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Anderson localization is ubiquitous in wavy systems with strong static and uncorrelated disorder. The
delicate destructive interference underlying Anderson localization is usually washed out in the presence of
temporal fluctuations or aperiodic drives in the Hamiltonian, leading to delocalization and restoring transport.
However, in one-dimensional lattices with off-diagonal disorder Anderson localization can persist for arbitrary
time-dependent drivings that do not break a hidden conservation law originating from the chiral symmetry,
leading to the dubbed ”localization without eigenstates”. Here it is shown that such an intriguing phenomenon
can be observed in discrete-time photonic quantum walks with static disorder applied to the coin operator,
and can be extended to non-Hermitian dynamics as well. © 2023 Optical Society of America

Anderson localization [1] is a ubiquitous wave phe-
nomenon that arises due to a delicate destructive in-
terference of waves scattered off by uncorrelated static
disorder. Since its discovery, it has been instrumental
for the understanding of a plethora of physical phenom-
ena [2–4], with experimental demonstrations reported in
many systems, including photonics [5–20]. A common be-
lief is that dephasing effects arising from the interaction
with an environment, as well as in time-varying disor-
dered systems with broken time translation symmetry,
Anderson localization is destroyed and transport is re-
stored [21–24]: only in periodically or quasi-periodically
driven systems, where the time behaves as an additional
synthetic dimension, Floquet-Anderson localization can
be observed [25–28]. However, in disordered lattices with
chiral symmetry one can construct drives with a hid-
den conservation law such that Anderson localization
persists indefinitely for arbitrary aperiodic drives [29].
Such a kind of persistent localization with aperiodic
drives, dubbed ”localization without eigenstates” [29]
because of the absence of truly eigenstates like in static
or periodically-driven (Floquet) systems, has remained
elusive to experimental observations so far.
In this Letter we extend the idea of ”localization with-
out eigenstates” to disordered discrete-time systems, and
suggest a photonic quantum walk (QW) setup, with
static spatial disorder in the coin operators and pre-
served chiral symmetry, as an experimentally feasible
platform for the observation of such an intriguing kind
of persistent localization.
To introduce the main idea of ”localization without
eigenstates” and the role of chiral symmetry, let us first
consider the single-particle one-dimensional Anderson
model with off-diagonal disorder perturbed by a time de-
pendent term with arbitrary time-dependence f(t), de-
scribe by the Hamiltonian [29]

Ĥ(t) =
∑
n

Jn (|n〉〈n+ 1|+ |n+ 1〉〈n|)+f(t)P̂ ≡ Ĥ0+f(t)P̂

(1)

where Jn are the hopping amplitudes, which are assumed
to be uncorrelated random variables with some proba-
bility distribution function, and P̂ is a time-independent
local operator defined by P̂ =

∑
n,m Pn,m|n〉〈m| in the

Wannier basis |n〉. For a given initially-localized state
|ψ(t = 0)〉 = |ψ0〉, the state vector of the system
at time t reads |ψ(t)〉 = Û(t)|ψ0〉, where the prop-
agator is given by the time-ordered integral Û(t) =

T exp[−i
∫ t
0
dt′Ĥ(t′)]. The spreading of excitation in the

lattice can be measured by the second moment [22]
σ2(t) =

∑
n n

2|〈n|ψ(t)〉|2. Localization ”without eigen-
states” corresponds to σ2(t) ≤ M , with a finite M , for
any time t and arbitrary initial excitation of the lat-
tice. When f(t) = 0, i.e. Ĥ(t) = Ĥ0, the static off-
diagonal disorder introduces Anderson localization, al-
beit the eigenstates with energy E = 0 show a sub-
exponential localization with a diverging localization
length [30–32]. The system displays chiral (sublattice)
symmetry, namely {Ĥ0, L̂} = Ĥ0L̂ + L̂Ĥ0 = 0, where
L̂ =

∑
n(−1)n|n〉〈n| and L̂2 = I. This means that, if |εk〉

is an eigenstate of Ĥ0 with eigenenergy εk, then L̂|εk〉 ≡
|ε̃k〉 is an eigenstate of Ĥ0 with eigenenergy −εk. Ĥ0 can
be thus diagonalized as Ĥ0 =

∑
k εk(|εk〉〈εk| − |ε̃k〉〈ε̃k|).

The addition of an arbitrary local perturbation P̂ with
aperiodic driving amplitude f(t) results rather generally
in delocalization. However, as shown in [29] for the spe-
cial local perturbation P̂ = L̂, i.e. for Pn,m = (−1)nδn,m,
localization persists for an arbitrary time dependence of
the driving amplitude f(t) as a result of the conservation
law {Ĥ0, P̂} = 0. In fact, taking into account that one
can write L̂ =

∑
k(|εk〉〈ε̃k| + |ε̃k〉〈εk|) the chiral disor-

dered model Ĥ(t) = Ĥ0 + f(t)L̂ reduces to a collection
of decoupled two-level systems, |εk〉 and |ε̃k〉, where the
local perturbation f(t)L̂ introduces a coupling between
the paired states |εk〉 and |ε̃k〉 with the same k. Con-
sequently, the coupling between the paired states will
not significantly change the localization properties of the
time evolution operator Û(t) at any time t for arbitrary
forms of the driving profile f(t), resulting in the dubbed
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”localization without eigenstates” [29].We note that ad-
dition of on-site potential disorder in the Hamiltonian (1)
would break chiral symmetry and would mix different k
subspaces, resulting rather generally in delocalization of
eigenstates of the time evolution operator [29]. Photonic
implementations of the Anderson model (1) is possible
in different setups, including coupled waveguide arrays
and fibers (see e.g. [7, 10–12,33] ).

We can extend the previous idea to discrete-time
QWs [34], which can be realized using different plat-
forms, such as polarizer beam splitters and quarter-
wave plates [9, 14, 19, 20, 35, 36], fiber network loops
[16, 18, 20, 37–39], or chiral light carrying orbital angu-
lar momentum [40–42]. As compared to continuous-time
QWs in coupled waveguide lattices, discrete-time QWs
offer the advantage of a simpler implementation of non-
Hermitian dynamics [18, 19] and the ability of monitor-
ing wave spreading at long propagation times (up to few
thousands of time steps [18]). In a QW the state vector
is defined by

|ψ(t)〉 =
∑
n

(un(t)|n〉 ⊗ |H〉+ vn(t)|n〉 ⊗ |V 〉) , (2)

where n is the spatial position of the walker on a one-
dimensional lattice and H,V denote the internal degree
of freedom of the walker (for example the horizontal H
or vertical V polarization state of the photon). The state
vector evolves according to |ψ(t+1)〉 = Θ̂(t)|ψ(t)〉, where
the one-step propagator Θ̂(t) is given by the composi-
tion of three main operation: the conditional spatial shift
operator Ŝ, the spatial-dependent coin operator Ĉ, and
the phase shift operator P̂ . Disorder can be rather gen-
erally either stochastic or deterministic (quasiperiodic),
and can be introduced either in space or time [43]. In
our model, we introduce static spatial disorder in the
coin operator Ĉ [19], while the time-dependence of the
propagator arises from the t-dependence of P̂ . Namely,
let us assume Θ̂(t) = P̂ (t)ŜĈ with

Ŝ =
∑
n

(|n− 1〉〈n| ⊗ |H〉〈H|+ |n+ 1〉〈n| ⊗ |V 〉〈V |) ,

(3)

Ĉ =
∑
n

(
cos θn sin θn
− sin θn cos θn

)
⊗ |n〉〈n| (4)

P̂ (t) = [1− f(t)]
∑
n

(
1 0
0 1

)
⊗ |n〉〈n|+ (5)

+ f(t)
∑
n

(
exp(inϕ) 0

0 exp(−iϕn)

)
⊗ |n〉〈n|.

In the above equations, θn are the space-dependent ro-
tation angles of coin state, ϕ a phase gradient term, and
f(t) is a function of discrete time t that can take only
the two values f(t) = 0, 1. Note that when f(t) = 0
the operator P̂ (t) reduces to the identity operator, while
when f(t) = 1 a gradient phase ±nϕ is applied to

the internal states H and V. Since the sequence f(t)
can be rather generally aperiodic in discrete time t
and even stochastic, the system does not possess eigen-
states. The discrete-time evolution of the system, from
an initially-localized state |ψ(t = 0)〉 = |ψ0〉, reads
|ψ(t)〉 = Û(t)|ψ0〉, where the evolution operator is given
Û(t) = Θ̂(t − 1) × Θ̂(t − 2) × ...Θ̂(1). The spreading of
excitation in the lattice can be measured by the second
moment σ2(t) =

∑
n n

2{|un(t)|2+|vn(t)|2}, and localiza-
tion corresponds to σ2(t) ≤M , with a finite M , for any
time t and arbitrary initial excitation. The localization
properties of the QW largely depend on the choice of
the phase ϕ. We basically have three distinct dynamical
regimes.
(i) The ordinary Anderson localization regime. For
f(t) ≡ 0, the propagator Θ̂ = ŜĈ is time-independent
and, for a rather arbitrary form of uncorrelated disorder
of the coin angles θn, one observes Anderson localiza-
tion, with all the eigenstates of Θ exponentially localized
with a finite localization length [44]; other types of dis-
order, such as deterministic aperiodic sequences, are not
considered here since they would not lead to strong lo-
calization [43]. Additionally, {Θ̂, L̂} = Θ̂L̂ + L̂Θ̂ = 0,
where L̂ =

∑
n(−1)n|n〉〈n| ⊗ (|H〉〈H| + |V 〉〈V |) and

L̂2 = I. This implies that, if |εk〉 is a localized eigen-
state of Θ̂ with quasi energy µk (−π ≤ µk < π), i.e.
Θ̂|εk〉 = exp(−iµk)|εk〉, then L̂|εk〉 ≡ |ε̃k〉 is an eigen-
state of Θ̂ with quasi energy µk + π. This kind of sym-
metry plays an analogous role than the single-particle
chiral symmetry in the continuous-time QW introduced
for Eq.(1) [29]. The Anderson localization in this regime
is clearly illustrated in Fig.1. The localization proper-
ties of the eigenstates |εk〉 are measured by the inverse
participation ratio (IPR) [22]. Assuming 〈εk|εk〉 = 1, the
IPR reads

IPRk =
∑
n

|〈H| ⊗ 〈n|εk〉|4 + |〈V | ⊗ 〈n|εk〉|4. (6)

In a lattice of large size L, the IPR vanishes as ∼ 1/L
for an extended state, whereas it remains finite (of or-
der ∼ 1) for a localized state. Figure 1(a) shows the
numerically-computed behavior of the IPR versus the
quasi energy µ of the eigenstates in a lattice of size
L = 1000, averaged over 200 different realizations of dis-
order. Note that for all the eigenstates the IPR remains
well above zero, indicating the spectral localization of Θ̂.
Figure 1(b) depicts a typical QW spreading dynamics on
a pseudocolor map, for a given realization of disorder and
for the initial condition |ψ0〉 =

∑
n δn,0|n〉 ⊗ |H〉, corre-

sponding to the walker at site n = 0 with the internal
state H. Figure1(c) shows the behavior of the second
moment σ2(t) versus discrete time on a log scale, where
the overbar denotes a statistical average over 200 real-
izations of disorder. The dashed curve in Fig.1(c) shows,
for comparison, the corresponding behavior of σ2(t) in
the absence of disorder and for θn = π/4 (the Hadamard
coin), displaying ballistic transport σ2(t) ∼ tδ with an
exponent δ = 2. Clearly, in the presence of disorder dy-
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Fig. 1. Anderson localization in the discrete-time QW
with static spatial disorder in the coin operators, re-
specting chiral symmetry, and f(t) = 0. (a) Numerically-
computed IPR versus quasi energy µ of the eigenstates
in a lattice comprising L = 1000 sites. The coin angle
θn is assumed to be uniformly distributed in the range
(π/16, 7π/16). The IPR is averaged over 200 different re-
alizations of disorder. (b) Typical example of temporal
evolution of the QW on a lattice for a given realization
of disorder. At initial time the walker is localized at site
n = 0 with internal state H. (c) Numerically-computed
behavior of the second moment σ2(t) versus discrete time
t (solid curve); statistical average is made over 200 re-
alizations of disorder. The red dashed curve shows, for
comparison, the behavior of σ2(t) in a disorder-free QW
with θn = π/4, displaying ballistic transport σ2(t) ∼ t2.

namical localization is observed.
(ii) Diffusive transport induced by the time-varying

phase shift operator. Let us now assume that the dynam-
ics is non-autonomous and the function f(t) is highly
aperiodic to break discrete time translational symmetry.
For the sake of definiteness, let us assume for example
that f(t) is stochastic and can take, at each time step t,
either the value 0 or 1 with the same probability. In other
words, f(t) are independent stochastic variables with a
Bernoulli distribution. For a rather arbitrary value of
the phase gradient ϕ, namely for ϕ far from 0, π, numer-
ical simulations indicate that the Anderson localization
observed in the static case is washed out and diffusive-
like transport is restored, the second moment growing in
time like σ2(t) ∼ tδ with an exponent δ ∼ 1, characteris-
tic of diffusive transport. This behavior is illustrated in
Fig.2 for ϕ = π/2, however similar behavior is found for
a wide interval of ϕ around π/2, except for ϕ approach-
ing the boundaries 0 and π. The diffusive-like transport
observed in the numerical simulations is typical of time-
dependent Anderson Hamiltonians [22] and arises from
the coupling among localized Anderson states |εk〉, |ε̃k〉
with different k indices induced by the time-dependent
shift operator P̂ (t), which breaks the chiral symmetry of

Fig. 2. Diffusive transport induced by a time-varying
phase shift operator for ϕ = π/2. At each time step, f(t)
can take the two values 0 or 1 with equal probabilities.
Other conditions, i.e. static disorder, lattice size etc. are
as in Fig.1. (a) Typical example of temporal evolution of
the QW on the lattice for a given realization of disorder.
At initial time the walker is localized at site n = 0 with
internal state H. (b) Numerically-computed behavior of
the second moment σ2(t) versus discrete time t (solid
curve); statistical average is made over 200 realizations
of static disorder. Note that σ2(t) ∼ tδ with exponent
δ ' 1, indicating diffusive transport. The red dashed
curve shows, for comparison, the behavior of σ2(t) in a
disorder-free lattice with θn = π/4 and f = 0.

Fig. 3. Persistent localization without eigenstates. Same
as Fig.2, but for a phase gradient ϕ = π. Note that
Anderson localization persists in this regime.
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the undriven system when ϕ 6= 0, π.
(iii) Persistent localization without eigenstates. When the
phase gradient ϕ entering in the phase shift operator
P̂ (t) is tuned to the value π, one has P̂ (t) = I (the
identity operator) when f(t) = 0, or P̂ (t) = L̂ when
f(t) = 1. Therefore, for such a special value of ϕ at each
propagation step the evolution operator Θ̂(t), which is
either ŜĈ or L̂ŜĈ, anti-commutes with L̂, and –akin
to the continuous-time model discussed in the introduc-
tory section– the discrete-time evolution of the system is
described by a set of decoupled two-level systems, with
paired states |εk〉 and |ε̃k〉 = L̂|εk〉 involving the same
index k. More precisely, if we expand the state vector of
the system as a superposition of the localized eigenstates
|εk〉 and |ε̃k〉 of ŜĈ, i.e. after letting

|ψ(t)〉 =
∑
k

{ak(t)|εk〉 − bk(t)|ε̃k〉} exp(−iµkt), (7)

the discrete-time evolution of the two-level amplitudes
ak(t) and bk(t) for the paired states read

ak(t+ 1) = [1− f(t)]ak(t)− f(t)bk(t) (8)

bk(t+ 1) = [1− f(t)]bk(t)− f(t)ak(t). (9)

Clearly, the coupling between the paired states with
same k will not significantly change the localization
properties of the time evolution operator Û(t) at any
discrete time t, resulting in persistent localization with-
out eigenstates. This result is illustrated in Fig.3. The
number of time steps requited to observe localization,
for parameter values chosen in the simulations, is ∼ 500;
a shorter number of time steps could be obtained, if
needed, by working with a mean rotation angle θ closer
to π/2.
Finally, let us observe that the constraint assumed for
the allowed values of f(t), i.e. f(t) = 0 or f(t) =
1, comes from the need to keep the phase shift op-
erator P̂ (t) unitary, which is the case of an Her-
mitian photonic QW. However, extending the anal-
ysis to non-Hermitian QWs [18, 19, 38] and consid-
ering gain and/or loss terms at spatial sites |n〉,
the discrete-time function f(t) at each step can take
rather arbitrary values. In this case for ϕ = π one
has P̂ (t) = (

∑
n |n〉〈n| − 2f(t)

∑
n |2n+ 1〉〈2n+ 1|) ⊗

(|H〉〈H| + |V 〉〈V |). The operator P̂ (t) basically cor-
responds to the application, at odd sites of the lat-
tice, of a loss/gain modulation amplitude γ(t) such that
exp[−γ(t)] = 1 − 2f(t). As an example, Fig.4 shows
persistent localization as obtained by applying at odd
sites of the lattice the loss/gain modulation γ(t) =
A cos(2παt), with α irrational.

To conclude, we predicted persistent Anderson local-
ization without eigenvalues in discrete-time photonic
QW with disorder in the coin operator. Our results
suggest that photonic QWs could provide an accessible
platform for the observation of persistent localization
protected by chiral symmetry, and that such an intrigu-
ing phenomenon could be extended to non-Hermitian

Fig. 4. Persistent localization in a non-Hermitian QW.
At each time step, a loss/gain amplitude exp[−γ(t)] is
impressed to the odd sites of the lattice, with γ(t) =
A cos(2παt), α = (

√
5 − 1)/2 and A = 0.2. Since the

non-Hermitian QW does not conserve the norm, to com-
pute the second moment σ2(t) the state vector |ψ(t)〉 is
renormalized at each time step.

dynamics as well.
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