focusing on the case of data in the 2-Wasserstein space
of measures supported on R, we can label the the geodesic-
PCA in Bigot et al. (2017) as an intrinsic method, while
the log PCA in Cazelles et al. (2018) and the projected one
in Pegoraro and Beraha (2022) are extrinsic tools. These
approaches are based on the explicit knowledge of optimal
transport maps from an absolutely continuous measure to
any other measure, which is a peculiarity of this particu-
lar setting. Moreover, Bigot et al. (2017), Cazelles et al.
(2018), Pegoraro and Beraha (2022), Campbell and Wong
(2022) exploit well-known isometric isomorphisms between
the 2-Wasserstein space and closed convex cones in suitably
defined L2 spaces. Thus, the “manifold” nature of the space
of probability measure is taken into account by considering
the “cone constraints”. The log-PCA in Cazelles et al. (2018)
can be, in principle, applied to distributions over more com-
plex domains. However, as discussed in Pegoraro and Beraha
(2022), the log-PCA results in poor interpretability of the
components and does not allow to work on the scores, which
is usually a standard requirement for PCA.

1.3 Our contribution and outline

The aim of our paper is to build a framework for PCA for
measures on S1. In particular, we propose an extrinsic PCA,
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Fig. 1 Two OCT samples on S1 (left) and when unrolled on [0, 2π ] (left) starting from 0 (top) or from π (bottom) and the associated Wasserstein
distances computed between the probability measures on [0, 2π ]

which consists in choosing a suitable tangent space at a point
μ̄, and analyse the transformed data obtained bymapping the
observations to the tangent via the logarithmic map. The tan-
gent space is a Hilbert space so that standard PCA could be
carried out on the transformed data. However, we prove that
the image of the logarithmic map is a convex cone inside the
tangent space.We argue that such a constraint should be con-
sideredwhen performing PCA to obtain interpretable results.
Indeed, as discussed in Cazelles et al. (2018); Pegoraro and
Beraha (2022), failing to do so results in poor interpretability
of the directions, and the impossibility to work in the scores.
Essentially, both issues are due to the fact that the principal
directions might not be orthogonal (or even geodesics) when
seen as curves in the Wasserstein space. Following Bigot et
al. (2017), we propose a nested PCA, that requires solving a
variational problem over the space of probabilitymeasures to
find the principal directions. Introducing a suitable B-spline
approximation, we show how such an optimization prob-
lem can be translated into a finite-dimensional constrained
optimization problem, whose solution can be approximated
numerically using standard software for constrained opti-
mization.

In extending the previously proposed approaches for
Wasserstein PCA to measures on S1 we face several non-
trivial issues. For measures on R, the Wasserstein space has
null curvature and is isometrically isomorphic to the space of
quantiles, that is, the convex cone inside L2([0, 1]) of non-
decreasing functions. Thus, the manifold nature of the space
of probability measure is taken into account by considering
the cone constraints. Our setting is more challenging due to
the non-Euclidean nature of S1. A trivial solution to analyz-
ing distributions on S1 is to fix a point θ ∈ S1 and “unroll” the
circle starting from θ , which results in a bijection between S1
and [0, 2π ]. Hence, it might be tempting to treat distributions
on S1 as distributions on an interval of the real line. However,

the Wasserstein metric is then dependent on the chosen θ as
shown, for instance, in Fig. 1. More generally, optimal trans-
port for measures supported on Riemannian manifolds is an
active area of research (McCann 2001; Gigli 2011; Kim and
Pass 2017). In particular, McCann (2001) provides a char-
acterization of optimal transport maps while Gigli (2011)
proposes a different definitions of tangent spaces based on
the transport maps and plans. Due to the generality of their
framework, the resulting expressions are not amenable for
computations.

Therefore, prior to defining our PCA,we present a detailed
investigation of optimal transport for measures supported on
S1, which is also of independent (mathematical) interest. In
particular, building on results inDelon et al. (2010),wederive
an expression for optimal transport maps in (almost) closed
form and propose an alternative definition of tangent space
at any absolutely continuous probability measure. Observe
that this is a crucial result for our methodology, as efficiently
computing the optimal transportmaps between the base point
μ̄ and all observations is the first step of the PCA pro-
posed here. Moreover, we specialize the theory developed by
Cordero-Erausquin (1999) to the case of S1 and extend it by
characterizing explicitly the image of the “logarithmic map”
(i.e., the map from the Wasserstein to the tangent spaces).
This characterization is the cornerstone of our methodol-
ogy and was previously obtained only for measures on the
real line (which is a much simpler scenario). Moreover, we
establish an homeomorphism between theWasserstein space
and the image of the logarithmic map, ensuring coherence
between the tangent space representation and the original
measures living in the Wasserstein space space. In particu-
lar, the characterization of the image of the logarithmic map
translates into linear constraints that define the space where
we look for the principal components, making the optimiza-
tion problem amenable to numerical software. On the other
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hand, the continuity of the logarithmicmap and its inverse are
essential to motivate our approach: without continuity, per-
forming the extrinsic PCAwould not lead to any interpretable
insight on the original dataset of probability measures.

Finally, we discuss an algorithm to approximate the
Wasserstein barycentre and propose to use the output of such
an algorithm as the centring point μ̄ for the PCA. Our algo-
rithm follows the one in Zemel and Panaretos (2019), which
requires explicit knowledge of optimal transport maps. We
derive a sufficient a posteriori condition to assess its conver-
gence to the barycentre, andvalidate it on several simulations,
leaving a theoretical analysis for future works.

The paper is structured as follows. In Sect. 2 we cover the
necessary background material on optimal transport. Sec-
tion3 contains the main results related to optimal transport
for measures on S1 and Sect. 4 discusses our PCA framework
and the numerical approximation of theWasserstein barycen-
tre. Numerical illustrations are presented in Sect. 5, wherewe
discuss a simulation study for the PCAon location-scale fam-
ilies of distributions, highlighting the differences between
the case of measures on R and S1. In Sect. 6 we present our
analysis of the OCTmeasurements. Finally, we conclude the
paper with a discussion on open problems and future work
in Sect. 7. Proofs, further background material, and comple-
mentary results are deferred to the Supplementary Material.
Code implementing the proposed methodologies is available
at https://github.com/mberaha/WassersteinS1PCA.

2 Background on optimal transport and on
manifold-valued data analysis

In this section, we provide a brief account of optimal trans-
port and the Wasserstein distance for measures on compact
manifolds. See, e.g., Ambrosio et al. (2008) for a detailed
treatment. Technical details are deferred to Appendix A.

2.1 Riemannianmanifolds

Informally, one can think of an n-dimensional smooth mani-
fold M as a set which locally behaves like a Euclidean space:
it can be covered with a collection of open sets (Ui )i≥1 for
which there exist homeomorphisms ϕ : Ui → ϕ(Ui ) ⊂ R

n ,
called coordinate charts, which satisfy some compatibility
conditions. We may refer to (Ui , ϕ(Ui )) as a local parame-
terisation of the manifold. A Riemannian manifold (M, g)
of dimension n is a smooth manifold M endowed with (a
smooth family of) inner products g = (gx )x∈M on the tan-
gent space TxM at each point x ∈ M . Its tangent bundle T M
is defined as

T M :=
∐

x∈M
TxM =

⋃

x∈M
{x} × TxM . (1)

Each TxM is a vector space of dimension n. The tangent
bundle is itself a smooth manifold of dimension 2n with a
standard smooth structure. SeeLee (2013) for an introduction
to Riemannian manifolds.

The exponential map at z ∈ M denoted by expz : T M →
M allows us to map a tangent vector v ∈ TxM onto the
manifold itself. Informally, expz(v) is the arrival point of the
geodesic starting at z with direction v travelled for a unit of
time. The logarithmic map logz : M → T M , where it is
defined, satisfies expz ◦ logz(x) = x . The inner product g
induces the volume measure ω, which is locally (i.e., on a
chart (U , ϕ)) given by

LM (A) =
∫

ϕ(A)

| det(g(ϕ−1(x))) |1/2 dL(x) (2)

for any measurable A ⊂ U and with L being the Lebesgue
measure. See Section A for measure theoretical details.

2.2 Wasserstein space

To define the Wasserstein metric, denote by P(M) the space
of probability measures on M and let c : M × M → R+
be a cost function. The p-Wasserstein distance between two
probability measures on M , say μ and ν, is

Wp(μ, ν)p = min
γ∈�(μ,ν)

∫

M×M
c(x, y)pdγ (x, y), (3)

where �(μ, ν) is the set of all probability measures on M ×
M with marginals μ and ν. The existence of (at least one)
optimal plan γ o attaining theminimum in (3) is ensured if c is
lower semicontinuous (Ambrosio et al. 2008). Definition (3)
is due toKantorovich and canbe seen as theweak formulation
of Monge’s optimal transportation problem, i.e.

Wp(μ, ν)p = inf
T :T #μ=ν

∫

M
c(x, T (x))pdμ(x),

where # denotes the pushforward operator: T #μ(A) =
μ(T−1(A)) for all measurable A. It can be proven that when
an optimal map exists, then it induces an optimal transport
plan γ o = (IdM , T )#μ and the two formulations are equiva-
lent. However, there are several situations in which Monge’s
problem has no solution.

In the following, we will always consider the Riemannian
distance dR(·, ·) as cost function and set p = 2. We restrict
our focus on measures in the 2-Wasserstein space, that is the
subset of probability measures

W2(M) =
{
μ ∈ P(M) :

∫

M
dR(x, x0)

2dμ(x) < ∞

for every x0 ∈ M
}
.
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This ensures that Wasserstein distance is always finite.

2.3 Geometry of theWasserstein space

The Wasserstein space (W2,W2) can be endowed with a
weak Riemannian structure induced by the tangent spaces of
W2 at any absolutely continuous measure with respect to the
volume measure (2). As in the case of measures supported
in Rn , the tangent spaces are subset of L2 spaces of vector-
valued functions defined on the ground space (in this case,
M). Their definition needs some further background.

Consider a vector field v : M → T M such that for every
z ∈ M , vz := v(z) ∈ TzM . To be more precise, denote by π

the canonical projection map π : T M → M , i.e. π(z, v) =
z ∈ M , then v must be such that

π ◦ v = IdM ,

where IdM is the identity map on M . Let S(M) be the collec-
tion of all such vector fields. Then, for a measure μ ∈ P(M)

we can define L2
μ as

L2
μ(M) =

{
v ∈ S(M) :

∫
g(vz, vz)

2dμ(z) < ∞
}
. (4)

See Appendix A in the appendix for further details. For v ∈
S(M) we can define the map exp(v) : M → M such that
exp(v)(z) := expz(vz) for z ∈ M . With this notation, we can
state a fundamental theorem in optimal transportation due to
McCann (2001).

Theorem 1 (Characterization of optimal transport plans)
Let μ, ν ∈ W2(M). If μ is absolutely continuous with
respect to the volume measure (2), there exists a unique opti-
mal transport plan, γ o, from μ to ν, which has the form
γ o = (IdM , T )#μ, where T : M → M. Moreover, there
exists a d2R-concave function φ such that T = exp(−∇φ).

The d2R-concavity condition is rather technical and not
needed in the following, for this reason we report it only in
Section A of appendix, see Gigli (2011) for further details.
To make explicit the dependence of the transport map on the
source and target measures, we will use notation T ν

μ to refer
to the optimal transport map (OTM) from μ to ν.

The existence and uniqueness of optimal transport maps
suggest the following definition of tangent spaces (Corollary
6.4 of Gigli 2011)

Tanμ(W2(M)) = {v ∈ L2
μ(M) | ∃ε > 0 :

(IdM , exp(tv))#μ is optimal for t ≤ ε}L2
μ.

(5)

As in the case of Riemannianmanifolds, we can define the
exponential and logarithmic maps that allow to move from

the tangent space Tanμ(W2(M)) to the Wasserstein space
and vice versa.

expμ : L2
μ(M) → W2(M), expμ(v) = exp(v)#μ

logμ : W2(M) → L2
μ(M), logμ(ν) = v s.t. exp(v) = T ν

μ .
(6)

This structure is usually referred to as the weak Riemannian
structure of W2(M).

3 Optimal transport on the circle

In this section, we specialise the general theory outlined in
Sect. 2 to the case of measures supported on the unit-radius
circle.

3.1 Geometry of S1

For our purposes, it is convenient to define the unit-radius
circle as S1 := {z ∈ C : | z |= 1}, where | · | denotes the
modulus of a complex number. We first present the smooth
(group) structure of S1 and then describe its Riemannian
structure.

To endow S1 with a group structure, we start by consid-
ering the map expc : R → S1 defined as expc(x) = eix , and
the map logc : S1 → R defined as logc(z) = x ∈ [0, 2π)

such that z = eix . Note that logc is right inverse of expc,
i.e., expc ◦ logc = IdS1 . The exponential map expc is usu-
ally referred to as universal covering of S1 (Munkres 2000).
Clearly, we take the multiplication between complex num-
bers as the group operation: · : S1 × S1 → S1 given by
z ·w = expc(logc(z)+logc(w)). Informally speaking logc(z)
is the “angle” associated with the polar representation of z
and · is the sum of the angles. It can be trivially seen that
(S1, ·) is a group and expc : (R,+) → (S1, ·) is a group
homomorphism.

Through expc and logc we can define the smooth struc-
ture of S1 by considering at each z ∈ S1 the map expz(x) :=
expc(x + logc(z)), that is the shifted version of the exponen-
tial map, and logz(w) = y such that y ∈ [−π/2, π/2) and
expz(logz(w)) = w. LettingVz := S1\{−z}, we have that for
each z ∈ S1 the couple (Vz, logz) is a coordinate chart. With
this differential structure S1 is a Lie Group and its tangent
bundle is TS1 = {(x, v) | x ∈ S1 and v ∈ TxS1} � S1 × R.
We call 1 the point (1, 0) which gives the neutral element in
S1.

We consider the Riemannian metric g is induced by the
embedding S1 ↪→ C � R

2, that is gz(x, y) = xy for x, y ∈
TzS1 � R. This induces the arc-length distance dR . Note
that det(g) ≡ 1, so that LS1 = expc #L or, equivalently,
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logc #LS1 = L. Thus for any f : S1 → R

∫

S1

f (z)dLS1(z) =
∫ π/2

−π/2
f (expc(x))dL(x). (7)

See Appendix A for further details.

3.2 Optimal transport maps

With the notation introduced in the previous section we now
focus on the optimal transportation problem on M = S1

endowed with its Riemannian distance dR .
The fundamental observation is that a measure μ on S1

can be equivalently represented by a periodic measure on
R defined as μ̃(A) := μ(expc(A)) for any measurable A,
which entails μ̃(A) = μ̃(A + p) for any p ∈ 2πZ, where
A+ p amounts to shifting all the points in A by the amount p.
Then we define the “periodic cumulative distribution func-
tion” associatedwith μ̃ as Fμ̃(x) = μ̃([0, x)) for x ∈ [0, 2π ]
and extend it over R via the rule Fμ̃(x + 2π) = Fμ̃(x) + 1.
For θ ∈ R, let Fθ

μ̃
(x) = Fμ̃(x) + θ denote a vertical shift

of the cumulative distribution function. Note that the mea-
sure induced by Fθ

μ̃
is independent from θ and is always μ̃.

This easily follows from, for instance, μ̃([a, b]) = Fθ
μ̃
(b) −

Fθ
μ̃
(a) = Fμ̃(b) − Fμ̃(a).

Denote with F−
μ̃

the associated quantile function, i.e.,

the (generalised) inverse of Fμ̃. We have that (Fθ
μ̃
)−(x) =

F−
μ̃

(x − θ). Thus, θ acts as a rotation of the quantiles

around the circle, by a factor of z−1
θ = expc(−θ). Hence,

the 0-th quantile (Fθ
μ̃
)−(0) is not 0 but z−1

θ . Equivalently,

Fθ
μ̃
(y) = μ̃([z−1

θ , y)).
Exploiting results contained in Delon et al. (2010), the

following proposition provides an explicit characterisation
for the optimal transport maps between two measures on S1.

Theorem 2 Define θ∗ as the solution of the following min-
imisation problem:

θ∗ = argmin
θ∈R

∫ 1

0

(
F−

μ̃
(u) − (Fθ

ν̃ )−(u)
)2

du. (8)

Then the optimal transport map between μ and ν is

T ν
μ := expc ◦

(
(Fθ∗

ν̃ )− ◦ Fμ̃

)
◦ logc . (9)

Note that (9) is closely related to the expression of opti-
mal transport maps for measures on R. In that case, setting
expc = logc = Id and θ∗ = 0 we recover the classical for-
mulation of OTMs for measures on the real line. Observe
that the expression of the OTM in (9) depends on solving the
optimization problem in (8). However, it is easy to see that
(8) is convex (Delon et al. 2010), and moreover it involves

only one real variable. Therefore, its solution is unique and
extremely fast to compute. In the following, we will write
T̃ ν̃

μ̃
:= (Fθ∗

ν̃
)− ◦ Fμ̃ to denote the map between μ̃ and ν̃

associated with the optimal θ∗ in (8). Although T̃ ν̃
μ̃

is not
“optimal” (since the cost associated to the transport of peri-
odic measures is either zero or unbounded), we will refer to
it as the optimal transport map between μ̃ and ν̃ in light with
its connection with T ν

μ .
Let us give some intuition behind the optimal trans-

port map T ν
μ . Observe that precomposing (Fθ∗

ν̃
)− with(

Fμ̃

)
|[0,2π ], obtaining T̃

ν̃
μ̃
, means transporting quantiles iden-

tified by F−
μ̃

onto the corresponding shifted quantiles of

(Fθ∗
ν̃

)−|[0,1], in an anti-clockwise order (due to the definition

of expc). Note that T
ν̃
μ̃
((Fμ̃)−(0)) = T ν̃

μ̃
(0) = F−

ν̃
(−θ∗) =:

x−θ∗ and

T μ̃

ν̃
((Fμ̃)−(1)) ≤ T μ̃

ν̃
(2π) = (Fθ∗

ν̃ )−(1)

= F−
ν̃

(1 − θ∗) = 2π + F−
ν̃

(−θ∗)
= 2π + x−θ∗ ,

(10)

which means that the optimal transport maps sends [0, 2π)

into [x−θ∗ , 2π + x−θ∗). As a consequence we can think at
this situation as “unrolling” the circle in two different points,
namely z−1

θ∗ = expc(−θ∗) for ν and 1 = expc(0) for μ, and
then matching the measures induced onR. For instance, sup-
pose μ and ν have densities fμ and fν with respect to the
Lebesgue measure on S1, LS1 , then (Fθ

ν̃
)−|[0,1] is the quantile

function associated with the density fν(expc(x)) supported
on [x−θ , 2π + x−θ ]. Clearly no action is taken on μ and
thus we transport fμ(expc(x)) supported on [0, 2π ] onto
fν(expc(x)) supported on [x−θ , 2π + x−θ ]. The parameter
θ∗ then selects the optimal point fromwhich to start unrolling
the circle for ν.

Optimal transport maps are fundamental for the statisti-
cal methods we develop in the later sections: the optimal
transport maps Ti from a reference distribution to the i-th
datapoint will play the role of “tangent vectors”, allowing
us to approximate the Wasserstein space, with a space of
functions. Thus, it is essential to characterise the optimal
transport maps on S1, understanding their properties, and
inspecting them assuming the perspective of the associated
maps T̃ between periodic measures on R.

The following theorem proves a fundamental property of
OTMs.

Theorem 3 Given μ a.c. measure and ν ∈ W2(S1), T̃ :=
(Fθ∗

ν̃
)− ◦ Fμ̃ is an optimal transport map if and only if:

∫ 2π

0
T̃ (u) − u du = 0. (11)
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Comments on Theorem 3 will follow throughout the
manuscript as it impacts many of the upcoming definitions
and results. Here we just point out that Eq. 11 is indepen-
dent of the measure μ and is a purely analytical/geometric
condition on T̃ .

3.3 Weak Riemannian structure

As already mentioned, our aim is to exploit the weak-
Riemannian structure of W2(S1) to obtain a more tractable
representation of a data set of probability measure, which
enables the use of statistical tools. Thus, we now specialise
the definition of Tanμ(W2(M)) and the associated exponen-
tial and logarithmic maps when M ≡ S1, translating the
original vector-field definition in terms of more tractable
functions. Furthermore, we establish properties of the log-
arithmic map that will be fundamental to develop a coherent
statistical framework for analysing probability measures in
W2(S1).

For our purposes, it is convenient to define L2
μ(S1) as

L2
μ(S1) : =

{
v : S1 → R such that
∫

S1

v2(x)dμ(x) < +∞
}

=
{
v : [0, 2π) → R such that
∫ 2π

0
v2(x)dμ̃(x) < +∞

}
,

where the second equality follows, with a slight abuse of
notation, by considering v �→ v ◦ logc. Observe that we
recover the space in (4) by identifying v(x) as an element
of TxS1. Then, if μ is an absolutely continuous measure, we
have

Tanμ(W2(S1)) = {v : L2
μ(S1) | ∃ε > 0 :

(IdS1 , exp(tv))#μ is optimal for t ≤ ε}L2
μ (12)

wherewecan interpretv as a functiondefinedonS1 or [0, 2π)

according to our needs.Nowwewant to rewrite this definition
to make it more easily tractable.

First, note that the optimality condition in (12) is equiva-
lent to saying that there exist ν such that exp(tv) is an optimal
transport map between μ and ν. Then, by Theorem 2 and the
fact that expz(vz) = expc(logc(z) + vz), the vector field v in
(12) can be written as tv(logc(x)) = T̃ (x) − x , where T̃ is
as in Theorem 2, so that the OTM is expc(x + (T̃ (x)− x)) ≡
expc(T̃ (x)). Hence, we can restate the definition of tangent

space in terms of the maps T̃ as:

Tanμ(W2(S1)) = {T̃ : L2
μ̃
([0, 2π ]) | ∃ε > 0 :

expc(Id + t(T̃ − Id)) is OTM for t ≤ ε}L
2
μ̃
.

(13)

The definition of exponential and logarithmic map comes
quite naturally:

expμ : L2
μ(S1) → W2(S1),

expμ(T̃ ) = (
expc ◦T̃ ◦ logc

)
#μ

logμ : W2(S1) → L2
μ(S1),

logμ(ν) = T̃ s.t. T̃ (x) = F−
ν̃

(Fμ̃(x) − θ∗),

(14)

where θ∗ in the definition of the logμ map is as in Theorem 2.
Observe that expc ◦T̃ ◦ logc is an OTM between μ and ν.
Furthermore, from Theorem 3 we note that the vector field
v : [0, 2π) → R induced by an optimal transport map T̃
(i.e. v(u) = T̃ (u) − u) satisfying (11) has zero mean when
integrated along S1 with respect to LS1 . In particular, note
that this condition does not depend on μ and gives a purely
geometric characterisation of optimal transport maps. This is
in accordance to other typically used optimality conditions
such as cyclical monotonicity of the support of the transport
plan and Brenier’s characterisation of OTMs for measures
on Rn (Ambrosio et al. 2008).

Wenowprovide some further characterisations of the opti-
mal transport maps in light of the pieces of notation we
have just introduced, complementing the results in Cordero-
Erausquin (1999), that only states some necessary conditions
for transport maps to be optimal (which is insufficient for our
purposes as explained below). These novel results will be of
pivotal importance to investigate the map logμ and imple-
mentation of numerical algorithms.

Theorem 4 Given μ a.c. measure, T̃ : R → R induces an
optimal transportmap betweenμ and ν := expc ◦T̃ ◦logc #μ
if and only if

• T̃ is monotonically nondecreasing with T̃ (x + p) =
T̃ (x) + p for all p ∈ 2πZ

• T̃ satisfies (11)
• |T̃ (x) − x | < π μ-a.e.

From the previous result, it is immediate to prove the follow-
ing.

Corollary 1 Let μ be an a.c. measure on S1. Then the image
of logμ defined in (14) is a convex set.

Moreover, the following proposition establishes the con-
tinuity of both expμ and logμ.

Theorem 5 Let μ be an a.c. measure on S1. Then:
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1. for any ν1, ν2 ∈ W(S1)

W 2
2 (ν1, ν2) ≤

∫

S1

d2R(T ν1
μ , T ν2

μ )dμ

≤‖ logμ(ν1) − logμ(ν2) ‖2L2
μ

.

In particular, the expμ map is continuous;
2. if W2(ν, νn) → 0 inW2(S1) then

‖ logμ(νn) − logμ(ν) ‖L2
μ
→ 0,

that is, the logμ map is sequentially continuous. As a con-
sequence, since in metric spaces sequential continuity is
equivalent to continuity, W2(S1) and logμ(W2(S1)) are
homeomorphic via logμ and expμ.

Let us comment here on the importance of the results
above in light of our goal of performing PCA. As already
mentioned, our aim is to define PCA via projections in the
tangent space. The directions found by the PCA need to
be interpreted as directions inside W2(S1), i.e., the results
are mapped back into the Wasserstein space. Thus, the suc-
cess of our methodology deeply relies on the image of the
log map being a convex set and the coherence between the
Wasserstein space and the chosen tangent space, in the same
way the effectiveness of the distributional data analysis tech-
niques developed for W2(R) rely on the convex isometric
embedding of W2(R) into the tangent spaces. Theorem 4
guarantees convexity and Theorem 5 ensures that there is
a high level of coherence between the measures in W2(S1)

and their representation via logμ(W2(S1)). It is not an iso-
metric representation as in the case W2(R) (see Pegoraro
and Beraha (2022)), but the continuity of the exponential
and logarithmic maps implies a high level of interpretability.

To conclude this section, we present also another proof
of Theorem 5, item 2. To be more precise, it is a proof for
a weaker result, but which we believe can be generalised to
other compact Riemannian manifolds, on the contrary of the
proof of Theorem 5, item 2.

Proposition 1 Let σ be an a.c. measure and {μt }t be a
sequence of a.c. measures such thatμt → μ0 (in theWasser-
stein metric) as t → 0. Further assume that the support
of σ and μt is (geodesically) convex and their density is
bounded from above and strictly greater than zero. Then
‖T̃μt

σ − T̃μ0
σ ‖ → 0.

4 PCA for measures on S1

In this section, we demonstrate how the results obtained
in Sect. 3 can be leveraged to develop a principal compo-
nent analysis framework for measures on S1 in an extrinsic

fashion, by considering μ1, . . . , μn ∈ W2(S1) in analogy
to points of a Riemannian manifold, cf. Section3.3. This
parallelism was first exploited to perform inference on the
Wasserstein space in Bigot et al. (2017), Cazelles et al.
(2018), Pegoraro and Beraha (2022) to develop a PCA for
probabilitymeasures on the real line, and inChen et al. (2021)
and Zhang et al. (2020) who propose linear regression and
autoregressive models for measures on R respectively.

As already mentioned in the introduction, in the case of
measures on the real line, the weak Riemannian structure of
the Wasserstein space allows the definition of both intrinsic
and extrinsic techniques (Bigot et al. 2017; Cazelles et al.
2018; Chen et al. 2021; Zhang et al. 2020; Pegoraro and
Beraha 2022). In particular, since W2(R) can be seen as a
convex cone inside a suitably defined L2 space (by iden-
tifying each measure with the associated optimal transport
map), intrinsic methods simply need to take into account the
“cone constraints” (Pegoraro and Beraha 2022). As noted
above, such a cone representation does not hold in the case
of W(S1). Therefore, developing intrinsic methods would
require working with curves of probability measures. We
believe that the results established in Sect. 3 could be the
first building block of such intrinsic methods. However, sup-
ported by the continuity result in item (3.) of Theorem 5, we
propose a log PCA, which is computed after mapping all dat-
apoints onto a suitable tangent space. In fact, the continuity
results suggest that the approximation we make when map-
ping data to the tangent space is not too coarse, or, at least,
should always produce interpretable results. The numerical
illustrations presented in Sect. 5 seem to validate this claim.

4.1 Log convex PCA onW2(S1)

As shown in Corollary 6.6 of Gigli (2011), the tangent space
at absolutely continuous measures is Hilbert so that we could
apply standard PCA techniques to logμ̄(μ1), . . . , logμ̄(μn),
for some fixedmeasure μ̄. We call this approach “naive” log-
PCA. However, as argued in Pegoraro and Beraha (2022),
disregarding the fact that the image of the logμ̄ map is not
the whole Tanμ̄(W2(S1)) tangent space, but only a convex
subset, might produce misleading results. In particular, when
two elements of the tangent space lie outside the image of
logμ̄, returning to the Wasserstein space and then back to the
tangent via logμ̄ ◦ expμ̄ can produce undesired behaviours in
terms of distances and angles. More in general, a principal
direction is interpretable and captures meaningful variabil-
ity only as long as it lies inside the convex subset. This fact
undermines, for instance, the interpretability of scores and
principal directions when they lie outside logμ̄(W2(S1)):
directionsmay not be orthogonal and variance insideW2(S1)

may not be decomposed appropriately.
To avoid the problems with the “naive” log-PCA, we pro-

pose the following definition of log convex PCA, which
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amounts to performing a convex PCA (Bigot et al. 2017)
in the tangent space, thus taking into account the con-
straints enforced by the image of the log map. Let us
introduce some notation first. Let X := logμ̄(W2(S1)),
H := Tanμ̄(W2(S1)). For a closed convex set C ⊂ X and a
point x ∈ X let d(x,C) = miny∈C ‖x − y‖L2

μ̄
Let Sp denote

the span of a set of vectors and Cx0(U ) := (x0 + Sp(U ))∩ X
for x0 ∈ X and U ⊂ H .

As in Pegoraro and Beraha (2022), we also make the
following technical assumption: given a collection of proba-
bility measures μ̄, μ0, μ1, . . . , μn ∈ W(S1) we assume that
logμ̄(μ0) lies in the relative interior of the convex hull of
{logμ̄(μi )}. The most common choice for μ0 is to be chosen
as the “mean” of {logμ̄(μi )}, which, being inside an Hilbert
space, could violate our assumption in some pathological
cases. However, in applications we always resort to a finite-
dimensional approximation of L2

μ̄, in which the assumption
is always satisfied. For more details see Appendix A in Pego-
raro and Beraha (2022).

Definition 1 Consider a collection of probability measures
μ̄, μ0, μ1, . . . , μn ∈ W(S1). Let T̃i = logμ̄(μi ) = T̃μi

μ̄ ,
i = 0, . . . , n. A (k, μ̄, μ0) log convex principal component
for μ1, . . . , μn is the subset Ck := CT̃0({w∗

1, . . . , w
∗
k }) such

that

1. For k = 1,

w∗
1 = argmin

w∈H ,‖w‖=1

n∑

i=1

d
(
T̃i , CT̃0({w})) ;

2. For k > 1,

w∗
k = argmin

w∈H ,‖w‖=1,w⊥Sp({w∗
1 ,...,w

∗
k−1}

n∑

i=1

d
(
T̃i , CT̃0({w})) .

Figure 2 exemplifies the difference between the naive L2

and the convex one in a simpler example when H = R2 and
X is a convex subset. When data are close to the border of
X , the L2 metric between data and the principal components
capture variability that lies outside of the convex set. See also
Pegoraro and Beraha (2022) for some indexes that quantify
the loss of information of the L2 PCA opposed to the convex
one.

4.2 Computation of the log convex PCA via B-spline
approximation

The definition of convex PCA translates into a constrained
optimisation problem to find the directions {w∗

1, . . . , w
∗
k }. In

Cazelles et al. (2018), the authors discretize the transport
maps and solve the optimisation problem via a forward-
backward algorithm. As discussed in Pegoraro and Beraha

Fig. 2 First principal direction found by the naive L2 and the convex
PCA when the space H = R2 and X is the yellow rectangle. The
blue dots denote observations. Image taken from Pegoraro and Beraha
(2022)

(2022), a more efficient approach consists in approximating
the transport maps via quadratic B-splines and solving a con-
strained optimisation problem via an interior-point method.
Here, we follow the second approach.

Let {ψ1, . . . , ψJ } a B-spline basis on equispaced knots
in [0, 2π ]. We let T̃i (x) ≈ ∑J

j=1 ai jψ j (x). Note that if

the spline is quadratic then (i) the function
∑J

j=1 a jψ j (x)
is monotonically nondecreasing if an only if the coeffi-
cients a1, . . . , aJ are (see, e.g., Proposition 4 in Pegoraro
and Beraha 2022, ). Hence, from now on, we consider the
ψ j ’s to be quadratic spline basis functions on [0, 2π ]. The
spline basis expansion also allows for faster computations
of L2 inner products: let E be a J × J matrix with entries
Ei, j = ∫ 2π

0 ψi (x)ψ j (x)dx and ai = (ai,1, . . . , ai,J ), we
have 〈T̃i , T̃ j 〉 = 〈ai , a j 〉E := aTi Ea j . We denote by ‖ · ‖E
the associated norm.

Similarly to Proposition 6 in Pegoraro and Beraha (2022),
we obtain that the k-th directionwk and the associated scores
λk1:n = λ1, . . . , λn (of the observations the k-th direction)
of the log-convex PCA can be computed by solving a con-
strained optimisation problem. The objective function is:

λk1:n,wk = argmin
λ1:n ,w

n∑

i=1

‖ai − a0 −
k∑

j=1

λki wk‖, (15)

where λi ∈ R is the of score for the i-th datum along the k-th
direction. Moreover, the usual orthogonality and unit-norm
constraints must be satisfied:

‖w‖E = 1, 〈wh,w〉E = 0, h = 1, . . . , k − 1.

In addition to those, we must also require that
∑

w jψ j

belongs to H := Tanμ̄(W2(S1)). The monotonicity con-
straint is equivalent to

λiw j + a0, j − λiw j−1 − a0, j−1 ≥ 0, j = 2 . . . J
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that is the monotonicity of the spline coefficients (since the
splines are quadratic. See, e.g., Proposition 4 in Pegoraro
and Beraha (2022)). Moreover, the “periodicity” constraint
is satisfied by design. To impose (11), let Mj = ∫

ψ j (u)du,
then (11) is equivalent to

∑
w j M j = 2π2.

Finally, thanks to (11) it is sufficient to control the value of
the function w at the initial point, i.e. w0 ∈ (−π/2, π/2).

We implement the resulting constrained optimisation
problem using the Python package pyomo and approxi-
mate the solution using an interior point method using the
Ipopt solver.

4.3 Wasserstein barycentre

We are left to discuss the choice of the base point μ0 of the
PCA as well as the measure μ̄ at which the tangent space is
considered. A standard choice when performing PCA in non-
Euclidean spaces, it to set bothμ0 and μ̄ equal the barycentre,
that is the Fréchet mean. In our case, the barycentre mini-
mizes the following Fréchet functional:

F(ν;μ1, . . . , μn) = 1

2n

n∑

i=1

W 2
2 (ν, μi ). (16)

While, in principle, the log-PCA can be carried out by
working in the tangent space at any absolutely continuous
measure, embedding the PCA in the tangent at the barycen-
tre is to be preferred since, intuitively, this should result in
the distances between datapoints in the tangent space (at the
barycentre) to be more similar to the distances in theWasser-
stein space. The quality of the approximation provided by
tangent spaces decays as distances from the tangent point
increase, and thus choosing as a tangent point the barycentre
of the data set is a good choice for trying to minimize the
average error produced by the approximations. As a conse-
quence, the projections of the principal components can be
interpreted as deviations from the “average” of the data set.
Note that centering the PCA at the barycentre poses no con-
ceptual problem in our case as the Wasserstein barycentre is
unique if at least one of the measures μ j is absolutely con-
tinuous. See Theorem 3.1 in Kim and Pass (2017). Similar
results for measures supported on R

d have been developed
in Agueh and Carlier (2011).

Numerical algorithms for computing the solution of (16)
have been developed in Carlier et al. (2015), Srivastava et
al. (2015) for the case of atomic measures, whereby the
optimization can be reduced to a linear program. Zemel
and Panaretos (2019) instead propose a procustes algorithm
based on gradient descent, which works for general mea-
sures on R

d (of which one must be absolutely continuous).

Algorithm 1: Procrustes Barycentre
[1] input Measures μ1, . . . , μn , starting point ν, threshold ε.
[2] repeat
[3] Compute the optimal transport maps T̃μi

ν as in Theorem 2.
[4] Set

ν̃′ :=
(
1

n

n∑

i=1

T̃μi
μ̄

)
#̃ν

[5] until W2(ν, ν′) < ε

[6] Output μ̄ = expc ◦(̃ν′).
[7] end

In a nutshell, the gradient descent algorithm in Zemel and
Panaretos (2019) starts from an initial guess of the barycen-
tre and updates it by pushing forward the current guess νr
via the average of the transport maps between νr and all the
measures. This procedure is guaranteed to converge to the
barycentre under some technical conditions on the measures
μi ’s. In particular, it converges in one iteration if themeasures
are compatible (see Section 2.3.2 in Panaretos and Zemel
2020). As a drawback, this approach requires solving n opti-
mal transportation problems at each iteration, which might
be challenging outside the case of measures supported on R
or location-scatter families, for which explicit solutions exist
(Alvarez-Esteban et al. 2018). Taking a different approach,
Cuturi and Doucet (2014) propose an approximate solution
to the Fréchet mean by introducing in (16) an “entropic reg-
ularisation” term, which makes optimization easier.

Here, we propose to use the gradient descent algorithm
developed in Zemel and Panaretos (2019). Indeed, our The-
orem 2 allows for (almost) explicit solutions to the optimal
transportation problem. Moreover, as shown in Delon et al.
(2010), the optimization problem in (8) is convex in θ so
that finding θ∗ is simple. We report the pseudocode in Algo-
rithm 1.

We want to remark that we have not been able (yet)
to prove either the convergence of the algorithm to the
barycentre in the general case or if such procustes algorithm
amounts to a gradient descent also in our framework. From
the technical point of view, the proofs in Zemel and Panare-
tos (2019) do not hold in our case, since they are based on
sub-differentiability and super-differentiability results of the
Wasserstein distance as provided in Theorems 10.2.2 and
10.2.6 in Ambrosio et al. (2008) which are stated for mea-
sures on separableHilbert spaces. Nonetheless, the following
result establishes a sufficient condition for the convergence
of Algorithm 1.

Proposition 2 Let μ∗ be an absolutely continuous measure
inW(S1), andμ1, . . . , μn be measures inW(S1). If, for any

123



Statistics and Computing           (2024) 34:171 Page 11 of 17   171 

i, j = 1, . . . , n

‖ logμ∗(μi ) − logμ∗(μ j )‖L2
μ∗ = W2(μi , μ j ),

then letting T̄ := n−1 ∑n
i=1 T

μi
μ∗ be the barycentre of the

logμ∗(μi )’s,wehave that T̄ #μ∗ is theWasserstein barycentre
of μ1, . . . , μn.

The condition in Theorem 2 has the practical advantage that
it can be easily checked after Algorithm 1 terminates. Indeed,
if ‖ logμ̄(μi )− logμ̄(μ j )‖L2

μ∗ = W2(μi , μ j ), where μ̄ is the

output of Algorithm 1, we are sure that μ̄ is the barycen-
tre. Intuitively, if the Wasserstein distances are similar to the
distances in the tangent space, this means that, along the
geodesics connecting the datapoints, the curvature is small.
Hence, the problem of finding the Wasserstein barycentre
reduces to averaging the quantiles. Therefore, the output of
Algorithm 1 should be accurate. In the following section we
provide empirical evidence of its convergence, by checking
the condition in Theorem 2 and comparing the output of
Algorithm 1 to the one of the Sinkhorn algorithm proposed
in Cuturi and Doucet (2014).

Remark 1 Although stated for measures on S1, Theorem 2
is true for measures on general connected compact finite
dimensional Riemannian manifolds whose exponential map
is non-expansive. This is the case, for instance, of manifolds
with positive curvature. In Appendix B.6 of the appendix we
prove the result in this more general setting.

5 Numerical illustrations

In this section we present the numerical simulations deal-
ing with the Wasserstein barycentre and the PCA defined in
Sect. 4.

5.1 Simulations for the barycentre

Let us give an illustrative example of the peculiarities that
may arise when considering distributions on S1. Consider
the two measures on the leftmost panel in Fig. 3. When the
transport cost is the Euclidean one, the resulting barycentre
is the one displayed in the rightmost panel: it has unimodal
density with the same scale of the two measures and is cen-
tred exactly in the middle of them. When the cost instead is
computed on S1, the barycentre becomes bimodal as shown
in the middle panel of Fig. 3. In this specific example, the
cost (on S1) of transporting the “correct” barycentre on the
two measures is 30% lower than the cost of transporting the
“Euclidean” one.

We now give some examples of barycentres. In what fol-
lows, we use μ̄ to represent the measure on S1 returned from

Algorithm 1 and ˜̄μ the associated periodic measure on R.
In some cases, it is intuitive what should be the barycentre
and we show that our algorithm correctly converges to it.
In other ones, intuition fails but we still might get an idea
of the goodness of the approximation of the barycentre by
comparing the Wasserstein distances W2(μi , μ j ) with the
distances in the tangent space as in Theorem 2.Moreover, we
also compare the output of Algorithm 1 with the so-called
Sinkhorn barycentre (Cuturi and Doucet 2014; Janati et al.
2020) as implemented in the Python package ott-jax
(Cuturi et al. 2022). To compute the Sinkhorn barycentre,
we approximate each measure with an atomic measure with
1, 000 equispaced support points on [0, 2π), equipped with
the geodesic distance on S1, giving to each point xi a weight
proportional to μ(dxi ). Informally, we should expect the
Wasserstein and Sinkhorn barycentres to be similar, but the
Sinkhorn barycentre should be smoother due to the regular-
isation term involved in the Sinkhorn divergence.

We consider three simulated datasets as follows. Let
U(c, w) denote the uniform measure centred in c and with
width w, i.e. the uniform measure over (c − w/2, c + w/2).
In the first example, the measures are

μ̃i = U (0.25, 0.1 + 0.05i) , i = 1, . . . , 5,

μ̃i = U (0.75, 0.1 + 0.05(i − 5)) , i = 5, . . . , 10,

and extended periodically over the whole R. In the second
one instead

μ̃i = U (0, 0.05 + 0.015i) , i = 1, . . . , 10,

μ̃i = U (1/3, 0.05 + 0.015(i − 10)) , i = 11, . . . , 20,

μ̃i = U (2/3, 0.05 + 0.015(i − 20)) , i = 21, . . . , 30.

In the third case instead, we generate the μ̃i ’s by first
considering Beta distributions on (0, 2π) with parameters
(ai , 2) and then taking their periodic extension. Specifically,
ai ∼ U(1.3, 0.2) for i = 1, . . . , 10 and ai ∼ U(2.6, 0.4) for
i = 11, . . . , 20. Figure4 reports theWasserstein barycentres
as found by Algorithm 1 and the Sinkhorn ones for three
different simulated datasets. We can see that the Wasserstein
and Sinkhorn barycentres agree and that the Sinkhorn ones
are generally smoother.Moreover, in the first and third exam-
ple the log and Wasserstein distances are indistinguishable
which suggests the convergence of Algorithm 1, while in the
second example there are some discrepancies. The third sim-
ulation allows us to gather some insights into the geometry of
W2(S1). Indeed, note how, despite all the measures μ̃i being
unimodal, the barycentre is bimodal. This clearly arises from
the manifold structure of S1 and specifically because of mass
going through 0 along the geodesics connected some mea-
sures.
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Fig. 3 From left to right: two measures on S1 (unrolled on [0, 2π ]), the barycentre on S1 (red) and its transport to the leftmost measure, the
barycentre on R and its transport to the leftmost measure

Fig. 4 Top row: denisties of the μ̃ j ’s on [0, 2π ], and of the Wasserstein and Sinkhorn barycentres (red and green line respectively). Bottom row:
Wasserstein distance vs dlog for every possible couple of measures

5.2 Simulations for the PCA

In this section we analyse some simulated datasets which we
use to showcase and interpret some behaviours of the PCA
defined in previous sections. Another simulation with addi-
tional details and comparisons can be found in Appendix
C of the appendix. To interpret the principal directions
found by the PCA, we produce the plots of the densities
of expμ̄(logμ̄(μ0) + λw∗

k ), where w∗
k is the k-th principal

direction and λ varies in some range specified case-by-case.

Unless otherwise stated, μ̄ and μ0 are both equal to the
Wasserstein barycentre approximated using Algorithm 1. In
particular, note that the score λ represents the distance from
the base point travelled along the geodesic whose direction
is specified by the k-th principal direction. It is then possible
to compare different values of λ across the simulations to
interpret the distance from the barycentre after which some
behaviours start to occur (for instance, it might happen that at
a certain distance from the barycentre, the measures switch
from unimodal to bimodal).
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Fig. 5 Data and first principal direction for the Von Mises simulation. The second and third column represent densities along the first principal
direction as λ varies between −0.1 (darkest blue) to 0.1 (darkest red), plotted as distributions on [0, 2π) and on S1 respectively

First, we consider a sample from the von Mises distribu-
tion with location π and scale α, whose density function on
[0, 2π ] is

f (x;α) = exp
(
3 cos

( x−π
α

))

2π I0(3)
, (17)

where I0 is the modified Bessel function of order zero. We
simulate two datasets of n = 100 measures from (17), by
consideringα ∼ U(0.8, 1.5) andα ∼ U(2, 3.5) respectively.
Data and thefirst principal direction are shown inFig. 5. In the
first case, the measures are sufficiently concentrated so that,
in the neighbourhood of the barycentre associated to the grid
of values for λ, the periodicity of S1 is effectively irrelevant,
and the first principal direction reflects the change in scale
of the distribution. On the other hand, in the second case, we
have a good amount of mass around 0 for all distributions
in the data set, and the variance of such distributions ranges
over a bigger interval compared to the first data set. As a
consequence, moving along the first principal direction (with
the same scale as in the previous example), we keep pushing
the mass on “the sides” at faster rates, so that it concentrates
even more around 0 and we go from a unimodal to a bimodal
density.

Although not shown here, when the same measures are
considered as points in W2(R), in both cases the first prin-
cipal direction is associated with a change in the scale of the
measures, while the location is kept fixed.

Next, we consider the same dataset as in the third sim-
ulation of Sect. 5.1. Figure6 reports the first two principal
directions. The first one corresponds mostly to a shift on the
location but simultaneously it also captures the decrease of
the density around the second mode that is located in 0 (see
the barycentre in Fig. 4). Starting from the barycentre (white),
if we go towards the red densities we see that the mode in
zero gradually is absorbed the main mode; while if we go
towards the blue ones the mode in 0 crosses the circle and
it merge on the main mode, but on the right side of the plot.
According to the geodesic structure of W(S1). The second
direction, instead, is more clearly focused on separating dis-
tribution with significant amount of mass close to 0 (blue),
from the measures which, instead, have all their mass away
from 0 (red).

In summary, these simulations help us understand the
geometry of W2(S1) and, in particular, the differences with
W2(R). Indeed, it is well-known that, for measures onR, the
Wasserstein geodesics of location-scale families are obtained
by lifting the Euclidean geodesics in the location-scale plane
to the Wasserstein space. Hence, the Wasserstein PCA will
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Fig. 6 Densities along the first two principal directions for the Beta
distribution as in Sect. 5.1, as λ varies between −0.05 (darkest blue) to
0.05 (darkest red), plotted as distributions on [0, 2π)

Fig. 7 From left to right: (a subsample of) cdfs of the eye’s dataset
measures (red line denotes the barycentre), pdfs of the eye’s dataset
measures (red line denotes the barycentre),Wasserstein distance against
dlog in the tangent space at the barycentre

disentangle the effect of the location and the effect of the
scale. Instead, as shown by our simulations, when measures
are supported on S1 it is not possible to completely separate
the effects of location and scale. Moreover, even if the dat-
apoints are unimodal, it is often the case that the barycentre
is multimodal. Multimodality is inherited by the measures
along the principal directions, which might make the inter-
pretation cumbersome. In Appendix C of the appendix we
report an additional simulation for thePCA,wherewediscuss
the choice of the point μ̄ ( at which the tangent is attached)
and its impact on the interpretability of the directions. In
particular, we consider a dataset of truncated Gaussians, for
which the barycentre has three modes. Instead, if μ̄ is chosen
to be equal to one of the datapoints, then moving along the
principal directions results in unimodal densities for which
interpretation is easy. Of course, this poses a conceptual issue
as the principal directions are not the “main directions of vari-
ability” per se, but the main directions of variability starting
from one particular μ̄.

6 Case study: eye dataset

We present here the results of applying PCA to the dataset
of OCT (Optical Coherence Tomography) measurements of
NRR (neuroretinal rim) thicnkess in Ali et al. (2021), avail-
able in their supplementary materials, which contains the
OCT measurements of 3973 patients, stratified according to
their age groups. In particular, we assess the adequacy of

Wasserstein PCA by interpreting the principal direction and
performing clustering on the scores, showing how these clus-
ters meaningfully capture shape patterns in data. Data are
displayed in Fig. 7 together with the Wasserstein barycen-
tre found via Algorithm 1. In the rightmost plot, we show
how the Wasserstein and L2 distances in the tangent space
at the barycentre agree for almost all the couples of data-
points, thereby validating the use of the red measure in Fig. 7
as centering point for our PCA.

The first two principal directions—which, by construc-
tion, are the two directions capturing most variability—are
reported in Fig. 8. We can clearly see that these decouple
the shape variability along the horizontal and vertical axes.
In particular, this implies that most of the variability in the
data set is made by variations (in the distribution of the) of
thickness of the optical nerve, along the horizontal axis. To
assess the adequacy of Wasserstein PCA for this dataset, we
compute the average normalised reconstruction error as a
function of the number of directions k used for the PCA.

ANREk := 1

n

n∑

i=1

W 2
2 (μi , μ

k
i )

W 2
2 (μ̄, μi )

,

whereμk
i is the projection on the first k principal components

of the measure μi . The ANRE index measures the approxi-
mation error, normalising by the deviation of the datapoints
from the centre of the PCA, in close analogy with the decom-
position of variance in the case of PCA in Euclidean spaces.
Figure9 (left plot) reports the ANRE index as a function of
k, as well as the (normalised) eigenvalues of the L2 PCA in
the tangent space. Both measures show how the first k = 5
directions are enough to capture the variability of the dataset.
Moreover, the L2 variance decreases faster than ANRE. This
is expected since L2 PCA ignores that data are constrained on
the image of logμ̄, and “captures variability” also outside this
set. Lastly, we believe that the ANRE in stabilises to a posi-
tive (small) number due to numerical errors. In Appendix D
of the appendix, we report the scatter plot of the scores along
the first two directions, stratified by age groups. From the
plot, it is clear that, on the first two components, there is no
evident effect of age alone on the shape of the optical nerve.

We cluster the datapoints via a hierarchical clustering
algorithm with ward linkage working on the scores along
the first k = 5 principal directions. In Appendix D of the
appendix we show the dendrogram, while the two main
clusters found are shown in Fig. 9. Figure3 in the appendix
reports a refined clustering obtained by cutting the dendro-
gram to get 7 clusters.Wehave reported in red the barycentres
of the clusters, which may be of some help in interpret-
ing the clusters, even though our clustering pipeline is not
barycentre-driven like a K-means algorithm. When looking
at the two clusters in Fig. 9b, it is clear that they identify two
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Fig. 8 First (left plots) and second (right plots) principal directions: we report the pdfs on [0, 1] (first and third panels) and in a polar plot (second
and fourth panels). The black line denotes the barycentre

(a) (b)

Fig. 9 ANRE index as a function of the dimension and fraction of (L2) variance explained by each component (left plot) and data subdivided in
two clusters (right), with the corresponding Wasserstein barycentre (red lines)

different shapes of the optical nerve with the left one being
characterised by a clear bump in the left side. The refined
clusters in Fig. 3 in the appendix show interesting patterns as
well, see the appendix for further details.

We close this section by highlighting that, as mentioned in
the introduction, a very important byproduct of PCA is that
classical tools from multivariate statistics can be applied to
our dataset after projecting data on the principal components.
We leave it to future works to complement our unsupervised
analysis with an investigation involving the covariates con-
tained in the original dataset.

7 Discussion

In this paper, we tackle the problem of analysing distribu-
tional data supported on the circle. Following recent trends in
statistics and machine learning, we set out to use theWasser-
stein distance to compare probability distributions. To this
end, we study the optimal transportation problem on S1 and
establish several new theoretical results, which could also be
of independent interest. In particular, we provide an explicit

characterisation of the optimal transport maps. This result is
rather surprising given that optimal transport on Riemannian
manifolds is not well established and that the only casewhere
such explicit formulas exist is for measures on the real line.
We further explored the weak Riemannian structure of the
Wasserstein space and establish strong continuity results for
the exponential and logarithmic maps, as well as an explicit
characterisation of the image of the logarithmic map.

Buildingonour theoretical findings,wepropose a counter-
part of the convex PCA in Bigot et al. (2017) for measures on
S1. Following the approach in Pegoraro and Beraha (2022),
we propose a numerical method to compute the principal
directions by means of a B-spline expansion, which leads to
an easily implementable numerical algorithm.

Our definition of PCA requires a “central point”, which is
usually set equal to the barycentre. We use the algorithm in
Zemel and Panaretos (2019) to approximate the Wasserstein
barycentre. However, we have not been able to prove the con-
vergence of this algorithm in our setting. Despite numerical
simulations do seem to validate the use of Algorithm 1, its
theoretical analysis is still an open problem.
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Our investigation paves the way to several interesting
extensions. First, it is natural to consider the problem of
Wasserstein regression. Thanks to the expression for the
optimal transport maps, the geodesic regression in Fletcher
(2013) can be defined in an analogous way for measure-
valued dependent random variables. Similarly, our definition
of tangent space is amenable to the definition of a log regres-
sion for measures on S1. For measures on R, Pegoraro and
Beraha (2022) proposed to map both dependent and inde-
pendent variables onto the same tangent space, given that
the Wasserstein space is isomorphic to any tangent. Here,
it would be more suitable to consider two tangent planes:
one for the independent and one for the dependent variables,
centred at the respective barycentres, similarly to Chen et al.
(2021).

More broadly, we believe that the interplay between opti-
mal transport and distributional data analysis can nourish
further developments of both fields. Specialising the treat-
ment of the optimal transportation theory to specific cases
of statistical interest, such as the sphere, could lead on one
hand to a better understanding of how the properties of tan-
gent spaces relate to the base manifold, and on the other hand
to data analysis frameworks which can extract insights for
instance from earth-related distributions and other relevant
data which are nowadays collected.
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