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Abstract

This study explores the applicability of a deep
learning-based approach for reconstructing missing
room temperature data from different domains where
relatively few training samples are available. For that
purpose, the existing convolutional, long short-term
memory (LSTM) and feed-forward autoencoders were
combined with a suitable domain adaptation proce-
dure. Eventually, the developed models were evalu-
ated on data collected in four buildings with signifi-
cant differences in thermal mass, design and location.
The findings pointed out that the domain adaptation
can be conducted efficiently by using a small data
sample from the target domain. Additionally, the re-
sults showed that the proposed model can reconstruct
up to 80 % of the missing daily room temperature in-
puts with RMSE accuracy of 0.6 °C.

Introduction

Heating, ventilation, and air conditioning (HVAC)
systems account for more than 50 % of the total build-
ing energy use (Yang et al. (2016)). Since providing
comfortable indoor environmental conditions is the
key objective of HVAC systems, the control strategy
together with the measured indoor environmental pa-
rameters have an explicit impact on the resulting en-
ergy consumption (Ge et al. (2013); Mba et al. (2016);
Wu et al. (2017)). Particularly, the availability of pre-
cise indoor temperatures and indoor environmental
quality (IEQ) data in general is of utmost importance
for fault free and energy efficient HVAC control.

In modern buildings, HVAC control is implemented
through advanced technologies, like building automa-
tion systems (BAS) (Ibrhim et al. (2020)). However,
these systems are often characterized by sensors mal-
functioning or network issues that could cause anoma-
lies and information loss in the collected data (Liguori
et al. (2021); Markovic (2020)). Missing data are,
indeed, commonly observed in building energy man-
agement systems (Drgoňa et al. (2020)). As a conse-
quence, these faulty measurements could determine a

bad management of HVAC, leading to a degradation
of the indoor environment conditions (Loy-Benitez
et al. (2020)). In summary, all these issues lead to ei-
ther higher than required energy consumption, lower
thermal comfort or unstable conditions for real-time
and model predictive HVAC control.

According to the international guidelines, missing
data in BAS could be considered as “non annotated
faults” and addressed by using methods for fault
detection and diagnosis (FDD) (ASHRAE (2015);
Markovic (2020)). Data-driven FDD models have
a particular practical potential, due to their adapt-
ability to complex systems (Mirnaghi and Haghighat
(2020)) and since they do not require detailed phys-
ical system modeling. The major downside of the
data-driven FDD approaches is, that they require ex-
tensive historical data that include normal and faulty
conditions (Ebrahimifakhar et al. (2020)). This is
currently one of the major burdens towards the inclu-
sion of the data-driven FDD components for handling
missing data in BAS. In order to overcome the chal-
lenge of high data requirements and computational
costs of the modeling, researchers often rely on sim-
plified techniques. However, these come to the cost
of lower accuracy (Chong et al. (2016); Liguori et al.
(2021)) and less reliable signal’s dynamics represen-
tation.

Motivated by the need to address the problem, this
paper proposes a deep learning-based method for
indoor environmental quality data reconstruction.
Methodologically, it relies on autoencoders neural
networks, which proved to be able to capture the
autoregressive properties of occupant behavior (OB)
data (Liguori et al. (2021)), while the use of a suitable
domain adaptation procedure assures the model’s ap-
plicability in different target domains.



Related research

Autoencoder neural networks in context of
building energy analytics

Autoencoder neural networks are unsupervised deep
learning models trained to learn the inner represen-
tation of the input data (Qian et al. (2019)). Re-
cently, these methods have started to receive great
attention from the energy-related building research,
due to their ability to detect and restore faulty sen-
sor measurements (Loy-Benitez et al. (2020); Liguori
et al. (2021); Liu et al. (2020); Fan et al. (2018); Kim
and Cho (2019)). However, one of the main draw-
backs of this approach is the need of massive training
data (Loy-Benitez et al. (2020); Liguori et al. (2021)),
which limits their practical integration into BAS.

Liguori et al. (2021) developed univariate autoen-
coder neural networks models to reconstruct miss-
ing IEQ data. The results proved that the missing
indoor air temperature, relative humidity and CO2

concentration data could be reconstructed with high
accuracy. However, the available data set consisted
of approximately 31,361 full days of observations per
variable. Lower performance might be achieved by
using a smaller data set. Loy-Benitez et al. (2020) ex-
ploited variational autoencoders in conjunction with
convolutional layers to reconstruct missing indoor air
quality (IAQ) subway data. The implemented models
exploited different types of input variables that may
be not always known and they were affected by the
limited size of the used data set.

Domain adaptation

Consider two sets of data drawn from two different
distributions A and B of a same variable (e.g. room
temperature). Domain adaptation is the process of
transferring knowledge from A to B (Glorot et al.
(2011)). This technique may be particular useful in
the event that the size of B is too limited to train a
deep learning model entirely on it. In that case, part
of the data from the target domain may be used to
improve generalization on a pre-trained model.

As already pointed out by Markovic (2020), the re-
search on domain adaptation for OB and energy
consumption data in buildings is still too limited.
Markovic et al. (2018) implemented a deep learning-
based window opening model using data from a small
group of offices in a commercial building. The pro-
posed method was then adapted to other buildings,
by running further iterations on the target domain
data. The results proved, that the implemented al-
gorithm was more accurate than other building-wise
calibrated models. Zhang and Ardakanian (2019) de-
veloped an occupancy model based on recurrent neu-
ral networks (RNNs) on a specific data set and ap-
plied a domain adaptation technique to transfer the
acquired knowledge to a building located in a differ-
ent continent. The results led to almost the same

performance of a model trained entirely on the target
domain data. Based on the previous considerations,
deep learning models were identified as a suitable ap-
proach to transfer the acquired knowledge from one
domain to another (Glorot et al. (2011)).

Data set

In the scope of the initial model development study
(Liguori et al. (2021)), the used data set consisted of
31,381 full days of observations distributed over four
years for 84 offices in a mechanically ventilated build-
ing located in Aachen, Germany (Fütterer and Con-
stantin (2014); Fütterer et al. (2013)). Models were
trained using 30 % of available data (9,414 sequences)
and validated using additional 10 % of data (3,138 se-
quences). The rest of the measurements were used for
models’ evaluation (18,829 sequences). Considering
the relatively high dimension, data were downsam-
pled from a minute-wise to a 30-minutes frequency.

In order to investigate the generalization capability
of the original models to other domains, four addi-
tional data sets, collected in different buildings, were
introduced. The first one consisted of a two year-
long monitoring campaign of a naturally ventilated
office building with passive cooling located in Frank-
furt, Germany. The studied building has 17 single
and double-occupied offices with operable windows
facing either west or east (Schweiker et al. (2019)).
The U-values of the walls range from 0.24 to 0.5
W

m2K , whereas windows have U-values of 1.5 W
m2K ,

solar transmittance less than 40 % and light trans-
mittance less than 70 % (Schweiker et al. (2019)). For
a detailed data set description, the reader is referred
to Kleber and Wagner (2006) as well as to the pub-
licly available data set repository (Schweiker et al.
(2019)). The second data set is also publicly avail-
able (Langevin et al. (2015)) and it was recorded over
one year in a mixed-mode office building in Philadel-
phia, USA. The building has private, shared private,
cubicle and open desk offices. As for the observed
occupants, 33 % were male while 67 % were female
(Langevin et al. (2015)). The third open source data
set was collected in a naturally ventilated open space
area in a university building located in Vienna, Aus-
tria (Mahdavi et al. (2019)). The usable area includes
single and double-occupied offices, a kitchen and a
meeting room, all with operable windows (Mahdavi
et al. (2019)). The fourth data set was recorded over
approximately ten weeks in Karlsruhe, Germany. The
data were collected on multiple workstations in an
open space office, a meeting room and a two person
office. The building in question is naturally ventilated
and the data were collected between July 27th and
October 6th 2020. The monitored spaces were typ-
ically occupied from Monday to Friday with flexible
working hours. The maximum occupancy was lim-
ited to five people, due to the COVID-19 pandemic.
The lengths of each data set were respectively 11,648,



7,761, 2,555 and 446 full workstation-wise days of
observations. Data were preprocessed in the same
way as described by Liguori et al. (2021), shuffled
sequence-wise and sampled to the same frequency.

Table 1 summarizes descriptive statistics for each
data set, while Figure 1 represents the indoor air tem-
perature measurements distribution for each of the
analyzed buildings. As presented in the latter fig-
ure, observed indoor air temperature measurements
were normally distributed in three out of five data sets
(Aachen, Frankfurt and Philadelphia), while the data
had significantly different distribution in the data sets
collected in Vienna and Karlsruhe.

Table 1: Descriptive statistics for each data set. Std
stands for standard deviation.

Aachen Fran. Phil. Vienna Karl.

Min [°C] 10.30 9.70 11.22 18.82 17.24
Max [°C] 32.20 30.80 32.22 35.14 33.46
Mean [°C] 22.67 22.59 22.64 23.81 25.34
Median [°C] 22.70 22.40 22.82 23.31 25.04
Std [°C] 1.11 1.88 1.82 2.29 2.83
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Figure 1: Indoor air temperature density distribution
for each building.

Method

The proposed method consists of the following steps:

• Evaluation of the generalization capabilities of
the existing models proposed by Liguori et al.
(2021), using data from alternative buildings.

• Optimization, validation and evaluation of the
same models, using data from alternative build-
ings and a suitable domain adaptation proce-
dure.

Additionally, the experimental setting adopted in this
paper is presented in Figure 2. Here, the term ”adap-
tation set” refers to the portion of the data set, from
the target domain building, used to run the domain
adaptation procedure. In particular, domain adapta-
tion is the process of transferring knowledge between
two different distributions, as described in Section
”Domain adaptation”.

In the original paper from Liguori et al. (2021),
three different denoising autoencoder architectures
were used, namely feed-forward, convolutional and
long short term-memory (LSTM). Convolutional and
LSTM autoencoders were introduced to respectively
capture the spatial and temporal dependencies in the
input time-series. Each model was trained with daily
indoor air temperature sequences, where an interval
of data with random length was purposely set to zero
to simulate the missing continues values. In particu-
lar, intervals’ length ranged between 10 % and 90 %
of the daily data. The occurrence of faulty measure-
ments was also investigated at the end of each se-
quence, to represent the forecasting performance of
the models.
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Figure 2: Overview of the proposed method.

Starting from the pre-trained weights of the origi-
nal models, the adaptation process was performed by
running further iterations on the target domain data,
as proposed in Markovic et al. (2018). Further in-
formation related to the building characteristics was
not explicitly encoded during the adaptation, but it
could be learned by the model during the run of ad-
ditional iterations. For Frankfurt, Philadelphia and
Vienna, the length of the adaptation set ranged be-
tween 0 % (no adaptation) and 30 % (3,494, 2,328,
766 full workstation-wise days respectively) of the to-
tal data set, while the last 60 % (6,989, 4,657, 1,533
full workstation-wise days respectively) were used as
evaluation set. For data collected in Karlsruhe, the
adaptation set ranged between 0 % and 10 % (44 full
workstation-wise days), due to the limited data avail-
ability (compared to the original study where signif-
icantly larger data sample was used for model devel-
opment (Liguori et al. (2021)), while the last 80 %
(357 full workstation-wise days) were used as evalu-
ation set. Due to the stochastic nature of the train-
ing masking noise, adaptation was repeated ten times



Aachen Frankfurt Philadelphia Vienna Karlsruhe

CR [-] CONV CONV CONV LSTM LSTM

30 % 20 % 10 % 0 % 30 % 20 % 10 % 0 % 30 % 20 % 10 % 0 % 10 % 0 %

RMSE [°C]

0.20 0.31 0.40 0.40 0.41 0.45 0.55 0.54 0.54 0.49 0.36 0.36 0.40 0.82 0.50 1.26
0.40 0.41 0.50 0.49 0.50 0.59 0.58 0.63 0.65 0.64 0.52 0.53 0.54 0.63 0.73 1.00
0.60 0.50 0.56 0.56 0.58 0.68 0.70 0.72 0.73 0.80 0.59 0.61 0.64 0.79 0.88 1.14
0.80 0.50 0.61 0.62 0.64 0.74 0.73 0.76 0.77 0.86 0.56 0.57 0.57 0.92 0.81 1.49

Average 0.43 0.52 0.52 0.53 0.62 0.64 0.66 0.67 0.70 0.51 0.52 0.54 0.79 0.73 1.22

NRMSE [-]

0.20 0.21 0.17 0.17 0.17 0.8 0.27 0.26 0.26 0.25 0.14 0.15 0.17 0.34 0.10 0.26
0.40 0.27 0.21 0.21 0.21 0.24 0.28 0.31 0.32 0.32 0.21 0.22 0.23 0.26 0.15 0.20
0.60 0.33 0.24 0.24 0.24 0.27 0.34 0.35 0.36 0.40 0.24 0.25 0.27 0.33 0.18 0.23
0.80 0.33 0.26 0.26 0.27 0.30 0.36 0.37 0.38 0.43 0.22 0.24 0.24 0.38 0.17 0.30

Average 0.29 0.22 0.22 0.22 0.25 0.31 0.32 0.33 0.35 0.20 0.22 0.23 0.33 0.15 0.25

Table 2: Performance of the proposed method for filling sub-daily room temperature data gaps. ”CONV” and
”LSTM” stand for convolutional and LSTM denoising autoencoders.

and the best autoencoders were exported for further
evaluation after being validated on 10 % of the data.

Normalization of the input data represented one of
the main challenges in data preprocessing for domain
adaptation. As highlighted by Markovic et al. (2018),
the goal should be to include the actual distribution
into the scale metrics. For each domain, the adapta-
tion set was then normalized in the same way as pro-
posed in Liguori et al. (2021) and fed to the models
with zero mean and unit variance, while maintaining
the initial form. The chosen computational environ-
ment consisted of Python 3.6.8, Tensorflow 1.12.0 and
Keras 2.3.1.

Results

Performance evaluation metrics

In order to make reliable comparisons with the origi-
nal study, it was opted for the same performance eval-
uation metrics used in Liguori et al. (2021), namely
the root mean squared error (RMSE) and the normal-
ized root mean squared error (NRMSE). The RMSE
equation is given as follows (Candanedo et al. (2018);
Ma et al. (2020)):

RMSE =

√∑n
i=1(Xobs

i −Xinserted
i )2

n
, (1)

where Xobs
i are the i−th real missing values, Xinserted

i

are the i − th reconstructed missing values and n
are the total number of missing data points. The
NRMSE is obtained by normalizing the RMSE over
the interquartile range (IQR) (Mahdavi and Tah-
masebi (2017)), where IQR is the difference between
the third and first quartile of the room temperature
data.

Model performance

Table 2 summarizes the gap-filling performance of the
proposed method for each of the observed buildings,
by varying the adaptation and corruption rates (CR).

Due to space constraints, only the best performing
models for each two CR are represented. Since no
clear guidelines about handling missing data in build-
ing control are available, the results of the pre-trained
autoencoders on the Aachen data set are used as the
only benchmark of this case. In this way, it is possi-
ble to quantify the performance drop of the original
model, when applied to other domains. Further com-
parisons with other commonly adopted approaches
can be found in Liguori et al. (2021).

On average, a domain adaptation with 10 % of the
target domain data results in a better RMSE, namely
from 4 % (Philadelphia) to 40 % (Karlsruhe) less than
the no adaptation case. In particular, the proposed
method can fill room temperature data gaps with an
average RMSE of 0.62 °C (Aachen excluded), by us-
ing only 10 % of the target domain data (i.e. from
44 to 1,165 full workstation-wise monitoring days, de-
pending on the size of the data set). However, for the
convolutional model, the imputation performance can
worsen for small gaps. By increasing the adaptation
set size from 10 % to 30 % of the total data set, the
average RMSE increases up to 0.55 °C.

The combined RMSE-NRMSE analysis points out
that the most challenging data set to reconstruct is
the one collected in Karlsruhe, with an average RMSE
of 1.22 °C. However, despite the challenging room
temperature distribution (Figure 1), the model per-
formance on this data set is acceptable. By using
10 % of the target domain data for further optimiza-
tion, the average RMSE drops to 0.73 °C, in view of a
NRMSE of only 0.15 (48 % lower than Aachen). On
the other hand, the worst performance is obtained
on data collected in Philadelphia, where the NRMSE
varies from 0.35 (no adaptation) to 0.31 (30 % adap-
tation).

Table 3 shows the performance of the proposed
method for the forecasting of faulty real-time room
temperature measurements. The masking noise is ap-



PH [h]
Aachen Frankfurt Philadelphia Vienna Karlsruhe

LSTM FP LSTM FP LSTM FP LSTM FP LSTM FP

RMSE [°C]

5.00 0.29 0.63 0.52 0.76 0.50 0.71 0.16 0.29 0.35 0.53
9.50 0.46 0.74 0.63 0.73 0.80 0.88 0.32 0.58 0.47 0.54

14.50 0.59 1.00 0.74 1.08 0.98 1.24 0.51 0.67 0.82 1.29
19.00 0.63 1.04 0.81 1.54 1.07 1.71 0.58 0.72 0.88 1.22

Average 0.49 0.85 0.68 1.03 0.84 1.14 0.39 0.57 0.63 0.90

NRMSE [-]

5.00 0.19 0.42 0.22 0.31 0.24 0.35 0.07 0.12 0.06 0.11
9.50 0.30 0.49 0.27 0.30 0.39 0.43 0.13 0.24 0.08 0.11

14.50 0.38 0.67 0.32 0.45 0.48 0.61 0.21 0.28 0.14 0.27
19.00 0.41 0.69 0.35 0.64 0.52 0.84 0.24 0.30 0.16 0.26

Average 0.32 0.57 0.29 0.42 0.41 0.56 0.16 0.24 0.11 0.19

Table 3: Performance of the proposed method for the forecasting of faulty real-time room temperature measure-
ments. ”LSTM” and ”FP” stand for LSTM denoising autoencoder and forward propagation.

plied to the end of each input sequence and for this
reason it is renamed as predictive horizon (PH). In
line with the previous table, only the best perform-
ing models for each two PH are represented.
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Figure 3: Gap-filling (CR) and forecasting (PH) of a
random sequence with missing room temperature data
from the test set. Blue colored line represents the real
data. Hashed blue colored line represents the missing
data. Red colored line represents the reconstruction
of the whole sequence with the adopted model.

Furthermore, since the previous analysis did not point
out a significant reconstruction improvement by vary-
ing the adaptation rate from 10 % to 30 %, only 10 %
of the target domain data are used for models’ opti-
mization. The results are benchmarked to the per-
formance of the original models and to the forward
propagation method (FP). This method consists in
reconstructing missing data with the last known real
values (Woolley et al. (2009)). The choice of the last
approach as an additional baseline for this case is
based on the indication provided by the international
guidelines on how to operate BAS devices in the event
of network communication failure (Markovic (2020);
ASHRAE (2015)).

For each data set, the forecasting of faulty room tem-
perature measurements is always more accurate by
using the LSTM model.

On average, a domain adaptation with 10 % of the
target domain data results in a better RMSE than
the forward propagation technique, namely from 26 %
(Philadelphia) to 34 % (Frankfurt) less. In particu-
lar, the overall forecasting RMSE is 0.63 °C. There-
fore, the accuracy of the proposed method is almost
unchanged, with respect to the gap-filling case. How-
ever, the models’ performance is more affected by the
length of the missing interval.

Figure 3 shows exemplary room temperature data re-
construction over one random day from the test set,
by using only 10 % of the target domain data for
weights adaptation. Both the gap-filling (CR) and
forecasting (PH) cases are presented. In order to rep-
resent the average reconstruction performance of the
proposed method for both small and large gaps, it is
opted for a masking noise of 40 %. It is possible to
observe that, despite the small amount of used data
from the target domains, the proposed method gen-
eralizes very well to multiple buildings. However, the
forecasting of data from Philadelphia represents the
main issue for the optimized model, confirming once
again the findings in Table 3.



Discussion

The aim of this study was to propose a new approach
to restore faulty or missing room temperature mea-
surements. In particular, the focus was on the imple-
mentation of an advanced method that could be eas-
ily integrated independently of the quality, size and
distribution of the available data set. For that pur-
pose, an existing deep learning-based technique de-
veloped in the scope of a related study was analyzed
and tested. The original models proposed by Liguori
et al. (2021) were trained, validated and evaluated
using an extensive data set of about 31,381 full days
of observations, they relied only on the autoregres-
sive properties of the indoor air temperature data,
and they already had sufficient generalization capa-
bility. The additional buildings, introduced in the
scope of this work, had clear differences in terms of
thermal mass, design and location. Furthermore, the
collected data sets consisted of various sizes, distri-
bution of measured values and quality.

The performance of the original models were first
evaluated on each system without further optimiza-
tion. The worst performance, in terms of RMSE, was
registered on data sets with non-normal room tem-
perature distribution, namely Vienna and Karlsruhe.
These different distributions, compared to the origi-
nal training set, represented the highest complexity
for the pre-trained models.

In the second set of experiments, a batch of data from
the target domain was taken to adapt the pre-trained
weights and let them vary from 10 % to 30 % of the
total data set. For the convolutional and feed-forward
models, a deterioration of performance was registered
for small gaps that had size of up to 20 % of the se-
quences’ length. This behavior could be explained
with the use of batch-normalization in these con-
figurations. While batch-normalization is intended
to reduce conditions of internal covariate shift (Ioffe
and Szegedy (2015)), it appears to affect the train-
ing of the previous models when a change in data
distribution takes place externally. The influence on
the small gap-filling accuracy can be traced back to
the fact that batch-normalization was applied only
to the non-corrupted data. Despite that, the over-
all performance of the convolutional autoencoder was
higher than the LSTM configuration for both Frank-
furt and Philadelphia, while the inverse occured for
the rest. The reason behind that could be, once again,
the use of batch-normalization in the convolutional
model together with the completely different room
temperature distributions in Vienna and Karlsruhe.
Finally, no significant models’ performance drop was
registered by varying the adaptation rate from 10 %
to 30 %. This means that the proposed gap-filling
method could be effectively applied by using only a
small percentage of the target domain data. The use
of between 44 and 1,165 sequences to adapt the pre-

trained weights is, indeed, a major improvement com-
pared to the 9,414 daily observations used to train the
model from scratch in Liguori et al. (2021).

In the last set of experiments, the proposed method
was also predicting room temperature measurements
over a time span between 5 and 19 hours. The previ-
ous gained knowledge about gap-filling accuracy was
exploited by fixing the adaptation set size to 10 % on
the available data. The LSTM configuration gained
considerable advantage with respect to the convo-
lutional model, confirming the findings in the orig-
inal study. Namely, the temporal dependencies of
the input data (“day-to-day” data points) were more
relevant than the spatial correlations (data points
“within the same day”), when a forecasting method
was researched. Despite the performance variability
of the proposed method, the reconstruction accuracy
was always higher than the last-known method sug-
gested by the international guidelines. Based on the
previous considerations, the proposed models could
be used as a back-up option in case of sensor fail-
ure in the real-time building control, by using only a
small percentage of the target domain data for further
optimization.

The main limitation of this method is that it builds
on models trained to fill missing room temperature
sub-daily sequences. Accordingly, continuous gaps
larger than one day or next-day values cannot be re-
constructed.

An analysis on the performance variability of the pro-
posed method with respect to a different time dis-
cretization was not carried out neither in this nor
in the original study. However, it has been already
pointed out that, provided a sufficient large training
set of data is available, there are no significant perfor-
mance drops by modeling OB data ranging between
minute-wise and hourly time resolutions (Markovic
et al. (2019)). Re-training the original models with
an other frequency of data may, therefore, only leads
to a different required space complexity for models’
evaluation as well as a different space and time com-
plexity for models’ training.

Finally, as an extension of this work, future research
should focus on how to perform domain adaptation
with as little data as possible.

Conclusion

This study explored the generalization capabilities
of a model for reconstructing missing data streams
from building automation. For that purpose, an ear-
lier proposed autoencoder neural network was tested
for reconstructing indoor temperature streams from
four different office buildings. Furthermore, the do-
main adaptation was introduced as a performance op-
timization step and the suitable domain adaptation
settings were analyzed. Based on the conducted ex-
periments, the key findings may be summarized as



follows:

• The model could reconstruct up to 80 % of
the missing daily values in significantly different
buildings with RMSE of 0.6 °C, given a single
shot domain adaptation.

• The domain adaptation is a required step for a
satisfying model performance, due to the differ-
ences in shapes of temperature density distri-
butions obtained in distinct data sets. This is
of particular importance when transferring the
model from mixed-mode to naturally ventilated
buildings.

• The use of batch normalization in case of both
convolutional and feed-forward denoising auto-
encoders led to lower performance, when com-
pared to domain adaptation with no batch nor-
malization step.

• The temporal dependencies (data points “day-
to-day”) of the input data (LSTM denoising au-
toencoder) are more relevant than the spatial
correlations (data points “within the same day”)
(convolutional denoising autoencoder), when a
forecasting method is applied.

In summary, the proposed method was successful in
reconstructing indoor air temperatures in four build-
ings. Furthermore, the results of an earlier study
(Liguori et al. (2021)) showed, that the model is also
well applicable for producing the time-series of al-
ternative room automation data streams, such as in-
door CO2 concentration and relative humidity. Based
on these comprehensive results, the developed model
shows a significant practical potential for the use in
indoor climate monitoring, real-time room control as
well as model predictive control.
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