
IFAC PapersOnLine 56-2 (2023) 5655–5660

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.489

10.1016/j.ifacol.2023.10.489 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Automatic Routing Reconfiguration for
Fault Tolerance in Smart Manufacturing

Plants ⋆

Sonia De Santis ∗ Roberto Boffadossi ∗∗,∗∗∗ Lorenzo Fagiano ∗∗

∗ MECO Research Team, Department of Mechanical Engineering,
KU Leuven, Belgium (e-mail: sonia.desantis@kuleuven.be)

and Flanders Make@KU Leuven, Belgium
∗∗ Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Italy (e-mails: roberto.boffadossi@polimi.it,
lorenzo.fagiano@polimi.it)

∗∗∗ Institute of Intelligent Industrial Technologies and Systems for
Advanced Manufacturing (STIIMA), National Research Council,

Milano, Italy

Abstract: This paper focuses on the parts routing problem in a reconfigurable manufacturing
plant, in presence of potential faults and uncertainty on the job scheduling and duration. The
plant is modeled as a directed graph, where the nodes represent either transportation modules
or machines, and the edges represent the allowed transitions between adjacent nodes. The parts
move across the plant along predefined sequences of nodes, therefore the system state tracks
the progress of the parts along such sequences and the control inputs are the transitions to
be activated to command the parts movement. Provided the sequences, the proposed method
automatically generates feedback control rules for deadlock avoidance, which are employed by a
path following strategy to compute the suitable control inputs, complying with given temporal-
logic constraints and avoiding deadlock states. Additionally, the approach is extended to deal
with faults affecting the transportation modules via the selection of new feasible sequences and
the online reconfiguration of the system state. Finally, the proposed approach is tested in high-
fidelity simulations, showing high computational efficiency and throughput.

Keywords: Flexible and reconfigurable manufacturing systems, Smart manufacturing,
Manufacturing plant control, Industry 4.0, Advanced manufacturing

1. INTRODUCTION

Smart manufacturing marks an important turning point
in the industrial paradigm, as it enables to achieve bet-
ter performance thanks to advanced technologies, such as
artificial intelligence, data analysis, collaborative robotics,
etc. (Meindl et al. (2021)). A key feature of smart manu-
facturing plants is the routing flexibility, which increases
the process adaptability and allows to overcome the fault
occurrence by suitable reconfigurations of the parts paths.
However, such a flexibility also introduces a higher system
complexity, as it requires advanced plant control methods,
(Li and Si (2017); Ali and Wadhwa (2010); Morel et al.
(2007)). In fact, without proper management, the parts
can end up in plant deadlocks, i.e., stall situations due to
conflicting movements of two or more parts in a loop.

Several solutions can be found in the literature for the
problem at hand, considering different models of the plant
(Yadav and Jayswal (2018)), such as automata (Silva et al.

⋆ This research was partially funded by a grant from the Italian
Ministry of Foreign Affairs and International Cooperation (MAECI),
project “Real-time control and optimization for smart factories and
advanced manufacturing”, and partially supported by the Flanders
Make SBO project ARENA: Agile and Reliable Navigation.

(2011)), Petri nets (Xiong et al. (1996)) and directed
graphs (Cataldo and Scattolini (2016); Cataldo et al.
(2019); Fagiano et al. (2020); Boffadossi et al. (2021)).
In particular, in Fagiano et al. (2020), a Hierarchical
Predictive Routing Control strategy (HPRC) was applied,
featuring a low-level path following strategy and a high-
level predictive path allocation. In Boffadossi et al. (2021),
several improvements to the HPRC approach were pre-
sented, including the introduction of plant-specific han-
dling constraints, a deadlock detection routine and a novel
search tree exploration method. However, in these previous
contributions, the deadlock avoidance required on-line tree
search and backtracking procedures, which may be time
consuming, and no handling of faults was considered.

To overcome these issues, this paper presents a new control
approach for a reconfigurable plant modeled as a directed
graph, featuring the automatic generation of deadlock
avoidance rules, based on the theoretical findings of Zhang
et al. (2006), and a fault recovery procedure.

After describing the problem and the approach in Sections
2 and 3, respectively, in Section 4 the method is showcased
on a high-fidelity simulator, while Section 5 provides
conclusions and future research directions.

Automatic Routing Reconfiguration for
Fault Tolerance in Smart Manufacturing

Plants ⋆

Sonia De Santis ∗ Roberto Boffadossi ∗∗,∗∗∗ Lorenzo Fagiano ∗∗

∗ MECO Research Team, Department of Mechanical Engineering,
KU Leuven, Belgium (e-mail: sonia.desantis@kuleuven.be)

and Flanders Make@KU Leuven, Belgium
∗∗ Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Italy (e-mails: roberto.boffadossi@polimi.it,
lorenzo.fagiano@polimi.it)

∗∗∗ Institute of Intelligent Industrial Technologies and Systems for
Advanced Manufacturing (STIIMA), National Research Council,

Milano, Italy

Abstract: This paper focuses on the parts routing problem in a reconfigurable manufacturing
plant, in presence of potential faults and uncertainty on the job scheduling and duration. The
plant is modeled as a directed graph, where the nodes represent either transportation modules
or machines, and the edges represent the allowed transitions between adjacent nodes. The parts
move across the plant along predefined sequences of nodes, therefore the system state tracks
the progress of the parts along such sequences and the control inputs are the transitions to
be activated to command the parts movement. Provided the sequences, the proposed method
automatically generates feedback control rules for deadlock avoidance, which are employed by a
path following strategy to compute the suitable control inputs, complying with given temporal-
logic constraints and avoiding deadlock states. Additionally, the approach is extended to deal
with faults affecting the transportation modules via the selection of new feasible sequences and
the online reconfiguration of the system state. Finally, the proposed approach is tested in high-
fidelity simulations, showing high computational efficiency and throughput.

Keywords: Flexible and reconfigurable manufacturing systems, Smart manufacturing,
Manufacturing plant control, Industry 4.0, Advanced manufacturing

1. INTRODUCTION

Smart manufacturing marks an important turning point
in the industrial paradigm, as it enables to achieve bet-
ter performance thanks to advanced technologies, such as
artificial intelligence, data analysis, collaborative robotics,
etc. (Meindl et al. (2021)). A key feature of smart manu-
facturing plants is the routing flexibility, which increases
the process adaptability and allows to overcome the fault
occurrence by suitable reconfigurations of the parts paths.
However, such a flexibility also introduces a higher system
complexity, as it requires advanced plant control methods,
(Li and Si (2017); Ali and Wadhwa (2010); Morel et al.
(2007)). In fact, without proper management, the parts
can end up in plant deadlocks, i.e., stall situations due to
conflicting movements of two or more parts in a loop.

Several solutions can be found in the literature for the
problem at hand, considering different models of the plant
(Yadav and Jayswal (2018)), such as automata (Silva et al.

⋆ This research was partially funded by a grant from the Italian
Ministry of Foreign Affairs and International Cooperation (MAECI),
project “Real-time control and optimization for smart factories and
advanced manufacturing”, and partially supported by the Flanders
Make SBO project ARENA: Agile and Reliable Navigation.

(2011)), Petri nets (Xiong et al. (1996)) and directed
graphs (Cataldo and Scattolini (2016); Cataldo et al.
(2019); Fagiano et al. (2020); Boffadossi et al. (2021)).
In particular, in Fagiano et al. (2020), a Hierarchical
Predictive Routing Control strategy (HPRC) was applied,
featuring a low-level path following strategy and a high-
level predictive path allocation. In Boffadossi et al. (2021),
several improvements to the HPRC approach were pre-
sented, including the introduction of plant-specific han-
dling constraints, a deadlock detection routine and a novel
search tree exploration method. However, in these previous
contributions, the deadlock avoidance required on-line tree
search and backtracking procedures, which may be time
consuming, and no handling of faults was considered.

To overcome these issues, this paper presents a new control
approach for a reconfigurable plant modeled as a directed
graph, featuring the automatic generation of deadlock
avoidance rules, based on the theoretical findings of Zhang
et al. (2006), and a fault recovery procedure.

After describing the problem and the approach in Sections
2 and 3, respectively, in Section 4 the method is showcased
on a high-fidelity simulator, while Section 5 provides
conclusions and future research directions.

Automatic Routing Reconfiguration for
Fault Tolerance in Smart Manufacturing

Plants ⋆

Sonia De Santis ∗ Roberto Boffadossi ∗∗,∗∗∗ Lorenzo Fagiano ∗∗

∗ MECO Research Team, Department of Mechanical Engineering,
KU Leuven, Belgium (e-mail: sonia.desantis@kuleuven.be)

and Flanders Make@KU Leuven, Belgium
∗∗ Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Italy (e-mails: roberto.boffadossi@polimi.it,
lorenzo.fagiano@polimi.it)

∗∗∗ Institute of Intelligent Industrial Technologies and Systems for
Advanced Manufacturing (STIIMA), National Research Council,

Milano, Italy

Abstract: This paper focuses on the parts routing problem in a reconfigurable manufacturing
plant, in presence of potential faults and uncertainty on the job scheduling and duration. The
plant is modeled as a directed graph, where the nodes represent either transportation modules
or machines, and the edges represent the allowed transitions between adjacent nodes. The parts
move across the plant along predefined sequences of nodes, therefore the system state tracks
the progress of the parts along such sequences and the control inputs are the transitions to
be activated to command the parts movement. Provided the sequences, the proposed method
automatically generates feedback control rules for deadlock avoidance, which are employed by a
path following strategy to compute the suitable control inputs, complying with given temporal-
logic constraints and avoiding deadlock states. Additionally, the approach is extended to deal
with faults affecting the transportation modules via the selection of new feasible sequences and
the online reconfiguration of the system state. Finally, the proposed approach is tested in high-
fidelity simulations, showing high computational efficiency and throughput.

Keywords: Flexible and reconfigurable manufacturing systems, Smart manufacturing,
Manufacturing plant control, Industry 4.0, Advanced manufacturing

1. INTRODUCTION

Smart manufacturing marks an important turning point
in the industrial paradigm, as it enables to achieve bet-
ter performance thanks to advanced technologies, such as
artificial intelligence, data analysis, collaborative robotics,
etc. (Meindl et al. (2021)). A key feature of smart manu-
facturing plants is the routing flexibility, which increases
the process adaptability and allows to overcome the fault
occurrence by suitable reconfigurations of the parts paths.
However, such a flexibility also introduces a higher system
complexity, as it requires advanced plant control methods,
(Li and Si (2017); Ali and Wadhwa (2010); Morel et al.
(2007)). In fact, without proper management, the parts
can end up in plant deadlocks, i.e., stall situations due to
conflicting movements of two or more parts in a loop.

Several solutions can be found in the literature for the
problem at hand, considering different models of the plant
(Yadav and Jayswal (2018)), such as automata (Silva et al.

⋆ This research was partially funded by a grant from the Italian
Ministry of Foreign Affairs and International Cooperation (MAECI),
project “Real-time control and optimization for smart factories and
advanced manufacturing”, and partially supported by the Flanders
Make SBO project ARENA: Agile and Reliable Navigation.

(2011)), Petri nets (Xiong et al. (1996)) and directed
graphs (Cataldo and Scattolini (2016); Cataldo et al.
(2019); Fagiano et al. (2020); Boffadossi et al. (2021)).
In particular, in Fagiano et al. (2020), a Hierarchical
Predictive Routing Control strategy (HPRC) was applied,
featuring a low-level path following strategy and a high-
level predictive path allocation. In Boffadossi et al. (2021),
several improvements to the HPRC approach were pre-
sented, including the introduction of plant-specific han-
dling constraints, a deadlock detection routine and a novel
search tree exploration method. However, in these previous
contributions, the deadlock avoidance required on-line tree
search and backtracking procedures, which may be time
consuming, and no handling of faults was considered.

To overcome these issues, this paper presents a new control
approach for a reconfigurable plant modeled as a directed
graph, featuring the automatic generation of deadlock
avoidance rules, based on the theoretical findings of Zhang
et al. (2006), and a fault recovery procedure.

After describing the problem and the approach in Sections
2 and 3, respectively, in Section 4 the method is showcased
on a high-fidelity simulator, while Section 5 provides
conclusions and future research directions.

Automatic Routing Reconfiguration for
Fault Tolerance in Smart Manufacturing

Plants ⋆

Sonia De Santis ∗ Roberto Boffadossi ∗∗,∗∗∗ Lorenzo Fagiano ∗∗

∗ MECO Research Team, Department of Mechanical Engineering,
KU Leuven, Belgium (e-mail: sonia.desantis@kuleuven.be)

and Flanders Make@KU Leuven, Belgium
∗∗ Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Italy (e-mails: roberto.boffadossi@polimi.it,
lorenzo.fagiano@polimi.it)

∗∗∗ Institute of Intelligent Industrial Technologies and Systems for
Advanced Manufacturing (STIIMA), National Research Council,

Milano, Italy

Abstract: This paper focuses on the parts routing problem in a reconfigurable manufacturing
plant, in presence of potential faults and uncertainty on the job scheduling and duration. The
plant is modeled as a directed graph, where the nodes represent either transportation modules
or machines, and the edges represent the allowed transitions between adjacent nodes. The parts
move across the plant along predefined sequences of nodes, therefore the system state tracks
the progress of the parts along such sequences and the control inputs are the transitions to
be activated to command the parts movement. Provided the sequences, the proposed method
automatically generates feedback control rules for deadlock avoidance, which are employed by a
path following strategy to compute the suitable control inputs, complying with given temporal-
logic constraints and avoiding deadlock states. Additionally, the approach is extended to deal
with faults affecting the transportation modules via the selection of new feasible sequences and
the online reconfiguration of the system state. Finally, the proposed approach is tested in high-
fidelity simulations, showing high computational efficiency and throughput.

Keywords: Flexible and reconfigurable manufacturing systems, Smart manufacturing,
Manufacturing plant control, Industry 4.0, Advanced manufacturing

1. INTRODUCTION

Smart manufacturing marks an important turning point
in the industrial paradigm, as it enables to achieve bet-
ter performance thanks to advanced technologies, such as
artificial intelligence, data analysis, collaborative robotics,
etc. (Meindl et al. (2021)). A key feature of smart manu-
facturing plants is the routing flexibility, which increases
the process adaptability and allows to overcome the fault
occurrence by suitable reconfigurations of the parts paths.
However, such a flexibility also introduces a higher system
complexity, as it requires advanced plant control methods,
(Li and Si (2017); Ali and Wadhwa (2010); Morel et al.
(2007)). In fact, without proper management, the parts
can end up in plant deadlocks, i.e., stall situations due to
conflicting movements of two or more parts in a loop.

Several solutions can be found in the literature for the
problem at hand, considering different models of the plant
(Yadav and Jayswal (2018)), such as automata (Silva et al.

⋆ This research was partially funded by a grant from the Italian
Ministry of Foreign Affairs and International Cooperation (MAECI),
project “Real-time control and optimization for smart factories and
advanced manufacturing”, and partially supported by the Flanders
Make SBO project ARENA: Agile and Reliable Navigation.

(2011)), Petri nets (Xiong et al. (1996)) and directed
graphs (Cataldo and Scattolini (2016); Cataldo et al.
(2019); Fagiano et al. (2020); Boffadossi et al. (2021)).
In particular, in Fagiano et al. (2020), a Hierarchical
Predictive Routing Control strategy (HPRC) was applied,
featuring a low-level path following strategy and a high-
level predictive path allocation. In Boffadossi et al. (2021),
several improvements to the HPRC approach were pre-
sented, including the introduction of plant-specific han-
dling constraints, a deadlock detection routine and a novel
search tree exploration method. However, in these previous
contributions, the deadlock avoidance required on-line tree
search and backtracking procedures, which may be time
consuming, and no handling of faults was considered.

To overcome these issues, this paper presents a new control
approach for a reconfigurable plant modeled as a directed
graph, featuring the automatic generation of deadlock
avoidance rules, based on the theoretical findings of Zhang
et al. (2006), and a fault recovery procedure.

After describing the problem and the approach in Sections
2 and 3, respectively, in Section 4 the method is showcased
on a high-fidelity simulator, while Section 5 provides
conclusions and future research directions.

Automatic Routing Reconfiguration for
Fault Tolerance in Smart Manufacturing

Plants ⋆

Sonia De Santis ∗ Roberto Boffadossi ∗∗,∗∗∗ Lorenzo Fagiano ∗∗

∗ MECO Research Team, Department of Mechanical Engineering,
KU Leuven, Belgium (e-mail: sonia.desantis@kuleuven.be)

and Flanders Make@KU Leuven, Belgium
∗∗ Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Italy (e-mails: roberto.boffadossi@polimi.it,
lorenzo.fagiano@polimi.it)

∗∗∗ Institute of Intelligent Industrial Technologies and Systems for
Advanced Manufacturing (STIIMA), National Research Council,

Milano, Italy

Abstract: This paper focuses on the parts routing problem in a reconfigurable manufacturing
plant, in presence of potential faults and uncertainty on the job scheduling and duration. The
plant is modeled as a directed graph, where the nodes represent either transportation modules
or machines, and the edges represent the allowed transitions between adjacent nodes. The parts
move across the plant along predefined sequences of nodes, therefore the system state tracks
the progress of the parts along such sequences and the control inputs are the transitions to
be activated to command the parts movement. Provided the sequences, the proposed method
automatically generates feedback control rules for deadlock avoidance, which are employed by a
path following strategy to compute the suitable control inputs, complying with given temporal-
logic constraints and avoiding deadlock states. Additionally, the approach is extended to deal
with faults affecting the transportation modules via the selection of new feasible sequences and
the online reconfiguration of the system state. Finally, the proposed approach is tested in high-
fidelity simulations, showing high computational efficiency and throughput.

Keywords: Flexible and reconfigurable manufacturing systems, Smart manufacturing,
Manufacturing plant control, Industry 4.0, Advanced manufacturing

1. INTRODUCTION

Smart manufacturing marks an important turning point
in the industrial paradigm, as it enables to achieve bet-
ter performance thanks to advanced technologies, such as
artificial intelligence, data analysis, collaborative robotics,
etc. (Meindl et al. (2021)). A key feature of smart manu-
facturing plants is the routing flexibility, which increases
the process adaptability and allows to overcome the fault
occurrence by suitable reconfigurations of the parts paths.
However, such a flexibility also introduces a higher system
complexity, as it requires advanced plant control methods,
(Li and Si (2017); Ali and Wadhwa (2010); Morel et al.
(2007)). In fact, without proper management, the parts
can end up in plant deadlocks, i.e., stall situations due to
conflicting movements of two or more parts in a loop.

Several solutions can be found in the literature for the
problem at hand, considering different models of the plant
(Yadav and Jayswal (2018)), such as automata (Silva et al.

⋆ This research was partially funded by a grant from the Italian
Ministry of Foreign Affairs and International Cooperation (MAECI),
project “Real-time control and optimization for smart factories and
advanced manufacturing”, and partially supported by the Flanders
Make SBO project ARENA: Agile and Reliable Navigation.

(2011)), Petri nets (Xiong et al. (1996)) and directed
graphs (Cataldo and Scattolini (2016); Cataldo et al.
(2019); Fagiano et al. (2020); Boffadossi et al. (2021)).
In particular, in Fagiano et al. (2020), a Hierarchical
Predictive Routing Control strategy (HPRC) was applied,
featuring a low-level path following strategy and a high-
level predictive path allocation. In Boffadossi et al. (2021),
several improvements to the HPRC approach were pre-
sented, including the introduction of plant-specific han-
dling constraints, a deadlock detection routine and a novel
search tree exploration method. However, in these previous
contributions, the deadlock avoidance required on-line tree
search and backtracking procedures, which may be time
consuming, and no handling of faults was considered.

To overcome these issues, this paper presents a new control
approach for a reconfigurable plant modeled as a directed
graph, featuring the automatic generation of deadlock
avoidance rules, based on the theoretical findings of Zhang
et al. (2006), and a fault recovery procedure.

After describing the problem and the approach in Sections
2 and 3, respectively, in Section 4 the method is showcased
on a high-fidelity simulator, while Section 5 provides
conclusions and future research directions.

Automatic Routing Reconfiguration for
Fault Tolerance in Smart Manufacturing

Plants ⋆

Sonia De Santis ∗ Roberto Boffadossi ∗∗,∗∗∗ Lorenzo Fagiano ∗∗

∗ MECO Research Team, Department of Mechanical Engineering,
KU Leuven, Belgium (e-mail: sonia.desantis@kuleuven.be)

and Flanders Make@KU Leuven, Belgium
∗∗ Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Italy (e-mails: roberto.boffadossi@polimi.it,
lorenzo.fagiano@polimi.it)

∗∗∗ Institute of Intelligent Industrial Technologies and Systems for
Advanced Manufacturing (STIIMA), National Research Council,

Milano, Italy

Abstract: This paper focuses on the parts routing problem in a reconfigurable manufacturing
plant, in presence of potential faults and uncertainty on the job scheduling and duration. The
plant is modeled as a directed graph, where the nodes represent either transportation modules
or machines, and the edges represent the allowed transitions between adjacent nodes. The parts
move across the plant along predefined sequences of nodes, therefore the system state tracks
the progress of the parts along such sequences and the control inputs are the transitions to
be activated to command the parts movement. Provided the sequences, the proposed method
automatically generates feedback control rules for deadlock avoidance, which are employed by a
path following strategy to compute the suitable control inputs, complying with given temporal-
logic constraints and avoiding deadlock states. Additionally, the approach is extended to deal
with faults affecting the transportation modules via the selection of new feasible sequences and
the online reconfiguration of the system state. Finally, the proposed approach is tested in high-
fidelity simulations, showing high computational efficiency and throughput.

Keywords: Flexible and reconfigurable manufacturing systems, Smart manufacturing,
Manufacturing plant control, Industry 4.0, Advanced manufacturing

1. INTRODUCTION

Smart manufacturing marks an important turning point
in the industrial paradigm, as it enables to achieve bet-
ter performance thanks to advanced technologies, such as
artificial intelligence, data analysis, collaborative robotics,
etc. (Meindl et al. (2021)). A key feature of smart manu-
facturing plants is the routing flexibility, which increases
the process adaptability and allows to overcome the fault
occurrence by suitable reconfigurations of the parts paths.
However, such a flexibility also introduces a higher system
complexity, as it requires advanced plant control methods,
(Li and Si (2017); Ali and Wadhwa (2010); Morel et al.
(2007)). In fact, without proper management, the parts
can end up in plant deadlocks, i.e., stall situations due to
conflicting movements of two or more parts in a loop.

Several solutions can be found in the literature for the
problem at hand, considering different models of the plant
(Yadav and Jayswal (2018)), such as automata (Silva et al.

⋆ This research was partially funded by a grant from the Italian
Ministry of Foreign Affairs and International Cooperation (MAECI),
project “Real-time control and optimization for smart factories and
advanced manufacturing”, and partially supported by the Flanders
Make SBO project ARENA: Agile and Reliable Navigation.

(2011)), Petri nets (Xiong et al. (1996)) and directed
graphs (Cataldo and Scattolini (2016); Cataldo et al.
(2019); Fagiano et al. (2020); Boffadossi et al. (2021)).
In particular, in Fagiano et al. (2020), a Hierarchical
Predictive Routing Control strategy (HPRC) was applied,
featuring a low-level path following strategy and a high-
level predictive path allocation. In Boffadossi et al. (2021),
several improvements to the HPRC approach were pre-
sented, including the introduction of plant-specific han-
dling constraints, a deadlock detection routine and a novel
search tree exploration method. However, in these previous
contributions, the deadlock avoidance required on-line tree
search and backtracking procedures, which may be time
consuming, and no handling of faults was considered.

To overcome these issues, this paper presents a new control
approach for a reconfigurable plant modeled as a directed
graph, featuring the automatic generation of deadlock
avoidance rules, based on the theoretical findings of Zhang
et al. (2006), and a fault recovery procedure.

After describing the problem and the approach in Sections
2 and 3, respectively, in Section 4 the method is showcased
on a high-fidelity simulator, while Section 5 provides
conclusions and future research directions.

5656 Sonia De Santis et al. / IFAC PapersOnLine 56-2 (2023) 5655–5660

2. PROBLEM FORMULATION

2.1 Plant description

The considered system is a discrete manufacturing plant,
composed of several machines connected by a modular
transport line providing multiple routing options. For the
sake of problem description, an example is shown in Fig. 1.

Fig. 1. Plant Graph representing a manufacturing plant.

The plant is modeled as a directed graph G(N,E), named
Plant Graph, where:

• The set N contains a finite number Nn of nodes rep-
resenting the positions on the plant, of which Nt are
transportation nodes, while Nm = Nn −Nt are machine
nodes: M = {m : node m is a machine}. A machine can
be either a processing or measurement unit executing a
specific task, or an input/output station. The subsets
Mu,MI/O ⊆ M identify the machines with uncertain
outcome and the input/output stations, respectively.

• The set of directed edges E identifies a finite number
Nu of possible movements between two adjacent nodes
on the Plant Graph. An edge is indicated as an ordered
pair (na, nb), na, nb ∈ N , where na is the start node
and nb is the arrival node.

Each one of the Np(k) ∈ N parts present in the plant at
time step k, denoted by an index i = 1, ..., Np(k), is di-
rected to one target machine depending on its next sched-
uled job. After the job execution, the part moves towards
the next target, until it is completely processed and thus
can exit the plant, by targeting one of the input/output
stations. The sequence of jobs can be uncertain, since the
next job may depend on the outcome of the previous ones.

The motion between the machines is dictated by pre-
defined paths (or sequences), identified by Ns integers
and collected in set S = {1, . . . , Ns}. The paths can be
selected freely by the designer, as long as they provide a
connection between the machines to cover all the possible
series of jobs. For each s ∈ S, the operator S(s) returns
the corresponding sequence, composed of an ordered set of
Ms vectors:

S(s) =
{[

ns,1

gs,1

]
, · · · ,

[
ns,p

gs,p

]
, · · · ,

[
ns,Ms

gs,Ms

]}
(1)

where, for each p = 1, . . . ,Ms, ns,p indicates a node in
the sequence s and gs,p indicates the target machine. The
sequence assigned to part i at time step k is indicated as
si(k) ∈ S, the position along such a sequence as pi(k) ∈ N,
and the two operators S(si(k))(1,pi(k)), S(si(k))(2,pi(k))

return the first and the second entry of the vector in
position pi(k) of sequence S(si(k)), respectively. As an
example, considering the Plant Graph in Fig. 1, si(k) = 3
and pi(k) = 2 implies that part i occupies node 5 at time

k, i.e., S(si(k))(1,pi(k)) = 5, and its target is the machine
node 1, S(si(k))(2,pi(k)) = 1.

With this formalism, the state of part i at time step k
consists of the two elements:

xi(k) = [si(k), pi(k)]
T . (2)

The state of the plant is the collection of the parts states:

X(k) = [x1(k)
T , ..., xNp(k)(k)

T]T ∈ N2Np(k). (3)

As mentioned above, the outcome of one or more jobs may
be uncertain, so that the sequences followed by each part
are assigned online after the execution of each uncertain
job. The duration of each job might be uncertain as well,
and it is modeled by a Boolean machine indicator rm,
set to 1 when machine m has finished its job. Moreover,
plant-specific, state-dependent limitations on the allowed
movements can also be present, giving rise to additional
constraints on the plant state.

Provided the plant state, a path following strategy is
employed to determine the set of Boolean control inputs
U(k) ∈ {0, 1}Nu , with the goal of propagating forward the
motion of each part along its sequence, compatibly with
all the mentioned operational constraints. Specifically,
each variable u(na,nb)(k) ∈ U(k), where (na, nb) ∈ E, is
associated with one edge on the Plant Graph and its value
determines whether the motion along the corresponding
edge is commanded: as an example, input u(na,nb)(k) = 1 if
the movement along the transition (na, nb) is commanded,
such that the part occupying node na at time k moves to
node nb at time k + 1. Moreover, two control inputs for
each input/output station m ∈ MI/O describe the loading
and unloading operations, and are indicated as u(0,m)

and u(m,0), respectively. Finally, an exogenous Boolean
variable a(k) indicates the availability of a new part to
enter the plant.

2.2 Deadlock description

Deadlocks are a common issue in flexible plants, since
various parts share the same resources (transport line,
buffers, machines, etc.). They are determined by circular
wait situations: each part involved cannot move because it
is waiting for other parts to move, including itself.

Specifically, two kinds of deadlock exist: primary and
impending deadlocks. Primary deadlocks occur when two
or more parts form a cycle on the Plant Graph while
they are moving, thus they are indefinitely waiting for
the next node along their sequence to be emptied, as an
example see Fig. 2a. Impending deadlocks occur in specific

(a) Primary deadlock. (b) Impending deadlock.

Fig. 2. Deadlock examples in the plant depicted in Fig.
1. The parts are represented as blue circles on the
top left of the occupied nodes, reporting the part
index, and the corresponding blue arrows indicate the
intended movement.

 Sonia De Santis et al. / IFAC PapersOnLine 56-2 (2023) 5655–5660 5657

2. PROBLEM FORMULATION

2.1 Plant description

The considered system is a discrete manufacturing plant,
composed of several machines connected by a modular
transport line providing multiple routing options. For the
sake of problem description, an example is shown in Fig. 1.

Fig. 1. Plant Graph representing a manufacturing plant.

The plant is modeled as a directed graph G(N,E), named
Plant Graph, where:

• The set N contains a finite number Nn of nodes rep-
resenting the positions on the plant, of which Nt are
transportation nodes, while Nm = Nn −Nt are machine
nodes: M = {m : node m is a machine}. A machine can
be either a processing or measurement unit executing a
specific task, or an input/output station. The subsets
Mu,MI/O ⊆ M identify the machines with uncertain
outcome and the input/output stations, respectively.

• The set of directed edges E identifies a finite number
Nu of possible movements between two adjacent nodes
on the Plant Graph. An edge is indicated as an ordered
pair (na, nb), na, nb ∈ N , where na is the start node
and nb is the arrival node.

Each one of the Np(k) ∈ N parts present in the plant at
time step k, denoted by an index i = 1, ..., Np(k), is di-
rected to one target machine depending on its next sched-
uled job. After the job execution, the part moves towards
the next target, until it is completely processed and thus
can exit the plant, by targeting one of the input/output
stations. The sequence of jobs can be uncertain, since the
next job may depend on the outcome of the previous ones.

The motion between the machines is dictated by pre-
defined paths (or sequences), identified by Ns integers
and collected in set S = {1, . . . , Ns}. The paths can be
selected freely by the designer, as long as they provide a
connection between the machines to cover all the possible
series of jobs. For each s ∈ S, the operator S(s) returns
the corresponding sequence, composed of an ordered set of
Ms vectors:

S(s) =
{[

ns,1

gs,1

]
, · · · ,

[
ns,p

gs,p

]
, · · · ,

[
ns,Ms

gs,Ms

]}
(1)

where, for each p = 1, . . . ,Ms, ns,p indicates a node in
the sequence s and gs,p indicates the target machine. The
sequence assigned to part i at time step k is indicated as
si(k) ∈ S, the position along such a sequence as pi(k) ∈ N,
and the two operators S(si(k))(1,pi(k)), S(si(k))(2,pi(k))

return the first and the second entry of the vector in
position pi(k) of sequence S(si(k)), respectively. As an
example, considering the Plant Graph in Fig. 1, si(k) = 3
and pi(k) = 2 implies that part i occupies node 5 at time

k, i.e., S(si(k))(1,pi(k)) = 5, and its target is the machine
node 1, S(si(k))(2,pi(k)) = 1.

With this formalism, the state of part i at time step k
consists of the two elements:

xi(k) = [si(k), pi(k)]
T . (2)

The state of the plant is the collection of the parts states:

X(k) = [x1(k)
T , ..., xNp(k)(k)

T]T ∈ N2Np(k). (3)

As mentioned above, the outcome of one or more jobs may
be uncertain, so that the sequences followed by each part
are assigned online after the execution of each uncertain
job. The duration of each job might be uncertain as well,
and it is modeled by a Boolean machine indicator rm,
set to 1 when machine m has finished its job. Moreover,
plant-specific, state-dependent limitations on the allowed
movements can also be present, giving rise to additional
constraints on the plant state.

Provided the plant state, a path following strategy is
employed to determine the set of Boolean control inputs
U(k) ∈ {0, 1}Nu , with the goal of propagating forward the
motion of each part along its sequence, compatibly with
all the mentioned operational constraints. Specifically,
each variable u(na,nb)(k) ∈ U(k), where (na, nb) ∈ E, is
associated with one edge on the Plant Graph and its value
determines whether the motion along the corresponding
edge is commanded: as an example, input u(na,nb)(k) = 1 if
the movement along the transition (na, nb) is commanded,
such that the part occupying node na at time k moves to
node nb at time k + 1. Moreover, two control inputs for
each input/output station m ∈ MI/O describe the loading
and unloading operations, and are indicated as u(0,m)

and u(m,0), respectively. Finally, an exogenous Boolean
variable a(k) indicates the availability of a new part to
enter the plant.

2.2 Deadlock description

Deadlocks are a common issue in flexible plants, since
various parts share the same resources (transport line,
buffers, machines, etc.). They are determined by circular
wait situations: each part involved cannot move because it
is waiting for other parts to move, including itself.

Specifically, two kinds of deadlock exist: primary and
impending deadlocks. Primary deadlocks occur when two
or more parts form a cycle on the Plant Graph while
they are moving, thus they are indefinitely waiting for
the next node along their sequence to be emptied, as an
example see Fig. 2a. Impending deadlocks occur in specific

(a) Primary deadlock. (b) Impending deadlock.

Fig. 2. Deadlock examples in the plant depicted in Fig.
1. The parts are represented as blue circles on the
top left of the occupied nodes, reporting the part
index, and the corresponding blue arrows indicate the
intended movement.

situations where the parts are still able to move, but their
movement will inevitably lead to a primary deadlock in a
finite number of time steps. For instance, Fig. 2b shows a
plant state where part 1 or 3 can move towards plant node
5, but both these movements lead to a primary deadlock.

Ultimately, either kind of deadlocks are highly undesired,
as they lead to the blockage of part or of the whole plant.

2.3 Problem formulation

The considered problem is to design a control strategy that
is able to deal with all the following aspects:
1. The inputs must be consistent with the plant state, to

apply a suitable control action and to avoid conflicts;
2. The uncertainty in the jobs duration and sequence, as

described above, shall be dealt with;
3. Deadlock states must be avoided;
4. Faults preventing the activation of one of theNu control

inputs shall be accommodated.

3. PROPOSED ROUTING METHOD

The proposed approach is described in Fig. 3. Looking at
the figure from left to right, at first a suitable set of paths
is selected. Then, a set of routing rules to avoid deadlocks
is automatically generated, based on the selected paths.
These rules are employed by a path following strategy
to move forward the parts along their assigned paths
while ensuring that no conflict, deadlock or plant-specific
constraint violation occurs.

Fig. 3. Scheme of the proposed control strategy.

The paths generation is carried out before the process
starts, then, in normal operating conditions, only the
inner feedback loop remains active, until a potential fault
is detected, indicated by the Boolean d(k) = 1. Then,
the outer loop is activated, leading to the selection of
new sequences and the reconfiguration of the plant state
according to a fault recovery procedure. In the next
subsections, each part of the strategy is described in detail.

3.1 Selection of sequences

The sequences are selected in such a way that the proper
connections between the machines exist to cover all the
possible jobs series. As an example, each sequence in Fig.
1 is chosen based on the process described in the following.
Once a part is loaded in node 1, it first undergoes a job
with uncertain outcome in machine node 4 (sequence 1).
Afterwards, based on the job outcome, the part can exit
the plant (sequence 4), or can be processed by the machine
in node 7 (sequence 2). In the latter case, after the job in
machine node 7, the part can exit the plant (sequence 3).

In general, the choice of the sequences depends on various
aspects. One could pick the shortest sequences to minimize
the parts movements, or longer ones in case a relatively
large number of parts are processed concurrently, making
use of the additional nodes as buffers. In general, it is
advisable to avoid sequences with many overlapping tracts
in opposite directions, to reduce the risk of deadlock.

3.2 Automatic deadlock avoidance rules

Since deadlocks occur not only based on which plant nodes
the parts occupy, but also on which ones they are headed
to, a new directed graph, named the Transitions Graph, is
created to better characterize the parts motion and derive
the deadlock avoidance rules. The derivation of these rules
is illustrated in the following, also referring to the plant in
Fig. 1, with Transitions Graph shown in Fig. 4.

Provided the Plant Graph and the selected sequences, the
Transitions Graph GT (NT , ET) is built in such a way that:

• Each node in the set NT corresponds to a possible state
that a part can assume, which in turn determines the
current plant node and the next one, mapping into a
transition between the two plant nodes, hence the name
transition nodes. The latter are labelled na.nb, where na

is the starting plant node and nb is the arrival one on the
Plant Graph. In our example, the part state xi = [2, 1]T

corresponds to the transition node 4.5, because part i is
occupying plant node 4 and is directed to 5. Note that,
if two different states prescribe the movement along the
same edge, they are mapped into the same transition
node.

• Edges in ET are drawn between every pair of transi-
tion nodes na.nb and nb.nc with matching arrival and
starting plant nodes. For instance, transition node 4.5
in Fig. 4 has to be connected to all the other ones with
starting plant node 5: therefore, the outgoing edges from
4.5 connect nodes 5.2 and 5.6.

Fig. 4. Transitions Graph of the plant depicted in Fig. 1.

Once GT is built, the next step is computing its cycles
cj ∈ C, which in our example are:

C = {[2.3, 3.4, 4.5, 5.2], [5.6, 6.7, 7.5], [1.2, 2.1],

[1.2, 2.3, 3.4, 4.5, 5.2, 2.1], [2.3, 3.4, 4.5, 5.6, 6.7, 7.5, 5.2],

[1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.5, 5.2, 2.1]}.
(4)

Each cycle cj maps into one or more plant states composed
of ncj parts, where ncj is the number of nodes in cj .
For instance, cycle c3 = [1.2, 2.1] corresponds to a state
where nc3 = 2 parts form a cycle, one of them placed
on plant node 1 and heading to 2, while the second
one placed on plant node 2 and heading to 1. Note
that this configuration can be prescribed by two different
states: x1 = [1, 1]T , x2 = [3, 3]T and x1 = [1, 1]T , x2 =
[4, 3]T . However, some cycles do not correspond to realistic
configurations, since they entail the simultaneous presence
of more parts on the same plant node. As an example,

5658 Sonia De Santis et al. / IFAC PapersOnLine 56-2 (2023) 5655–5660

c4 = [1.2, 2.3, 3.4, 4.5, 5.2, 2.1] prescribes that two parts
concurrently occupy plant node 2, since it contains nodes
2.3 and 2.1. Therefore, among the cycles in C, a subset
CP is selected, such that each cj ∈ CP describes a feasible
state configuration which is directly related to a primary
deadlock. Denoting with ni

a.n
i
b the ith transition node in

the generic cycle cj , we thus have:

CP = {cj ∈ C : ni
a ̸= nℓ

a ∀i, ℓ = 1, . . . , ncj}. (5)

In our example, CP = {c1, c2, c3}. Note that these also
correspond to minimal cycles, i.e., without any sub-cycle.
At this point, an additional set D is computed, whose
elements dj contain the set of plant nodes involved in
each cycle cj ∈ CP . In the considered example, D =
{[2, 3, 4, 5], [5, 6, 7], [1, 2]}. The latter set will be used later
on, to determine impending deadlock states and to apply
deadlock avoidance rules.

Regarding the identification of impending deadlock con-
figurations, we first introduce the concept of connected
cycles. Two cycles c1 and c2 are connected, indicated as
c1 ↔ c2, if both these two conditions hold:
1. They contain one node with the same starting plant

node, meaning that the intersection of the correspond-
ing elements in D, d1 ∩ d2, contains one node;

2. There exist sequences traversing an edge from a node
in cycle c1 to a node in c2, and vice versa, with common
plant node being o = d1 ∩ d2.

For instance, considering c1 and c2 in our example, condi-
tion (1.) holds, since d1 ∩ d2 = 5, and condition (2.) holds
as well, since sequence 2, on position 1, 2, 3 (see Fig. 1),
prescribes the transition in c1 with arrival plant node 5,
4.5 ∈ c1, immediately followed by the transition in c2 with
starting plant node 5, 5.6 ∈ c2, and sequence 3, on position
1, 2, 3, prescribes the transition in c2 with arrival plant
node 5, 7.5 ∈ c2, immediately followed by the transition in
c1 with starting plant node 5, 5.2 ∈ c1.

Finally, n cycles are connected if they are such that
c1 ↔ c2 ↔ . . . ↔ cn. In our case, it can be observed
that c2 ↔ c1 and c1 ↔ c3, therefore c2 ↔ c1 ↔ c3.

In summary, once the set of cycles CP and D are com-
puted, it is possible to assess whether they are connected
and build the set I containing all the found connections,
where each element Ih ∈ I is a set of connected cycles:

Ih =
{
{cj}jℓj1 : cj ∈ CP∀j ∧ cj1 ↔ . . . ↔ cjℓ

}
(6)

where {cj}jℓj1 denotes a sequence of cycles. The number of
elements in each set Ih is denoted by nIh . Note that the
order of the nIh elements in set Ih ∈ I does not matter,
and if a set Ih contains more than two cycles, also the
subsets containing the pairs of connected cycles in Ih must
be added to I. In our example, I = {I1, I2, I3}, I1 = {1, 2},
I2 = {1, 3}, I2 = {1, 2, 3}.
In the following, it will be explained how these sets are
used to derive deadlock avoidance rules.

Rules for deadlock avoidance The next result is derived
based on the theoretical findings of Zhang et al. (2006).

Proposition 1. At any plant state, the following two con-
ditions must hold to avoid primary and impending dead-
locks, respectively:

1. The number of parts assuming the states in each cycle
cj ∈ CP must be smaller or equal than mcj , given by:

mcj = ncj − 1; (7)

2. The number of parts assuming the states in each set of
connected cycles Ih ∈ I must be smaller or equal than
mIh , given by:

mIh = | ∪j:cj∈Ih dj | − nIh (8)

where |∪j:cj∈Ih dj | is the number of plant nodes appear-
ing in at least one of the connected cycles in Ih.

Provided the sets CP and I, it is possible to compute
mcj for each cycle cj ∈ CP according to (7), and mIh
for each set of connected cycles Ih ∈ I according to (8),
and store them in vectors MCP

and MI , respectively.
These vectors are used by the path following strategy
to enforce the deadlock avoidance rules, according to
Algorithm 1. The latter evaluates whether a deadlock is
present on a plant state X(k), returning a Boolean b = 1.

Algorithm 1. Deadlock check
Input: X(k), CP , D, I, MCP

, MI . Output: b ∈ {0, 1}.
1) Initialize b = 0; vector Mpr = {0}|CP |, where each

element mprj ∈ Mpr is a counter of the parts assuming
a state in cycle cj ∈ CP and |CP | indicates the

cardinality of set CP ; vector Mimp = {0}|I|, where
each element mimph

∈ Mimp is a counter of the parts
assuming a state in the set of cycles Ih ∈ I.

2) If one or more parts are located in a machine m ∈ Mu,
then add fictitious parts states to X(k) corresponding
to all the possible paths that can be assigned after the
execution of the uncertain job/jobs.

3) Count the number of parts in each cycle cj ∈ CP .
For each cj ∈ CP , for each ni

a.n
i
b ∈ cj , do:

if one part state in X(k) prescribes transition ni
a.n

i
b,

then mprj = mprj + 1.
4) If ∃mprj : mprj > mcj ,

then a deadlock exists, b = 1, go to 7).
5) Count the number of parts in each set of cycles Ih ∈ I.

For each Ih ∈ I, for each cj ∈ Ih, do:
mimph

= mimph
+mprj .

6) Check whether the cycles in Ih are connected.
For each mimph

: mimph
> mIh , do:

6a) For each pair of cycles cj , cℓ ∈ Ih, j ̸= ℓ, do:
if cj and cℓ have one common node dj ∩ dℓ = o,
then check whether there exists at least one part
involved in the cycles such that the propagation
of its state prescribes a transition na.o ∈ cj im-
mediately followed by o.nb ∈ cℓ before prescribing
a transition not involved in the set of connected
cycles, and vice versa.

6b) If all the cycles cj ∈ Ih are connected,
then a deadlock exists, b = 1, go to 7).

7) Return b.

3.3 Path following strategy

Starting from an initial state X(k0), at each time step k
the path following strategy propagates forward the state
X(k) to obtain X(k + 1), according to the routing rules,
and computes the suitable control inputs U(k). The main
idea of the strategy is to check whether any undesired state

 Sonia De Santis et al. / IFAC PapersOnLine 56-2 (2023) 5655–5660 5659

c4 = [1.2, 2.3, 3.4, 4.5, 5.2, 2.1] prescribes that two parts
concurrently occupy plant node 2, since it contains nodes
2.3 and 2.1. Therefore, among the cycles in C, a subset
CP is selected, such that each cj ∈ CP describes a feasible
state configuration which is directly related to a primary
deadlock. Denoting with ni

a.n
i
b the ith transition node in

the generic cycle cj , we thus have:

CP = {cj ∈ C : ni
a ̸= nℓ

a ∀i, ℓ = 1, . . . , ncj}. (5)

In our example, CP = {c1, c2, c3}. Note that these also
correspond to minimal cycles, i.e., without any sub-cycle.
At this point, an additional set D is computed, whose
elements dj contain the set of plant nodes involved in
each cycle cj ∈ CP . In the considered example, D =
{[2, 3, 4, 5], [5, 6, 7], [1, 2]}. The latter set will be used later
on, to determine impending deadlock states and to apply
deadlock avoidance rules.

Regarding the identification of impending deadlock con-
figurations, we first introduce the concept of connected
cycles. Two cycles c1 and c2 are connected, indicated as
c1 ↔ c2, if both these two conditions hold:
1. They contain one node with the same starting plant

node, meaning that the intersection of the correspond-
ing elements in D, d1 ∩ d2, contains one node;

2. There exist sequences traversing an edge from a node
in cycle c1 to a node in c2, and vice versa, with common
plant node being o = d1 ∩ d2.

For instance, considering c1 and c2 in our example, condi-
tion (1.) holds, since d1 ∩ d2 = 5, and condition (2.) holds
as well, since sequence 2, on position 1, 2, 3 (see Fig. 1),
prescribes the transition in c1 with arrival plant node 5,
4.5 ∈ c1, immediately followed by the transition in c2 with
starting plant node 5, 5.6 ∈ c2, and sequence 3, on position
1, 2, 3, prescribes the transition in c2 with arrival plant
node 5, 7.5 ∈ c2, immediately followed by the transition in
c1 with starting plant node 5, 5.2 ∈ c1.

Finally, n cycles are connected if they are such that
c1 ↔ c2 ↔ . . . ↔ cn. In our case, it can be observed
that c2 ↔ c1 and c1 ↔ c3, therefore c2 ↔ c1 ↔ c3.

In summary, once the set of cycles CP and D are com-
puted, it is possible to assess whether they are connected
and build the set I containing all the found connections,
where each element Ih ∈ I is a set of connected cycles:

Ih =
{
{cj}jℓj1 : cj ∈ CP∀j ∧ cj1 ↔ . . . ↔ cjℓ

}
(6)

where {cj}jℓj1 denotes a sequence of cycles. The number of
elements in each set Ih is denoted by nIh . Note that the
order of the nIh elements in set Ih ∈ I does not matter,
and if a set Ih contains more than two cycles, also the
subsets containing the pairs of connected cycles in Ih must
be added to I. In our example, I = {I1, I2, I3}, I1 = {1, 2},
I2 = {1, 3}, I2 = {1, 2, 3}.
In the following, it will be explained how these sets are
used to derive deadlock avoidance rules.

Rules for deadlock avoidance The next result is derived
based on the theoretical findings of Zhang et al. (2006).

Proposition 1. At any plant state, the following two con-
ditions must hold to avoid primary and impending dead-
locks, respectively:

1. The number of parts assuming the states in each cycle
cj ∈ CP must be smaller or equal than mcj , given by:

mcj = ncj − 1; (7)

2. The number of parts assuming the states in each set of
connected cycles Ih ∈ I must be smaller or equal than
mIh , given by:

mIh = | ∪j:cj∈Ih dj | − nIh (8)

where |∪j:cj∈Ih dj | is the number of plant nodes appear-
ing in at least one of the connected cycles in Ih.

Provided the sets CP and I, it is possible to compute
mcj for each cycle cj ∈ CP according to (7), and mIh
for each set of connected cycles Ih ∈ I according to (8),
and store them in vectors MCP

and MI , respectively.
These vectors are used by the path following strategy
to enforce the deadlock avoidance rules, according to
Algorithm 1. The latter evaluates whether a deadlock is
present on a plant state X(k), returning a Boolean b = 1.

Algorithm 1. Deadlock check
Input: X(k), CP , D, I, MCP

, MI . Output: b ∈ {0, 1}.
1) Initialize b = 0; vector Mpr = {0}|CP |, where each

element mprj ∈ Mpr is a counter of the parts assuming
a state in cycle cj ∈ CP and |CP | indicates the

cardinality of set CP ; vector Mimp = {0}|I|, where
each element mimph

∈ Mimp is a counter of the parts
assuming a state in the set of cycles Ih ∈ I.

2) If one or more parts are located in a machine m ∈ Mu,
then add fictitious parts states to X(k) corresponding
to all the possible paths that can be assigned after the
execution of the uncertain job/jobs.

3) Count the number of parts in each cycle cj ∈ CP .
For each cj ∈ CP , for each ni

a.n
i
b ∈ cj , do:

if one part state in X(k) prescribes transition ni
a.n

i
b,

then mprj = mprj + 1.
4) If ∃mprj : mprj > mcj ,

then a deadlock exists, b = 1, go to 7).
5) Count the number of parts in each set of cycles Ih ∈ I.

For each Ih ∈ I, for each cj ∈ Ih, do:
mimph

= mimph
+mprj .

6) Check whether the cycles in Ih are connected.
For each mimph

: mimph
> mIh , do:

6a) For each pair of cycles cj , cℓ ∈ Ih, j ̸= ℓ, do:
if cj and cℓ have one common node dj ∩ dℓ = o,
then check whether there exists at least one part
involved in the cycles such that the propagation
of its state prescribes a transition na.o ∈ cj im-
mediately followed by o.nb ∈ cℓ before prescribing
a transition not involved in the set of connected
cycles, and vice versa.

6b) If all the cycles cj ∈ Ih are connected,
then a deadlock exists, b = 1, go to 7).

7) Return b.

3.3 Path following strategy

Starting from an initial state X(k0), at each time step k
the path following strategy propagates forward the state
X(k) to obtain X(k + 1), according to the routing rules,
and computes the suitable control inputs U(k). The main
idea of the strategy is to check whether any undesired state

occurs after the movement of one part at a time. If it is
the case, the part is not allowed to move, meaning that its
state is kept the same at the next time step, otherwise
it can move and its state is propagated one step for-
ward. The complete strategy is described in Algorithm 2.

Algorithm 2. Path following
Input: X(k), a(k), rm, ∀m ∈ M. Output: U(k).
1) Check whether one or more parts have just finished to

undergo a job with uncertain outcome.
For each i = 1, . . . , Np(k), for each m ∈ Mu, do:

if S(si(k))(1,pi(k)) = m ∧ rm = 1,
then update the state xi(k) by assigning to part i a
new sequence, and the correct position along it.

2) Initialize the state at next time step: X(k+1) = X(k),
and a vector V = {0, 1}Np(k). Each vi ∈ V indicates
whether an action has been assigned to part i. Initially
vi = 1 only for parts currently processed in a machine.

3) While an action has not been assigned to every part,∑
i=1,...,Np(k)

vi ̸= Np(k), do:

for each part i = 1, . . . , Np(k) : vi = 0, do:
compute the one-step-ahead prediction of the plant
state X̂, by forward-propagation of the part state:
x̂i = [ŝi, p̂i]

T = [si(k + 1), pi(k + 1) + 1]T in X(k + 1),

and perform a series of checks on X̂:
3a) Conflict check.

if ∃j, j ̸= i, : S(ŝi)(1,p̂i) = S(ŝj)(1,p̂j),
then set vi such that:

vi =

{
1 if part j has an action, vj = 1

0 otherwise

and evaluate motion of the next part,
else go to 3b).

3b) Deadlock check.

If the output of Algorithm 1 on state X̂ equals 1,
then part i holds its position, set vi = 1,
else part i can move:X(k+1) = X̂ and set vi = 1.
Evaluate motion of the next part.

4) Compute U(k) for the plant to assume state X(k+1):
4a) For each na, nb : ∃u(na,nb), do:

if ∃i : S(si(k))(1,pi(k)) = na ∧
S(si(k + 1))(1,pi(k+1)) = nb,
then u(na,nb) = 1.

4b) For each input/output station m ∈ MI/O, check
whether one part is ready to enter/exit the plant:
If a(k) = 1∧∄i : S(si(k+1))(1,pi(k+1)) = m and a

deadlock is not present on X̂ = [X(k + 1), xnew]
T ,

where xnew is the state of the new part,
then u(0,m) = 1 and X(k + 1) = X̂.

If ∃i : S(si(k + 1))(1,pi(k+1)) = m ∧
S(si(k + 1))(2,pi(k+1)) = m ∧ rm = 1,
then u(m,0) = 1 and remove xi from X(k + 1).

5) Return U(k).

3.4 Fault recovery procedure

In case a fault affecting one transition occurs at time
step k, then the Boolean d(k) is set to 1, indicating a
fault detection. Subsequently, if alternative sequences to
the ones involved in the failure exist, the fault recovery

procedure described in Procedure 1 is run, otherwise the
plant operations are interrupted.

Procedure 1. Fault recovery procedure

1. Remove the sequences involved in the failure from the
set S and replace them with new feasible sequences
connecting the same machines.

2. Reassign a suitable state to those parts whose sequence
has been replaced. For each of these parts i, if n is the
currently occupied node and t the target machine, the
new state xi(k) = [si(k), pi(k)]

T should be such that:

S(si(k))(1,pi(k)) = n ∧ S(si(k))(2,pi(k)) = t.

If a part is on a node that is not part of any sequence,
generate a temporary one that takes it from the current
node to its target machine. As soon as the part will
reach its target, it will be assigned a sequence among
the set S.

3. Compute the routing rules for the new set of sequences,
also considering the temporary ones.

4. Check whether the reconfigured plant state implies a
deadlock or not. If a deadlock is detected, the recovery
procedure is stopped, otherwise the operations in the
plant can continue normally.

4. REAL CASE IMPLEMENTATION

We consider the automated de-manufacturing plant in the
laboratory of the Institute of Intelligent Industrial Tech-
nologies and Systems for Advanced Manufacturing (STI-
IMA), National Research Council (CNR), in Milano. The
plant is designed to test, repair and discharge electronic
boards, and comprises four machines: the Load/Unload
machine M1, the Testing machine M2, the Repairing
machine M3 and the Discharging machine M4. The job
scheduling depends on the outcome of the Testing ma-
chine, and is described in detail in Boffadossi et al. (2021),
as well as the plant-specific handling constraints.

Fig. 5. Sequences of test case on the Plant Graph repre-
senting the de-manufacturing plant.

4.1 Test case

Several tests have been executed, with maximum number
of parts Npmax ranging from 6 to 10. The considered paths
are illustrated in Fig. 5, and the machines working times
Lm, m ∈ M are known: L1 = 1, L2 = 5, L3 = 4 and L4 =

5660 Sonia De Santis et al. / IFAC PapersOnLine 56-2 (2023) 5655–5660

3. The same sequence of outcomes of the Testing machine
appears in all the tests, to make the results comparable
in terms of throughput. Initially, one part occupies node
32, and the simulations last 2000 time steps. The Boolean
signal is always a(k) = 1. Finally, the simulations have
been performed via MATLAB, using a laptop with 16 GB
RAM and an Intel Core i5-1130G7 at 1.8 GHz.

Table 1 reports the results in terms of: the average and
the maximum computational time, Cm [s] and Cpeak [s];
the number of processed parts, Nf ; the average and the
maximum throughput (parts/time step), Tm and Tpeak;
the number of activated transitions, Utot.

Table 1. Results of test case

Npmax Cm Cpeak Nf Tm Tpeak Utot

6 0.0022 0.0518 203 0.0927 0.1030 6082
7 0.0025 0.0546 204 0.0931 0.1032 6099
8 0.0024 0.0943 203 0.0929 0.1032 6093
9 0.0022 0.0349 204 0.0925 0.1032 6068
10 0.0025 0.0637 201 0.0918 0.1031 6056

The control strategy requires low computational time and
the number of machined units Nf is satisfactory. The
results also suggest that a higher Npmax can decrease the
throughput, due to the higher risk of congestion.

The results whit Npmax
= 10 can be compared to those re-

ported in Boffadossi et al. (2021), where a HPRC approach
is applied on the plant with the same paths. Specifically, in
Boffadossi et al. (2021), when the most aggressive search
direction is adopted and the outcomes of the testing ma-
chine are deterministic, Nf is slightly higher with respect
to this test. However, when the outcomes are uncertain,
the same Nf is obtained, but with larger average and peak
computational time. These results show that the proposed
control strategy achieves good performance even if the
optimization level is related to the sequences selection.

4.2 Application of fault recovery procedure

The fault recovery procedure is applied to the considered
plant, with sequences shown in Fig. 6 and Npmax

= 7.

Fig. 6. Initial sequences of fault recovery procedure test.
The fault occurs on transition u(17,18).

At time step k the parts are positioned as shown in Fig. 6,
when a fault occurs on transition u(17,18), whose activation
is prescribed by sequence 2. After its replacement, the
resulting sequences correspond to the ones in Fig. 5.

Subsequently, the plant state is reconfigured, with the need
of adding a temporary sequence from node 18 to 34 for
part 4, and new routing rules are computed. The obtained
performance is reported in Table 2.

Table 2. Results of fault recovery test

Npmax Cm Cpeak Nf Tm Tpeak Utot

7 0.0032 0.4000 204 0.0931 0.1032 6092

In conclusion, the recovery procedure has been successfully
applied, guaranteeing the continuity of the operations
without a performance reduction.

5. CONCLUSIONS

A new approach has been proposed for the problem of fault
tolerant routing control in a discrete manufacturing plant.
The tests performed have reported satisfactory results in
terms of throughput and computational efficiency.

Several improvements can be performed in the future,
pertaining the introduction of a higher optimization level
allocating different sequences to the parts, or the exten-
sion of the fault recovery procedure to the cases where
deadlocks arise in the reconfigured system.

REFERENCES

Ali, M. and Wadhwa, S. (2010). The effect of routing flexibility
on a flexible system of integrated manufacturing. International
Journal of Production Research, 48(19), 5691–5709.

Boffadossi, R., Fagiano, L., Tanaskovic, M., Cataldo, A., Tanaskovic,
M., and Lauricella, M. (2021). Advanced hierarchical predictive
routing control of a smart de-manufacturing plant. 2021 European
Control Conference (ECC), 1774–1779.

Cataldo, A., Morescalchi, M., and Scattolini, R. (2019). Fault
tolerant model predictive control of a de-manufacturing plant. The
International Journal of Advanced Manufacturing Technology,
9(12), 4803–4812.

Cataldo, A. and Scattolini, R. (2016). Dynamic pallet routing in a
manufacturing transport line with model predictive control. IEEE
Transactions on Control Systems Technology, 24(5), 1812–1819.

Fagiano, L., Tanaskovic, M., Mallitasig, L.C., Cataldo, A., and
Scattolini, R. (2020). Hierarchical routing control in discrete
manufacturing plants via model predictive path allocation and
greedy path following. In 2020 59th IEEE Conference on Decision
and Control (CDC), 5546–5551.

Li, H.X. and Si, H. (2017). Control for intelligent manufacturing: A
multiscale challenge. Engineering, 3(5), 608–615.

Meindl, B., Ayala, N.F., Mendonça, J., and Frank, A.G. (2021). The
four smarts of industry 4.0: Evolution of ten years of research and
future perspectives. Technological Forecasting and Social Change,
168, 120784.

Morel, G., Valckenaers, P., Faure, J.M., Pereira, C.E., and Diedrich,
C. (2007). Manufacturing plant control challenges and issues.
Control Engineering Practice, 15(11), 1321–1331.

Silva, D.B., Vieira, A.D., Loures, E.F., Busetti, M.A., and Santos,
E.A. (2011). Dealing with routing in an automated manufacturing
cell: a supervisory control theory application. International
Journal of Production Research, 49(16), 4979–4998.

Xiong, H., Zhou, M., and Caudill, R. (1996). A hybrid heuristic
search algorithm for scheduling flexible manufacturing systems.
In Proceedings of IEEE International Conference on Robotics and
Automation, volume 3, 2793–2797 vol.3.

Yadav, A. and Jayswal, S. (2018). Modelling of flexible manufac-
turing system: a review. International Journal of Production
Research, 56(7), 2464–2487.

Zhang, W., Judd, R.P., and Deering, P.E. (2006). Evaluating order of
circuits for deadlock avoidance in a flexible manufacturing system.
International Journal of Production Research, 44(24), 5247–5259.

