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A POLYANALYTIC FUNCTIONAL CALCULUS

OF ORDER 2 ON THE S-SPECTRUM

ANTONINO DE MARTINO AND STEFANO PINTON

Abstract. The Fueter theorem provides a two step procedure to build an axially monogenic
function, i.e. a null-solutions of the Cauchy-Riemann operator in R

4, denoted by D. In the first
step a holomorphic function is extended to a slice hyperholomorphic function, by means of the
so-called slice operator. In the second step a monogenic function is built by applying the Laplace
operator in four real variables (∆) to the slice hyperholomorphic function. In this paper we use

the factorization of the Laplace operator, i.e. ∆ = DD to split the previous procedure. From this
splitting we get a class of functions that lies between the set of slice hyperholomorphic functions
and the set of axially monogenic functions: the set of axially polyanalytic functions of order 2, i.e.
null-solutions of D2. We show an integral representation formula for this kind of functions. The
formula obtained is fundamental to define the associated functional calculus on the S-spectrum.
As far as the authors know, this is the first time that a monogenic polyanalytic functional calculus
has been taken into consideration.

Keywords: polyanalytic functions, quaternions, functional calculus, S-spectrum

1. Introduction

The Fueter theorem provides a procedure to extend holomorphic functions to quaternionic-valued
functions in the kernel of the operator D, which is a suitable generalization of the Cauchy-Riemann
operator in R4. The Fueter theorem is performed in two steps. In the first step the slice operator
TF is applied to O(D), which is the set of holomorphic functions on D ⊆ C, in order to get the set
of slice hyperholomorphic functions on ΩD ⊂ R

4, which is an open set induced by D (see Theorem
3.2 in the sequel). This set of functions is denoted by SH(ΩD). In the second step the Laplace
operator in four real variables is applied to SH(ΩD) to get the set of axially monogenic functions,
denoted by AM(ΩD). It is possible to visualize the previous construction by the following diagram

O(D)
TF−→ SH(ΩD)

∆−→ AM(ΩD). (1.1)

From the Fueter mapping theorem it is possible to deduce two spectral theories. From the first
step one can deduce the spectral theory on the S-spectrum associated with the Cauchy formula
of slice hyperholomorphic functions. By applying the Laplacian of four real variables to the slice
hyperholomorphic Cauchy kernel it is possible to obtain a Fueter theorem in integral form and from
this it is possible to deduce a monogenic functional calculus, called F- functional calculus. This
procedure is illustrated in the following diagram

SH(U) AM(U)




y

Slice Cauchy Formula
∆−−−−→ Fueter theorem in integral form





y





y

S− Functional calculus F − functional calculus

(1.2)
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In [11] the authors have studied a possible splitting of the diagram (1.2) and have showed that
between the set of slice hyperholomorphic functions and the set of axially monogenic functions lies
the set of of axially harmonic functions. Moreover, by means of this splitting, they developed an
harmonic functional calculus.
The main goal of this paper is to understand another, different splitting of (1.2).

By rearranging the maps in the Fueter theorem it is possible to get the set of axially polyanalytic
functions of order 2, i.e. functions in the kernel of D2, see Section 2. In this paper we study the
splitting

O(D)
TF−→ SH(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD), (1.3)

where AP2(ΩD) is the set of axially polyanalytic functions of order 2. The goal of this paper is to
describe the central part of this diagram

SH(U) AP2(U) AM(U)




y

Slice Cauchy Formula
D−−−−→ AP2 integral form

D−−−−→ Fueter thm. in integral form




y





y





y

S−Functional calculus Polyanalytic functional calculus of order 2 F − functional calculus
(1.4)

Axially polyanalytic functions play an important role in the study of elasticity problems, see [27, 28].
The theory of polyanalytic functions is also used to investigate problems in time-frequency analysis,
see for example [1, 21] and to study well-known Hilbert spaces, see for instance [2, 6, 29]. For more
information about polyanalytic functions see [3, 8].

In order to clarify the outline and contents of the paper we need to fix the notations. Let H be
the skew field of quaternions

H := {q = q0 + q1e1 + q2e2 + q3e3 | q0, q1, q2, q3 ∈ R},

where the imaginary units satisfy the following relations

e21 = e22 = e23 = −1 and e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

Let q ∈ H. We call Re(q) := q0 the real part of q and q = q1e1 + q2e2 + q3e3 the imaginary part.

We define the conjugate of q ∈ H as q̄ = q0 − q and the modulus of q as |q| = √
qq̄. We define

S := {q ∈ H : Re(q) = 0 and |q| = 1}. We observe that if J ∈ S then J2 = −1. Therefore we can
consider J as an imaginary unit, and we denote by CJ := {u+ Jv ∈ H : u, v ∈ R}, an isomorphic
copy of the complex numbers.
We recall that the Fueter operator D and its conjugate D are defined as follows

D := ∂q0 +

3
∑

i=1

ei∂qi and D := ∂q0 −
3
∑

i=1

ei∂qi .

In this paper we show that it is possible to have an integral representation of axially polyanalytic
functions of order 2 in terms of slice hyperholomorphic functions, see Section 4. More precisely,
let W ⊂ H be an open set and U be a slice Cauchy domain such that U ⊂ W . Then for J ∈ S

and dsJ = ds(−J) we have that if f is left slice hyperholomorphic on W , then the function
2



f̆0(q) = Df(q) is polyanalytic of order 2 and it admits the following integral representation

f̆0(q) = − 1

2π

1
∑

k=0

(−q0)
k

∫

∂(U∩CJ )
FL(s, q)s

1−k dsJ f(s) ∀q ∈ U ;

where FL(s, q) := −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2. A similar integral formula is obtained for right
slice hyperholomorphic functions.
Furthermore, we show that it is possible to expand in series the kernel of the integral representa-
tion, see Section 5. We prove that the series is written in terms of the so-called Clifford-Appell
polynomials, see [9].
All these tools are extremely good to define a monogenic polyanalytic functional calculus on the
S-spectrum for bounded operators with commuting components, see Section 6. To be more pre-
cise let T = T0 + T1e1 + T2e2 + T3e3 be a quaternionic bounded linear operator with commuting
components Ti, i = 0, ..., 3. By considering the following operator

Qc,s(T ) := s2 − 2Re(T )s+ T T̄ ,

where T̄ := T0 − e1T1 − e2T2 − e3T3 we define the commutative S-spectrum of T as

σS(T ) := {s ∈ H : Qc,s(T )
−1 is not invertible}

and the S-resolvent set of T as

σS(T ) := H \ σS(T ).
It turns out that the commutative S-spectrum is the same of the S-spectrum defined in [14, 18]
when we deal with operators with commuting components.
Roughly speaking for every function f̆0 := Df , with f a left slice hyperholomorphic function, we
define the polyanalytic functional calculus of order 2 as

f̆0(T ) =
1

2π

∫

∂(U∩CJ )
PL
2 (s, T ) dsJ f(s),

where PL
2 (s, T ) =

∑1
j=0 T

j
0 (−1)j+1FL(s, T )s

1−j, with FL(s, T ) := −4(s − T̄ )Qc,s(T )
−2. Moreover,

U is an arbitrary bounded slice Cauchy domain with σS(T ) ⊂ U , Ū ⊂ dom(f), dsJ = ds(−J) and

J ∈ S is an arbitrary imaginary unit. A similar definition is valid for f̆0 = fD with f a right slice
hyperholomorphic function. Recently, a polyanalytic functional calculus has been developed in [4],
but for slice hyperholomorphic polyanalytic functions. To the best of our knowledge, this is the
first time that a monogenic polyanalytic functional calculus has been considered.

2. Preliminaries

We recall some basic results and notions that we need in the sequel (for a complete introduction
to this topics we refer to the book [14]). We say that U ⊂ H is axially symmetric if, for every
u + Iv ∈ U , all the elements u + Jv ∈ U for every J ∈ S. Moreover, we say that U is a slice
domain if U ∩R 6= 0 and U ∩CJ is a domain in CJ for every J ∈ S. Let U ⊂ H be an open axially
symmetric set. Let U ⊂ R × R be such that q = u + Jv ∈ U for all (u, v) ∈ U . We say that a
function f : U → H of the form

f(q) = α(u, v) + Jβ(u, v) (2.1)

is left slice hyperholomorphic if α and β are H-valued differentiable functions such that

α(u, v) = α(u,−v) and β(u, v) = −β(u,−v) for any (u, v) ∈ U .
Moreover, α, β satisfy the Cauchy-Riemann system

∂uα(u, v) − ∂vβ(u, v) = 0 and ∂vα(u, v) + ∂uβ(u, v) = 0.
3



We recall that right slice hyperholomorphic functions are of the form

f(q) = α(u, v) + β(u, v)J, (2.2)

where α, β satisfy the above conditions. The set of left (resp. right) slice hyperholomorphic
functions on U is denoted by SHL(U) (resp. SHR(U)). If we do not care about the right and the
left we denote this set of functions as SH(U).
Moreover, we say that a function is left (resp. right) axially monogenic if it is of the form (2.1)
(resp. of the form (2.2)) and it is in the kernel of the Fueter operator D i.e. Df = 0 (resp. fD = 0).
We denote the set of these functions (no matter left or right) as AM(U).

If U is an axially symmetric Cauchy domain and U ⊂ W for some open axially symmetric domain
W ⊂ H, then for any f ∈ SHL(W ) (resp. f ∈ SHR(W )) we have the so called Cauchy formulas

f(q) =
1

2π

∫

∂(U∩CJ )
S−1
L (s, q) dsJ f(s)

(

resp.
1

2π

∫

∂(U∩CJ )
f(s) dsJ S

−1
R (s, q)

)

, (2.3)

where J ∈ S, dsJ = ds(−J),

S−1
L (s, q) = (s− q̄)(s2 − 2Re(q)s + |q|2)−1 and S−1

R (s, q) = (s2 − 2Re(q)s+ |q|2)−1(s− q̄),

see [14, Thm 2.1.32]. The function S−1
L (s, q) (resp. S−1

R (s, q)) is called the left (resp. right) slice
hyperholomorphic Cauchy kernel.
The definition of slice hyperholomorphic function, that we adopt in this paper is the most appro-
priate one for the operator theory and it comes from the Fueter mapping theorem (see [19, 24]).
This theorem puts in relation the slice hyperholomorphicity and the axially monogenicity.

In [17], [14, Theorem 2.2.6] it is proved that a Fueter theorem in integral form. The main
advantages of this method is that one can obtain a monogenic function by integrating the suitable
slice hyperholomorphic functions. Let us consider f ∈ SHL(W ) (resp. f ∈ SHR(W )) we can state
the Fueter theorem in integral form in the following way

f̆(q) = ∆f(q) =
1

2π

∫

∂(U∩CJ )
FL(s, q) dsI f(s)

(

resp. f̆(q) = ∆f(q) =
1

2π

∫

∂(U∩CJ )
f(s) dsI FR(s, q)

)

where

FL(s, q) := ∆S−1
L (s, q) = −4(s − q̄)(s2 − 2Re(q)s + |q|2)−2,

and

FR(s, q) := ∆S−1
R (s, q) = −4(s2 − 2Re(q)s + |q|2)−2(s− q̄)

are respectively the left and the right F-kernels, then the function f̆ is left (resp. right) axially
monogenic. This is due fact that the left (resp. right) F-kernel is a left (resp. right) axially
monogenic function in the variable q and right (resp. left) slice hyperholomorphic function in the
variable s (see [14, Theorem 2.2.2] and [14, Prop. 2.2.4]).

Now we want to introduce the SC-functional calculus, see [16]. This functional calculus is the
commutative version of the S- functional calculus, see [14, 18]. Let X be a two sided quaternionic
Banach module of the form X = XR ⊗ H, where XR is a real Banach space. In this paper we
consider B(X) the Banach space of all bounded right linear operators acting on X. In the sequel
we will consider bounded operators of the form T = T0 + T1e1 + T2e2 + T3e3, with commuting
components Ti acting on a real vector space XR, i.e., Ti ∈ B(XR) for i = 0, 1, 2, 3. The subset of
B(X) given by the operators T with commuting components Ti is denoted by BC(X). Now, we
define the SC-functional calculus. Let T ∈ BC(X) and let U be a slice Cauchy domain such that

4



σF (T ) ⊂ U and U ⊂ W ⊂ H where W is an axially symmetric open domain. We define for every
f ∈ SHL(W ) (resp. f ∈ SHR(W ) )

f(T ) :=
1

2π

∫

∂(U∩CJ )
S−1
L (s, T ) dsJ f(s)

(

resp f(T ) :=
1

2π

∫

∂(U∩CJ )
f(s) dsJ S−1

R (s, T )

)

,

(2.4)
where

S−1
L (T ) := (s− T̄ )Qc,s(T )

−1 and S−1
R (T ) := Qc,s(T )

−1(s − T̄ ) (2.5)

are called respectively the left and right S-resolvent operators. The definition of SC-functional
calculus is well posed since the integrals in (2.4) depend neither on U and nor on the imaginary
unit J ∈ S, see [14, Thm. 3.2.6].

Remark 2.1. It is possible to define the S-functional calculus for T ∈ B(X), see [14, 18]. It
works also for fully Clifford operators with non commuting components, see [15]. However, for our
purpose it is enough to consider the operator in BC(X).

Now we define the F-functional calculus. It is defined on the S-spectrum but it generates
a monogenic functional calculus in the spirit of McIntosh and collaborators, see [25, 26]. Let
T = T0 + T1e1 + T2e2 + T3e3 ∈ BC(X), assume that the operators Tℓ, ℓ = 0, 1, 2, 3 have real

spectrum and set dsJ = ds/J , where J ∈ S. For f̆ = ∆f with f ∈ SHL(W ) (resp. f ∈ SHR(W )),
we define

f̆(T ) :=
1

2π

∫

∂(U∩CJ )
FL(s, T ) dsJ f(s)

(

resp.f̆(T ) :=
1

2π

∫

∂(U∩CJ )
f(s) dsJ FR(s, T )

)

, (2.6)

where

FL(s, T ) := −4(s− T̄ )Qc,s(T )
−2 and FR(s, T ) := −4Qc,s(T )

−2(s− T̄ ) (2.7)

are called respectively the left and the right F-resolvent operators. The definition of the F-
functional calculus is well posed, see [14, Thm. 7.1.12].

3. Function spaces of axial type in the quaternionic setting

In [11] the authors gave the following

Definition 3.1 (Fine structure of slice hyperholomorphic spectral theory). A fine structure of a
slice hyperholomorphic spectral theory is the set of functions spaces and the associated functional
calculi induced by a factorization of the operator ∆.

In the quaternionic case only two fine structures are possible. One of them is studied in [11],
and the other one is the main topic of this paper.
The first fine structure studied corresponds to the factorization ∆ = DD. In that case, we have
the following diagram

O(D)
TF−→ SH(ΩD)

D−→ AH(ΩD)
D−→ AM(ΩD), (3.1)

where the AH(ΩD) is the set of axially harmonic functions and ΩD is defined as in Theorem 3.2.
The aim of this paper is to study the fine structure which corresponds to the other possible fac-
torization of the Laplacian, ∆ = DD. To this end, we need the following splitting of the Fueter
theorem (see [24]).

Theorem 3.2. Let f0(z) = α(u, v)+ iβ(u, v) be a holomorphic function defined in a domain (open
and connected) D in the upper-half complex plane and let

ΩD = {q = q0 + q1e1 + q2e2 + q3e3 | (q0, |q|) ∈ D}
5



be the open set induced by D in H. The map

f(q) = TF (f0) := α(q0, |q|) +
q

|q|β(q0, |q|)

takes the holomorphic function f0(z) and gives the intrinsic slice hyperholomorphic function f
induced by f0. Then the function

f̆0(q) := D
(

α(q0, |q|) +
q

|q|β(q0, |q|)
)

,

is in the kernel of D2, i.e.

D2f̆0 = 0 on ΩD.

Moreover,

f̆(q) = Df̆0(q),

is axially monogenic.

From the previous theorem we have the following diagram

O(D)
TF−→ SH(ΩD)

D−→ AP2(ΩD)
D−→ AM(ΩD), (3.2)

where AP2(ΩD) is the set of axially polyanalytic functions of order 2. Now, we give a rigorous
definition of this set

Definition 3.3 (Axially polyanalytic function of order 2). Let U ⊆ H be an axially symmetric
open set not intersecting the real line, and let

U = {(u, v) ∈ R× R
+ | u+ Sv ∈ U}.

Let f : U → H be a function, of class C3, of the form

f(q) = α(u, v) + Jβ(u, v), q = u+ Jv, J ∈ S,

where α and β are quaternionic-valued functions. More in general, let U ⊆ H be an axially
symmetric open set and let

U = {(u, v) ∈ R
2 | u+ Sv ∈ U},

and assume that

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U . (3.3)

Let us set

f̆0(q) := Df(q) for q ∈ U.

If

D2f̆0(q) = 0, for q ∈ U,

we say that f̆0 is axially polyanalytic of order 2.

It is possible to write a polyanalytic function as a sum of axially monogenic functions, see [8].
Specifically, we can write the so called polyanalytic decomposition as

f̆0(q) = f̆0(q) + q0f̆1(q), (3.4)

where the f̆0(q) and f̆1(q) are axially monogenic functions.
As well as the monogenic functions satisfy a system of differential equations, called Vekua systems
[20] also the axially polyanalytic functions of order 2 satisfy a system of differential equations, but
of order two. The following result will be investigated in a forthcoming work.
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Theorem 3.4. Let U be an axially symmetric open set in H, not intersecting the real line, and let
f̆0(q) = A(q0, r) + ωB(q0, r) be an axially polyanalytic function of order 2 on U , r > 0 and ω ∈ S.
Then the functions A = A(q0, r) and B = B(q0, r) satisfy the following system

{

∂2
x0
A− 2∂x0

∂rB − 4
r
∂x0

B − ∂2
rA− 2

r
∂rA = 0

∂2
x0
B + 2∂x0

∂rA− ∂2
rB − 2 r∂rB−B

r2
= 0.

Remark 3.5. A similar system of the same order holds for the axially harmonic functions, see [11].

In conclusion, even if ∆ = DD = DD the application of D or the operator D to the set of slice
hyperholomorphic functions gives arise to two completely different fine structures.

4. Integral representation of polyanalytic functions of order 2

In this section we show how to write a polyanalytic function of order 2 in integral form. The main
advantage of this approach is that it is enough to compute an integral of slice hyperholomorphic
functions in order to get a polyanalytic function of order 2. The crucial point to show the integral
representation is to apply the operator D to the slice hyperholomorphic Cauchy kernels.

Theorem 4.1. Let s, q ∈ H, be such that s /∈ [q] then

DS−1
L (s, q) = −FL(s, q)s+ q0FL(s, q) =

1
∑

k=0

qk0FL(s, q)(−1)k+1s1−k, (4.1)

and

S−1
R (s, q)D = −sFR(s, q) + q0FR(s, q) =

1
∑

k=0

qk0s
1−kFR(s, q)(−1)k+1. (4.2)

Proof. We start by applying the derivative with respect to ∂q0 to the left slice hyperholomorphic
Cauchy kernel

∂q0S
−1
L (s, q) = −Qc,s(q)

−1 +
q0
2
FL(s, q)−

1

2
FL(s, q)s. (4.3)

Now, we make the derivative with respect to ∂qi ,

∂qiS
−1
L (s, q) = eiQc,s(q)

−1 +
qi
2
FL(s, q), i = 1, 2, 3. (4.4)

Formula (4.3) and (4.4) imply that

DS−1
L (s, q) =

(

∂q0 −
3
∑

i=1

ei∂qi

)

S−1
L (s, q) = 2Qc,s(q)

−1 +
q0
2
FL(s, q)−

1

2
FL(s, q)s−

q

2
FL(s, q)

= 2Qc,s(q)
−1 +

q̄

2
FL(s, q)−

1

2
FL(s, q)s.

From the equality FL(s, q)s−qFL(s, q) = −4Qc,s(q)
−1 it follows the thesis. By similar computations

we obtain formula (4.2). �

Now, we study the regularities of DS−1
L (s, q) and S−1

R (s, q)D both in s and in q.

Proposition 4.2. Let s, q ∈ H, be such that s /∈ [q]. The function DS−1
L (s, q) is a right slice

hyperholomorphic function in the variable s, while S−1
R (s, q)D is left slice hyperholomorphic in the

variable s.

Proof. By Theorem 4.1 we know that DS−1
L (s, q) is a sum of right slice hyperholomorphic functions

in the variable s. Indeed Qc,s(q)
−1 is a right slice hyperholomorphic function as well as q̄FL(s, q)

and FL(s, q)s. The left slice hyperholomorphicity of the function S−1
R (s, T )D follows by similar

arguments. �

7



Proposition 4.3. Let s, q ∈ H, be such that s /∈ [q]. The function DS−1
L (s, q) is left polyanalytic

of order 2 and S−1
R (s, T )D is right polyanalytic of order 2.

Proof. It follows from the fact that the function FL(s, q) is axially monogenic in the variable q and
the Laplace operator is a real operator, thus it can commute with other operators. Therefore, we
get

D2
(

DS−1
L (s, q)

)

= D∆S−1
L (s, q) = DFL(s, q) = 0.

The right polyanalyticity of S−1
R (s, T )D follows similarly. �

The expressions obtained in Theorem 4.1 can be considered a polyanalytic decomposition of
DS−1

L (s, q) and S−1
R (s, q)D, respectively, see formula (3.4). Indeed the functions −FL(s, q)s and

FL(s, q) are left axially monogenic in the variable q. Similarly, the functions −sFR(s, q) and FR(s, q)
are right axially monogenic in the variable q.

Now, we have all what we need to write an axially polyanalytic function of order 2 as an inte-
gral formula. This will be fundamental to define the polyanalytic functional calculus of order 2
based on the S-spectrum.

Theorem 4.4 (Integral representation of axially polyanalytic functions of order 2). Let W ⊂ H be
an open set. Let U be a slice Cauchy domain such that U ⊂ W . Then for J ∈ S and dsJ = ds(−J)
we have

(1) if f ∈ SHL(W ), then the function f̆0(q) = Df(q) is polyanalytic of order 2 and it admits
the following integral representation

f̆0(q) = − 1

2π

1
∑

k=0

(−q0)
k

∫

∂(U∩CJ )
FL(s, q)s

1−k dsJ f(s) ∀q ∈ U ; (4.5)

(2) if f ∈ SHR(W ), then the function f̆0(q) = f(q)D is polyanalytic of order 2 and it admits
the following integral representation

f̆0(q) = − 1

2π

1
∑

k=0

(−q0)
k

∫

∂(U∩CJ )
f(s) dsJ s

1−kFR(s, q) ∀q ∈ U. (4.6)

The integrals depend neither on U nor on the imaginary unit J ∈ U .

Proof. We get the thesis by applying the conjugate Fueter operator D to the Cauchy formulas, see
(2.3). By Theorem 4.1 it follows (4.5) and (4.6). Finally, the function f̆0(q) is polyanalytic of order
2 by Proposition 4.3. �

In this section we have described the second central row of the diagram (1.4). From this section
is clear the reason of the lack of the arrow that connects the set of axially polyanalytic functions
and their integral representation. Indeed, we obtain it by means of the slice Cauchy formula.

5. Series expansion of the kernel of the fine structure spaces

In this section our aim is to address the following

Problem Is it possible to write a series expansion of DS−1
L (s, q) and S−1

R (s, q)D in terms of
q and q̄?

8



In order to answer this question we need the following series expansion of the slice hyperholo-
morphic Cauchy kernels, see [14, Thm. 2.1.22] [18]. For q, s ∈ H with |q| < |s| we have

S−1
L (s, q) =

∞
∑

n=0

qns−1−n, S−1
R (s, q) =

∞
∑

n=0

s−1−nqn. (5.1)

Therefore it is clear that in order to find the series expansions of DS−1
L (s, q) and S−1

R (s, q)D it is

fundamental to understand the action of the conjugate Fueter operator D over the monomial qn.

Lemma 5.1. For n ≥ 1 we have

Dqn = 2

(

nqn−1 +
n
∑

k=1

qn−kq̄k−1

)

. (5.2)

Moreover,
qnD = Dqn. (5.3)

Proof. By [7, Lemma 1] we know that

Dqn = (∂q0 +Dq)q
n = −2

n
∑

k=1

qn−k q̄k−1,

where Dq :=
∑3

i=1 ei∂qi . Then we have

Dqq
n = −2

n
∑

k=1

qn−kq̄k−1 − nqn−1. (5.4)

Therefore

Dqn =
(

∂q0 −Dq

)

qn = 2

(

nqn−1 +

n
∑

k=1

qn−k q̄k−1

)

. (5.5)

Finally formula (5.3) follows with similar computations. �

It is possible to write polynomials Dqn in terms of the Clifford-Appell polynomials in the quater-
nionic setting, see [9]. This family of axially monogenic homogeneous polynomials is defined as

Qℓ(q, q̄) =
2

(ℓ+ 1)(ℓ + 2)

ℓ
∑

j=0

(ℓ− j + 1)qℓ−j q̄j, for any ℓ ≥ 0. (5.6)

Proposition 5.2. Let n ≥ 2, then for q ∈ H, we have

Dqn = 2n

1
∑

k=0

qk0(−1)k(n+ 1− 2k)Qn−1−k(q, q̄). (5.7)

Proof. We write
Dqn =

(

Dqn − q0∆qn
)

+ q0∆qn = g0(q) + g1(q), (5.8)

and we consider g0(q). From the fact that

∆qn = −4
n−1
∑

k=1

(n− k)qn−k−1q̄k−1, (5.9)

see [23, Thm. 3.2] and by Lemma 4.1 we can write

g0(q) = Dqn − q0∆qn = 2nqn−1 + 2
n
∑

k=1

qn−kq̄k−1 + 4q0

n−1
∑

k=1

(n − k)qn−k−1q̄k−1.

9



Since 2q0 = q + q̄ we obtain

g0(q) = 2

(

nqn−1 +
n
∑

k=1

qn−k q̄k−1 +
n−1
∑

k=1

(n− k)qn−k q̄k−1 +
n−1
∑

k=1

(n− k)qn−k−1q̄k

)

= 2

(

n
∑

k=1

qn−kq̄k−1 +

n−1
∑

k=1

(n− k)qn−kq̄k−1 +

n−1
∑

k=0

(n− k)qn−k−1q̄k

)

= 2

(

n
∑

k=1

qn−kq̄k−1 +
n
∑

k=1

(n− k)qn−k q̄k−1 +
n
∑

k=1

(n− k + 1)qn−k q̄k−1

)

= 4
n
∑

k=1

(n− k + 1)qn−k q̄k−1.

By formula (5.9) we get

g0(q) = −∆(qn+1).

This implies that
Dqn = −∆(qn+1) + q0∆qn. (5.10)

By [23, Rem. 3.9] we know that for n ≥ 2 we have

∆(qn) = −2n(n− 1)Qn−2(q, q̄) (5.11)

where the homogenous polynomials Qn(q, q̄) are defined in (5.6). Finally by combining formula
(5.10) and formula (5.11) we get

Dqn = 2n [(n+ 1)Qn−1(q, q̄)− 2q0(n− 1)Qn−2(q.q̄)] = 2n
1
∑

k=0

qk0 (−1)k(n + 1− 2k)Qn−1−k(q, q̄).

�

Formula (5.7) can be considered as the polyanalytic decomposition of the polynomials Dqn since
the functions (n + 1)Qn−1(q, q̄) and (n− 1)Qn−2(q.q̄) are left and right axially monogenic.

Remark 5.3. The polynomials Dqn were also obtained in [22], by means of other tools, see [5].

Now, we have all the instruments to introduce the following

Definition 5.4. Let s, q ∈ H, we define the left D-kernel series as

2
∞
∑

n=1

(

nqn−1 +
n
∑

k=1

qn−kq̄k−1

)

s−1−n, (5.12)

and the right D-kernel series as

2

∞
∑

n=1

s−1−n

(

nqn−1 +

n
∑

k=1

qn−kq̄k−1

)

, (5.13)

Proposition 5.5. Let s, q ∈ H with |q| < |s|, the left and right D-kernel series are convergent.

Proof. We show only the convergence of the left D-kernel series. The convergence of the right one
follows by similar computations.
In order to show the convergence it is enough to prove that the series of moduli is convergent, i.e.

4

+∞
∑

n=1

n|q|n−1s−1−n.

10



The series converges by the ratio test, indeed

lim
n→+∞

(n+ 1)|q|n|s|−2−n

n|q|n−1|s|−1−n
= |q||s|−1 < 1. (5.14)

�

The following result contains the solution to the problem stated at the beginning of this section

Lemma 5.6. For q, s ∈ H such that |q| < |s|, we have

1
∑

k=0

qk0FL(s, q)(−1)k+1s1−k = 2

∞
∑

n=1



nqn−1 +

n
∑

j=1

qn−j q̄j−1



 s−1−n

= 2
∞
∑

n=2

1
∑

j=0

nqj0(−1)j(n+ 1− 2j)Qn−1−j(q, q̄)s
−1−n,

and

1
∑

k=0

s1−k(−1)k+1FR(s, q)q
k
0 = 2

∞
∑

n=1

s−1−n

(

nqn−1 +

n
∑

k=1

qn−kq̄k−1

)

(5.15)

= 2
∞
∑

n=2

1
∑

j=0

ns−1−nqj0(−1)j(n+ 1− 2j)Qn−1−j(q, q̄).

Proof. By formulas (5.1) we know that we can expand the left Cauchy kernel as

S−1
L (s, q) =

∞
∑

n=0

qns−1−n.

Thus by Proposition 5.5 (which allows to exchange the operator D with the sum) and by Theorem
4.1 we get

1
∑

k=0

qk0FL(s, q)(−1)k+1s1−k = DS−1
L (s, q)

=
∞
∑

n=0

(Dqn)s−1−n

= 2





∞
∑

n=1

nqn−1 +

n
∑

j=1

qn−j q̄j−1



 s−1−n.

The second equality of the statement follows by applying Proposition 5.2 in the last equality of the
previous computations.
By similar arguments it is possible to prove the equalities (5.15).

�

Basically, we have given two possible answers to the initial problem. Indeed, we get two possible
expansions of DS−1

L (s, q) and S−1
R (s, q)D, respectively. These will be fundamental in the next

section.
11



6. The polyanalytic functional calculus of order 2 on the S-spectrum

In this section we will analyse the central third row of the diagram (1.4). From the shape of
the slice hyperholomorphic Cauchy kernel, that we use to prove the integral representation (see
Theorem 4.4), we have to restricted to the case of commuting operators.

Definition 6.1. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X), s ∈ H, we formally define the right D-kernel
operator as

2

∞
∑

n=1

(

nT n−1 +

n
∑

k=1

T n−kT̄ k−1

)

s−1−n

and the left D-kernel operator as

2

∞
∑

n=1

s−1−n

(

nT n−1 +

n
∑

k=1

T n−kT̄ k−1

)

.

Now, we recall the expansion in series of F-resolvent operators in terms of T and T̄ , see [10,

Theorem 3.9] with n = 3. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X). For s ∈ H with ‖T‖ < |s| we have

FL(s, T ) = −4

∞
∑

n=2

n−1
∑

ℓ=1

(n−k)T n−k−1T̄ k−1s−1−n FR(s, T ) = −4

∞
∑

n=2

n−1
∑

ℓ=1

(n−k)s−1−nT n−k−1T̄ k−1.

(6.1)
This is fundamental for the following result.

Proposition 6.2. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X), s ∈ H and ‖T‖ < |s|, the series in Definition
6.1 converges. Moreover, we have

1
∑

j=0

T j
0 (−1)j+1FL(s, T )s

1−j = 2

∞
∑

n=1

(

nT n−1 +

n
∑

k=1

T n−kT̄ k−1

)

s−1−n (6.2)

and
1
∑

j=0

s1−j(−1)j+1FR(s, T )T
j
0 = 2

∞
∑

n=1

s−1−n

(

nT n−1 +
n
∑

k=1

T n−kT̄ k−1

)

, (6.3)

where the left and right F- resolvent operators are defined in (2.7).

Proof. First of all, we show the convergence of the series. It is sufficient to prove that the series of
the operator norm:

4
∞
∑

n=1

n‖T‖n−1s−1−n.

is convergent. This follows from computations similar to those in the proof of Proposition 5.5.
Now we prove equality (6.2). By formulas (6.1) we know how to expand in series FL(s, T ), thus we
have

1
∑

j=0

T j
0 (−1)j+1FL(s, T )s

1−j = 4

∞
∑

n=2

n−1
∑

k=1

(n−k)T n−k−1T̄ k−1s−n−4T0

∞
∑

n=2

n−1
∑

k=1

(n−k)T n−k−1T̄ k−1s−1−n.

12



Now, to show equality (6.2) is enough to prove the following equality

4T0

∞
∑

n=2

n−1
∑

k=1

(n − k)T n−k−1T̄ k−1s−1−n

= 4
∞
∑

n=2

n−1
∑

k=1

(n− k)T n−k−1T̄ k−1s−n − 2
∞
∑

n=1

nT n−1s−1−n − 2
∞
∑

n=1

n
∑

k=1

T n−kT̄ k−1s−1−n.

At this point, we are going to manipulate the series in the left hand side of the previous equality
in order to obtain the terms in the right hand side. By using the relation: 2T0 = T + T̄ , we obtain

4T0

∞
∑

n=2

n−1
∑

k=1

(n− k)T n−k−1T̄ k−1s−1−n

= 2
∞
∑

n=2

n
∑

k=1

(n− k)T n−kT̄ k−1s−1−n + 2
∞
∑

n=2

n−1
∑

k=1

(n− k)T n−k−1T̄ ks−1−n

= 2

∞
∑

ℓ=3

ℓ−1
∑

k=1

(ℓ− k − 1)T ℓ−1−kT̄ k−1s−ℓ + 2

∞
∑

ℓ=3

ℓ−1
∑

α=2

(ℓ− α)T ℓ−α−1T̄α−1s−ℓ

= 2
∞
∑

ℓ=3

ℓ−1
∑

k=1

(ℓ− k)T ℓ−1−kT̄ k−1s−ℓ − 2
∞
∑

ℓ=3

ℓ−1
∑

k=1

T ℓ−1−kT̄ k−1s−ℓ + 2
∞
∑

ℓ=3

ℓ−1
∑

α=1

(ℓ− α)T ℓ−α−1T̄α−1s−ℓ+

− 2
∞
∑

ℓ=3

(ℓ− 1)T ℓ−2s−ℓ,

where in the second equality we change indexes in the first sum with ℓ = n + 1, as well as, in the
second sum with ℓ = n + 1 and k = α − 1. Now, starting the first and the third series from ℓ = 2
we get

4T0

∞
∑

n=2

n−1
∑

k=1

(n− k)T n−k−1T̄ k−1s−1−n

= 2

∞
∑

ℓ=2

ℓ−1
∑

k=1

(ℓ− k)T ℓ−1−kT̄ k−1s−ℓ − 2s−2 − 2

∞
∑

ℓ=3

ℓ−1
∑

k=1

T ℓ−1−kT̄ k−1s−ℓ

+ 2
∞
∑

ℓ=2

ℓ−1
∑

α=1

(ℓ− α)T ℓ−α−1T̄α−1s−ℓ − 2s−2 − 2
∞
∑

ℓ=3

(ℓ− 1)T ℓ−2s−ℓ

= 4

∞
∑

n=2

n−1
∑

k=1

(n− k)T nl−k−1T̄ k−1s−n − 2

∞
∑

ℓ=2

(ℓ− 1)T ℓ−2s−ℓ − 2

∞
∑

ℓ=2

ℓ−1
∑

k=1

T ℓ−1−kT̄ k−1s−ℓ

= 4
∞
∑

n=2

n−1
∑

k=1

(n− k)T n−k−1T̄ k−1sn − 2
∞
∑

ℓ=1

nT n−1s−n−1 − 2
∞
∑

n=1

n
∑

k=1

T n−kT̄ k−1s−n−1,

where the last equality is obtained by the change of indexes in the second and in the third series
with n = ℓ− 1. By similar arguments it is possible to prove (6.3). �

Corollary 6.3. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X), s ∈ H and ‖T‖ < |s|, then
1
∑

j=0

T j
0 (−1)j+1FL(s, T )s

1−j = 2n

∞
∑

n=1

(

1
∑

k=0

T k
0 (−1)k(n+ 1− 2k)Qn−1−k(T, T̄ )

)

s−1−n

13



and
1
∑

j=0

s1−j(−1)j+1FR(s, T )T
j
0 =

∞
∑

n=1

s−1−n

(

1
∑

k=0

T k
0 (−1)k(n+ 1− 2k)Qn−1−k(T, T̄ )

)

.

Proof. This result follows by Proposition 6.2 and from the fact that we can write the right D-kernel

operator in terms of Qℓ(q, q̄) =
2

(ℓ+1)(ℓ+2)

∑ℓ
j=0(ℓ− j + 1)T ℓ−j T̄ j, see Proposition 5.7. �

Now, we can give the following

Definition 6.4 (P2-resolvent operators). Let T = T0 +
∑3

i=1 eiTi ∈ BC(X). For s ∈ ρS(T ), we
define the left P2-resolvent operator as

PL
2 (s, T ) =

1
∑

j=0

T j
0 (−1)j+1FL(s, T )s

1−j ,

and the right P2-resolvent operator as

PR
2 (s, T ) =

1
∑

j=0

s1−j(−1)j+1FR(s, T )T
j
0 .

Lemma 6.5. Let T = T0 +
∑3

i=1 eiTi ∈ BC(X). Then

• the left P2-resolvent operator is a B(X)-valued right slice hyperholomorphic function of the
variable s in ρS(T );

• the right P2-resolvent operator is a B(X)-valued left slice hyperholomorphic function of the
variable s in ρS(T ).

Proof. It follows by similar arguments of Proposition 4.2. �

Definition 6.6 (Polyanalytic functional calculus of order 2 on the S-spectrum). Let T = T0 +
∑3

i=1 eiTi ∈ BC(X) and set dsJ = ds(−J) for J ∈ S. For every function f̆0 = Df with f ∈
SHL(σS(T )), we set

f̆0(T ) =
1

2π

∫

∂(U∩CJ )
PL
2 (s, T ) dsJ f(s), (6.4)

where U ⊂ dom(f) and J ∈ S is an arbitrary imaginary unit.

For every f̆0 = fD with f ∈ SHR(σS(T )), we set

f̆0(T ) =
1

2π

∫

∂(U∩CJ )
f(s) dsJ PR

2 (s, T ), (6.5)

where U and J are as above.

By following a similar methodology developed in [13, Theorem 4.6] we have the following result

Theorem 6.7. The polyanlytic functional calculus of order 2 on the S-spectrum is well defined,
i.e., the integrals (6.4) and (6.5) depend neither on the imaginary unit J ∈ S nor on the slice
Cauchy domain U .

7. Concluding remarks

This is a seminal work about a polyanalytic functional calculus of order 2. In this paper we have
introduced its definition and we have showed that it is well defined. In a forthcoming paper, we will
show more properties for this functional calculus. For example, in this setting a resolvent equation
holds. This is useful to prove a product rule and it is also crucial to generate the Riesz projectors.
Moreover, we aim to study other polyanalytic functional calculi with orders bigger than two. Using

14



the techniques and strategies developed in this paper, we cannot consider a polyanalytic functional
calculus of order more than two.
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