
BERNOULLI FREE BOUNDARY PROBLEM

FOR THE INFINITY LAPLACIAN

GRAZIANO CRASTA, ILARIA FRAGALÀ

Abstract. We study the interior Bernoulli free boundary problem for the infinity Lapla-
cian. Our results cover existence, uniqueness, and characterization of solutions (above
a threshold representing the “infinity Bernoulli constant”), their regularity, and their
relationship with the solutions to the interior Bernoulli problem for the p-Laplacian.

1. Introduction

This paper concerns the following interior Bernoulli-type problem:

(P )λ


∆∞u = 0 in Ω+(u) := {x ∈ Ω : u(x) > 0},
u = 1 on ∂Ω,

|∇u| = λ on F (u) := ∂Ω+(u) ∩ Ω ,

where Ω is an open bounded connected domain in Rn (n ≥ 2), and ∆∞ is the infinity
Laplacian, defined by

∆∞u := ∇2u∇u · ∇u ∀u ∈ C2(Ω) .

Before presenting our results, we wish to put them into context by saying few words on
related literature.

1.1. Bernoulli problem for the p-Laplacian. The analogue of problem (P )λ for the
p-Laplacian, namely 

∆pu = 0 in Ω+(u) ,

u = 1 on ∂Ω,

|∇u| = λ on F (u) ,

corresponds to the classical Bernoulli problem when p = 2, and by now it has been widely
studied also in the nonlinear case of an arbitrary p > 1. It is motivated by several
physical and industrial applications, including fluid dynamics, optimal insulation, and
electro-chemical machining (see [34] for a more precise description). The main questions
are the existence and uniqueness of solutions, the geometric properties of the free boundary
F (u), and especially its regularity (for an overview on these topics, we address to [14,33]).
When Ω is convex and regular, it was proved by Henrot and Shahgholian that there exists
a positive constant λΩ,p, called the Bernoulli constant for the p-Laplacian, such that the
interior p-Bernoulli problem admits a non-constant solution if and only if λ ≥ λΩ,p; this
solution is in general not unique, it has convex level sets, and its free boundary F (u) is of
class C2,α (see [15,35]).

Date: May 8, 2019.
2010 Mathematics Subject Classification. Primary 49K20, Secondary 35J70, 35J40.
Key words and phrases. Bernoulli problem, infinity Laplacian, capacitary potential, distance function.

1

ar
X

iv
:1

80
4.

08
57

3v
2 

 [
m

at
h.

A
P]

  8
 M

ay
 2

01
9
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When Ω is an arbitrary domain, not necessarily convex, one way of finding solutions is to
use the approach introduced by Alt and Caffarelli in the linear case p = 2 in the seminal
work [2]. It amounts to minimizing the integral functional

(1) Jλp (u) :=
1

p

∫
Ω

(
|∇u|
λ

)p
+
p− 1

p

∣∣{u > 0}
∣∣

over the space W 1,p
1 (Ω) := 1 +W 1,p

0 (Ω).
This minimization problem admits a non-constant solution if and only if λ ≥ ΛΩ,p, where

ΛΩ,p is a positive constant satisfying ΛΩ,p ≥ λΩ,p [25]. A non-constant minimizer of Jλp over

W 1,p
1 (Ω) solves the p-Bernoulli problem provided the free boundary condition |∇u| = λ

is understood in a suitable weak sense (cf. (25)). The free boundary F (u) turns out
to be a locally analytic hyper-surface, except for a Hn−1-negligible singular set (in the
vast literature about the free boundary regularity, we limit ourselves to quote as main
contributions [2, 10,30] for the case p = 2 and [26,27,51] for general p).

1.2. Free boundary problems for the infinity Laplacian. This highly nonlinear and
strongly degenerated operator was discovered by Aronsson in the sixties [3]. However,
the study of boundary value problems for the infinity Laplacian started only in the early
nineties, with the advent of viscosity solutions theory. Bhattacharya, DiBenedetto and
Manfredi were the first to consider the Dirichlet problem for infinity harmonic functions
and to prove the existence of a solution in the viscosity sense [7]; shortly afterwards, a
fundamental contribution came by Jensen [40], who proved the validity of the comparison
principle for the infinity Laplacian, yielding the uniqueness of solutions (see also [4, 5]).
The last decade has seen a renewed and increasing interest around the infinity Laplacian,
also due to its connections with differential games. With no attempt of completeness,
among the topics under investigation in this growing field let us mention: inhomogeneous
equations [8, 48], regularity of solutions [20, 31, 32, 47, 57], ground states [23, 39, 41, 59],
overdetermined problems [18,19,21], tug-of-war games [44,50]. In this scenario, the study
of free boundary problems involving the infinity Laplacian seems to be rather at its early
stage. To the best of our knowledge, only the following exterior version, in the complement
ω := Rn \ Ω of an open bounded convex set Ω, of Bernoulli problem has been considered
in the literature (see [49]):

∆∞u = 0 in ω+(u) := {x ∈ ω : u(x) > 0},
u = 1 on ∂ω,

|∇u| = a(x) on F (u) .

In particular, when Ω is a regular convex set and a(x) ≡ λ, the situation looks relatively
simple: a unique explicit solution exists, given by 1− 1

λ dist(x, ∂ω). It satisfies the condition

|∇u| = λ in the classical sense along its free boundary, which in this case is of class C1.
Further, such solution can be identified with the pointwise limit, as p→ +∞, of the unique
solutions up to the exterior Bernoulli problem for the p-Laplacian.
On the variational side, let us mention that the asymptotics as p→ +∞ of integral energies
associated with the exterior p-Bernoulli problem (loosely speaking, functionals of the type
(1) with Ω replaced by its complement) has been studied in [43]. In a somewhat close
spirit, the limiting behaviour as p→ +∞ of the solutions of the minimization problems for
the p-Dirichlet integral with a positive boundary datum and a constraint on the volume
of the support, has been studied in [54]. Still, in the theme of free boundary problems for
the infinity Laplacian, see also [53,55,58].
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1.3. Notion of solution. A delicate point before starting the analysis of problem (P )λ
is to establish what is meant by a solution. Clearly the PDE has to be understood in
the viscosity sense. Going further we point out that, contrarily to the case of the exterior
problem mentioned above, for solutions to problem (P )λ the free boundary need not
be globally C1. Consequently, a solution is not expected to be differentiable up to the
boundary (see [37,38]), so that also the free boundary condition cannot be interpreted in a
pointwise, classical way. Thus, even at the boundary, a viscosity interpretation seems to be
the most convenient one in order to manage both existence and uniqueness questions. More
precisely, throughout the paper we interpret solutions to (P )λ to mean viscosity solutions
defined in the next definition, introduced by De Silva [28, Definitions 2.2 and 2.3], and
has been adopted in several subsequent works (see for instance [29,45,46]).
If u, v : Ω → R are two functions and x ∈ Ω, by u ≺x v we mean that u(x) = v(x) and
u(y) ≤ v(y) in a neighborhood of x. Moreover, in the following definition for any test
function ϕ of class C2, we set ϕ+ := max{ϕ, 0}.

Definition 1. A non-negative function u ∈ C(Ω) is a viscosity solution to (P )λ if

(a) u is infinity harmonic at every x ∈ Ω+(u), i.e., for any test function ϕ of class C2,
(a1) if u ≺x ϕ, then −∆∞ϕ(x) ≤ 0;

(a2) if ϕ ≺x u, then −∆∞ϕ(x) ≥ 0;

(b) the Dirichlet condition u = 1 holds pointwise on ∂Ω;

(c) the free boundary condition holds at every y ∈ F (u), i.e., for any test function ϕ
of class C2 with ∇ϕ(y) 6= 0,
(c1) if ϕ+ ≺y u, then |∇ϕ(y)| ≤ λ;

(c2) if u ≺y ϕ+, then |∇ϕ(y)| ≥ λ.

It is clear from the definition that u = 0 on Ω \ Ω+(u), hence, in particular, on F (u).
We point out that a solution in the sense of Definition 1, is also a solution in the sense
proposed by Caffarelli in [11, Definition 1] (see also [12, 13]). The converse is a priori not
true, because a touching ball as in Caffarelli’s definition does not exist necessarily at all
points of the free boundary. Some of our results (e.g., Proposition 2 and Proposition 3)
remain true if solutions are intended in the sense of [11]. However, Definition 1 à la De
Silva seems to be the one which allow us to deal in an optimal way with the existence
question (in particular, in the proof of Theorem 16 (b)).

1.4. Synopsis of the results. We carry over a detailed analysis of problem (P )λ, which
covers existence, uniqueness, and characterization of solutions, their regularity, and their
relationship with the solutions to the interior Bernoulli problem for the p-Laplacian. We
postpone to a companion paper [22] the study of the variational problem which is naturally
associated with (P )λ, namely the minimization of the supremal functional

Jλ(u) := ‖∇u‖∞ + λ|{u > 0}|
over the space of functions u ∈ C(Ω) ∩W 1,∞(Ω) which are equal to 1 on ∂Ω.

• Existence. By analogy with the case of the p-Laplacian, we define the ∞-Bernoulli
constant of Ω as

(2) λΩ,∞ := inf
{
λ > 0 : (P )λ admits a non-constant solution

}
.

Then we identify λΩ,∞ with the reciprocal of the inradius RΩ of Ω. Indeed, for λ <
1/RΩ, problem (P )λ does not admit any non-constant solution (Theorem 16 (b)). The
proof is based on a gradient estimate obtained via the gradient flow for infinity harmonic
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functions (Proposition 2). Conversely, for λ ≥ 1/RΩ, we get existence. More precisely,
it is convenient to distinguish between genuine and non-genuine solutions, according to
whether the set {u = 0} has positive Lebesgue measure or not. For any λ ≥ 1/RΩ,
it is easily seen that problem (P )λ admits many non-genuine solutions, given by the
infinity harmonic potentials (see Definition 4 below) of suitable compact subsets with
empty interior contained in the set of points x ∈ Ω with dist(x, ∂Ω) ≥ 1/λ (Proposition 10).
So the interesting feature is the existence of a genuine solution: if λ > 1/RΩ, we show that
it is given precisely by the infinity harmonic potential w1/λ of the set Ω1/λ, being Ω1/λ

the set of points x ∈ Ω such that dist(x, ∂Ω) > 1/λ (Theorem 16 (a)). This is obtained
by constructing suitable upper and lower bounds for w1/λ, and taking advantage of the
simple behaviour of infinity harmonic potentials along rays of the distance function (see
Section 2.3).

• Uniqueness. For λ > 1/RΩ, we obtain uniqueness of genuine solutions under two as-
sumptions on the set Ω1/λ: connectedness and “open regularity” (Theorem 17); moreover,
we show that these assumptions are sharp (Examples 21 and 22). It turns out that they
are satisfied for example when Ω is convex. Remarkably, such uniqueness result on convex
domains distinguishes the case of the∞-Laplacian from the case of the p-Laplacian, when
we have multiplicity of solutions also in case of the ball.

• Characterization of solutions. For λ ≥ 1/RΩ, we show that u is a solution to (P )λ if
and only if it is the infinity harmonic potential of a set K belonging to a suitable family of
compact subsets of Ω1/λ. This result (Theorem 26) gives a complete picture of solutions
to (P )λ in case Ω is an arbitrary domain.

• Regularity. As a by-product of the results described so far, combined with well-known
facts about the regularity of infinity harmonic functions, we obtain that, for λ ≥ 1/RΩ,
any genuine solution is everywhere differentiable in Ω+(u) (and C1,α in dimension n = 2).
Furthermore, the free boundary essentially shares the same regularity properties of the
level set {dist(x, ∂Ω) = 1/λ} of the distance function. More precisely, if we denote by
Σ(Ω) the cut locus of Ω (i.e., the closure of the set of points where the distance from
∂Ω is not differentiable), then F (u) \ Σ(Ω) is locally C1,1. As a particular case, if λ >
1/ dist(∂Ω,Σ(Ω)), then F (u) is of class C1,1 and, if in addition ∂Ω is of class Ck,α for some
k ≥ 2, then F (u) is of class Ck,α (see e.g. [24, Theorem 6.10]).

• Relationship with the p-Bernoulli problem. We show that, if Ω is convex and regular,
both the p-Bernoulli constants λΩ,p and ΛΩ,p defined as in Section 1.1 above converge to
λΩ,∞ = 1/RΩ in the limit as p → +∞ (Corollary 28). Moreover, if up are solutions to
the interior p-Bernoulli problem, we prove that they converge uniformly to the solution to
problem (P )λ provided such solution is unique, and provided up are variational solutions,

namely they are minimizers of functionals (1) over W 1,p
1 (Ω) (Theorem 31).

1.5. Open problems. Let us conclude this Introduction by addressing some among the
many interesting questions related to the results contained in this paper:

(i) Is it possible to extend at least some of our results to the case of non-constant
boundary data?

(ii) Does the unique solution to problem (P )λ on a convex domain have convex level
sets?

(iii) In cases when there are multiple genuine solutions, does it exist a minimal genuine
solution, and how can it be characterized?



BERNOULLI FREE BOUNDARY PROBLEM 5

(iv) When the solution to problem (P )λ is not unique, is it still true that the variational
solutions up to the interior p-Bernoulli problem converge in the limit as p→ +∞,
and what is their limit?

2. Some preliminary results

In this section we collect some material which will be useful throughout the paper. To be
self-contained, we start by giving a quick recall of some basic facts about infinity harmonic
functions, for which we refer to [4, 16,17].
Then we establish some general properties of (non-constant) solutions to (P )λ and of
infinity harmonic potentials, which will play a crucial role in the sequel.

Let us firstly introduce some notation. We shall write for brevity d(x) := dist(x, ∂Ω),
x ∈ Ω. Moreover, we denote by RΩ := maxΩ d the inradius of Ω, and for any r ∈ [0, RΩ],
we set

Ωr = {d > r} := {x ∈ Ω : d(x) > r} ,
{d ≥ r} := {x ∈ Ω : d(x) ≥ r} ,

Dr := Ω \ Ωr .

For every x ∈ Ω we denote by

(3) Π∂Ω(x) :=
{
z ∈ ∂Ω : d(x) = |z − x|

}
the set of the closest points (or projections) of x on ∂Ω.

2.1. About infinity harmonic functions. A function u ∈ C(Ω) is called infinity sub-
harmonic (resp. infinity superharmonic) if it satisfies condition (a1) (resp. (a2)) in Defini-
tion 1. It is called infinity harmonic if it is both infinity subharmonic and superharmonic.
An infinity harmonic function on Ω is differentiable at every point x ∈ Ω in any space
dimension, and of class C1,α(Ω) in dimension n = 2 [31,32,56].
The following conditions are equivalent:

(i) u is infinity harmonic in Ω;

(ii) u has the absolutely minimizing Lipschitz property, which means that u is locally
Lipschitz in Ω and, for every open set ω b Ω and every v ∈ C(ω), with v = u on
∂ω, ‖∇u‖L∞(ω) ≤ ‖∇v‖L∞(ω). The space of functions u having this property is
denoted by AML(Ω);

(iii) the functions w = u and w = −u enjoy comparison with cones from above in Ω,
which means that, for every open set ω b Ω and for every a, b ∈ R and x0 ∈ Rn,
it holds

w(x) ≤ C(x) := a+ b|x− x0| , ∀x ∈ ∂(ω \ {x0}) =⇒ w(x) ≤ C(x) , ∀x ∈ ω .

Let u be infinity harmonic in Ω, and let Br(x) ⊂ Ω. Then

(4) max
y∈Br(x)

u(y) = max
y∈∂Br(x)

u(y), min
y∈Br(x)

u(y) = min
y∈∂Br(x)

u(y),
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and the following relations hold:

|∇u(x)| ≤ max
y∈Br(x)

u(y)− u(x)

r
= max

y∈∂Br(x)

u(y)− u(x)

r
,(5)

|∇u(x)| ≤ − min
y∈Br(x)

u(y)− u(x)

r
= − min

y∈∂Br(x)

u(y)− u(x)

r
(6)

(see [16, Lemma 4.3]). Moreover, if the maximum and minimum at the right–hand side of
(5), (6) are attained respectively at p, q ∈ ∂Br(x), i.e. if

p, q ∈ ∂Br(x) : u(p) = max
y∈∂Br(x)

u(y), u(q) = min
y∈∂Br(x)

u(y),

then the following increasing slope estimates hold:

(7) |∇u(x)| ≤ |∇u(p)|, |∇u(x)| ≤ |∇u(q)|

(see [16, Proposition 6.2]).

2.2. Properties of solutions to (P )λ. Observe that, if u is a strictly positive solution
to (P )λ, then by uniqueness u ≡ 1. Hence, any non-constant solution to (P )λ must vanish
at some point of Ω, i.e., F (u) 6= ∅.

Proposition 2 (gradient estimate). Let u ∈ C(Ω) be a solution to (P )λ. Then |∇u(x)| ≤
λ for every x ∈ Ω+(u).

Proof. If u is a constant solution then the result is trivial. Let u be a non-constant
solution. Let x0 ∈ Ω+(u) and let us prove that |∇u(x0)| ≤ λ. Since the statement is
trivial if ∇u(x0) = 0, let us assume that ∇u(x0) 6= 0. In this case, we claim that there
exists a finite family x0, x1, . . . , xN of points with the following properties:

x0, . . . , xN−1 ∈ {u ≤ u(x0)} ∩ Ω+(u), xN ∈ F (u),(8)

|∇u(xj)| ≥ |∇u(xj−1)| ∀j = 1, . . . , N − 1, u(xN−1) ≥ dist(xN−1, F (u))|∇u(xN−1)|.(9)

Since u(x0) < 1 and u is continuous, the sub-level C := {u ≤ u(x0)} is a compact subset
of Ω. Hence we can find ρ > 0 such that C ⊂ Ωρ. Then we fix r ∈ (0, ρ) and we proceed
as follows.
Assume we are given xj−1 ∈ {u ≤ u(x0)} ∩ Ω+(u), and let us construct the point xj .

If Br(xj−1) ⊂ Ω+(u), then we let xj ∈ Br(xj−1) be such that

u(xj) = min
y∈Br(xj−1)

u(y).

By definition, we have immediately u(xj) ≤ u(xj−1), so that xj ∈ C ∩ Ω+(u). Moreover,
since u is infinity-harmonic in Ω+(u), by (4) and (7) it turns out that xj ∈ ∂Br(xj−1) and
|∇u(xj)| ≥ |∇u(xj−1)|.
If Br(xj−1) is not contained in Ω+(u), by our choice of r we have necessarily Br(xj−1) ∩
F (u) 6= ∅. (Indeed, since xj−1 ∈ C ⊂ Ωρ and r ∈ (0, ρ), we have Br(xj−1) ∩ ∂Ω = ∅.) In
this case, we set N = j, ending the construction, and we let xN ∈ F (u) be a closest point
of xN−1 to F (u). Setting δ := dist(xN−1, F (u)) = |xN − xN−1| and taking into account
u(xN ) = 0 = miny∈Bδ(xN−1) u(y), by (6) we obtain

|∇u(xN−1)| ≤ − min
y∈Bδ(xN−1)

u(y)− u(xN−1)

δ
=
u(xN−1)

δ
.
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It remains to show that our construction always stops in a finite number of steps. Specif-
ically, for every j = 1, . . . , N − 1, applying again (6), we obtain

|∇u(xj−1)| ≤ − min
y∈Br(xj−1)

u(x)− u(xj−1)

r
=
u(xj−1)− u(xj)

r
;

hence

u(xj) ≤ u(xj−1)− r|∇u(xj−1)| ≤ u(xj−1)− r|∇u(x0)| ,
so that in a finite number of steps we arrive at F (u) thanks to the assumption ∇u(x0) 6= 0.

Now, let us consider the open ball Bδ(xN−1) ⊂ Ω+(u). By comparison with cones [17,
Theorem 3.1], we have

(10) u(x) ≥ ϕ(x) := u(xN−1)

(
1− 1

δ
|x− xN−1|

)
∀x ∈ Bδ(xN−1) .

Since xN ∈ ∂Bδ(xN−1), by (10) we have that

ϕ+ ≺xN u , |∇ϕ(xN )| = u(xN−1)

δ
(6= 0) .

Then, by applying first Definition 1(c1) and then the inequalities (9), we finally get

λ ≥ u(xN−1)

δ
≥ |∇u(xN−1)| ≥ |∇u(x0)|,

and the proof is completed. �

Proposition 3 (free boundary location). Let u ∈ C(Ω) be a non-constant solution to
(P )λ. Then dist(F (u), ∂Ω) ≥ 1

λ (or, equivalently, {u = 0} ⊆
{
d ≥ 1

λ

}
). If, in addition,

int{u = 0} 6= ∅, then dist(F (u), ∂Ω) = 1
λ .

Proof. Let x ∈ F (u) and let y ∈ Π∂Ω(x) ⊂ ∂Ω be a closest point to ∂Ω. If ]y, x[∩F (u) 6= ∅,
let x0 ∈]y, x[∩F (u) be the nearest point of ]y, x[∩F (u) to ∂Ω, otherwise let x0 := x. By
Proposition 2, we have

1 = u(y)− u(x0) ≤ λ d(x0),

hence

d(x) ≥ d(x0) ≥ 1

λ
,

i.e. x ∈
{
d ≥ 1

λ

}
. Hence, F (u) ⊆

{
d ≥ 1

λ

}
, i.e. dist(F (u), ∂Ω) ≥ 1

λ .
Let us prove that, if int{u = 0} 6= ∅, then also the opposite inequality holds. Let r :=
dist(∂Ω, F (u)). The function v(x) := 1

r dist(x, F (u)) is infinity superharmonic in Ω+(u)
(see e.g. [42, p. 212]), and satisfies v = 0 on F (u) and v ≥ 1 on ∂Ω. Hence, by the
comparison principle for infinity harmonic functions [40, Theorem 2.22], we have that
v ≥ u in Ω+(u). Since int{u = 0} 6= ∅, there exists a ball B = Bρ(y) ⊂ Ω \ Ω+(u) that is
tangent to F (u) at some point x0 ∈ F (u). Hence,

u(x) ≤ v(x) ≤ |x− x0|
r

≤ |x− y| − ρ
r

=: ϕ(x), x ∈ Ω+(u),

so that

u ≺x0 ϕ
+ , |∇ϕ(x0)| = 1

r
(6= 0) ,

and by Definition 1(c2) we conclude that 1/r ≥ λ. �
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2.3. Properties of infinity–harmonic potentials.

Definition 4. Given a non-empty compact set K ⊂ Ω, the infinity–harmonic potential of
K relative to Ω is the unique viscosity solution wK to the problem

(11)


−∆∞wK = 0, in Ω \K,
wK = 1, on ∂Ω,

wK = 0, on K.

Remark 5. Since Ω \K may be disconnected, some words to explain the well-posedness
of the above definition are in order. Let us write the open set Ω \K as the union of its
connected components {Aα : α ∈ I}. For every α ∈ I, we have that ∂Aα ⊆ ∂Ω ∪K, and
the function fα : ∂Aα → R defined by

(12) fα :=

{
1, on ∂Aα ∩ ∂Ω,

0, on ∂Aα ∩K,

is continuous on ∂Aα (being constant on each connected component of ∂Aα). Therefore,
for every α ∈ I, there exists a unique solution wα ∈ C(Aα) to the Dirichlet problem{

−∆∞w
α = 0, in Aα,

wα = fα, on ∂Aα

(see [4, Theorems 3.1 and 6.1]). Consequently, problem (11) admits a unique solution,
which is precisely the function wK ∈ C(Ω) defined by wK = wα on Aα, α ∈ I.

Remark 6. It is clear from Definition 4 that the set K is contained in {wK = 0}. We
point out that the inclusion may be strict. For instance, this happens when Ω = B2(0)
and K = ∂B1(0): in this case, K is strictly contained in {wK = 0} = B1.

In general, given a non-empty compact set K ⊂ Ω, necessary and sufficient conditions for
the equality K = {wK = 0} can be given by looking at the connected components Aα of
Ω \K introduced in Remark 5. Letting

(13) I0 := {α ∈ I : ∂Aα ⊆ K}
we have

Lemma 7. For a given non-empty compact set K ⊂ Ω, the following properties are
equivalent:

1) {wK = 0} = K;
2) the set I0 defined in (13) is empty;
3) every point x ∈ Ω \K can be joined to ∂Ω through a path in Ω \K.

Proof. The equivalence between 2) and 3) follows immediately from the fact that the
points in Ω\K which can be joined to ∂Ω through a path in Ω\K are precisely the points
in Ω \K which belong to some set Aα with α ∈ I \ I0.
The fact that each of these conditions is equivalent to 1) follows by observing that

(14) {wK = 0} = K ∪
⋃
α∈I0

Aα , {wK > 0} =
⋃

α∈I\I0

Aα .

Indeed, it is clear that fα ≡ 0 for α ∈ I0. On the other hand, for every x0 belonging to a
set Aα with α ∈ I \ I0, wK(x0) is strictly positive, because such a point x0 can be joined
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to ∂Ω through a path in Ω \K. Consequently, the value wK(x0) can be estimated from
below by a positive constant according to the next result (which is essentially taken from
[6, Lemma 3.2]). �

Proposition 8 (Harnack inequality). Let K ⊂ Ω be a non-empty compact set, and let
wK be its infinity–harmonic potential relative to Ω. Let x0 ∈ Aα, with α ∈ I \ I0, and let
γ be a path in Ω \K connecting x0 to ∂Ω. Then

(15) wK(x0) ≥ e−L/δ,

where L is the length of γ, and δ is the distance from γ to K.

Proof. By possibly taking a slightly larger value of δ (but smaller than dist(γ,K)), it
is not restrictive to assume that γ is a polygonal curve. Moreover, for m ∈ N large
enough, we can assume that the polygonal has exactly m + 1 vertices x0, x1, . . . , xm = y
with |xj − xj−1| = L/m for every j = 1, . . . ,m. By possibly moving a bit the point y
(shortening the curve), we can also assume that y is a closest point in ∂Ω from xm−1.
Since xj−1 ∈ Bδ(xj) ⊂ Ω \K for every j = 1, . . . ,m, by comparison with cones, we have

wK(xj−1) ≥ wK(xj)

(
1− |xj − xj−1|

δ

)
= wK(xj)

(
1− L

mδ

)
,

so that

wK(x0) ≥ wK(y)

(
1− L

mδ

)m
.

Since wK(y) = 1 and m can be taken arbitrarily large, we finally get (15). �

We conclude with a useful characterization of the infinity harmonic potential wK along
rays connecting K with ∂Ω:

Proposition 9 (potential along rays). Let K ⊂ Ω be a non-empty compact set, and let
wK be the infinity–harmonic potential of K relative to Ω. If y ∈ ∂Ω and z ∈ K are two
points such that |y − z| = dist(∂Ω,K), then wK is affine on the segment [y, z].

Proof. Set R := dist(∂Ω,K). Since wK enjoys comparison with cones from below, we have

wK(x) ≥ f(x) := 1− |x− y|
R

, ∀x ∈ BR(y) ∩ Ω.

On the other hand, the function g(x) := 1
R dist(x,K) is infinity superharmonic in Ω \K,

with g = 0 on K and g ≥ 1 on ∂Ω, hence g ≥ wK by the comparison principle for infinity
harmonic functions. Since f = g on the segment [y, z], the statement follows. �

3. Existence

We start the analysis of existence of solutions to problem (P )λ by observing that, for any
λ ≥ 1/RΩ, it admits many solutions whose zero level set is Lebesgue negligible. Inspired by
the results of the previous section, they are found among infinity harmonic potentials wK
of suitably chosen compact sets K contained in

{
d ≥ 1

λ

}
. Recall that the zero set of wK

can be characterized as in (14); in particular, by Lemma 7, we have that {wK = 0} = K
if and only if the set I0 defined in (13) is empty.
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Figure 1. The sets Ω = (−2, 2)× (−2, 2) (grey), ∂Ω1 (black), and D̂1 (dotted)

Proposition 10. Let λ ≥ 1/RΩ, and let K ⊆
{
d ≥ 1

λ

}
be a non-empty compact set.

Assume that

(16) int(K) = ∅ and I0 = ∅ .
Then the infinity–harmonic potential wK of K relative to Ω is a solution to (P )λ.

Proof. By (16) and (14), the set {wK = 0} agrees with K and has empty interior, so that
{wK = 0} = K = F (wK). Thus, we have to show that the free boundary condition in
Definition 1 is satisfied at every point x0 ∈ K.
Since K ⊆

{
d ≥ 1

λ

}
, by comparison with cones we have that wK(x) ≤ λ|x− x0| for every

x ∈ Ω. If ϕ+ ≺x0 wK , then necessarily |∇ϕ(x0)| ≤ λ, hence condition (c1) in Definition 1
is satisfied.
If wK ≺x0 ϕ

+, then ϕ ≥ 0 in Ω, because ϕ+ ≥ wK > 0 in Ω\{wK = 0} and Ω \ {wK = 0} =
Ω. Since ϕ(x0) = 0, then x0 is a minimum point for the regular function ϕ, hence we can
conclude that ∇ϕ(x0) = 0, and also condition (c2) in Definition 1 is satisfied. �

Motivated by Proposition 10, we give the following definition.

Definition 11 (Genuine solutions). We say that a solution u to (P )λ is genuine if the set
{u = 0} has non-empty interior (and non-genuine otherwise).

Remark 12. In the special case λ = 1
RΩ

, problem (P )λ admits only non-genuine solutions.

Indeed, we know from Proposition 3 that, for every solution u to problem (P )λ, F (u) is
contained in the high ridge {d(x) = RΩ} and hence the set {u = 0} has necessarily empty
interior.

We are now going to deal with the existence of genuine solutions to (P )λ, for λ > 1
RΩ

. To

that aim, we introduce two more definitions.

Definition 13. Given r ∈ (0, RΩ), we define wr as the infinity harmonic potential of Ωr

relative to Ω, namely the unique solution to
∆∞wr = 0 in Dr := Ω \ Ωr

wr = 1 on ∂Ω

wr = 0 in Ωr .

Definition 14. Given r ∈ (0, RΩ], we set

D̂r :=
⋃

y∈∂Ωr

{]y, z[: z ∈ Π∂Ω(y)} ,
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where Π∂Ω(y) ⊂ ∂Ω is the set of projections of y defined in (3).

Remark 15. Notice that, by definition, D̂r is a subset of Dr, with possibly strict inclusion
(think for instance to the case when Ω is a square, see Figure 1).

Theorem 16. (a) For every λ > 1
RΩ

, the function w 1
λ

is a genuine solution to problem

(P )λ; moreover it satisfies the estimates

(17) 1− λd(x) ≤ w 1
λ

(x) ≤ λ dist(x, ∂Ω 1
λ

) in D 1
λ
, with equalities in D̂ 1

λ
.

(b) For every λ ∈
(
0, 1

RΩ

)
, problem (P )λ does not admit non-constant solutions.

Proof. Throughout the proof, since λ is fixed, we set for brevity

w := w 1
λ
, D := D 1

λ
, D̂ := D̂ 1

λ
.

Let us first show that w satisfies the inequalities in (17). This can be proved using the
same arguments of Proposition 9. More precisely, the function v(x) := 1−λd(x) is infinity
subharmonic (since d is infinity superharmonic), and satisfies the equality v = w on both
∂Ω and ∂Ω 1

λ
. By the comparison principle for infinity harmonic functions, it follows that

w ≥ v in D.
Similarly, the function z(x) := λ dist(·, ∂Ω 1

λ
) is infinity superharmonic, and satisfies z =

w = 0 on ∂Ω 1
λ

, w ≤ z on ∂Ω. Again by the comparison principle for infinity harmonic

functions, we infer that w ≤ z in D.

In order to obtain that the inequalities in (17) hold as equalities in D̂, we firstly notice that
‖∇w‖∞ = λ. Indeed, the inequality ‖∇w‖∞ ≥ λ follows immediately from the estimate

‖∇w‖∞ ≥ sup
{ |w(x)− w(y)|

|x− y|
: x ∈ ∂Ω, y ∈ ∂Ω 1

λ

}
;

the converse one follows from the fact that w has the AML property in D, which entails
in particular ‖∇w‖∞ ≤ ‖∇v‖∞ = λ.

Now assume by contradiction that the strict inequality w > v holds at some point x ∈ D̂.
If x belongs to the segment ]y, z[, with y ∈ ∂Ω 1

λ
and z ∈ Π∂Ω(y), we have that

‖∇w‖∞ ≥
|w(x)− w(y)|
|x− y|

=
w(x)

|x− y|
>

v(x)

|x− y|
=
|v(x)− v(y)|
|x− y|

= λ .

Here, in the last equality we have exploited the fact that d(x) − d(y) = |x − y|. Indeed,

if x ∈]y, z[⊂ D̂r, with y ∈ ∂Ωr and z ∈ Π∂Ω(y), it holds that d(x) = r − |x − y| and
dist(x, ∂Ωr) = r − |x− z|, which implies in particular

(18) r − d(x) = |x− y| = r − |x− z| = dist(x, ∂Ωr) .

We have thus contradicted the equality ‖∇w‖∞ = λ, and we conclude that w(x) = v(x).

Since, by (18), v(x) = z(x) on D̂, the proof of (17) is achieved.

(a) We are now in a position to prove that w solves problem (P )λ, which amounts to show
that it satisfies the free boundary condition (c) of Definition 1 along the free boundary
F (w) = ∂Ω 1

λ
.

Let x0 ∈ ∂Ω 1
λ

, let ϕ+ ≺x0 w, with p := ∇ϕ(x0) 6= 0. By the upper bound inequality in

(17), we have

ϕ(x) ≤ w(x) ≤ λ dist(x, ∂Ω 1
λ

) ∀x ∈ D,
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hence
ϕ(x0 + tp) ≤ λ dist(x0 + tp, ∂Ω 1

λ
) ≤ λ t |p|, t > 0 small.

Dividing by t > 0 and taking the limit as t → 0+ we get |p|2 ≤ λ |p|, hence |p| ≤ λ, so
that (c1) holds.
Let us now consider condition (c2) at a point x0 ∈ ∂Ω 1

λ
. Let y ∈ Π∂Ω(x0). By (17), the

function w is affine with slope λ on the segment ]x0, y[⊂ D̂. If ϕ is a test function as in
condition (c2), setting ν := (y − x0)/|y − x0|, we have that

|∇ϕ(x0)| ≥ lim
t→0+

ϕ(x0 + tν)

t
≥ lim

t→0+

w(x0 + tν)

t
= λ,

and (c2) follows.

(b) We observe that, if u is a non-constant solution to (P )λ (for an arbitrary λ > 0), it
holds that

(19) sup
x∈Ω+(u)

|∇u(x)| ≥ 1/RΩ .

Indeed, if we assume that |∇u(x)| ≤ L < 1/RΩ for every x ∈ Ω+(u), then we obtain

u(x) ≥ 1− Ld(x) ≥ 1− LRΩ > 0 ∀x ∈ Ω+(u),

a contradiction.
Statement (b) is a direct consequence of Proposition 3, since F (u) 6= ∅ for non-constant
solutions. �

4. Uniqueness

Prior to starting the analysis of the uniqueness of solutions for problem (P )λ, we emphasize
that one has to restrict attention to the class of genuine solutions and to choose λ > 1/RΩ.
Indeed, if these requirements are dropped, by applying the results of the previous section
we readily get the following conclusions:

– For λ > 1/RΩ, according to Proposition 10 there exist infinitely many non-genuine
solutions to (P )λ, corresponding to the infinity harmonic potentials of any compact
set K ⊆

{
d ≥ 1

λ

}
satisfying (16).

– For λ = 1/RΩ, we know that all the solutions to (P )λ are non-genuine (cf. Re-
mark 12). Moreover, it is easy to see that any compact set K contained in the high
rigde of Ω satisfies (16). Therefore, there exist either one or multiple non-constant
solutions to (P )λ respectively when the high ridge is a singleton or not.

We are thus led to formulate the question as:

When uniqueness of genuine solutions to (P )λ occurs for λ > 1/RΩ?

Our answer is given in the statement below.

Theorem 17 (Uniqueness of genuine solutions). Let λ > 1/RΩ. Assume that

(H1) Ω 1
λ

is connected;

(H2) Ω 1
λ

=
{
d ≥ 1

λ

}
.

Then w 1
λ

is the unique genuine solution to (P )λ.

Corollary 18. Assume Ω is convex. For every λ > 1/RΩ, w 1
λ

is the unique genuine

solution to problem (P )λ.
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Ω−
1 Ω+

1

p q

Figure 2. The set Ω of Example 21 (grey) and ∂Ω1 (black)

Remark 19. (About the connectness assumption (H1)). When Ω is convex, assumption
(H1) is satisfied because also Ωr is convex for every r ∈ [0, RΩ). For general Ω, (H1) is
satisfied if 1

λ < dist(∂Ω,Σ(Ω)), Σ(Ω) being the cut locus of Ω, namely the closure of the set
of points where the distance from ∂Ω is not differentiable. Indeed, if r < dist(∂Ω,Σ(Ω)),
then Σ(Ω) ⊂ Ωr and Σ(Ωr) = Σ(Ω). By Theorem 5.3 in [1], Ω and Ωr have the same
homotopy class as Σ(Ω). Since Ω is connected by assumption, then also Σ(Ω) and Ωr are
connected.

Remark 20. (About the regularity assumption (H2)). When Ω is convex, assumption (H2)
is satisfied because Ωr agrees with {d ≥ r} for every r ∈ [0, RΩ). For general Ω, we have
the inclusion Ωr ⊆ {d ≥ r}, which may be possibly strict (see for instance Example 22
below). Assumption (H2) can be also rephrased by asking that the set C :=

{
d ≥ 1

λ

}
satisfies C = intC. In topology, sets satisfying this last condition are known as regular
closed sets. It is clear from the definition that such sets are closed in the usual sense, and
have a non-empty interior if they are not empty.

Assumptions (H1) and (H2) are sharp, as we can have multiple genuine solutions as soon
as Ω 1

λ
is not connected and/or Ω 1

λ
6=
{
d ≥ 1

λ

}
. This fact is illustrated in Examples 21

and 22 below.

Example 21 (Multiplicity of genuine solutions without (H1)). If Ω 1
λ

is not connected, then

problem (P )λ may have more than one genuine solution. Let us show this phenomenon
with an explicit example. Let Ω ⊂ R2 be the set

Ω := B3((−4, 0)) ∪B3((4, 0)) ∪ ((−4, 4)× (−1, 1))

(see Figure 2), and let λ = 1.
The set Ω1 is not connected, since it is the disjoint union of two connected components
Ω−1 := Ω1 ∩ {x1 < 0} and Ω+

1 := Ω1 ∩ {x1 > 0}.
We have proved in Theorem 16 that the function w1 is a solution to (P )1.

Furthermore, we claim that the infinity–harmonic potentials of Ω±1 relative to Ω are both
solutions to (P )1. Let us prove this claim when u is the infinity–harmonic potential of

Ω−1 . By Proposition 9 we have that u(x) = w1(x) on the set

A− := {x = (x1, x2) ∈ Ω \ Ω1 : x1 < 2
√

2− 4}.
Hence, we already know that u satisfies the free boundary condition of Definition 1 at all
points x0 ∈ F (u) = ∂Ω−1 , x0 6= p := (2

√
2−4, 0). It remains to prove that the free boundary

condition is satisfied at p. Since p has two projections y± := (2
√

2− 4,±1) on ∂Ω, it does
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Ω−
1

p q

Figure 3. The set Ω of Example 22 (grey) and ∂Ω1 (black)

not exist a smooth function ϕ such that u ≺p ϕ+. On the other hand, if ϕ is a smooth

function such that ϕ+ ≺p u, then necessarily |∇ϕ(p)| ≤ 1, since u(x) ≤ dist(x,Ω−1 ). This
proves that u is a solution to (P )1.
One can also construct infinitely many other genuine solutions to (P )1. Specifically, let

q := −p, let C be a closed subset of [p, q]∪Ω+
1 with empty interior, and let K := C ∪Ω−1 .

Then the infinity–harmonic potential of K relative to Ω turns out to be a solution to (P )1.
Another symmetric family of genuine solutions can be constructed by taking C a closed

subset of [p, q] ∪ Ω−1 with empty interior and K := C ∪ Ω+
1 . (For both families, the free

boundary condition can be checked by arguing with minor modifications as done in the
proof of Proposition 10).

Example 22 (Multiplicity of genuine solutions without (H2)). More than one genuine
solution may occur also in case Ω 1

λ
is strictly contained in

{
d ≥ 1

λ

}
. To enlighten this

fact, let us modify the above example by considering the set

Ω := B3((−4, 0)) ∪B1((4, 0)) ∪ ((−4, 4)× (−1, 1)).

Again, we take λ = 1. In this case, {d ≥ 1} = Ω1 ∪ [p, q] 6= Ω1, with p := (2
√

2 − 4, 0)
and q := (4, 0). Similarly as above, for every closed subset C of the segment [p, q], the

infinity–harmonic potential of K := Ω−1 ∪ C relative to Ω is a solution to (P )λ.

We now turn to the proof of Theorem 17. It is based on the characterization of the set
int{u = 0} (see Proposition 24 below). We start by proving a simple geometric lemma.

Lemma 23. Let A be a non-empty open subset of Ω such that, for some constant R > 0,

(20) d(x) = dist(x, ∂A) +R, ∀x ∈ A.

Then A is a union of connected components of ΩR. In particular, if ΩR is connected, then
A = ΩR.

Proof. From (20) we have that d(x) > R for every x ∈ A, hence A ⊆ ΩR.
We claim that ∂A ⊆ ∂ΩR. Specifically, let y ∈ ∂A. For every ε > 0 there exists a point
x ∈ A such that |x− y| < ε, so that, by (20),

d(y) < d(x) + ε = dist(x, ∂A) +R+ ε < R+ 2ε,

d(y) > d(x)− ε = dist(x, ∂A) +R− ε > R− 2ε,

hence d(y) = R, and the claim is proved.
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Let A′ be a connected component of A, and let B a connected component of ΩR such
A′ ∩B 6= ∅. By the previous claim, ∂A′ ∩B = ∅, hence B can be written as the union of
the two open sets A′ and B \ A′. Since B is connected, then necessarily B \ A′ = ∅ and
A′ = B. �

Proposition 24. Let λ > 1/RΩ and let u be a solution to (P )λ. Then int{u = 0} is a
(possibly empty) union of connected components of Ω 1

λ
.

Proof. We are going to prove that, if the set A := int{u = 0} is not empty, it satisfies the
assumption (20) of Lemma 23 with R = 1

λ .
Let x ∈ A, let x0 ∈ Π∂A(x) and let r := |x − x0|, so that Br(x) ⊂ A and x0 ∈ F (u). Let
us consider the function

ϕ(y) :=
|y − x| − r
d(x)− r

, y ∈ Ω.

We have that ϕ(y) ≥ 0 for every y ∈ ∂A ⊆ F (u), and ϕ(y) ≥ 1 for every y ∈ ∂Ω. Hence,
by comparison, ϕ ≥ u in Ω \ A and, in particular, u ≺x0 ϕ

+. By Definition 1, it follows
that

(21) |∇ϕ(x0)| = 1

d(x)− r
≥ λ.

Let z ∈ Π∂Ω(x). The point y0 := x+ r z−x
|x−z| belongs to Br(x) ⊂ A and, by Proposition 3,

Br(x) ⊆ A ⊆ Ω 1
λ

, so that

(22)
1

λ
≤ d(y0) = |y0 − z| = |x− z| − |x− y0| = d(x)− r .

From (21) and (22) it follows that d(x) − r = 1
λ , i.e. the assumptions of Lemma 23 hold

with R = 1
λ . �

We are now in a position to give:

Proof of Theorem 17. Let u be a genuine solution to (P )λ, for some λ > 1/RΩ.
Since by assumption the interior of {u = 0} is not empty, by Proposition 24 it is a union
of connected components of Ω 1

λ
and hence, by assumption (H1), it agrees with Ω 1

λ
.

On the other hand, by Proposition 3, the closed set {u = 0} is contained in
{
d ≥ 1

λ

}
and,

by assumption (H2), we have
{
d ≥ 1

λ

}
= Ω 1

λ
.

Summarizing, we have

Ω 1
λ

= int
(
{u = 0}

)
⊆ {u = 0} ⊆

{
d ≥ 1

λ

}
= Ω 1

λ
.

Hence, {u = 0} = Ω 1
λ

and u = w 1
λ

. �

5. Characterization of solutions

In the following theorem we will characterize all solutions to (P )λ as the infinity-harmonic
potentials of compact subsets of Ω.

Definition 25. For a fixed λ ≥ 1/RΩ, let Kλ be the family of all non-empty sets K ⊂ Rn
satisfying the following properties:

(i) K is a compact subset of {d ≥ 1/λ}.
(ii) If K̃ is a connected component of K with non-empty interior, then int K̃ coincides

with a connected component of Ω1/λ.
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(iii) If Ω \K is decomposed as in Section 2.3, then the set I0 defined in (13) is empty
(cf. Lemma 7 for equivalent conditions).

Theorem 26. Let λ ≥ 1/RΩ. Then a function u ∈ C(Ω) is a non-constant solution
to (P )λ if and only if there exists a set K ∈ Kλ such that u = wK .

Proof. The case λ = 1/RΩ is trivial (see Remark 12), so that we shall assume that λ >
1/RΩ.

Let u ∈ C(Ω) be a solution to (P )λ. Let us prove that the set K := {u = 0} belongs to
the class Kλ introduced in Definition 25, and that u = wK .
Condition (i) is satisfied by Proposition 3.
Condition (ii) is clearly satisfied if u is a non-genuine solution, while it follows from
Proposition 24 if u is a genuine solution.
Condition (iii) can be easily checked arguing by contradiction. Specifically, assume that
the set I0 defined in (13) is not empty. In this case, there exists a connected component
A of Ω \ K such that ∂A ⊂ K. But then, by uniqueness, necessarily u = 0 on A, with
A ∩K = ∅, against the definition of K.
We have thus proved thatK ∈ Kλ. Finally we observe that, sinceK satisfies condition (iii),
we have {wK = 0} = K (cf. Lemma 7), and hence u = wK .

Vice versa, let K ∈ Kλ and let us prove that wK is a solution to (P )λ.
By property (iii) in Definition 25, we have that F (wK) = ∂K, hence it is enough to prove
that the free boundary condition is satisfied at any point of ∂K. Let x0 ∈ ∂K.
We have two possibilities: either x0 6∈ intK, or x0 ∈ ∂B, where B is a connected compo-
nent of intK (which thanks to property (ii) in Definition 25 is also a connected component
of the open set Ω1/λ).

If x0 6∈ intK, we are done by arguing exactly as in Proposition 10 (in particular, by
exploiting property (i) in Definition 25).
If x0 ∈ ∂B , we argue as in the proof of Theorem 16(a). More precisely, we prove firstly
that the following inequalities analogous to (17) are satisfied:

(23) 1− λ d(x) ≤ wK(x) ≤ λ dist(x, ∂B), ∀x ∈ Ω \K,
with equalities for every x ∈ [x0, y0], being y0 ∈ Π∂Ω(x0). Then, by using (23), we obtain
the free boundary condition at x0 by proceeding in the same way as in the second part of
the proof of Theorem 16(a). �

6. Asymptotics of p-Bernoulli problems as p→ +∞

In this section we explore the relation between problem (P )λ and the interior Bernoulli
problem for the p-Laplacian. For the benefit of the reader, we start by revisiting in more
detail some facts which in part have been already mentioned in the Introduction (some
bibliographical references already given therein are skipped below).
The interior Bernoulli free boundary problem for the p-Laplacian, for a given p > 1,
consists in finding a (non-constant) solution to

(24)


∆pu = 0 in Ω+(u) ,

u = 1 on ∂Ω,

|∇u| = λ on F (u) .

Then the Bernoulli constant for the p-Laplacian is defined by

λΩ,p := inf{λ > 0 : (24) admits a non-constant solution}.
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Here a solution to (24) is meant as a function u ∈ W 1,p
1 (Ω) such that, according to [26],

the free boundary condition is satisfied in the following weak sense:

(25) lim
ε→0

∫
∂{u>ε}∩Ω

(|∇u| − λ)η · ν = 0 ∀η ∈W 1,p
0 (Ω;Rn) ,

where ν is the unit outward normal.
In particular, when Ω is a regular convex domain, the following results due to Henrot and
Shahgholian hold:

• for every λ ≥ λΩ,p, problem (24) admits a classical non-constant solution u ∈ C(Ω+(u))∩
C2(Ω+(u)), which has convex level sets; moreover, the free boundary F (u) is of class C2,α

[36, Thm. 2.1], and the free boundary condition is satisfied in the pointwise sense

lim
Ω+(u)3y→x

|∇u(y)| = λ ∀x ∈ F (u) .

• λΩ,p can be characterized, loosely speaking, as the infimum of positive λ such that the
family of sub-solutions to (24) is not empty, and it satisfies the lower bound

(26) λΩ,p ≥ 1/RΩ

[35, Thms. 3.1 and 3.2].

When Ω is an arbitrary domain, not necessarily convex, following the celebrated work
[2] by Alt and Caffarelli, in order to find solutions to problem (24) one can consider the
integral functionals

Jλp (u) :=
1

p

∫
Ω

(
|∇u|
λ

)p
+
p− 1

p

∣∣{u > 0}
∣∣

and look for minimizers to

(27) min
{
Jλp (u) : u ∈W 1,p

1 (Ω)
}
, W 1,p

1 (Ω) := 1 +W 1,p
0 (Ω).

Accordingly, the constant

ΛΩ,p := inf{λ > 0 : (27) admits a non-constant solution},

can be regarded as a variational Bernoulli constant for the p-Laplacian. We have that:

• For every λ ≥ ΛΩ,p, problem (27) admits a non-constant minimizer u (see [25, Thm. 1.1]);
such minimizer turns out to be a solution to the Bernoulli problem (24), provided the
free boundary condition |∇u| = λ is understood in the weak sense (25) [26, Thm. 2.1];
moreover, the free boundary F (u) is a locally analytic hyper-surface, except for a Hn−1-
negligible singular set [26, Cor. 9.2].

• As a consequence of the results recalled at the above item, we have that

(28) ΛΩ,p ≥ λΩ,p ;

this inequality may be strict, as the explicit computation of both constants ΛΩ,p and λΩ,p

in case of the ball reveals [25, Section 4].

Being this a quick picture of the state of the art, in the light of the results proved in the
previous sections for problem (P )λ, it is natural to ask:

What is the asymptotics of the Bernoulli constants λΩ,p and ΛΩ,p as p → +∞? Further,
if for a fixed λ and p large enough there exists a non-constant solution up to (24), what is
the limiting behaviour of up as p→ +∞?
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Regarding the asymptotics of the Bernoulli constants λΩ,p and their variational counter-
parts ΛΩ,p, we have:

Proposition 27. Let Ω ⊂ Rn be a bounded open domain. Then

lim sup
p→+∞

λΩ,p ≤ lim sup
p→+∞

ΛΩ,p ≤ 1/RΩ .

Proof. In view of the inequality (28), it is enough to prove that

lim sup
p→+∞

ΛΩ,p ≤ 1/RΩ .

To obtain this inequality we observe that, if we fix λ > 1/RΩ, for p large enough prob-
lem (27) admits a non-constant minimizer. Indeed, setting vλ := (1− λd)+, for p� 1 we
have

Jλp (vλ) =
1

p
|D1/λ|+

p− 1

p
|D1/λ| = |D1/λ| <

p− 1

p
|Ω| = Jp(1) . �

Corollary 28. Assume that Ω is convex with ∂Ω of class C1. Then

lim
p→+∞

λΩ,p = lim
p→+∞

ΛΩ,p = 1/RΩ .

Proof. It follows from (26) and Proposition 27. �

Now, let Ω be convex and let λ > 1/RΩ. By Proposition 27, for p large enough there exists
a non-constant solution up to (24). Moreover, by Corollary 18, problem (P )λ admits a

unique solution given precisely by the infinity harmonic potential w 1
λ

of Ω 1
λ

. Nevertheless,

we cannot expect that, in general, up converge to w 1
λ

as p→ +∞. To enlighten this fact

and get a feeling of the situation, let us have a look at what happens when Ω is a ball.

Example 29 (The radial case). Let BR be the ball of center 0 and radius R in Rn, and let
λ > 1/R. It is well-known that for λ = λp(BR) the Bernoulli problem (24) on BR admits
a unique solution, which is called parabolic, whereas for any λ > λp(BR) it admits two
solutions, which are called hyperbolic and elliptic (as they are respectively decreasing and
increasing with respect to the parameter λ).
Since we want to examine the asymptotic behaviour of these solutions as p→ +∞, let us
briefly recover their expressions. By a result of Reichel [52], a solution to problem (24)
on BR is necessarily radial. Hence, for ρ ∈ (0, R) and p > n, we compute the p-harmonic
function up in BR \ Bρ which satisfies the Dirichlet boundary conditions up = 1 on ∂BR
and up = 0 on ∂Bρ. It is given by

(29) up(x) =
|x|α − ρα

Rα − ρα
, ρ < |x| < R, α :=

p− n
p− 1

(observe that, for p > n, the exponent α belongs to (0, 1), and tends to 1 as p→ +∞).
We are interested in finding the values of ρ ∈ (0, R) such that

(30) |∇up(x)| = λ, for |x| = ρ .

Since |∇up(x)| = α |x|
α−1

Rα−ρα , condition (30) is equivalent to

(31) fα(ρ) := λ ρα + αρα−1 − λRα = 0.
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It is immediate to check that fα is strictly decreasing in
(

0, 1−α
ρ

)
and strictly increasing

in
(

1−α
ρ , R

)
, so that

mα := min
(0,R)

fα = fα

(
1− α
ρ

)
=

(
λ

1− α

)1−α
− λRα.

Moreover,

lim
ρ→0+

fα(ρ) = +∞, fα(R) = αRα−1 > 0.

Hence, equation (31) has one solution if mα = 0, two solutions if mα < 0, no solutions if
mα > 0. Observe that

mα ≤ 0 ⇐⇒ λ ≥ λp(BR) :=
1

R
(1− α)1−1/α =

1

R

(
n− 1

p− 1

)−(n−1)/(p−n)

.

In particular, for p large enough, since limα→1−mα = 1−λR < 0, equation (31) has exactly
two zeros ρ′α and ρ′′α; correspondingly, the sets ∂Bρ′α and ∂Bρ′′α are the free boundaries of
the so-called hyperbolic and elliptic solutions to (24).
Let us look at what happens as p→ +∞. We know from the above computations that

0 < ρ′α <
1− α
λ

< ρ′′α < R.

This gives at once ρ′α → 0 as α→ 1−. On the other hand it is easily seen that, for every
0 < ε < min{1/λ,R− 1/λ}, it holds

lim
α→1−

fα

(
R− 1

λ
− ε
)

= −ε λ < 0, lim
α→1−

fα

(
R− 1

λ
+ ε

)
= ε λ > 0,

so that ρ′′α → R− 1
λ as α→ 1−.

Summarizing, the above analysis shows that the two families of p-harmonic functions which
fit the Bernoulli free boundary condition (30) for ρ = ρ′p and ρ = ρ′′p have respectively the
following asymptotic behaviour: their free boundary degenerates or converge to the set
∂Ω 1

λ
, i.e.,

ρ′p → 0 , ρ′′p → R− 1

λ
,

and the functions up, as given by (29), converge to

wR(x) =
|x|
R
, x ∈ BR, w 1

λ
(x) = 1− λ(R− |x|), x ∈ BR \BR− 1

λ
.

In particular, only the elliptic family converges to the unique solution of (P )λ. Let us
remark that, for λ ≥ Λp(BR), contrary to the hyperbolic solutions, the elliptic ones are
variational, namely they solve the minimization problem (27) on BR (see [34, Sec. 5.3],
[25, Sec. 4]).

Now, as suggested by the example of the ball, we give a convergence result for variational
solutions. The reader may find a similar Γ-convergence result in the paper [43], where the
authors deal with the asymptotic behaviour of variational energies related to the exterior
Bernoulli boundary problem for the p-Laplacian as p→ +∞.
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Lemma 30. (i) For every function u belonging to the space

V(Ω) :=
{
u ∈ C(Ω) ∩W 1,∞(Ω) : u = 1 on ∂Ω

}
.

the map p 7→ Jλp (u) is monotone nondecreasing.

(ii) In the limit as p → +∞, the sequence (Jλp )p Γ-converges, with respect to the weak

topology of W 1,q(Ω), to the functional functional J∞ given by

(32) J∞(u) :=

{
|{u > 0}|, if ‖∇u‖∞ ≤ λ,
+∞, otherwise.

Proof. The first part of the statement can be found in [43, Proposition 1], but we enclose
a short proof for the sake of completeness. If 1 < p ≤ q, by applying Young’s inequality
AB ≤ (Ar/r) + (Bs/s), with A = |∇u|/λ, B = 1, r = q/p and s = r/(r − 1), we obtain

Jλp (u) ≤ 1

q

∫
Ω

(
|∇u|
λ

)q
dx+

(
q − p
pq

+
p− 1

p

)
|{u > 0}| = Jλq (u) .

The second part of the statement follows from the first one: it is enough to observe that
the functional J∞ is the “pointwise” limit of Jλp , and apply a well-known property of
Γ-convergence (see [9, Remark 1.40(ii)]). �

Theorem 31. Let λ > 1/RΩ. For p large enough, let uλ,p be a solution to the p-Bernoulli
problem (24) which is found by solving the minimization problem (27). Then, there exists
an increasing sequence (pj), diverging to +∞, such that

uλ,pj ⇀ u∞ weakly in W 1,q(Ω) ∀q > 1 , uλ,pj → u∞ uniformly in Ω ,

where u∞ is a solution of the ∞-Bernoulli problem (P )λ satisfying

int{u∞ = 0} = {d > 1/λ}.

Proof. Thanks to the assumption λ > 1/RΩ and to Proposition 27, we know that for p
large enough problem (27) admits a solution uλ,p. As λ is fixed, we shall write for brevity

Jp in place of Jλp and up in place of uλ,p.
Let us first show that, for every fixed q > 1, the family (up) is uniformly bounded in
W 1,q(Ω). Since

1

p

∫
Ω

(
|∇up|
λ

)p
dx ≤ Jp(up) ≤ Jp(1) =

p− 1

p
|Ω| ≤ |Ω|,

we get
‖∇up‖p ≤ λp1/p|Ω|1/p.

Then, by Hölder’s inequality, for every p > q + 1 it holds

(33) ‖∇up‖q ≤ ‖∇up‖p |Ω|
1
q
− 1
p ≤ λp1/p|Ω|

1
q ≤ C,

where C > 0 is a constant independent of p.
Using a diagonal argument, we can construct an increasing sequence pj → +∞ such that

upj converges weakly in W 1,q(Ω) for every q > 1 and uniformly in Ω to a function u∞. We
claim that u∞ is a solution to (P )λ, satisfying int{u∞ = 0} = {d > 1/λ}.
The fact that u∞ is infinity harmonic in its positivity set is a standard consequence of the
fact that upj solve (27) with p = pj → +∞, see for instance the arguments in [54, proof
of Theorem 1].
Moreover, since upj = 1 on ∂Ω for every j, from the uniform convergence it follows
immediately that the same condition is satisfied by u∞.
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Next we are going to show that the set

K := {u∞ = 0}
satisfies int(K) = {d > 1/λ}, and that it belongs to the class Kλ introduced in Defini-
tion 25.
From the second inequality in (33), we see that ‖∇u∞‖L∞(Ω) ≤ λ. Since u = 1 on ∂Ω,
we conclude that u ∈ V(Ω), where V(Ω) is the space defined in Lemma 30. Therefore, we
deduce as a first information on K the inclusion

(34) K ⊆ {d ≥ 1/λ} .
To go farther, we claim that u∞ solves the minimization problem

(35) min
{
J∞(u) : u ∈ V(Ω)

}
,

where J∞ is the functional defined by (32). Indeed, since upj → u∞ uniformly in Ω, for
every fixed ε > 0, there exists an index jε ∈ N such that

|{u∞ > 0}| < |{upj > 0}|+ ε, ∀j > jε .

Then, for j > jε, it holds

(36)

Jpj (u∞) ≤ 1

pj
|{u∞ > 0}|+ pj − 1

pj
|{u∞ > 0}|

≤ 1

pj
|Ω|+ pj − 1

pj
(|{upj > 0}|+ ε)

≤ 1

pj
|Ω|+ Jpj (upj ) + ε .

Thanks to the monotonicity property stated in Lemma 30, we can now pass to the limit
as j → +∞ in (36). By the arbitrariness of ε > 0, and recalling that upj are solutions
to (27) (with p = pj), we obtain, for every u ∈ V(Ω),

J∞(u∞) = lim
j→+∞

Jpj (u∞) ≤ lim inf
j→+∞

Jpj (upj ) ≤ lim inf
j→+∞

Jpj (u) = J∞(u),

so that u∞ solves problem (35) as claimed. Consequently, by taking as a competitor the
function (1− λd)+, we deduce that |{u∞ > 0}| ≤ |D 1

λ
|, or equivalently

(37) |K| ≥ |{d ≥ 1/λ}| .
Since |∇d| = 1 a.e. in Ω, every level set of d has zero Lebesgue measure, so that |{d ≥
1/λ}| = |{d > 1/λ}|. Since int{d ≥ 1/λ} = {d > 1/λ}, by combining conditions (34)
and (37) we obtain that intK = {d > 1/λ}. As a consequence, K belongs to the family
Kλ introduced in Definition 25, so that, by Theorem 26, u∞ is a solution to (P )λ. �

Corollary 32. Let λ > 1/RΩ. Then, under the assumptions (H1)–(H2) of Theorem 17
(hence, in particular, when Ω is convex), in the limit as p→ +∞ we have

uλ,p ⇀ w 1
λ

weakly in W 1,q(Ω) ∀q > 1 , uλ,pj → w 1
λ
, uniformly in Ω ,

where w 1
λ

is the infinity harmonic potential of Ω 1
λ

, namely the unique genuine solution to

the ∞-Bernoulli problem (P )λ.

Proof. From Theorem 31, there exists an increasing sequence pj ↗ ∞ such that uλ,pj →
u∞, with u∞ solution to (P )λ. Hence, by Theorem 17 we have that u∞ = w1/λ. By the
same argument, any other converging subsequence must converge to w1/λ. �
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