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ON THE GLOBAL OPERATOR AND FUETER MAPPING THEOREM FOR

SLICE POLYANALYTIC FUNCTIONS

DANIEL ALPAY, KAMAL DIKI, AND IRENE SABADINI

Abstract. In this paper, we prove that slice polyanalytic functions on quaternions can

be considered as solutions of a power of some special global operator with nonconstant

coefficients as it happens in the case of slice hyperholomorphic functions. We investigate

also an extension version of the Fueter mapping theorem in this polyanalytic se�ing. In

particular, we show that under axially symmetric conditions it is always possible to con-

struct Fueter regular and poly-Fueter regular functions through slice polyanalytic ones

using what we call the poly-Fueter mappings. We study also some integral representa-

tions of these results on the quaternionic unit ball.
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1. Introduction

�is paper proposes a bridge between two theories: the one of slice polyanalytic func-

tions and the one of poly-Fueter regular functions. To understand the framework, we

recall that in classical complex analysis, n-analytic or polyanalytic functions are null-

solutions of the n-power of the Cauchy-Riemann operator. In the quaternionic se�ing or,

more in general, in the Clifford algebra se�ing, one can extend this notion by considering

functions in the kernel of a generalized Cauchy-Riemann operator (thus obtaining the

so-called regular or monogenic functions, see [16, 26]) or of its n-power (thus obtaining
poly-regular functions or poly-monogenic functions, see [28, 27]).

�is was the first approach to extend holomorphic functions, and then polyanalytic func-

tions, to a higher dimensional se�ing. Although this theory is very important and well

developed, it does not include the class of elementary functions and power series. In

2006, a new approach to quaternionic analyticity was proposed in the literature [23, 24],

namely the so-called slice hyperholomorphic (or slice regular) function theory and it is

now widely studied, see the books [3, 18, 19, 22]. It founds some interesting applications

in different areas of mathematics and physics, see [13, 14]. It is interesting to note that

the class of slice hyperholomorphic functions is related with the class of functions con-

sidered by Fueter to construct regular functions and thus there is a bridge between them,

specifically the so-called Fueter mapping, in fact by applying the Laplacian to a slice hy-

perhomolorphic function one obtains a regular function, i.e. a function in the kernel of

the Cauchy-Fueter operator, see for example [17]. Also the theory of polyanalytic func-

tions can be extended to the slice se�ing by considering a suitable definition, as we did

in [4]. �us it is a natural question to ask whether there is an analog of the Fueter map

in this more general se�ing. �e answer is positive and it is one of the main results of

this paper: we show that by applying the Laplacian composed with the (n − 1) power

of the global operator V = 2ϑ (where ϑ is the operator introduced in [25]) to any slice
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polyanalytic function of order n we obtain a Cauchy-Fueter regular function. A second

approach to extend the Fueter mapping to the polyanalytic se�ing consists to apply the

standard Fueter mapping on each component associated to the poly-decomposition. �is

constrution allows to generate poly-Fueter regular functions starting from slice polyan-

alytic ones of the same order.

To put our work in perspective, we recall that classical polyanalytic functions are im-

portant not only from the theoretical point of view, see the classical book [6], but also

in the theory of signals since they allow to encode n independent analytic functions

into a single polyanalytic one using a special decomposition. �is idea is similar to the

problem of multiplexing signals. �is is related to the construction of the polyanalytic

Segal-Bargmann transform mapping L2(R) onto the poly-Fock space, see [1]. In quan-

tum physics these functions are relevant for the study of the Landau levels associated to

Schrödinger operator, see [1, 5]. Polyanalytic functions were used also in [2] to study

sampling and interpolation problems on Fock spaces using time frequency analysis tech-

niques such as short-time Fourier transform (STFT) or Gabor transforms. �is allows to

extend Bargmann theory to the polyanalytic se�ing using Gabor analysis. �e theory of

signals is widely studied also with hypercomplex methods and for a list of references the

reader may consult [10] and the references therein.

Aswe said, Fueter regular and slice hyperholomorphic functions are related by the famous

Fueter mapping theorem. �is result has some important consequences and allows to de-

fine the F-functional calculus for quaternionic operators with commuting components.

Recently, new several results for polyanalytic functions were proven in the slice hyper-

holomorphic context over the quaternions, see [4], and the counterparts of the Bergman

and Fock spaces were also considered. In this paper we continue the investigations in

this direction. In particular, we prove a new version of the well-known Fueter mapping

theorem that will relate slice and Cauchy-Fueter polyanalytic functions on quaternions

and present an integral form of this result.

�e paper has the following structure: in Section 2 we set up basic notations and revise

some preliminary results. Section 3 contains some results on the powers of the global

operator V and the main statements and proofs of the poly-Fueter mapping theorems. In

Section 4 we study an integral representation of these results based on the poly-Cauchy

formula on the quaternionic unit ball. In Section 5, we rewrite our results in the slice

polymonogenic case.

2. Preliminary results

We revise different notions and results related to Cauchy-Fueter and slice hyperholomor-

phic functions and also the polyanalytic se�ing on quaternions. Different versions of the

Fueter mapping theorem are also recalled. �e non-commutative field of quaternions is

defined to be

H = {q = x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ R}

where the imaginary units satisfy the multiplication rules

i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i, ki = −ik = j.

On H the conjugate and the modulus of q are defined respectively by

q = x0 − ~q , ~q = x1i+ x2j + x3k

and

|q| =
√

qq =
√

x20 + x21 + x22 + x23.
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Sometimes, we use also the notations e0 = 1, e1 = i, e2 = j and e3 = k for the standard

imaginary units. We note that the quaternionic conjugation satisfy the property pq = q p
for any p, q ∈ H. Moreover, the unit sphere

{q = x1i+ x2j + x3k : x21 + x22 + x23 = 1}

coincides with the set of all imaginary units given by

S = {q ∈ H : q2 = −1}.

Any quaternion q ∈ H \ R can be wri�en in a unique way as q = x + Iy for some real

numbers x and y > 0, and imaginary unit I ∈ S. For every given I ∈ S, we define

CI = R + RI. It is isomorphic to the complex plane C so that it can be considered as

a complex plane in H passing through 0, 1 and I . �eir union is the whole space of

quaternions

H = ∪
I∈S

CI = ∪
I∈S

(R+ RI).

Let B denotes the quaternionic unit ball and BI its intersection with the complex plane

CI for a given I ∈ S. �en, we recall

Definition 2.1. Let U ⊂ H be an open set and let f : U −→ H be a function of class C1.

We say that f is (le�) Fueter regular or regular for short on U if

Df(q) :=

(

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)

f(q) = 0, ∀q ∈ U.

�eright quaternionic vector space of Fueter regular functionswill be denoted byFR(U).

Definition 2.2. Let f : Ω −→ H be a C1 function on a given domain Ω ⊂ H. �en, f is

said to be (le�) slice hyperholomorphic function if, for every I ∈ S, the restriction fI to
CI = R+ IR, with variable q = x+ Iy, is holomorphic on ΩI := Ω ∩ CI , that is it has

continuous partial derivatives with respect to x and y and the function ∂If : ΩI −→ H

defined by

∂If(x+ Iy) :=
1

2

(

∂

∂x
+ I

∂

∂y

)

fI(x+ yI)

vanishes identically on ΩI .

Later we shall introduce another definition of slice regularity that is a special case of

the definition in the poly analytic case with n = 1. �e right quaternion vector space

of slice hyperholomorphic functions is endowed with the natural topology of uniform

convergence on compact sets. �e characterization of such functions on a ball centered

at the origin is given by

�eorem 2.3 (Series expansion [24]). An H-valued function f is slice hyperholomorphic

on B(0, R) if and only if it has a series expansion of the form:

f(q) =

+∞
∑

n=0

qnan

converging on B(0, R) = {q ∈ H; | q |< R}.

Another approach to define slice hyperholomorphic functions is to consider them as so-

lutions of a special global operator with non constant coefficients that was introduced

and studied in [11, 21, 25]. �is leads to the following definition
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Definition 2.4. Let Ω be an open set in H and f : Ω −→ H a function of class C1. We

define the global operator G(f) by

G(f)(q) := |~q |2∂x0
f(q) + ~q

3
∑

l=1

xl∂xl
f(q),

for any q = x0 + ~q ∈ Ω.

It was proved in [11] that any slice hyperholomorphic function belongs to ker(G) on

axially symmetric slice domains. We recall briefly this notion:

Definition 2.5. A domain Ω ⊂ H is said to be a slice domain (or just s-domain) if Ω∩R

is nonempty and for all I ∈ S, the set ΩI := Ω∩CI is a domain of the complex planeCI .

If moreover, for every q = x+ Iy ∈ Ω, the whole sphere x+ yS := {x+ Jy; J ∈ S} is

contained in Ω, we say that Ω is an axially symmetric slice domain.

Other interesting properties of the global operatorGwere studied in [12]. We recall some

of them that will be helpful for our purposes:

Proposition 2.6. Let Ω be an open set in H and f, g : Ω −→ H two functions of class C1.

�en, for q = x0 + ~q ∈ Ω we have

(1) G(fg) = G(f)g + fG(g) + (~q f − f~q )

3
∑

l=1

xl∂xl
g.

In particular, it holds:

(2) G(fλ+ g) = G(f)λ+G(g), ∀λ ∈ H.

(3) G(x0f) = |~q |2f + x0G(f) and G(~q f) = −|~q |2f + ~q G(f).
(4) G(qkf) = qkG(f), ∀k ∈ N.

We recall below the variations of the Fueter mapping theorem that we will use later in

this paper and refer the reader to [17, 29] for several extensions.

�eorem 2.7 (Fueter mapping theorem [17]). Let U be an axially symmetric set inH and

let f : U ⊂ H −→ H be a slice hyperholomorphic function of the form f(x + yI) =
α(x, y) + Iβ(x, y),where α(x, y) and β(x, y) are quaternionic-valued functions such that

α(x,−y) = α(x, y), β(x,−y) = −β(x, y) and satisfying the Cauchy-Riemann system.

�en, the function

∼
f(x0 + ~q ) = ∆

(

α(x0, |~q |) +
~q

|~q |
β(x0, |~q |)

)

extends to a Fueter regular function on the whole U .

Remark 2.8. If U is an axially symmetric slice domain in H, then every slice hyperholo-

morphic function f : U ⊂ H −→ H is of the form f(x+Iy) = α(x, y)+Iβ(x, y), where
α and β have the properties mentioned in the preceding statement. �is is an immediate

consequence of the Representation formula observed in Lemma 2.2 in [15].

A function f(x+yI) = α(x, y)+Iβ(x, y), where α, β areH (orRn)-valued, α(x,−y) =
α(x, y), β(x,−y) = −β(x, y) is called a slice function.

Remark 2.9. We denote by SR(U) the space of slice regular functions which are slice

functions. Below, we can consider the Fueter mapping defined by

τ : SR(U) → FR(U), f 7−→ τ(f) = ∆(f).
4



�eorem 2.10 ([17]). Given a quaternion s ∈ H, we define

[s] = {p ∈ H : p = Re(s) + I|~s |, I ∈ S}.

Let S−1(s, q) be the Cauchy kernel defined by:

S−1(s, q) = (s− q)(s2 − 2Re(q)s+ |q|2)−1, q /∈ [s].

�en the function

F(s, q) := ∆S−1(s, q) = −4(s− q)(s2 − 2Re(q)s+ |q|2)−2,

is a Cauchy-Fueter regular function in the variable q, and it is right slice regular in the

variable s for q /∈ [s].

�eorem 2.11 (�e Fueter mapping theorem in integral form [17]). Let W ⊂ H be an

axially symmetric open set and let f be slice hyperholomorphic inW . Let U be a bounded

axially symmetric open set such that U ⊂W . Suppose that the boundary of UI = U ∩ CI

consists of finite number of rectifiable Jordan curves for any I ∈ S. �en, if q ∈ U , the

Cauchy–Fueter regular function given by

τ(f)(q) = ∆f(q)

has the integral representation

τ(f)(q) =
1

2π

∫

∂UI

∆S−1(s, q)dsIf(s), dsI = ds/I,

and the integral does not depend on U nor on the imaginary unit I ∈ S.

We will need also these useful results in our computations

Proposition 2.12 ([7]). For all n ≥ 2, we have

D[qn] = −2

n
∑

k=1

qn−kqk−1.

Proposition 2.13 ([20]). For all n ≥ 2, we have

τ [qn] = −4

n−1
∑

k=1

(n− k)qn−k−1qk−1.

In [4] the theory of slice hyperholomorphic functions on quaternions is extended to

higher order by considering:

Definition 2.14. LetΩ be an axially symmetric open set inH and let f : Ω −→ H a slice

function of class Cn. For each I ∈ S, let ΩI = Ω∩CI and let fI = f|ΩI
be the restriction

of f to ΩI . �e restriction fI is called (le�) polyanalytic of order n if it satisfies on ΩI

the equation

∂I
n
f(x+ Iy) :=

1

2n

(

∂

∂x
+ I

∂

∂y

)n

fI(x + Iy) = 0.

�e function f is called le� slice polyanalytic of order n, if for all I ∈ S, fI is le� polyana-

lytic of order n on ΩI . �e right quaternionic vector space of slice polyanalytic functions

of order n will be denoted by SPn(U).
5



Note that slice regular functions are a special case of the definition of slice polyanalytic

functions with n = 1. �e right slice polyanalytic functions can be defined in a similar

way just by taking the powers of the Cauchy-Riemann operator with imaginary unit on

the right. Several results of these functions were studied and extended. In particular, we

recall some properties that we need for our computations in the next sections.

Proposition 2.15 (Spli�ing Lemma). Let f be a slice polyanalytic function of order n on an
axially symmetric domain Ω ⊆ H. �en, for any imaginary units I and J with I ⊥ J there

exist F,G : ΩI −→ CI polyanalytic functions of order n such that for all z = x+Iy ∈ ΩI ,

we have

fI(z) = F (z) +G(z)J.

We will be interested also by the following decomposition

Proposition 2.16 (Poly-decomposition). A function f : Ω −→ H defined on an axially

symmetric slice domain is slice polyanalytic of order n if and only there exist f0, ..., fn−1

some unique slice hyperholomorphic functions on Ω such that we have the following decom-

position:

f(q) :=

n−1
∑

k=0

qkfk(q); ∀q ∈ Ω.

Finally, we consider the poly-Fueter regular functions that can be found for example in

[27] for Clifford valued functions.

Definition 2.17. Let U ⊂ H be an open set and let f : U −→ H be a function of class

Cn. We say that f is (le�) poly-Fueter regular or poly-regular for short of order n ≥ 1 on
U if

Dnf(q) :=

(

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)n

f(q) = 0, ∀q ∈ U.

�e right quaternionic vector space of poly-Fueter regular functions will be denoted by

FRn(U).

�e proof of the next result was communicated to us by Dan Volok, and appears earlier

in section 6 and 7 of [8], see also [9] for the Clifford monogenic se�ing. We recall it for

completeness

Proposition 2.18. A function f is poly-Fueter regular of order n if and only if it can be

decomposed in terms of some unique Fueter regular functions φ0, ..., φn−1 such that we have

f(q) =

n−1
∑

k=0

xk0φk(q).

3. The global operator and poly-Fueter mapping theorem

In this section, we show that slice polyanalytic functions of some order n are solutions

of the n-th power of a certain global operator V . A new extension of the Fueter mapping

theorem involving slice polyanalytic functions on quaternions will be proved also.

In [25], the authors considered a modified version of the operator G which is defined by

V (f)(q) := ∂x0
f(q) +

~q

|~q |2

3
∑

l=1

xl∂xl
f(q), ∀q ∈ Ω \ R.
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Remark 3.1. For suitable domains, we note that the operators G and V are related by the

formula

V (f)(q) =
1

|~q |2
G(f)(q), ∀q ∈ Ω \ R.

In what follows, if V (f) admits a (unique) continuous extension on the wholeΩ, then we

implicitly assume that V (f) denotes such an extension. Given any n ≥ 2, inductively we
will say that V n(f) is a function on Ω if V n−1(f) is of class C1 on Ω \ R and V n(f) :=
V (V n−1(f)) admits a continuous extension on Ω.

First, we prove some preliminary results on the global operatorsG and V that are needed

in the sequel.

Lemma 3.2. Let Ω be an open set in H and ψ : Ω −→ H a function of class C1. �en, we

have

G(qψ)(q) = qG(ψ)(q) + 2|~q |2ψ(q), ∀q = x0 + ~q ∈ Ω.

Proof. Let ψ be a C1 function on Ω, we apply the definition of G and Leibniz rule with

respect to the partial derivatives and we get

G(qψ)(q) := |~q |2∂x0
(qψ)(q) + ~q

3
∑

l=1

xl∂xl
(qψ)(q)

= |~q |2q∂x0
ψ(q) + |~q |2ψ(q) + ~q q

3
∑

l=1

xl∂xl
ψ(q)− ~q

3
∑

l=1

xlelψ(q).

However, we know that

~q =

3
∑

l=1

xlel, ~q q = q~q and ~q 2 = −|~q |2.

�us, for any q ∈ Ω we have

G(qψ)(q) = q

(

|~q |2∂x0
ψ(q) + ~q

3
∑

l=1

xl∂xl
ψ(q)

)

+ 2|~q |2ψ(q)

= qG(ψ)(q) + 2|~q |2ψ(q).

�is ends the proof. �

Corollary 3.3. Let Ω ⊆ H be a domain and f : Ω −→ H be a slice hyperholomorphic

function. �en, we have

G(qf)(q) = 2|~q |2f(q), ∀q ∈ Ω

and

(3.1) V (qf)(q) = 2f(q), ∀q ∈ Ω.

Proof. �e fact that f is slice hyperholomorphic on Ω implies that

G(f)(q) = 0, ∀q ∈ Ω.

Hence, a direct application of Lemma 3.2 gives (3.1) on Ω \ R. However, since the right
hand side of (3.1) extends the le� hand side to all of Ω as a slice hyperholomorphic func-

tion, then (3.1) holds on Ω. �

Example. To provide an example, let us consider the particular case f ∈ SP2(H). �en,

we have

7



(1) V 2(f)(q) = 0, ∀q ∈ H.
(2) ∆V (f) is Cauchy-Fueter regular on H.

(3) DV (f) is poly-Fueter regular of order 2, whereD is the conjugate of the Cauchy-

Fueter operator.

To see that (1) holds, we use the poly-decomposition that asserts the existence of some

unique functions f0, f1 ∈ SR(H) such that

f(q) = f0(q) + qf1(q), ∀q ∈ H.

An application of corollary 3.3 combined with the fact that slice hyperholomorphic func-

tions belong to ker(V ) show that (1) holds. �e other two assertions follows similarly.

Proposition 3.4. Let Ω be an open set in H and f : Ω −→ H a slice hyperholomorphic

function. Let n ≥ 2 and 1 ≤ k ≤ n− 1, then we have

(1) G(qkf)(q) = 2k|~q |2qk−1f(q), ∀q ∈ Ω.

(2) V (qkf)(q) = 2kqk−1f(q), ∀q ∈ Ω.

Proof. Let f ∈ SR(Ω) and n ≥ 2. We reason by induction with respect to n.
(1) First, we note that the result holds for n = 2 as a consequence of Corollary 3.3. Now,

let n ≥ 2 be such that we have

G(qkf)(q) = 2k|~q |2qk−1f(q), ∀q ∈ Ω, ∀1 ≤ k ≤ n− 1.

In order, to prove that the result holds for n+ 1, we only have to show that

(3.2) G(qnf)(q) = 2n|~q |2qn−1f(q), ∀q ∈ Ω.

Indeed, we apply Lemma 3.2 and obtain

G(qnψ)(q) = G(q qn−1f)(q)

= qG(qn−1f)(q) + 2|~q |2qn−1f(q), ∀q ∈ Ω.

However, by induction hypothesis we know that

G(qn−1f)(q) = 2(n− 1)|~q |2qn−2f(q), ∀q ∈ Ω.

�erefore, we get

G(qnf)(q) = 2(n− 1)|~q |2qn−1f(q) + 2|~q |2qn−1f(q)

= 2n|~q |2qn−1f(q), ∀q ∈ Ω.

Hence, the result holds by induction and this completes the proof.

(2) We know by Remark 3.1 that

V (f)(q) =
1

|~q |2
G(f)(q), ∀q ∈ Ω \ R.

�en, since f is a slice hyperholomorphic function on Ω, the right hand side extends the
le� hand side as polyanalytic function of order k and so we get

V (qkf)(q) = 2kqk−1f(q), ∀q ∈ Ω, 1 ≤ k ≤ n− 1.

�

Proposition 3.5. LetΩ be an axially symmetric slice domain inH and f : Ω −→ H a slice

polyanalytic function of order n ≥ 1. �en, V (f) is a slice polyanalytic function of order

n− 1 on Ω.
8



Proof. We note that Ω is a slice domain. So, by poly-decomposition there exist some

unique slice regular functions ϕ0, ..., ϕn−1 such that we can write

f(q) =

n−1
∑

k=0

qkϕk(q), ∀q ∈ Ω.

�us, by Proposition 3.4 we know that for all q ∈ Ω we have

V (f)(q) =
n−1
∑

k=1

V (qkϕk)(q)

= 2
n−1
∑

k=1

kqk−1ϕk(q)

=

n−2
∑

h=0

qhζh(q),

where we have set ζh(q) = 2(h+1)ϕh+1, ∀0 ≤ h ≤ n−2which are slice hyperholomor-

phic functions on the wholeΩ by hypothesis. Hence, V (f) extends as a slice polyanalytic
function of order n− 1 on Ω. �

�eorem 3.6. Let Ω be an axially symmetric slice domain in H and f : Ω −→ H a slice

polyanalytic function of order n ≥ 1. �en, f belongs to ker(V n), i.e:

V n(f)(q) = 0, ∀q ∈ Ω.

Proof. We apply Proposition 3.5 iteratively and obtain

V (f) ∈ SPn−1(Ω), V
2(f) ∈ SPn−2(Ω), ..., V

n−1(f) ∈ SP1(Ω) = SR(Ω).

In particular, we deduce that V n−1(f) is a slice hyperholomorphic function on Ω. �ere-

fore, it belongs to the kernel of the global operator V outside the real line. Hence, since

V n−1(f) admits a continuous extension to the whole Ω, by �eorem 2.4 in [25], we con-

clude that

V n(f)(q) = V (V n−1)(f)(q) = 0, ∀q ∈ Ω.

�is ends the proof. �

�eorem 3.7 (Poly-Fueter mapping theorem I). Let Ω be an axially symmetric slice do-

main in H and f : Ω −→ H a slice polyanalytic function of order n ≥ 1. �en the function

given by

τn(f)(q) = ∆ ◦ V n−1(f)(q), ∀q ∈ Ω

belongs to the kernel of the Cauchy-Fueter operator D.

Proof. Using the same argument used to prove �eorem 3.6, we deduce that V n−1(f) is
a slice hyperholomorphic function on Ω. �erefore, since Ω is an axially symmetric slice

domain we can use �eorem 2.7 and Remark 2.8 to conclude that the function τn(f) is in
the kernel of the Cauchy-Fueter operator D on Ω, i.e.,

D ◦ τn(f)(q) = D ◦∆ ◦ V n−1(f)(q) = 0, ∀q ∈ Ω.

�
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Remark 3.8. We note that the poly-Fueter mapping

τn := ∆ ◦ V n−1

takes the space of slice polyanalytic functions of order n ≥ 1 into the space of Cauchy-

Fueter regular functions FR(Ω).

�eorem 3.9. Let Ω be an axially symmetric slice domain of H and f : Ω −→ H a slice

hyperholomorphic function. Let n ≥ 1 and consider the functions defined by

Ψk
f (q) := qkf(q), ∀q ∈ Ω, ∀0 ≤ k ≤ n− 1.

�en, the family {Ψk
f}0≤k≤n forms an Appell system with respect to the operator 1

2V ,

namely

1

2
V (Ψ0

f ) = 0 and
1

2
V (Ψk

f ) = kΨk−1
f , ∀1 ≤ k ≤ n− 1.

Proof. �e function Ψ0
f = f is slice hyperholomorphic on Ω. So, f belongs to the kernel

of the global operator V on Ω. �us, we have
1

2
V (Ψ0

f ) = 0. On the other hand, we know

by Proposition 3.4 that

V (qkf)(q) = 2kqk−1f(q), ∀q ∈ Ω, 1 ≤ k ≤ n− 1.

�erefore, this combined with �eorem 2.4 in [25] allows to see that for all q ∈ Ω and

1 ≤ k ≤ n− 1 we have

1

2
V (Ψk

f )(q) =
1

2
V (qkf)(q)

= kqk−1f(q)

= kΨk−1
f (q).

�is ends the proof. �

Corollary 3.10. �e sequence {qk}k≥0 is an Appell system with respect to 1
2V .

Proof. If we take the constant function f = 1, we immediately obtain the result. �

Remark 3.11. Wenote that for any slice hyperholomorphic function f the family {Ψk
f}0≤k≤n

considered in�eorem3.9 form also anAppell systemwith respect to the Cauchy-Riemann

operator
1

2
∂I for all I ∈ S.

�e next result allows to construct poly-Fueter regular functions starting from slice poly-

analytic ones of the same order:

�eorem 3.12 (Poly-Fueter mapping theorem II). Let Ω ⊆ H be an axially symmetric

slice domain and let f : Ω −→ H a slice polyanalytic function of order n ≥ 1. Assume that

f admits the decomposition

f(q) =

n−1
∑

k=0

qkfk(q), ∀q ∈ Ω

where f0, ..., fn−1 ∈ SR(Ω).�en, the function defined by

(3.3) Cn(f)(q) =

n−1
∑

k=0

xk0∆(fk)(q), ∀q ∈ Ω

10



is a poly-Fueter regular function of order n.

Proof. We note by �eorem 2.7 and Remark 2.8 that the functions φk = ∆(fk) are all

Cauchy-Fueter regular on Ω for any 0 ≤ k ≤ n − 1. Hence, thanks to Proposition 2.18

we conclude that Cn(f) is poly-Fueter regular of order n.
�

Let n ≥ 1, the two poly-Fueter mappings τn and Cn can be related to each other so that

we have

τn := (2D)n−1 ◦ Cn,

in other words the diagram

SPn
τn //

Cn

��

FR

FRn

(2D)n−1

;;
①
①
①
①
①
①
①
①
①

is commutative.

�e proof of this fact is contained in the next result:

�eorem 3.13. Let f : Ω −→ H be a slice polyanalytic function of order n ≥ 1 on some

axially symmetric slice domain. �en, we have

Dn−1Cn(f)(q) =
1

2n−1
τn(f)(q), ∀q ∈ Ω.

Proof. Since Ω is a slice domain, by the poly-decomposition for slice polyanalytic func-

tions there exist f0, .., fn−1 ∈ SR(Ω) such that

f(q) =
n−1
∑

k=0

qkfk(q), ∀q ∈ Ω.

�us, by Proposition 3.4 gives

V (f)(q) =

n−1
∑

k=1

2kqk−1fk(q), ∀q ∈ Ω.

In a similar way, we apply (n− 1) times the global operator V and use Proposition 3.4 to

get

V n−1(f)(q) = 2n−1(n− 1)!fn−1(q), ∀q ∈ Ω.

As a direct consequence, by definition of τn we have

(3.4) τn(f)(q) = 2n−1(n− 1)!∆fn−1(q), ∀q ∈ Ω.

On the other hand, since (fk)0≤k≤n−1 are all slice hyperholomorphic we know by the

Fueter mapping theorem that

D(∆fk) = 0, ∀0 ≤ k ≤ n− 1.

�erefore, by Leibniz rule for the Cauchy-Fueter operator we have

(3.5) D(xk0∆fk)(q) = kxk−1
0 ∆fk(q); ∀q ∈ Ω, ∀0 ≤ k ≤ n− 1.

11



We know by definition of Cn that

Cn(f)(q) =

n−1
∑

k=0

xk0∆(fk)(q), ∀q ∈ Ω.

�us, we use (3.5) and get

D[Cn(f)](q) =

n−1
∑

k=1

kxk−1
0 ∆fk(q), ∀q ∈ Ω.

Similarly, if we apply the Cauchy-Fueter operator (n− 1) times and use (3.5), with some

computations we get

(3.6) Dn−1[Cn(f)](q) = (n− 1)!∆fn−1(q), ∀q ∈ Ω.

Finally, we combine the relations (3.4) and (3.6) to conclude that

Dn−1Cn(f)(q) =
1

2n−1
τn(f)(q), ∀q ∈ Ω.

�

4. The Poly-Fueter mapping theorem in integral form

In this section, we prove a Cauchy integral theorem andCauchy formula for slice polyanaytic

functions. �en, we study some integral representation of the poly-Fueter mapping the-

orem on the quaternionic unit ball that will extend the results obtained in [17].

We recall the polyanalytic Cauchy formula in complex analysis, see �eorem 2.1 in [9].

�eorem 4.1. For k ≥ 1, we set

ψk(z) =
1

2πi

z̄

|z|2
Re(z)k−1

(k − 1)!
.

For z = x+ iy, set dσ = dx∧dy. If f is polyanalytic of order n, then for all z ∈ D we have

f(z) =

∫

∂D

n−1
∑

j=0

(−2)jψj+1(u− z)
∂j

∂ūj
f(u)dσ.

First, we prove a version of the Cauchy’s integral theorem for slice polyanalytic functions

�eorem 4.2. Let f and g be a le� and right slice polyanalytic functions of order n respec-

tively on some axially symmetric slice domain Ω containing the closure of B. �en, for any

I ∈ S we have
∫

∂BI

n−1
∑

j=0

(−1)jg∂I
n−1−j

dwI∂I
j
f = 0,

where dwI = −dwIfor w ∈ CI .

Proof. Let I ∈ S and choose J ∈ S be such that I ⊥ J . �us, by Spli�ing Lemma for

slice polyanalytic functions proved in [4] we can write

f(w) = F1(w) + F2(w)J and g(w) = G1(w) + JG2(w),

where Fl, Gl : BI −→ CI for l = 1, 2 are complex polyanalytic functions of order n. In
order to simplify the computations, we set

Φ(f, g) :=

∫

∂BI

n−1
∑

j=0

(−1)jg∂I
n−1−j

dwI∂I
j
f

12



�en, direct computations lead to

Φ(f, g) = Φ(F1, G1) + Φ(F2, G1)J + JΦ(F1, G2) + JΦ(F2, G2)J

At this stage, we apply the poly-Cauchy integral theorem proved in [9] to deduce that

Φ(F1, G1) = Φ(F2, G1) = Φ(F1, G2) = Φ(F2, G2) = 0.

�is ends the proof. �

Now, let n ≥ 1 and w ∈ B be such that w ∈ CJ with J ∈ S. For all 0 ≤ j ≤ n− 1, we
consider the function defined by

φj,w(z) =
1

w − z

(Re(w − z))j

j!
; z ∈ BJ , z 6= w.

�en, we have

Proposition 4.3. For all 0 ≤ j ≤ n − 1, the slice polyanalytic extension of φj,w is given

by

φj,w(q) = S−1(w, q)
(Re(w − q))j

j!
∀q ∈ B, q /∈ [w],

where S−1(w, q) is the slice hyperholomorphic Cauchy kernel.

Proof. Let 0 ≤ j ≤ n−1. We know that S−1(w, q) is le� slice regular with respect to the

variable q. Moreover, it is clear that q 7→
(Re(w − q))j

j!
is a real valued slice polyanalytic

function of order n for all 0 ≤ j ≤ n − 1. So, we can apply Proposition 3.3 in [4] to see

that the product S−1(w, q)
(Re(w − q))j

j!
is slice polyanalytic of order n with respect to

the variable q. And since it coincides with φj,w(z) on BJ the proof ends thanks to the

identity principle (see [4]). �

Remark 4.4. Another way to prove Proposition 4.3 consists of using the extension Lemma

for slice polyanalytic functions, see [4]. Indeed, we note that z 7→ φj,w(z) is polyanalytic
of order n for any z 6= w. �us, it admits a unique slice polyanalytic extension denoted

by ext[φj,w(z)](q). By definition, for q = x+ Iqy and z = x+ Jy such that q /∈ [w] we
have

ext[φj,w(z)](q) =
1

2
[φj,w(z) + φj,w(z)] +

IqJ

2
[φj,w(z)− φj,w(z)]

= ext

(

1

w − z

)

(Re(w − q))j

j!

= S−1(w, q)
(Re(w − q))j

j!
,

where S−1(w, q) is the slice hyperholomorphic Cauchy kernel given by

S−1(w, q) = (w − q)(w2 − 2Re(q)w + |q|2)−1.

Proposition 4.5. Let q, w ∈ B be such that q /∈ [w]. �e function, φj,w(q) is right slice
polynalytic of order j + 1 in the variable w.

Proof. �e proof is easy using the fact that S−1(w, q) is right slice regular in w combined

with the right version of Proposition 3.3 in [4]. �

13



�eorem 4.6. Let Ω be an axially symmetric slice domain containing the closure of B and

f : Ω −→ H a slice polyanalytic function of order n ≥ 1. For I ∈ S, set dwI = −dwI . �e

integral below

1

2π

∫

∂BI

n−1
∑

j=0

(−2)jS−1(w, q)
(Re(w − q))j

j!
dwI∂I

j
(f)(w),

does not depend on the choice of the imaginary unit I ∈ S.

Moreover, for all q ∈ B we have the integral representation

f(q) =
1

2π

∫

∂BI

n−1
∑

j=0

(−2)jS−1(w, q)
(Re(w − q))j

j!
dwI∂I

j
(f)(w).

Proof. �e independence of the choice of I ∈ S is a direct consequence of the poly-

decomposition in Proposition 2.16 combined with the series expansion theorem for slice

hyperholomorphic functions. To show the second part of the statement, let J ∈ S be

such that J ⊥ I . We know that f ∈ SPn(B), so by Proposition 3.4 in [4] there exist two

polyanalytic functions F,G : BJ −→ CJ of order n such that for any w ∈ BJ we have

f(w) = F (w) +G(w)J.

In particular,

∂I
j
f(w) = ∂I

j
F (w) + ∂I

j
G(w)J.

�en, we have on BI the following reproducing property thanks to the complex poly-

Cauchy formula applied to F and G

1

2π

∫

∂BI

n−1
∑

j=0

(−2)jS−1(w, q)
(Re(w − q))j

j!
dwI∂I

j
(f)(w) = F (q) +G(q)J

= f(q).

Furthermore, in Proposition 4.3 we deal with a slice polyanalytic kernel. So, the function

Ψ(q) =

∫

∂BI

n−1
∑

j=0

(−2)jS−1(w, q)
(Re(w − q))j

j!
dwI∂I

j
(f)(w),

is also slice polyanayltic of order n. Hence, we can conclude by Identity principle since

Ψ coincides with f on BI .

�

Remark 4.7. �e case n = 1 in the previous theorem gives the slice hyperholomorphic

Cauchy formula that can be found in [18].

As a direct application of the slice poly Cauchy formula we will prove the poly-Fueter

mapping theorem in its integral form. To this end, we need some technical lemmas. First,

for every n ≥ 1, 1 ≤ j ≤ n− 1 and w ∈ ∂B, denote by Fj(w, q) the quaternionic valued
function on B sending q into

(4.1) Fj(w, q) := S−1(w, q)
Rej(w − q)

j!
,

where Rej(w − q) := (Re(w − q))
j
.

Lemma 4.8. Let w ∈ ∂B. �en, for every q ∈ B, we have

V (F0(w, q)) = 0 and V (Fj(w, q)) = −Fj−1(w, q), ∀j ≥ 1.
14



Proof. First, we haveF0(w, q) = S−1(w, q) is the slice hyperholomorphicCauchy kernel.

So, q 7−→ F0(w, q) is slice hyperholomorphic with respect to the variable q. �us, we

have V (F0(w, q)) = 0 for all q. On the other hand, for all j ≥ 1 we have

G(Fj(w, q)) = G

(

S−1(w, q)
Rej(w − q)

j!

)

, ∀q ∈ B.

�en, we apply Proposition 2.6 on which we see how the global operator G acts on the

product keeping in mind that one of the functions is real valued and get

(4.2) G(Fj(w, q)) = S−1(w, q)G

(

Rej(w − q)

j!

)

, ∀q ∈ B.

However, we have

G

(

Rej(w − q)

j!

)

= |~q |2∂x0

(

Rej(w − q)

j!

)

= −|~q |2
Rej−1(w − q)

(j − 1)!

�en, we replace in (4.2) and get

G(Fj(w, q)) = −|~q |2S−1(w, q)
Rej−1(w − q)

(j − 1)!
, ∀q ∈ B.

Hence, we use Remark 3.1 to see that the result holds outside the real line. �en, we apply

again �eorem 2.4 in[25] which allows to extend the formula everywhere on B. Finally,

we conclude that for any q ∈ B we have

V (Fj(w, q)) = −Fj−1(w, q), ∀j ≥ 1.

�is ends the proof. �

Lemma 4.9. Let w ∈ ∂B. For any n ≥ 1, we set

τn = ∆ ◦ V n−1.

�en, for every q ∈ B, we have

(1) τ1(F0(w, q)) = ∆S−1(w, q).
(2) For all n ≥ 2, we have

(a) τn(Fj(w, q)) = 0, ∀0 ≤ j < n− 1.
(b) τn(Fn−1(w, q)) = (−1)n−1∆S−1(w, q).

Proof. (1) It is immediate by the definition of the map τ1 = ∆.

(2) We reason by induction. First, we note that for n = 2, F0(w, q) is slice hyperholo-

morphic with respect to q so that

τ2(F0(w, q) = ∆ ◦ V (F0(w, q)) = 0.

Moreover, we have

τ2(F1(w, q)) = ∆ (V (F1(w, q))) .

Moreover, Lemma 4.8 yields

V (F1(w, q)) = −F0(w, q)

so we get

τ2(F1(w, q)) = −∆(F0(w, q)) = −∆S−1(w, q).

We conclude that the result holds for n = 2. Let us suppose by induction that the asser-

tions (a), (b) in the statement hold for n ≥ 2 and we prove them for n+ 1.
15



(a) Let w ∈ ∂B. �en, for every q ∈ B, it is clear that

τn+1(F0(w, q)) = ∆ ◦ V n(F0(w, q)) = 0.

We observe that

(4.3) τn+1 = ∆ ◦ V n = ∆ ◦ V n−1 ◦ V = τn ◦ V.

�en, for all 1 ≤ j < n making use of Lemma 4.8 we have

τn+1(Fj(w, q)) = τn ◦ V (Fj(w, q))

= −τn(Fj−1(w, q))

= −τn(Fh(w, q)); 0 ≤ h = j − 1 < n− 1.

�erefore, by induction hypothesis we conclude that

τn+1(Fj(w, q)) = 0, ∀0 ≤ j < n.

�is shows that (a) holds.

(b) We use a second time the observation (4.3) combined with Lemma 4.8 and get by

induction hypthesis

τn+1(Fn(w, q)) = τn ◦ V (Fn(w, q))

= −τn(Fn−1(w, q))

= (−1)n∆S−1(w, q).

Hence, (b) also holds. �is ends the proof. �

�eorem 4.10. Let f be a slice polyanalytic function of order n ≥ 1 on some axially

symmetric slice domain Ω that contains the closure of B. �en, the Fueter regular function

τn(f) given by

τn(f)(q) = ∆ ◦ V n−1(f)(q)

has the integral representation

τn(f)(q) = c(n, π)

∫

∂BI

∆S−1(w, q)dwI∂
n−1

I (f)(w), ∀q ∈ B

where I ∈ S and c(n, π) =
2n−1

2π
.

Proof. Let f ∈ SPn(Ω), we know by the poly-Cauchy formula for slice polyanalytic

functions (�eorem 4.6) that for all q ∈ B we have

f(q) =
1

2π

∫

∂BI

n−1
∑

j=0

(−2)jFj(w, q)dwI∂
j
(f)(w).

�erefore, we apply the Fueter mapping τn = ∆ ◦ V n−1 and obtain that

τn(f)(q) =
1

2π

∫

∂BI

n−1
∑

j=0

(−2)jτn(Fj(w, q))dwI∂
j
(f)(w), ∀q ∈ B \ R.

However, by Lemma 4.8 we know that

τn(Fn−1(w, q)) = (−1)n−1∆S−1(w, q) and τn(Fj(w, q)) = 0, ∀0 ≤ j < n− 1

Hence, we obtain

τn(f)(q) =
2n−1

2π

∫

∂BI

∆S−1(w, q)dwI∂
n−1

I (f)(w), ∀q ∈ B \ R.
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Finally, it is clear that the integral in the right hand side is Fueter regular with respect to

q everywhere on B which allows to extend τn(f) to a Fueter regular function on the unit

ball. �is completes the proof. �

Corollary 4.11. Under the same hypothesis of �eorem 4.10 we note that the poly-Fueter

mapping has the explicit integral expression

τn(f)(q) =
2n

π

∫

∂BI

(q − w)(w2 − 2Re(q)w + |q|2)−2dwI∂
n−1

I (f)(w), ∀q ∈ B.

Proof. We apply �eorem 4.10 and use the expression

∆S−1(w, q) = −4(w − q)(w2 − 2Re(q)w + |q|2)−2,

that was proved in [17]. �

Remark 4.12. (1) �anks to�eorem 3.13 the integral formulation of the poly-Fueter

mapping theorem can be expressed in terms of the map Cn as

Dn−1[Cn(f)](q) =
1

2π

∫

∂BI

∆S−1(w, q)dwI∂
n−1

I (f)(w), ∀q ∈ B.

(2) �e case n = 1 in �eorem 4.10 is the Fueter mapping theorem in integral form

proved in [17].

5. The slice polymonogenic case

In this section, we see how the results of quaternionic slice polyanalytic functions can be

reformulated in the slice monogenic se�ing. We omit to write the proofs since they are

similar to the quaternionic case. We recall first some basic notations, let {e1, e2, ..., en}
be an orthonormal basis of the Euclidean vector space Rn satisfying the rule

ekes + esek = −2δk,s, k, s = 1, ..., n

where δk,s is the Kronecker symbol. �e set

{eA : A ⊂ {1, ..., n} with eA = eh1
eh2

...ehr
, 1 ≤ h1 < ... < hr ≤ n, e∅ = 1}

forms a basis of the 2n-dimensional Clifford algebra Rn over R. Let Rn+1 be embedded

in Rn by identifying (x0, x1, ..., xn) ∈ Rn+1 with the paravector x = x0 + x ∈ Rn.

�e conjugate of x is given by x̄ = x0 − x and the norm |x| of x is defined by |x|2 =
x20 + ...+ x2n. We denote also by Sn−1 the (n− 1)-dimensional sphere of unit vectors in

R
n given by

S
n−1 = {ω = x1e1 + ...+ xnen : x21 + ...+ x2n = 1}, ω2 = −1.

�e Euclidean Dirac operator on R
n is given by

Dx =
n
∑

j=1

ej∂xj
.

�e generalized Cauchy-Riemann operator (also known as Weyl operator) and its conju-

gate in Rn+1 are given respectively by

D := ∂x0
+Dx and D := ∂x0

−Dx.

Real differentiable functions on some open subset of Rn+1 taking their values in Rn that

are in the kernel ofDk are called le� k-monogenic or polymonogenic of order k, see [9].
We consider also the slice monogenic version given by
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Definition 5.1. Let U be an axially symmetric open set in Rn+1 and f : U −→ Rn

be a slice function of class Ck . We say that f is slice polymonogenic of order k or s-

polymonogenic for short, if for any I ∈ Sn−1, we have

∂I
k
fI(x+ Iy) = 0.

�e set of slice polymonogenic functions of order k is denoted SMk(U).

Remark 5.2. (1) �e set SMk(U) forms a right module on Rn.

(2) �e case k = 1 corresponds to the slice monogenic functions considered in [18].

We consider on Ω ⊂ Rn+1 the global operator on high dimensions defined by

Vn(f)(x) := ∂x0
f(x) +

~x

|~x|2

n
∑

l=1

xl∂xl
f(x), ∀x ∈ Ω \ R.

Lemma 5.3 (Spli�ing Lemma). Let U be an axially symmetric open set in Rn+1 and f :
U −→ Rn be a slice polymonogenic function of order k. For every I = I1 ∈ S let I2, ..., In
be a completion to an orthonormal basis ofRn. �en, there exists 2n−1 polyanayltic functions

of order k denoted FA : UI −→ CI such that for every z = x+ Iy

fI(z) =

n−1
∑

|A|=0

FA(z)IA, IA = Ii1 ...Iil ,

where A = {i1, ..., il} is a subset of {2, ..., n}, with i1 < ... < il.

�eorem 5.4 (s-polymonogenic decomposition). Let Ω be an axially symmetric slice do-

main of Rn+1 and f : Ω −→ Rn. �en, f ∈ SMk(Ω) if and only if there exists unique

f0, ..., fk−1 ∈ SM(Ω) such that

f(x) = f0(x) + xf1(x) + ...+ xk−1fk−1(x), ∀x ∈ Ω.

Using similar calculations to the quaternions case, we can prove that

�eorem 5.5. Let Ω be an axially symmetric slice domain of Rn+1 and f : Ω −→ Rn an

s-polymonogenic function of order k ≥ 1. �en, f belongs to ker(V k
n ), i.e:

V k
n (f)(x) = 0, ∀x ∈ Ω.

For slice polymonogenic functions we state the poly-Sce-Fueter mapping theorems in the

Clifford se�ing as follows

�eorem 5.6 (Poly-Fueter-Sce mapping theorem I). Let n be an odd number and Ω an

axially symmetric slice domain of Rn+1. If f is an s-polymonogenic function of order k.
�en, the poly-Fueter mapping defined by

τn,k(f)(x) = ∆
n−1

2

Rn+1V
k−1
n f(x)

is a polymonogenic function of order k.

�eorem 5.7 (Poly-Fueter-Sce mapping theorem II). Let Ω be an axially symmetric slice

domain of Rn+1 and f : Ω −→ Rn a slice polyanalytic function of order k ≥ 1. Assume

that f admits a poly-decomposition given by

f(x) =

k−1
∑

j=0

xjfj(x), ∀x ∈ Ω

18



where f0, ..., fn−1 ∈ SM(Ω).�en, the function defined by

(5.1) Cn,k(f)(q) =

k−1
∑

j=0

xj0∆
n−1

2

Rn+1(fj)(x), ∀x ∈ Ω

is a poly-monogenic function of order k.
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[16] Colombo F., Sabadini I., Sommen F., Struppa D., Analysis of Dirac systems and computational algebra.

Progress in mathematical physics, Volume 39. (2004)

[17] Colombo F., Sabadini I., Sommen F., �e Fueter mapping theorem in integral form and the F-functional

calculus. Math.Meth.Appl.Sci. 33, 2050-2066. (2010)

[18] Colombo F., Sabadini I., Struppa D. C., Noncommutative functional calculus. �eory and applications of slice

hyperholomorphic functions. Progress in Mathematics, 289, Birkhäuser/Springer Basel AG, Basel. (2011)
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