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A B S T R A C T

This spreading of prion proteins is at the basis of brain neurodegeneration. This paper deals
with the numerical modelling of the misfolding process of 𝛼-synuclein in Parkinson’s disease.
We introduce and analyse a discontinuous Galerkin method for the semi-discrete approximation
of the Fisher–Kolmogorov (FK) equation that can be employed to model the process. We
employ a discontinuous Galerkin method on polygonal and polyhedral grids (PolyDG) for space
discretization, to accurately simulate the wavefronts typically observed in the prionic spreading
and we prove stability and a priori error estimates. Next, we use a Crank–Nicolson scheme
to advance in time. For the numerical verification of our numerical model, we first consider
a manufactured solution, and then we consider a case with wavefront propagation in two-
dimensional polygonal grids. Next, we carry out a simulation of 𝛼-synuclein spreading in a
two-dimensional brain slice in the sagittal plane with a polygonal agglomerated grid that takes
full advantage of the flexibility of PolyDG approximation. Finally, we present a simulation in a
three-dimensional geometry reconstructed from magnetic resonance images of a patient’s brain.

. Introduction

Neurodegeneration represents a major challenge because of the ageing trends in the worldwide population. Evidence suggests that
he misfolding and aggregation of prionic proteins into toxic and insoluble conformations stand at the basis of neurodegeneration [1].

most common protein undergoing the misfolding process is the 𝛼-synuclein protein [2]. In the literature, this protein is known
o be related to many different pathologies, known as 𝛼-synuclopathies, such as Parkinson’s disease [3], Parkinson’s disease with
ementia and dementia with Lewy bodies [4].

To better highlight the differences between these pathologies (often co-existing), in recent years several mathematical models for
he prion dynamics have been proposed. A mathematical description of the spreading of prionic proteins is of primary importance
n particular for 𝛼-synuclein, for which positron emission tomography imaging (PET) cannot be used in clinical practice due to
he absence of chemical ligands [5]. In [6], the author studied a coupling of ordinary differential equations (ODE) models for the
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microscopical dynamic inside the neuron and partial differential equations (PDE) models for the macroscopic spreading. Due to
the oligomer coagulation and fragmentation phenomena, many works are based on the Smoluchowky coagulation equation [7,8].
However, their overarching numerical inherited complexity calls for suitable simplifications eventually leading to simpler diffusion-
reaction problems to be solved on the whole brain geometry; an example is provided by the Fisher–Kolmogorov (FK) model (also
known as Fisher–KPP model) [9,10]. The latter [11,12] is a nonlinear diffusion-reaction equation applied in many different contexts,
in particular biological species’ evolution.

Over the years, many different numerical methods, such as Finite Element Methods (FEM) [9,13,14], Finite Differences Methods
FDM) [15], and Boundary Elements Methods [16] were proposed to compute the approximate solution of the FK equation. A
tructure-preserving Discontinuous Galerkin (DG) formulation was proposed in [17], where a change of variable is developed to
reserve the positivity of the numerical solution.

To face the geometric complexity and the need for high-order accuracy, in this work, we propose and analyse a Discontinuous
alerkin formulation on polygonal/polyhedral grids (PolyDG) for the semi-discrete approximation of the FK equation coupled with
n implicit second-order in time discretization. The typical solution of the equation is a propagating wavefront: to capture it, a mesh
ith sufficient refinement is needed. The simplicity in supporting high-order approximations as well as the flexibility in handling

omplex geometries, and locally varying discretization parameters justify the choice of a PolyDG approach [18].
Another strength of the proposed formulation is its flexibility in mesh generation; due to its applicability to polygonal/polyhedral

eshes. The geometrical complexity of the brain is a challenge in mesh construction. The possibility of refining the mesh only in
ome regions, handling the hanging nodes and eventually using arbitrarily shaped elements is easy to implement in our approach. A
owerful tool is also offered by mesh agglomeration [19,20]. In this setting, starting from an initial very detailed mesh, it is possible
o generate a coarse one composed of generic polygons, which preserves the original detail of the boundary representation without
he need for curved elements and with a reduction of the computational cost. Our formulation allows the accurate approximation
f the wavefront velocity generated by the FK equation on this type of mesh velocity, which is a very desirable property in this
ontext.

The paper is organized as follows. In Section 2, we introduce the FK mathematical model and discuss its application to
eurodegeneration. In Section 3, we introduce the PolyDG space discretization of the problem. In Section 4, we prove the stability
f the semi-discretized problem. Section 5 is devoted to the proof of a priori error estimates of the semi-discretized problem. In
ection 6, we introduce the time-discretization by means of the Crank–Nicolson method. In Section 7, we validate the theoretical
esults by presenting some convergence tests to our manufactured solutions. Moreover, we assess the accuracy of the proposed
cheme in capturing travelling wave on a two-dimensional setting. Finally, we analyse the application of 𝛼-synuclein spreading

in Parkinson’s disease both in two-dimensional (with agglomerated polygonal meshes) and three-dimensional real geometries
reconstructed from medical images. Finally, in Section 8, we draw some conclusions and discuss further developments.

2. The mathematical model

In this section, we consider the FK equation to describe the reaction and diffusion of misfolded proteins. For a final time 𝑇 > 0,
the problem is dependent on time 𝑡 ∈ (0, 𝑇 ] and space 𝒙 ∈ 𝛺 ⊂ R𝑑 (𝑑 = 2, 3). The solution to our problem represents the relative
concentration of the misfolded protein 𝑐 = 𝑐(𝒙, 𝑡). Indeed, under the assumption of constant baseline concentration of healthy state
protein, the variable 𝑐 is rescaled in the interval [0, 1], where 0 means the absence of misfolded proteins and 1 is the high prevalence
of them. A detailed derivation of this model can be found in [9].

The problem in its strong formulation reads as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑐
𝜕𝑡

= ∇ ⋅ (𝐃∇ 𝑐) + 𝛼 𝑐(1 − 𝑐) + 𝑓, in𝛺 × (0, 𝑇 ],

(𝐃∇𝑐) ⋅ 𝒏 = 𝜙N, on 𝛤𝑁 × (0, 𝑇 ],

𝑐 = 𝑐D, on 𝛤𝐷 × (0, 𝑇 ],

𝑐(𝒙, 0) = 𝑐0(𝒙), in 𝛺.

(1)

In Eq. (1), the reaction parameter 𝛼 = 𝛼(𝒙) represents the local conversion rate of the proteins from healthy to misfolded state.
Moreover, the diffusion tensor 𝐃 = 𝐃(𝒙) denotes the spreading of misfolded protein inside the domain (the whole brain parenchymal
tissue in our case), and the function 𝑓 = 𝑓 (𝒙, 𝑡) is a forcing term, which models the external addition/removal of mass (e.g. modelling
some clearance mechanisms). Concerning the boundary conditions, we impose a sufficiently regular flux 𝜙N on the boundary 𝛤𝑁 of
he domain, while 𝑐D fixes a value of concentration on a part of the boundary 𝛤𝐷. We underline that 𝛤𝐷∪𝛤𝑁 = 𝜕𝛺 and 𝛤𝐷∩𝛤𝑁 = ∅.

In the prions’ spreading applications, the diffusion tensor is typically modelled as the superimposition of an extracellular diffusion
effect with magnitude 𝑑ext and an axonal diffusion with magnitude 𝑑axn [9]; for this reason, we assume that 𝐃 has the following
structure:

𝐃 = 𝑑ext𝐈 + 𝑑axn(𝒏⊗ 𝒏), (2)

where 𝒏 = 𝒏(𝒙) is the axonal fibres direction at the point 𝒙 ∈ 𝛺 and 𝑑ext , 𝑑axn ≥ 0. The axonal direction is the principal orientation of
he connections between the neurons (axons), which can be derived from Diffusion Tensor Imaging (DTI). The derivation of these
2

irections is of primary importance for our purposes, because most of the spreading of the prions occurs through the axons [9].
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We assume that the subset 𝛤𝐷 ⊂ 𝜕𝛺 introduced above has positive measure |𝛤𝐷| > 0, then we define the Sobolev spaces
0 ∶= 𝐻1

𝛤𝐷
(𝛺) = {𝑤 ∈ 𝐻1(𝛺) ∶ 𝑤|𝛤𝐷 = 0} and 𝑊D ∶= {𝑤 ∈ 𝐻1(𝛺) ∶ 𝑤|𝛤𝐷 = 𝑐D}. When |𝛤𝐷| = 0 and 𝛤𝑁 = 𝜕𝛺, we define

0 = 𝑊D = 𝐻1(𝛺). Moreover, we employ a standard definition of scalar product in 𝐿2(𝛺), denoted by (⋅, ⋅)𝛺. The induced norm
s denoted by ‖ ⋅ ‖𝛺. For vector-valued and tensor-valued functions the definition extends componentwise [21]. Given 𝑘 ∈ N and
n Hilbert space 𝐻 we use the notation 𝐶𝑘([0, 𝑇 ],𝐻) to denote the space of functions 𝑐 = 𝑐(𝒙, 𝑡) such that 𝑐 is 𝑘-times continuously
ifferentiable with respect to time and for each 𝑡 ∈ [0, 𝑇 ], 𝑐(⋅, 𝑡) ∈ 𝐻 , see e.g. [21]. Adopting standard notation for Sobolev spaces,

we make the following assumption on the coefficients’ regularity.

Assumption 1 (Coefficients’ Regularity). We assume the following regularities for the coefficients and the forcing terms appearing
in (1):

• 𝛼 ∈ 𝐿∞(𝛺).
• 𝐃 ∈ 𝐿∞(𝛺,R𝑑×𝑑 ) and ∃𝑑0 > 0 ∀𝝃 ∈ R𝑑 ∶ 𝑑0|𝝃|2 ≤ 𝝃⊤𝐃𝝃 ∀𝝃 ∈ R𝑑 .
• 𝑓 ∈ 𝐿2((0, 𝑇 ], 𝐿2(𝛺)).
• 𝜙N ∈ 𝐿2((0, 𝑇 ];𝐿2(𝛤𝑁 )).
• 𝑐D ∈ 𝐿2((0, 𝑇 ];𝐻1∕2(𝛤𝐷)).
• 𝑐0 ∈ 𝐿2(𝛺).

It can be proved that, under Assumption 1 and if 𝑓 = 0, 𝜙N = 0, and 𝛤𝐷 = ∅, when we consider 𝑐0(𝒙) ∈ [0, 1] for each 𝒙 ∈ 𝛺,
the FK equation admits a travelling wave solution. Moreover, it can be also proved that under these assumptions: 𝑐(𝒙, 𝑡) ∈ [0, 1] for
each 𝒙 ∈ 𝛺 and 𝑡 > 0. In this specific setting, the equations admit two steady-state solutions: an unstable equilibrium at 𝑐 = 0 and
a stable one at 𝑐 = 1. This implies:

lim
𝑡→+∞

𝑐(𝒙, 𝑡) = 1 if ∃𝒙 ∈ 𝛺 such that 𝑐0(𝒙) > 0.

By setting:

𝑎(𝑐, 𝑤) =
(
√

𝐃∇𝑐,
√

𝐃∇𝑤
)

𝛺
∀𝑐, 𝑤 ∈ 𝑊 , (3)

𝑟𝐿(𝑐, 𝑤) = (𝛼𝑐,𝑤)𝛺 ∀𝑐, 𝑤 ∈ 𝑊 , (4)

𝑟𝑁 (𝑣, 𝑐, 𝑤) = (𝛼(𝑣𝑐), 𝑤)𝛺 ∀𝑐, 𝑤, 𝑣 ∈ 𝑊 , (5)

𝐹 (𝑤) = (𝑓,𝑤)𝛺+
(

𝜙N, 𝑤
)

𝛤𝑁
∀𝑤 ∈ 𝑊 , (6)

the weak formulation of problem (1) reads:
For each 𝑡 ∈ (0, 𝑇 ] find 𝑐(𝒙, 𝑡) ∈ 𝑊D such that:

⎧

⎪

⎨

⎪

⎩

(

𝜕𝑐(𝒙, 𝑡)
𝜕𝑡

, 𝑤
)

𝛺
+ 𝑎(𝑐(𝒙, 𝑡), 𝑤) − 𝑟𝐿(𝑐(𝒙, 𝑡), 𝑤) + 𝑟𝑁 (𝑐(𝒙, 𝑡), 𝑐(𝒙, 𝑡), 𝑤) = 𝐹 (𝑤) ∀𝑤 ∈ 𝑊0,

𝑐(𝒙, 0) = 𝑐0, in 𝛺.
(7)

3. PolyDG semi-discrete formulation

In this section, after defining some preliminary concepts, we approximate in space the FK equation by the PolyDG method. For
the sake of simplicity, we neglect the dependencies of the inequality constants on the model parameters, using the notation 𝑥 ≲ 𝑦
to mean that ∃𝐶 > 0 ∶ 𝑥 ≤ 𝐶𝑦, where 𝐶 depends on the model parameters (it may depend on 𝑝, but it is independent of the
discretization parameter ℎ).

3.1. Discrete setting and preliminary estimates

Let us introduce a polytopic mesh partition Tℎ of the domain 𝛺 made of disjoint polygonal/polyhedral elements 𝐾, where for
each element 𝐾 ∈ Tℎ, we denote by |𝐾| the measure of the element and by ℎ𝐾 its diameter. We set ℎ = max𝐾∈Tℎ

ℎ𝐾 < 1.
We define the interface as the intersection of the (𝑑 − 1)−dimensional facets of two neighbouring elements. We distinguish two

cases:

• case 𝑑 = 2, in which the interfaces are always line segments; then we denote such a set of segments with Fℎ.
• case 𝑑 = 3, in which any interface consists of a generic polygon, we further assume that we can decompose each interface into

(planar) triangles; we denote the set of all these triangles with Fℎ;

It is now useful to decompose Fℎ into the union of interior faces (F I
ℎ) and exterior faces (FB

ℎ ) lying on the boundary of the domain
𝛺, i.e. Fℎ = F I

ℎ ∪ FB
ℎ . Moreover, the boundary faces set can be split according to the type of imposed boundary condition:

B
ℎ = F𝐷

ℎ ∪ F𝑁
ℎ , where F𝐷

ℎ and F𝑁
ℎ are the boundary faces contained in 𝛤𝐷 and 𝛤𝑁 , respectively. We assume that Tℎ is aligned

ith 𝛤 and 𝛤 , i.e. any 𝐹 ∈ FB is contained in either 𝛤 or 𝛤 .
3

𝐷 𝑁 ℎ 𝐷 𝑁
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Assumption 2. The mesh sequence {Tℎ}ℎ satisfies the following properties [22]:

1. Shape Regularity: ∀𝐾 ∈ Tℎ 𝑖𝑡 ℎ𝑜𝑙𝑑𝑠 ∶ 𝑐1ℎ𝑑𝐾 ≲ 𝑞|𝐾| ≲ 𝑐2ℎ𝑑𝐾 .
2. Contact Regularity: ∀𝐹 ∈ Fℎ with 𝐹 ⊆ 𝐾 for some 𝐾 ∈ Tℎ, it holds ℎ𝑑−1𝐾 ≲ |𝐹 |, where |𝐹 | is the Hausdorff measure of the

face 𝐹 .
3. Submesh Condition: There exists a shape-regular, conforming, matching simplicial submesh T̃ℎ such that:

• ∀𝐾 ∈ T̃ℎ ∃𝐾 ∈ Tℎ ∶ 𝐾 ⊆ 𝐾.
• The family {T̃ℎ}ℎ is shape and contact regular.
• ∀𝐾 ∈ T̃ℎ, 𝐾 ∈ Tℎ with 𝐾 ⊆ 𝐾, it holds ℎ𝐾 ≲ ℎ𝐾 .

Let us define P𝑝(𝐾) as the space of polynomials of total degree 𝑝 ≥ 1 over a mesh element 𝐾. Then we can introduce the following
iscontinuous finite element space:

𝑊 DG
ℎ = {𝑤 ∈ 𝐿2(𝛺) ∶ 𝑤|𝐾 ∈ P𝑝(𝐾) ∀𝐾 ∈ Tℎ}.

We next introduce the so-called trace operators [23]. Let 𝐹 ∈ F I
ℎ be a face shared by the elements 𝐾±. Let 𝒏± by the unit normal

ector on face 𝐹 pointing exterior to 𝐾±, respectively. Then, for sufficiently regular scalar-valued functions 𝑣 and vector-valued
unctions 𝒒 respectively, we define:

• the average operator {{⋅}} on 𝐹 ∈ F I
ℎ: {{𝑣}} = 1

2
(𝑣+ + 𝑣−), {{𝒒}} = 1

2
(𝒒+ + 𝒒−);

• the jump operator [[⋅]] on 𝐹 ∈ F I
ℎ: [[𝑣]] = 𝑣+𝒏+ + 𝑣−𝒏−, [[𝒒]] = 𝒒+ ⋅ 𝒏+ + 𝒒− ⋅ 𝒏.

n these relations we are using the superscripts ± on the functions, to denote the traces of the functions on 𝐹 taken within the
nterior to 𝐾±. We remark that the jump of a scalar is a vector and the jump of a vector is a scalar. In the same way, we can define
nalogous operators on the face 𝐹 ∈ F𝐷

ℎ associated with the cell 𝐾 ∈ Tℎ with 𝒏 outward unit normal on 𝜕𝛺:

• the average operator {{⋅}} on 𝐹 ∈ F𝐷
ℎ : {{𝑣}} = 𝑣, {{𝒒}} = 𝒒;

• the standard jump operator [[⋅]] on 𝐹 ∈ F𝐷
ℎ , with Dirichlet conditions 𝑔, 𝒈: [[𝑣]] = (𝑣 − 𝑔)𝒏, [[𝒒]] = (𝒒 − 𝒈) ⋅ 𝒏.

e recall the following identity that will be useful in the method derivation:

[[𝑣𝒒]] = [[𝒒]]{{𝑣}} + {{𝒒}} ⋅ [[𝑣]] ∀𝐹 ∈ F I
ℎ. (8)

Let us introduce the following broken Sobolev spaces for an integer 𝑟 ≥ 1: 𝐻𝑟(Tℎ) = {𝑤ℎ ∈ 𝐿2(𝛺) ∶ 𝑤ℎ|𝐾 ∈ 𝐻𝑟(𝐾) ∀𝐾 ∈ Tℎ}.
oreover, we introduce the shorthand notation for the 𝐿2-norm ‖ ⋅ ‖ ∶= ‖ ⋅ ‖𝐿2(𝛺) and for the 𝐿2-norm on a set of faces F as

⋅ ‖F =
(

∑

𝐹∈F ‖ ⋅ ‖2
𝐿2(𝐹 )

)1∕2
. We define the following DG-norm:

‖𝑐‖DG = |

|

|

|

|

|

√

𝐃∇ℎ𝑐
|

|

|

|

|

|

+ ‖

√

𝜂[[𝑐]]‖F I
ℎ∪F𝐷

ℎ
∀𝑐 ∈ 𝐻1(Tℎ). (9)

urthermore, we recall the discrete Gagliardo–Nirenberg inequality [24]:

∀𝑢ℎ ∈ 𝑊 DG
ℎ ∃𝐶G𝑑 = 𝐶G𝑑 (𝑝) > 0 ∶ ‖𝑢ℎ‖𝐿𝑞 (𝛺) ≤ 𝐶G𝑑 ‖𝑢ℎ‖

𝑠
DG ‖𝑢ℎ‖

1−𝑠
𝐿2(𝛺)

, (10)

with 𝑠 ∈ [0, 1] and 𝑞 such that:
1
𝑞
= 𝑠

( 1
2
− 1
𝑑

)

+ 1 − 𝑠
2

. (11)

emark 1. We remark that most of the analysis is valid also for milder assumptions on the mesh than the ones in Assumption 2,
hich could be only polytopic regular [25]. However, Gagliardo’s inequality would not be valid anymore, hence we cannot

ompletely extend the analysis.

In this equation, the constant 𝐶G𝑑 is independent of the discretization parameter ℎ. Finally, we recall the Perov inequality [26],
hat we use as an extension of the Grönwall inequality.

roposition 1 (Perov Inequality). Let 𝑎, 𝑏, 𝑐 be three positive constants and let 𝑢 ∈ 𝐿∞
+ (0, 𝑡) ∶= {𝑢 ∈ 𝐿∞(0, 𝑡) ∶ 𝑢(𝑡) ≥ 0 a.e. in (0, 𝑡)} such

hat:

𝑢(𝑡) ≤ 𝑎 + 𝑏∫

𝑡

0
𝑢(𝑠)d𝑠 + 𝑐 ∫

𝑡

0
𝑢𝛾 (𝑠)d𝑠, for almost any 𝑡 ∈ (0, 𝑡), (12)

here 𝑡 is such that:

𝑒𝑏(𝛾−1)𝑡 < 1 + 𝑏
𝑎𝛾−1𝑐

. (13)

Then for almost any 𝑡 ∈ (0, 𝑡) we have:

𝑢(𝑡) ≤ 𝑎 𝑒𝑏𝑡
(

𝛾−1 −1
(

𝑏(𝛾−1)𝑡
))

1
. (14)
4

1 − 𝑎 𝑐 𝑏 𝑒 − 1 𝛾−1
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Remark 2. If 𝑐 = 0 we recover the classical Grönwall inequality estimate: 𝑢(𝑡) ≤ 𝑎 𝑒𝑏𝑡, ∀𝑡 ≤ 𝑇 .

3.2. PolyDG semi-discrete formulation

To construct the semi-discrete formulation, we define the following penalization function 𝜂 ∶ Fℎ → R+:

𝜂 = 𝜂0

⎧

⎪

⎨

⎪

⎩

𝑝2

{ℎ}H
, on 𝐹 ∈ F I

ℎ,

𝑝2

ℎ
, on 𝐹 ∈ F𝐷

ℎ .
(15)

In Eq. (15), we are considering the harmonic average operator {⋅}H on 𝐹 ∈ F I
ℎ and 𝜂0 is a parameter at our disposal (to be chosen

large enough to have stability). Moreover, we define the bilinear form A ∶ 𝑊 DG
ℎ ×𝑊 DG

ℎ → R as:

A (𝑐, 𝑤) = ∫𝛺
∇ℎ𝑐 ⋅ ∇ℎ𝑤 +

∑

𝐹∈F I
ℎ∪F𝐷

ℎ

∫𝐹
(𝜂[[𝑐]] ⋅ [[𝑤]] − {{𝐃∇𝑐}} ⋅ [[𝑤]] − [[𝑐]] ⋅ {{𝐃∇𝑤}}) d𝜎 ∀𝑐, 𝑤 ∈ 𝑊 DG

ℎ , (16)

here ∇ℎ⋅ is the elementwise gradient [27]. The semi-discrete PolyDG formulation reads.
Find 𝑐ℎ(𝑡) ∈ 𝑊 DG

ℎ such that ∀𝑡 > 0:

⎧

⎪

⎨

⎪

⎩

(

𝜕𝑐ℎ(𝑡)
𝜕𝑡

, 𝑤ℎ

)

𝛺
+ A (𝑐ℎ(𝑡), 𝑤ℎ) − 𝑟𝐿(𝑐ℎ(𝑡), 𝑤ℎ) + 𝑟𝑁 (𝑐ℎ(𝑡), 𝑐ℎ(𝑡), 𝑤ℎ) = 𝐹 (𝑤ℎ) ∀𝑤ℎ ∈ 𝑊 DG

ℎ ,

𝑐ℎ(0) = 𝑐0ℎ in 𝛺ℎ,
(17)

here 𝑐0ℎ ∈ 𝑊 DG
ℎ is a suitable approximation of 𝑐0. Its derivation follows the classical steps of the DG formulation for the Laplace

quation (see [27]). For more details on the definition of numerical fluxes associated with the symmetric interior penalty DG method
onsidered in this paper, we refer to [23].

. Stability analysis of the semi-discrete formulation

For the analysis, we exploit continuity and coercivity of the bilinear form A (⋅, ⋅). The proof of these properties can be found
n [28]. Concerning the well-posedness of the formulation we refer to analysis of semilinear parabolic formulations in FEM [29]
nd DG [30] settings.

For simplicity, in both stability and convergence analyses, we assume homogeneous Dirichlet (𝑐D = 0) and Neumann (𝜙N = 0)
boundary conditions.

Proposition 2. Let Assumption 2 be satisfied, then the bilinear form A (⋅, ⋅) is continuous and coercive:

∃𝑀 > 0 ∶ |A (𝑣ℎ, 𝑤ℎ)| ≤𝑀‖𝑣ℎ‖DG‖𝑤ℎ‖DG ∀𝑣ℎ, 𝑤ℎ ∈ 𝑊 DG
ℎ , (18)

∃𝜇 > 0 ∶ A (𝑣ℎ, 𝑣ℎ) ≥ 𝜇‖𝑣ℎ‖
2
DG ∀𝑣ℎ ∈ 𝑊 DG

ℎ , (19)

where 𝑀 and 𝜇 are independent of ℎ. Coercivity holds provided that the penalty parameter 𝜂 is large enough.

Definition 1 (Energy Norm). The energy norm ‖ ⋅ ‖𝜖 ∶ 𝐻1(Tℎ) → R is defined as:

‖𝑐ℎ(𝑡)‖2𝜖 ∶= ‖𝑐ℎ(𝑡)‖2 + ∫

𝑡

0
‖𝑐ℎ(𝑠)‖2DGd𝑠. (20)

Theorem 1 (Stability Estimate). Let Assumptions 1 and 2 be satisfied and, for a sufficiently large penalty parameter 𝜂, let 𝑐ℎ(𝑡) be the
solution of Eq. (17) for any 𝑡 ∈ (0, 𝑡], with 𝑡 ≤ 𝑇 introduced in (13). Then:

‖𝑐ℎ(𝑡)‖2𝜖 ≤

(

‖𝑐0ℎ‖
2 + ∫

𝑇

0
‖𝑓 (𝑠)‖2d𝑠

)

𝑒
2�̃�+1
�̃� 𝑡

⎛

⎜

⎜

⎝

�̃�𝑑−1 −
�̃�𝐶3

G𝑑

2𝑑−1(2�̃� + 1)𝜀

(

‖𝑐0ℎ‖
2 + ∫

𝑇

0
‖𝑓 (𝑠)‖2d𝑠

)𝑑−1 (

𝑒
(

2�̃�+1
�̃�

)

(𝑑−1)𝑡 − 1
)

⎞

⎟

⎟

⎠

1
𝑑−1

, (21)

where �̃� = min

{

1, 2𝜇 −
𝑑𝜀�̃�𝐶3

G𝑑
(2𝑑−2)

}

> 0 and 𝜀 > 0 is small enough, �̃� = ‖𝛼‖𝐿∞ and 𝐶G𝑑 defined in Eq. (10).

Proof. We start from Eq. (17) and we choose 𝑤ℎ = 𝑐ℎ(𝑡), to find:
(

�̇� , 𝑐
)

5

ℎ ℎ 𝛺 + A (𝑐ℎ, 𝑐ℎ) − 𝑟𝐿(𝑐ℎ, 𝑐ℎ) + 𝑟𝑁 (𝑐ℎ, 𝑐ℎ, 𝑐ℎ) = 𝐹 (𝑐ℎ),
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where we are using the notation of time derivative �̇�ℎ = 𝜕𝑐ℎ∕𝜕𝑡. Then after integration in time of the equation above, we can use
the coercivity estimate in (19), and the Hölder inequality with the definition of �̃� = ‖𝛼‖𝐿∞ , to obtain:

‖𝑐ℎ(𝑡)‖2 − ‖𝑐0ℎ‖
2 + ∫

𝑡

0
2𝜇‖𝑐ℎ(𝑠)‖2DGd𝑠 ≤ ∫

𝑡

0
2�̃�‖𝑐ℎ(𝑠)‖2d𝑠 + ∫

𝑡

0
2�̃�‖𝑐ℎ(𝑠)‖3𝐿3(𝛺)

d𝑠 + ∫

𝑡

0
2‖𝑓 (𝑠)‖ ‖𝑐ℎ(𝑠)‖d𝑠.

hen we need to use the Gagliardo–Nirenberg inequality (10), on each element 𝐾 ∈ Tℎ. For this reason, we need to distinguish
etween the cases 𝑑 = 2 and 𝑑 = 3.

ase 𝑑 = 2: In this case the inequality (10) applies with 𝑠 = 1∕3. By applying Young’s inequality, we obtain:

‖𝑐ℎ‖
3
𝐿3(𝛺)

≤
(

𝐶G2
‖𝑐ℎ‖

2
3
‖𝑐ℎ‖

1
3
DG

)3

= 𝐶3
G2
‖𝑐ℎ‖

2
‖𝑐ℎ‖DG ≤

𝐶3
G2

2

( 1
𝜀
‖𝑐ℎ‖

4 + 𝜀‖𝑐ℎ‖2DG
)

.

Using Assumption 1, we obtain:

‖𝑐ℎ(𝑡)‖2 + ∫

𝑡

0

⎛

⎜

⎜

⎝

2𝜇 −
2𝜀�̃�𝐶3

G2

2

⎞

⎟

⎟

⎠

‖𝑐ℎ(𝑠)‖2DGd𝑠 ≤ ‖𝑐0ℎ‖
2 + ∫

𝑡

0

⎛

⎜

⎜

⎝

2�̃�‖𝑐ℎ(𝑠)‖2 +
2�̃�𝐶3

G2

2𝜀
‖𝑐ℎ(𝑠)‖4 + 2‖𝑓 (𝑠)‖ ‖𝑐ℎ(𝑠)‖

⎞

⎟

⎟

⎠

d𝑠.

ase 𝑑 = 3: In this case inequality (10) applies with 𝑠 = 1∕2. By applying Young’s inequality with 𝛾 = 3∕4 and 𝛾∗ = 1∕4 we get:

‖𝑐ℎ‖
3
𝐿3(𝛺)

≤
(

𝐶G3
‖𝑐ℎ‖

1
2
‖𝑐ℎ‖

1
2
DG

)3
= 𝐶3

G3
‖𝑐ℎ‖

3
2
‖𝑐ℎ‖

3
2
DG ≤

𝐶3
G3

4

( 1
𝜀
‖𝑐ℎ‖

6 + 3𝜀‖𝑐ℎ‖2DG
)

.

Using Assumption 1, we obtain:

‖𝑐ℎ(𝑡)‖2 + ∫

𝑡

0

⎛

⎜

⎜

⎝

2𝜇 −
6𝜀�̃�𝐶3

G3

4

⎞

⎟

⎟

⎠

‖𝑐ℎ(𝑠)‖2DGd𝑠 ≤ ‖𝑐0ℎ‖
2 + ∫

𝑡

0

⎛

⎜

⎜

⎝

2�̃�‖𝑐ℎ(𝑠)‖2 +
2�̃�𝐶3

G3

4𝜀
‖𝑐ℎ(𝑠)‖6 + 2‖𝑓 (𝑠)‖ ‖𝑐ℎ(𝑠)‖

⎞

⎟

⎟

⎠

d𝑠.

ummarizing, using the definition (20) of the energy norm, and introducing �̃� = min{1, 2𝜇 − 𝑑𝜀�̃�𝐶3
G3
∕(2𝑑−2)} we obtain:

�̃�‖𝑐ℎ(𝑡)‖2𝜖 ≤ ‖𝑐0ℎ‖
2 + ∫

𝑡

0

(

2�̃�‖𝑐ℎ(𝑠)‖2 +
�̃�𝐶3

Gd

2𝑑−1𝜀
‖𝑐ℎ(𝑠)‖2𝑑 + 2‖𝑓 (𝑠)‖ ‖𝑐ℎ(𝑠)‖

)

d𝑠.

hen we apply Young’s inequality to the forcing terms, and we exploit the positivity of the integrated to get:

�̃�‖𝑐ℎ(𝑡)‖2𝜖 ≲ ‖𝑐0ℎ‖
2 + ∫

𝑇

0
‖𝑓 (𝑠)‖2d𝑠 + ∫

𝑡

0

⎛

⎜

⎜

⎝

(2�̃� + 1) ‖𝑐ℎ(𝑠)‖2 +
�̃�𝐶3

G𝑑

2𝑑−1𝜀
‖𝑐ℎ(𝑠)‖2𝑑

⎞

⎟

⎟

⎠

d𝑠.

inally, we can apply Perov’s inequality to conclude the proof:

‖𝑐ℎ(𝑡)‖2𝜖 ≤

(

‖𝑐0ℎ‖
2 + ∫

𝑇

0
‖𝑓 (𝑠)‖2d𝑠

)

𝑒
2�̃�+1
�̃� 𝑡

⎛

⎜

⎜

⎝

�̃�𝑑−1 −
�̃�𝐶3

G𝑑

2𝑑−1(2�̃� + 1)𝜀

(

‖𝑐0ℎ‖
2 + ∫

𝑇

0
‖𝑓 (𝑠)‖2

)𝑑−1 (

𝑒
(

2�̃�+1
�̃�

)

(𝑑−1)𝑡 − 1
)

⎞

⎟

⎟

⎠

1
𝑑−1

. □

Remark 3. In view of the neurodegenerative modelling application, under the assumption 𝑓 = 0, the stability estimate of Theorem 1
reduces to:

‖𝑐ℎ(𝑡)‖2𝜖 ≤
‖𝑐0ℎ‖

2𝑒
2�̃�+1
�̃� 𝑡

⎛

⎜

⎜

⎝

�̃�𝑑−1 −
�̃�𝐶3

G𝑑
‖𝑐0ℎ‖

2𝑑−2

2𝑑−1(2�̃� + 1)𝜀

(

𝑒
(

2�̃�+1
�̃�

)

(𝑑−1)𝑡 − 1
)

⎞

⎟

⎟

⎠

1
𝑑−1

=∶ 𝐶𝑆 (𝑐0ℎ), (22)

here �̃� = min

{

1, 2𝜇 −
𝑑𝜀�̃�𝐶3

G𝑑
2𝑑−2

}

> 0 and 𝜀 > 0 is small enough, �̃� = ‖𝛼‖𝐿∞ and 𝐶G𝑑 defined in Eq. (10). The definition of 𝐶𝑆 will

e useful in the following analysis.

emark 4. Since 𝜀 can be chosen arbitrarily small in Young’s inequality, the positivity of �̃� is always guaranteed and we do not
ave a structural relation between the parameters. At the same time, the positivity of the denominator is guaranteed for 𝑡 that
atisfies relation (13), thanks to Perov inequality.
6
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5. Error analysis of the semi-discrete formulation

In this section, we derive an a priori error estimate for the solution of the PolyDG semi-discrete problem (17).
First of all, we need to introduce the following definition:

|||𝑢|||DG = ‖𝑢‖DG + |

|

|

|

|

|

𝜂−
1
2 {{𝐃∇ℎ𝑢}}

|

|

|

|

|

|L2(F I
ℎ∪F𝐷

ℎ )
∀𝑢 ∈ 𝐻2(Tℎ). (23)

e remark that it exists 𝐶 > 0 such that 𝐶|||𝑣|||2DG ≤ ‖𝑣‖2DG for all 𝑣 ∈ 𝑊 DG
ℎ .

We introduce the interpolant 𝑐I ∈ 𝑊 DG
ℎ of the continuous formulation (7) [31].

Proposition 3. Let Assumption 2 be fulfilled. If 𝑑 ≥ 2, then the following estimates hold:

∀𝑢 ∈ 𝐻𝑛(Tℎ) ∃𝑢I ∈ 𝑊 DG
ℎ ∶ |||𝑢 − 𝑢I|||2DG ≲

∑

𝐾∈Tℎ

ℎ2min{𝑝+1,𝑛}−2
𝐾 ‖𝑢‖2𝐻𝑛(𝐾). (24)

For detailed proof of the proposition see [28] (for a large enough penalty 𝜂0). In this section, we assume that problem (17) is
upplemented by the initial condition 𝑐0ℎ = 𝑐I(0) ∈ 𝑊 DG

ℎ , provided that 𝑐0(𝑥) is sufficiently regular. In this case, we need 𝑐0 ∈ 𝑊 to
nterpolate the solution.

First of all, let us consider 𝑐ℎ solution of (17) and 𝑐 solution of (7). To extend the bilinear forms of (17) to the space of continuous
olutions we need further regularity requirements. We assume element-wise 𝐻2-regularity of the concentration together with the
ontinuity of the flow across the interfaces 𝐹 ∈ F I

ℎ for all time 𝑡 ∈ (0, 𝑇 ]. In this context, we need to provide additional boundedness
esults for the functionals of the formulation:

roposition 4. Let Assumption 2 be satisfied. Then:

∃𝑀 > 0 |A (𝑢,𝑤ℎ)| ≤𝑀|||𝑢|||DG‖𝑤ℎ‖DG ∀𝑢 ∈ 𝐻2(Tℎ),∀𝑤ℎ ∈ 𝑊 DG
ℎ . (25)

The proof of this relation can be found in [25]. In order to prove the convergence estimate we assume both 𝑓 = 0. These
assumptions allow us to use the boundedness property of the solution for the initial condition 𝑐0(𝒙) ∈ (0, 1) for each 𝒙 ∈ 𝛺 [21]:

‖𝑐(𝑡)‖2𝐿∞(𝛺) ≤ 1 ∀𝑡 ∈ (0, 𝑇 ). (26)

Interpolating this type of solution, we can have a function 𝑐I, which is 𝐿∞ by construction [27], then:

∃𝑀I > 0 ∶ ‖𝑐I(𝑡)‖2𝐿∞(𝛺) ≤𝑀I ∀𝑡 ∈ (0, 𝑇 ). (27)

heorem 2. Let us consider problem (7) with 𝑓 = 0, 𝜙N = 0 and 𝛤𝑁 = 𝜕𝛺. Let Assumptions 1 and 2 be fulfilled and let c be the solution
of (7) for any 𝑡 ∈ (0, 𝑇 ] and let it satisfy the following additional regularity requirements:

𝑐 ∈ 𝐶1((0, 𝑇 ];𝐻𝑛(𝛺) ∩ 𝐿∞(𝛺)), (28)

for 𝑛 ≥ 2. Let us assume further regularity on the initial condition 𝑐0 ∈ 𝑊 . For a sufficiently large penalty parameter 𝜂, let 𝑐ℎ be the solution
of (17) for any 𝑡 ∈ (0, 𝑇 ]. Then, the following estimate holds:

|||𝑐(𝑡) − 𝑐ℎ(𝑡)|||2𝜖 ≲
∑

𝐾∈Tℎ

ℎ2min{𝑝+1,𝑛}−2
𝐾 ∫

𝑡

0

[

‖�̇�(𝑠)‖2𝐻𝑛(𝐾) + ‖𝑐(𝑠)‖2𝐻𝑛(𝐾)

]

∀𝑡 ∈ (0, 𝑇 ], (29)

under the following additional hypothesis of the constants: 𝜇𝐶 − 𝛼((1 +𝑀I)𝐶𝐸2
+𝐶𝑆𝐶𝐸4

) > 0, where 𝐶𝐸𝑞 is the discrete Sobolev embedding
constant for the 𝐿𝑞(𝛺) space, 𝐶 is the bounding constant between the DG-norms and 𝐶𝑆 is defined in (22).

roof. First of all, we subtract Eq. (17) from Eq. (7), to obtain:
(

�̇� − �̇�ℎ, 𝑤ℎ
)

𝛺 + A (𝑐 − 𝑐ℎ, 𝑤ℎ) − 𝑟𝐿(𝑐 − 𝑐ℎ, 𝑤ℎ) + (𝛼(𝑐2 − 𝑐2ℎ), 𝑤ℎ)𝛺 = 0 ∀𝑤ℎ ∈ 𝑊 DG
ℎ .

We define the errors 𝑒𝑐ℎ = 𝑐I − 𝑐ℎ and 𝑒𝑐I = 𝑐 − 𝑐I, where 𝑐I is a suitable interpolant. By testing against 𝑒𝑐ℎ, we have:
(

�̇�𝑐ℎ, 𝑒
𝑐
ℎ
)

𝛺 + A (𝑒𝑐ℎ, 𝑒
𝑐
ℎ) − 𝑟𝐿(𝑒

𝑐
ℎ, 𝑒

𝑐
ℎ) + (𝛼(𝑐2 − 𝑐2ℎ), 𝑒

𝑐
ℎ)𝛺 =

(

�̇�𝑐I , 𝑒
𝑐
ℎ
)

𝛺 + A (𝑒𝑐I , 𝑒
𝑐
ℎ) − 𝑟𝐿(𝑒

𝑐
I , 𝑒

𝑐
ℎ).

Thanks to the symmetry of the scalar product we can rewrite the problem as:
1
2
d
d𝑡

(

𝑒𝑐ℎ, 𝑒
𝑐
ℎ
)

𝛺 + A (𝑒𝑐ℎ, 𝑒
𝑐
ℎ) − 𝑟𝐿(𝑒

𝑐
ℎ, 𝑒

𝑐
ℎ) + (𝛼(𝑐2 − 𝑐2ℎ), 𝑒

𝑐
ℎ)𝛺 =

(

�̇�𝑐I , 𝑒
𝑐
ℎ
)

𝛺 + A (𝑒𝑐I , 𝑒
𝑐
ℎ) − 𝑟𝐿(𝑒

𝑐
I , 𝑒

𝑐
ℎ).

Now we integrate between 0 and 𝑡. We remark that 𝑒𝑐ℎ(0) = 0 under the suitable choice we made on 𝑐0ℎ. Then, by proceeding similarly
to what we did in the proof of Theorem 1, we obtain:

1
2
‖𝑒𝑐ℎ(𝑡)‖

2+∫

𝑡

0
𝜇‖𝑒𝑐ℎ(𝑠)‖

2
DG ≤ ∫

𝑡

0
𝛼‖𝑒𝑐ℎ(𝑠)‖

2 + ∫

𝑡

0
|

(

�̇�𝑐I (𝑠), 𝑒
𝑐
ℎ(𝑠)

)

𝛺 |

+
𝑡
|A (𝑒𝑐 (𝑠), 𝑒𝑐 (𝑠))| +

𝑡
|𝑟𝐿(𝑒𝑐 (𝑠), 𝑒𝑐 (𝑠))| +

𝑡
|(𝛼(𝑐2(𝑠) − 𝑐2(𝑠)), 𝑒𝑐 (𝑠))𝛺|.
7
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In this way, we obtain four different scalar products, we need to bound. Exploiting the continuity relation in Proposition 4, Hölder’s
inequality and 𝐿∞-bound of the parameter 𝛼 (�̃� = ‖𝛼‖𝐿∞ ), we get:

1
2
‖𝑒𝑐ℎ(𝑡)‖

2+∫

𝑡

0
𝜇‖𝑒𝑐ℎ(𝑠)‖

2
DG ≤ ∫

𝑡

0
𝛼‖𝑒𝑐ℎ(𝑠)‖

2 + ∫

𝑡

0
‖�̇�𝑐I (𝑠)‖ ‖𝑒

𝑐
ℎ(𝑠)‖ + ∫

𝑡

0
𝑀|||𝑒𝑐I (𝑠)|||DG‖𝑒

𝑐
ℎ(𝑠)‖DG

+∫

𝑡

0
𝛼‖𝑒𝑐I (𝑠)‖ ‖𝑒

𝑐
ℎ(𝑠)‖ + ∫

𝑡

0
𝛼|(𝑐2(𝑠) − 𝑐2ℎ(𝑠), 𝑒

𝑐
ℎ(𝑠))𝛺|,

e treat now the nonlinear term by rewriting the difference as follows:

𝑐2 − 𝑐2ℎ =𝑐2 − 𝑐2I + 𝑐
2
I − 𝑐

2
ℎ

=𝑐2 − 𝑐 𝑐I + 𝑐 𝑐I − 𝑐2I + 𝑐
2
I − 𝑐I𝑐ℎ + 𝑐I𝑐ℎ − 𝑐

2
ℎ

=𝑐(𝑐 − 𝑐I) + 𝑐I(𝑐 − 𝑐I) + 𝑐I(𝑐I − 𝑐ℎ) + 𝑐ℎ(𝑐I − 𝑐ℎ) = 𝑐𝑒𝑐I
⏟⏟⏟

(I)

+ 𝑐I𝑒
𝑐
I

⏟⏟⏟
(II)

+ 𝑐I𝑒
𝑐
ℎ

⏟⏟⏟
(III)

+ 𝑐ℎ𝑒
𝑐
ℎ

⏟⏟⏟
(IV)

.

The resulting terms can be treated separately as follows:

• (I) can be bounded using the 𝐿∞-bound of the continuous solution, Eq. (26) and the Cauchy–Schwarz inequality:

|(𝑐(𝑐 − 𝑐I), 𝑒𝑐ℎ)𝛺| ≤ ‖𝑐‖𝐿∞(𝛺)|(𝑒𝑐I , 𝑒
𝑐
ℎ)𝛺| = |(𝑒𝑐I , 𝑒

𝑐
ℎ)𝛺| ≤ ‖𝑒𝑐I ‖ ‖𝑒𝑐ℎ‖.

• (II) can be bounded using the 𝐿∞-bound of the interpolant of the continuous solution, Eq. (27) and the Cauchy–Schwarz
inequality:

|(𝑐I(𝑐 − 𝑐I), 𝑒𝑐ℎ)𝛺| ≤ ‖𝑐I‖𝐿∞(𝛺)|(𝑒𝑐I , 𝑒
𝑐
ℎ)𝛺| ≤𝑀I|(𝑒𝑐I , 𝑒

𝑐
ℎ)𝛺| ≤𝑀I‖𝑒

𝑐
I ‖ ‖𝑒𝑐ℎ‖.

• (III) can be bounded using the 𝐿∞-bound of the interpolant of the continuous solution, Eq. (27), Eq. (22), and the
Sobolev–Poincaré–Wirtinger discrete inequality [22]:

|(𝑐I(𝑐I − 𝑐ℎ), 𝑒𝑐ℎ)𝛺| ≤ ‖𝑐I‖𝐿∞(𝛺)|(𝑒𝑐ℎ, 𝑒
𝑐
ℎ)𝛺| ≤𝑀I|(𝑒𝑐ℎ, 𝑒

𝑐
ℎ)𝛺| =𝑀I‖𝑒

𝑐
ℎ‖

2 ≤𝑀I𝐶𝐸2
‖𝑒𝑐ℎ‖

2
DG,

where 𝐶𝐸2
is the bounding constant of Sobolev–Poincaré–Wirtinger discrete inequality.

• (IV) can be bounded using Hölder inequality, the energy stability estimate of the DG solution in Eq. (22), and the
Sobolev–Poincaré–Wirtinger discrete inequality [22]

|(𝑐ℎ(𝑐I − 𝑐ℎ), 𝑒𝑐ℎ)𝛺| = |(𝑐ℎ, (𝑒𝑐ℎ)
2)𝛺| ≤ ‖𝑐ℎ‖ ‖𝑒𝑐ℎ‖

2
𝐿4(𝛺)

≤ 𝐶𝑆‖𝑒
𝑐
ℎ‖

2
𝐿4(𝛺)

≤ 𝐶𝑆𝐶𝐸4
‖𝑒𝑐ℎ‖

2
DG.

where 𝐶𝐸4
is the bounding constant of Sobolev–Poincaré–Wirtinger discrete inequality and 𝐶𝑆 is defined in Eq. (22).

Then, from above bounds and by using also the property of DG-norms 𝐶|||𝑣|||2DG ≤ ‖𝑣‖2DG we can write:

1
2
‖𝑒𝑐ℎ(𝑡)‖

2+∫

𝑡

0
𝜇𝐶|||𝑒𝑐ℎ(𝑠)|||

2
DG ≤ ∫

𝑡

0
𝛼((1 +𝑀I)𝐶𝐸2

+ 𝐶𝑆𝐶𝐸4
)|||𝑒𝑐ℎ(𝑠)|||

2
DG + ∫

𝑡

0
‖�̇�𝑐I (𝑠)‖ ‖𝑒

𝑐
ℎ(𝑠)‖

+∫

𝑡

0
𝑀|||𝑒𝑐I (𝑠)|||DG‖𝑒

𝑐
ℎ(𝑠)‖DG + ∫

𝑡

0
𝛼(2 +𝑀I)‖𝑒𝑐I (𝑠)‖ ‖𝑒

𝑐
ℎ(𝑠)‖.

By assumption, we need 𝜇𝐶 − 𝛼((1 +𝑀I)𝐶𝐸2
+𝐶𝑆𝐶𝐸4

) > 0, then we can define �̂� = min{1∕2, 𝜇𝐶 − 𝛼((1 +𝑀I)𝐶𝐸2
+𝐶𝑆𝐶𝐸4

)}. Since �̂�
is positive we can make use of the notation ≲

|||𝑒𝑐ℎ(𝑡)|||
2
𝜖 ≲ ∫

𝑡

0
‖�̇�𝑐I (𝑠)‖ ‖𝑒

𝑐
ℎ(𝑠)‖ + ∫

𝑡

0
|||𝑒𝑐I (𝑠)|||DG‖𝑒

𝑐
ℎ(𝑠)‖DG + ∫

𝑡

0
‖𝑒𝑐I (𝑠)‖ ‖𝑒

𝑐
ℎ(𝑠)‖,

By application of Hölder’s inequality and of Grönwall’s lemma [27], we obtain:

|||𝑒𝑐ℎ(𝑡)|||
2
𝜖 ≲ ∫

𝑡

0
‖�̇�𝑐I (𝑠)‖

2 + ∫

𝑡

0
|||𝑒𝑐I (𝑠)|||

2
DG,

and by using the interpolation bounds of Proposition 3, we find:

|||𝑒𝑐ℎ(𝑡)|||
2
𝜖 ≲

∑

𝐾∈Tℎ

ℎ2min{𝑝+1,𝑛}−2
𝐾 ∫

𝑡

0

(

‖�̇�(𝑠)‖2𝐻𝑛(𝐾) + ‖𝑐(𝑠)‖2𝐻𝑛(𝐾)

)

. (30)

Finally, we use the triangular inequality to estimate the discretization error:

|||𝑐 − 𝑐ℎ|||2𝜖 ≤ |||𝑒𝑐ℎ|||
2
𝜖 + |||𝑒𝑐I |||

2
𝜖 .

The thesis follows by applying the result in Eq. (30) and the interpolation error. □

Remark 5. So far, our analysis was based on the assumption of time-independent physical parameters 𝛼 = 𝛼(𝒙) and 𝐃 = 𝐃(𝒙). The
8

results however remain valid also in the case of time-dependent parameters assuming sufficient regularity on time.
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Remark 6. The theoretical analysis proposed in this work is specifically constructed for the FK equation. Indeed, some steps cannot
be extended to different types of nonlinear reaction terms. For generalized results on general semilinear parabolic problems we refer
to [30].

Remark 7. The extensions to the non-homogeneous Dirichlet/Neumann boundary conditions can be proved by assuming sufficient
regularity on the data, as in the linear case [32]. The results can be also extended to Robin boundary conditions, as in the linear case,
changing the formulation and the proof as in [33]. Concerning Theorem 2, the extension of the theoretical result under different
boundary conditions does not allow the use of Eq. (26) in the continuous setting. It requires assuming a continuous weak solution
𝑐 ∈ 𝐿∞(𝛺) by taking care of defining the value 𝑀 , such that ‖𝑐‖𝐿∞(𝛺) ≤𝑀 , and modifying the proof accordingly.

. Fully-discrete formulation

Let (𝝋𝑗 )
𝑁𝑐
𝑗=0 be a suitable basis for 𝑊 DG

ℎ , then 𝑐ℎ(𝑡) =
∑𝑁𝑐
𝑗=0 𝐶𝑛(𝑡)𝜑𝑗 , and denote by 𝑪 ∈ R𝑁𝑐 the corresponding vector of the

xpansion coefficients, in the chosen basis. We define the matrices:

[M]𝑖𝑗 = (𝜑𝑗 , 𝜑𝑖)𝛺 (Mass matrix) [A]𝑖𝑗 = A (𝜑𝑗 , 𝜑𝑖) (Stif fness matrix) 𝐼, 𝑗 = 1,… , 𝑁𝑐

[M𝛼]𝑖𝑗 = (𝛼𝜑𝑗 , 𝜑𝑖)𝛺 (Linear reaction matrix)

[M̃𝛼(𝑪(𝑡))]𝑖𝑗 = (𝛼𝑐ℎ(𝑡)𝜑𝑗 , 𝜑𝑖)𝛺 (Nonlinear reaction matrix)

oreover, we define the forcing term: [𝑭 ]𝑗 = 𝐹 (𝜑𝑗 ) for 𝑗 = 1,… , 𝑁𝑐 . By exploiting all these definitions, we rewrite the problem
(17) in algebraic form:

{

M�̇�(𝑡) + A𝑪(𝑡) − M𝛼𝑪(𝑡) + M̃𝛼(𝑪(𝑡))𝑪(𝑡) = 𝑭 (𝑡), 𝑡 ∈ (0, 𝑇 ),
𝑪(0) = 𝑪0.

(31)

Let now construct a time discretization of the interval [0, 𝑇 ] by defining a partition of 𝑁 intervals 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 .
We assume a constant timestep 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛, 𝑛 = 0,… , 𝑁 − 1. We construct the fully discrete approximation by means of the
Crank–Nicolson method. Given 𝑪0 = 𝑪(0), find 𝑪𝑛+1 ≃ 𝑪(𝑡𝑛+1) for 𝑛 = 0,… , 𝑁 − 1:

M𝑪𝑛+1 + 𝛥𝑡
2

(

K −M𝛼
)

𝑪𝑛+1 + 𝛥𝑡M̃1∕2
𝛼 (𝑪∗)𝑪𝑛+1,𝑛 = M𝑪𝑛 − 𝛥𝑡

2
(

K −M𝛼
)

𝑪𝑛 + 1
2
(

𝑭 𝑛+1 + 𝑭 𝑛) . (32)

For the nonlinear term we will consider either:

• Semi-implicit treatment, i.e.:

M̃1∕2
𝛼

( 3
2
𝑪𝑛 − 1

2
𝑪𝑛−1

) 𝑪𝑛+1 + 𝑪𝑛

2
, (33)

• Implicit treatment, i.e.:

M̃1∕2
𝛼

( 1
2
𝑪𝑛+1 + 1

2
𝑪𝑛

) 𝑪𝑛+1 + 𝑪𝑛

2
. (34)

7. Numerical results

In this section, we aim at verifying the accuracy of the method and the theoretical bounds of Section 5. Throughout the section
we choose the penalty parameter 𝜂0 = 10.

7.1. Test case 1: Convergence analysis in a 2D case

For the numerical tests in this section, we use a MATLAB code to solve the FK equation on polygonal meshes. We use a square
domain 𝛺 = (0, 1)2, where we construct a mesh by using PolyMesher [34]. Concerning the time discretization, we use a timestep
𝛥𝑡 = 10−5 and a maximum time 𝑇 = 10−3. We consider the following manufactured exact solution:

𝑐(𝑥, 𝑦, 𝑡) = (cos(𝜋𝑥) cos(𝜋𝑦) + 2) 𝑒−𝑡. (35)

A fundamental simplification in this section is the isotropic diffusion tensor 𝐃 = 𝑑ext𝐈. We analyse the case with 𝑑ext = 1 and 𝛼 = 1.
he forcing term and the Dirichlet boundary conditions are derived accordingly.

In Fig. 1, we report the computed errors in the energy norm defined in Eq. (20) at the final time 𝑇 = 10−3. We performed the
convergence test keeping fixed the polynomial order of the space approximation 𝑝 = 1,… , 6 and using different mesh refinements
(𝑁el = 30, 100, 300, 1000). We observe that the theoretical rates of convergence are achieved for all the polynomial degrees 𝑝; indeed,
the rate of convergence equals the degree of approximation, as proved in Theorem 2.

In Fig. 1, we compare also the errors in the two different choices of treatment of the nonlinear term: the semi-implicit (left) and
9

the implicit one (right). In the implicit case, the resulting nonlinear problem is solved by means of Picard iterations with tollerace
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Fig. 1. Test case 1: computed errors and convergence rates with either semi-implicit (left) and implicit (right) treatment of the nonlinear term.

Fig. 2. Test case 1: computed errors and convergence rates with either semi-implicit (left) and implicit (right) treatment of the nonlinear term.

10−10. In this test case, we cannot notice any substantial difference concerning the resulting errors and the two methods reach the
same precision for all the tested values of 𝑝.

A convergence analysis with respect to the polynomial order 𝑝 is also performed with a mesh of 30 elements. The results are
reported in Fig. 2, where we observe exponential convergence. We point out that this case is not covered by our theoretical analysis,
nevertheless, we demonstrate numerically that optimal convergence is observed. Also in this case we cannot notice any difference
in the choice of the nonlinear treatment.

7.2. Test case 2: Travelling waves in 2D

In this section, we use the PolyDG formulation to simulate the travelling-wave solution of the FK equation in 2D:

𝑐(𝑥, 𝑦, 𝑡) = 𝜓(𝑥 − 𝑣𝑡) = 𝜓(𝜉) (36)

By plugging Eq. (36) into Eq. (1), with 𝑓 = 0 we obtain an equivalent system of ordinary differential equations:

⎧

⎪

⎨

⎪

⎩

𝜒 ′(𝜉) = − 𝑣
𝑑ext

𝜒(𝜉) + 1
𝑑ext

𝜓(𝜉)(𝜓(𝜉) − 1) 𝜉 ∈ (0, 𝑇 ),

𝜓 ′(𝜉) = 𝜒(𝜉) 𝜉 ∈ (0, 𝑇 ),
(37)

where we use the assumption of isotropic diffusion tensor 𝐃 = 𝑑ext𝐈 and 𝑑axn = 0. In particular, we fix 𝑑ext = 10−3, 𝛼 = 1 and 𝜂0 = 10.
Concerning the wave’s parameters we consider a speed 𝑣 = 0.1 and the initial data 𝜓(0) = 1 and 𝜒(0) = −10−2. The domain is
constructed as a rectangle 𝛺 = (0, 5) × (0, 1) and we consider two final times 𝑇 = 5 and 𝑇 = 10. For the implicit treatment of the
nonlinear terms, we adopt Picard iterations with an absolute tolerance 10−10 and a maximum number of iterations fixed to 20. The
xact solution of this test case is not known in closed form [17]. The reference solution is computed by solving Eq. (37) with the
ATLAB solver ode45.

First, we try to address the effect of mesh refinement on the quality of the discrete solution. In Table 1, we report the computed
rrors in 𝐿2−norm for the choice 𝛥𝑡 = 0.01 at the two different time frames 𝑇 = 5 and 𝑇 = 10.

Concerning the polynomial degree 𝑝 = 2, we notice that the scheme provides a good approximation of the wavefront only
10

onsidering sufficiently refined mesh. In these numerical experiments, we can observe that the use of Picard iterations (implicit
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Table 1
Computed errors in the 𝐿2−norm at the final time with different mesh refinements, 𝛥𝑡 = 0.01: 𝑝 = 2 (top) and 𝑝 = 3
(bottom).
𝑝 = 2 𝛥𝑡 = 0.01

Method Semi-Implicit Implicit

Refinement DOFs 𝑇 = 5 𝑇 = 10 𝑇 = 5 𝑇 = 10

𝑁el = 30 180 6.33 × 103 1.03 × 104 1.63 × 100 5.36 × 106

𝑁el = 100 600 1.45 × 102 1.12 × 104 8.24 × 10−1 2.18 × 107

𝑁el = 300 1800 1.98 × 10−1 6.02 × 104 6.97 × 10−2 1.28 × 108

𝑝 = 3 𝛥𝑡 = 0.01

Method Semi-Implicit Implicit

Refinement DOFs 𝑇 = 5 𝑇 = 10 𝑇 = 5 𝑇 = 10

𝑁el = 30 300 9.27 × 10−1 6.75 × 104 1.56 × 10−1 7.34 × 107

𝑁el = 100 1000 5.50 × 10−2 7.20 × 10−1 8.12 × 10−3 1.78 × 10−1

𝑁el = 300 3000 6.35 × 10−4 7.80 × 10−3 7.71 × 10−4 2.12 × 10−3

Fig. 3. Snapshot of the exact (last row) and computed (first two rows) solutions with different values of mesh refinement and semi-implicit solver. A correct
approximation of the wave propagation velocity can be observed by comparing the last two rows.

treatment) allows for obtaining better error estimates. In Fig. 3, we can observe the results with the semi-implicit discretization at
time 𝑡 = 5. However, in semi-implicit and implicit cases we notice large errors at time 𝑇 = 10. The numerical solution is no longer a
sufficiently accurate approximation of the exact one (see Table 1). Indeed, due to the unstable nature of the equilibrium 𝑐 = 0 and
to the fact that our method is not positivity-preserving, whenever the numerical solution becomes negative, the scheme is not able
to correct approximate the solution, and it diverges to wrong unphysical approximations.

A way to overcome the problem is to increase the polynomial order of the approximation. Indeed, by choosing 𝑝 = 3 the solution
is accurately approximated at both 𝑡 = 5 and 𝑡 = 10, for sufficiently refined meshes (see Fig. 3). In Table 1, we notice that the errors
remain low also for 𝑡 = 10, excluding the case 𝑁el = 30. In this case, we do not notice any advantage in the use of an implicit
treatment over a semi-implicit one.

The second test case addresses the effect of the timestep choice on the quality of the solution. In Table 2, we report the computed
errors in 𝐿2−norm for the choice 𝑁el = 30 at two different snapshots. The first fact that can be noticed is that by reducing the
timestep, we have a reduction in the 𝐿2-error.

In this test, we can notice the importance of using a high-order numerical scheme, which allows simulating the waves in an
accurate way, also on coarse meshes. For example, by using 𝑁el = 30 and 𝑝 = 5 we are able to obtain a good approximation of
the solution (630 DOFs), on the contrary, with 𝑁el = 100 and 𝑝 = 2 we obtain a worst result with a comparable number of DOFs
(600). In Fig. 4 on the left, we plot the computed errors at final time 𝑇 = 5 versus DOFs in three different cases and with implicit
treatment of the nonlinear term: ℎ-refinement with fixed polynomial order 𝑝 = 2, 3, and 𝑝-refinement with fixed mesh with 𝑁el = 30.
We can notice that using a higher polynomial order, we have lower errors with the same number of DOFs and use an ℎ-refinement
strategy. This is coherent with the literature findings about wave simulations [35]. The test does not evidence large differences in
the use of an implicit solver, but this is in general more accurate than the semi-implicit one. However, the resolution with implicit
nonlinear treatment requires performing Picard iterations at any timestep and so it requires a higher computational cost.
11
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Table 2
Computed errors in the 𝐿2−norm at the final time with different mesh refinement 𝑁el: 𝛥𝑡 = 0.01 (top) and 𝛥𝑡 = 0.005
(bottom).
𝛥𝑡 = 0.01

Method Semi-Implicit Implicit

Order DOFs 𝑇 = 5 𝑇 = 10 𝑇 = 5 𝑇 = 10

𝑝 = 2 180 6.33 × 103 1.03 × 104 1.63 × 100 5.36 × 106

𝑝 = 3 300 9.27 × 10−1 6.75 × 104 1.56 × 10−1 7.34 × 107

𝑝 = 4 450 1.80 × 10−2 1.96 × 10−1 8.10 × 10−3 9.98 × 10−2

𝑝 = 5 630 1.40 × 10−3 1.80 × 10−2 2.25 × 10−3 4.54 × 10−2

𝛥𝑡 = 0.005

Method Semi-Implicit Implicit

Order DOFs 𝑇 = 5 𝑇 = 10 𝑇 = 5 𝑇 = 10

𝑝 = 2 180 1.34 × 100 3.32 × 104 8.66 × 10−1 6.06 × 106

𝑝 = 3 300 1.28 × 10−1 9.06 × 103 1.02 × 10−1 2.58 × 107

𝑝 = 4 450 8.50 × 10−3 1.20 × 10−1 7.00 × 10−3 1.56 × 10−1

𝑝 = 5 630 1.40 × 10−3 9.60 × 10−3 5.25 × 10−4 2.31 × 10−3

Fig. 4. Test case 2: computed errors with respect to DOFs, in different cases of ℎ-refinement (𝑝 = 2, 3), and 𝑝-refinement (𝑁el = 30) (left), and with respect to
the time for 𝑁el = 30 and 𝑝 = 2, 3, 4 (right).

In Fig. 4 on the right, we report the errors in the energy norm in three different cases associated with different polynomial orders
(𝑝 = 2, 3, 4), versus time. For this test, we consider 𝑁el = 30 and 𝛥𝑡 = 0.01. From these results, it seems that for 𝑝 = 3, 4 the error
increase linearly with 𝑇 , whereas for the case 𝑝 = 2, we can observe an exponential trend, after 𝑇 = 4.5, which is coherent to the
result of Theorem 1.

Finally, in this numerical test, we can observe that with a sufficiently refined mesh and a polynomial order which is large enough,
we are able to accurately simulate the wave propagation. In particular, in Fig. 3 (last two lines), we can also notice that the velocity
of the propagating front is correctly caught by our method. This analysis is fundamental to confirm the accuracy of our method for
the prediction of the spreading of the protein concentrations inside the brain.

7.3. Test case 3: Spreading of 𝛼-synuclein in a 2D brain section

In this section, we address a numerical simulation of the spreading of the 𝛼-synuclein on a polygonal agglomerated grid. Starting
from structural Magnetic Resonance Images (MRI) of a brain from the OASIS-3 database [36] we segment the brain by means of
Freesurfer [37]. After that, we construct a mesh of a slice of the brain along the sagittal plane by means of VMTK [38].

The triangular resulting mesh is composed of 41 859 triangles, as in Fig. 5 (left). However, the generality of the PolyDG method
allows us to use mesh elements of any shape, for this reason, we agglomerate the mesh by using ParMETIS [39] and we obtain a
polygonal mesh of 500 elements, as shown in Fig. 5 (middle). The solution is computed by using a polynomial order of discretization
𝑝 = 4. With this approach, we can on one hand preserve the quality of the geometry description, save computational time (as the
mesh is coarse), and exploit the advantage of using high-order approximation. Concerning the time integration we adopt a timestep
𝛥𝑡 = 0.01 years.

In order to construct the axonal component of the diffusion tensor 𝐃, we derive the diffusion tensor from DTI medical images by
using Freesurfer and Nibabel [40]. By computing the principal eigenvector 𝒏 of the imaging-derived tensor, we find the directions
of the fibres in Fig. 5 (right). In this way, we are able to compute the diffusion tensor as in Eq. (2). Concerning the parameters of
the model, we choose the reaction velocity 𝛼 = 0.9∕year. Moreover, we impose an axonal diffusion, which is 10 times faster than
the isotropic one: 𝑑ext = 8mm2∕year and 𝑑axn = 80mm2∕year [41]. We fix 𝑓 = 0 and we impose homogeneous Neumann boundary
conditions on 𝜕𝛺.
12
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Fig. 5. Fine triangular mesh of a sagittal brain slice (left), agglomerated mesh from the triangular one (centre) and brain reconstructed fibres directions (right).

Fig. 6. Patterns of 𝛼-synuclein concentration at different stages of the pathology and activation time of the pathology (bottom-right).

To simulate the 𝛼-synuclein diffusion in Parkinson’s disease we generate an initial condition, with concentration initially located
in the dorsal motor nucleus [42]. In Fig. 6, we report both the initial condition (time 𝑡 = 0) and the solution at different time
instants. We can notice that the diffusion directions are coherent with the medical literature [42,43].

Moreover, we compute the activation time of the pathology as:

𝑡(𝒙, 𝑡) = 𝜒{𝑐ℎ(𝒙,𝑡)>𝑐crit}(𝒙, 𝑡) 𝒙 ∈ 𝛺 𝑡 ∈ [0, 𝑇 ], (38)

where 𝜒 is the indicator function and 𝑐crit is the critical value of the pathological protein concentration we fix to be equal to
𝑐crit = 0.95. Indeed, a high concentration of misfolded proteins destroys the electric signal transport. This indicator gives us a measure
of the time after which the neurons in a specific region will be affected by pathological communication. We report the activation
time computed in Fig. 6. We can notice that the time of development of the pathology is of the order of 20 years, coherently with
the medical literature [42] and the result is qualitatively similar to other literature results [9].

7.4. Test case 4: Convergence analysis in a 3D case

For the numerical tests in this section, we use the FEniCS finite element software [44] (version 2019) to solve the FK equation
on tetrahedral meshes. We use a cubic domain 𝛺 = (0, 1)3. Concerning the time discretization, we use a timestep 𝛥𝑡 = 10−5 and a
maximum time 𝑇 = 10−3. We consider the following manufactured exact solution:

𝑐(𝑥, 𝑦, 𝑧, 𝑡) = (cos(𝜋𝑥) cos(𝜋𝑦) cos(𝜋𝑧)) 𝑒−𝑡. (39)

In this section we adopt an isotropic diffusion tensor 𝐃 = 𝑑ext𝐈 and we fix the parameters 𝑑ext = 1 and 𝛼 = 0.1. The forcing term
and the Dirichlet boundary condition imposed on 𝜕𝛺 are derived accordingly. The treatment of the nonlinear term in this section
is semi-implicit.

In Fig. 7, we report the computed errors in the energy norm defined in Eq. (20) at the final time 𝑇 = 10−3. Firstly, we performed
the convergence test keeping fixed the polynomial order of the space approximation 𝑝 = 1,… , 6 and using different mesh refinements
13
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Fig. 7. Test case 4: computed errors and convergence rates with respect to ℎ (left) and the polynomial order 𝑝 (right).

Fig. 8. Brain mesh (left), fibres view from the sagittal plane (centre) and fibres view from the coronal plane (right). In the visualization of the fibres, red
indicates directions in the 𝑥-axis, blue indicates directions in the 𝑦-axis and green indicates directions in the 𝑧-axis. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

(ℎ = 0.866, 0.433, 0.217, 0.108). The theoretical rates of convergence are achieved for all the polynomial degrees 𝑝, coherently to what
we proved in Theorem 2.

A convergence analysis with respect to the polynomial order 𝑝 is also performed with a mesh with ℎ = 0.866. The results are
reported in Fig. 7, where we observe exponential convergence. As we mentioned in the results of the test case of Section 7.1, this
case is not covered by our theoretical analysis, nevertheless, numerically we can observe an optimal convergence rate.

7.5. Test case 5: Spreading of 𝛼-synuclein in 3D brain

In this section, we present a numerical simulation of the spreading of the 𝛼-synuclein on a three-dimensional tetrahedral grid;
we use the FEniCS finite element software [44] (version 2019). Starting from structural Magnetic Resonance Images (MRI) of a
brain from the OASIS-3 database [36] we segment the brain by means of Freesurfer [37]. Finally, the mesh is constructed using the
SVMTK library [45]. The tetrahedral resulting mesh is composed of 142’658 elements.

The axonal component of the diffusion tensor 𝐃 is derived from the diffusion tensor from DTI medical images by using Freesurfer
and Nibabel [40]; the directions of the fibres are reported in Fig. 8. Concerning the parameters of the model, we choose the reaction
velocity 𝛼 = 0.9∕year. Moreover, we impose an axonal diffusion, which is 10 times faster than the isotropic one: 𝑑ext = 8mm2∕year and
𝑑axn = 80mm2∕year [41]. Concerning the forcing term we fix 𝑓 = 0 and we impose homogeneous Neumann boundary conditions. The
solution is computed by means of the PolyDG method with 𝑝 = 2. Concerning the time integration we adopt a timestep 𝛥𝑡 = 0.01 years.

To simulate the 𝛼-synuclein diffusion in Parkinson’s disease we generate an initial condition, with concentration initially located
in the dorsal motor nucleus [42], reported in Fig. 9. The simulation gives rise to a propagating front of a misfolded protein
concentration. The possibility of increasing the polynomial order is fundamental in this context in order to get a physically consistent
solution, without an extremely refined mesh. From a qualitative point of view, the diffusion directions follow the direction of the
reconstructed fibres, as reported in Fig. 9. Moreover, they are coherent with the medical literature [42,43].

Moreover, we compute the activation time as in Eq. (38) and we report it in Fig. 9. We can notice that the time of development
of the pathology is of the order of 20 years, coherently with the literature [9,42,43].
14
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Fig. 9. Patterns of 𝛼-synuclein concentration at different stages of the pathology with volume rendering and activation time of the pathology on inside the brain
geometry (bottom-right).

Fig. 10. Mean value of the concentration 𝑐ℎ inside some selected regions inside the brain plotted over 30 years (left) and position of brain regions (right).

Finally, we compute the average of the solution 𝑐ℎ(𝑡) inside some regions of the brain, which are used in literature to distinguish
the 6 Braak’s stages [42] in Parkinson’s disease. We report the resulting curves over a time interval of 30 years in Fig. 10. We can
observe from the region that the initial condition is located inside the dorsal motor nucleus with a mean concentration of 0.2, then
the activation of the regions over the years follows the medical predictions [42]. If we consider as a problematic concentration of
𝛼−synuclein a value 𝑐ℎ(𝑡) = 0.2, in the mesocortex we reach this value around 13 years. This is an important step, because it can be
considered as the beginning of the fourth Braak’s stage and then of the symptomatic phase of the disease.

8. Conclusions

In this work, we have proposed a polyhedral discontinuous Galerkin method (PolyDG) for the solution of Fisher–Kolmogorov
model applied to the spreading of 𝛼-synuclein protein in Parkinson’s disease. We derived stability and convergence error estimates
for arbitrary-order approximation of the semi-discrete formulation.

The numerical convergence tests were presented both in two and three dimensions. In particular, the convergence tests confirmed
the theoretical results of our analysis on polygonal mesh for both implicit and semi-implicit treatments of the nonlinear term.
Moreover, we performed a numerical simulation to evaluate the quality of the solution in the case of wavefront propagation in two
dimensions. The numerical results confirm the importance of using a high-order method to solve this type of equation maintaining
an acceptable computational cost and with a high level of accuracy.

Finally, we present a simulation of 𝛼-synuclein spreading first on a slice of a real brain in the sagittal plane with a polygonal
agglomerated grid and on a 3D brain geometry. We validate the simulations by comparing the activations of some brain regions
with the medical literature.
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g

Some future developments of this work can be the construction of DG positivity-preserving schemes on polytopal and polyhedral

rids. Moreover, the method can be applied to simulate the spreading of other types of prionic proteins, such as A𝛽-amyloid and
𝜏. In that context, PET imaging can be used to validate the results. Another interesting future development can be the construction
of a space–time DG formulation [46,47] to achieve higher-order approximations also in time. Finally, it could be interesting to use
uncertainty quantification to evaluate the impact of reaction and diffusion parameters on the onset of the disease.
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