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Abstract
Well-posedness à la Friedrichs is proved for a class of degenerate Kolmogorov equa-
tions associated to stochastic Allen–Cahn equations with logarithmic potential. The
thermodynamical consistency of the model requires the potential to be singular and
the multiplicative noise coefficient to vanish at the respective potential barriers, mak-
ing thus the corresponding Kolmogorov equation not uniformly elliptic in space.
First, existence and uniqueness of invariant measures and ergodicity are discussed.
Then, classical solutions to some regularised Kolmogorov equations are explicitly
constructed. Eventually, a sharp analysis of the blow-up rates of the regularised solu-
tions and a passage to the limit with a specific scaling yield existence à la Friedrichs
for the original Kolmogorov equation.
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1 Introduction

Modelling the evolution of multiphase materials - e.g. binary fluid mixtures, metallic
alloys, heterogenous human tissues - has become fundamental in the last decades in
numerous fields such as Material Science, Biology, and Engineering. One of the well-
established mathematical ways of describing phase-separation is the so-called diffuse
interface, or phase-field, approach. This consists in introducing a phase-variable u, or
order parameter, with values in [−1, 1]: the regions {u = 1} and {u = −1} represent
the pure phases, and it is assumed that there is a narrow blurred interfacial layer in
between, where u can take also the intermediate values (−1, 1). Such description
has been firstly proposed by Cahn and Hilliard [15] to model conserved dynamics
of spinodal decomposition in metallic alloys, and since then has been extensively
employed in several contexts.

One of the classical phase-field models for non-conserved phase-separation is the
Allen–Cahn equation: this has been originally introduced in the context of Van oder
Waals theory of phase transition and has then been employed by Allen and Cahn in [3]
for describing growth of grains in crystalline materials close to their melting points.
In its classical form, the deterministic Allen–Cahn equation reads

∂t u − ν�u + F ′(u) = f in (0, T ) × D, (1.1)

where D is a smooth bounded domain in R
d (d = 2, 3), T > 0 is a given reference

time, f is a suitable forcing term, and ν > 0 is a given constant depending on the
structural data such as the thickness of the separation layer. The equation is usually
complemented with a given initial datum, and homogeneous boundary conditions of
Neumann or Dirichlet type. The nonlinearity F ′ represents the derivative of a double-
well potential F , which is required to be singular at ±1 by the thermodynamical
consistency of the model: the relevant choice for F is indeed the so-called Flory-
Huggins logarithmic potential [32] given by

Flog(r) := θ

2
[(1 + r) ln(1 + r) + (1 − r) ln(1 − r)] − θ0

2
r2, r ∈ (−1, 1), (1.2)
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where 0 < θ < θ0 are fixed constant related to the critical temperature of the material
in consideration. Note that Flog is continuous on [−1, 1], with two global minima
in (−1, 1), while F ′

log blows up at the potential barriers ±1. This is coherent with
the physical interpretation of diffuse-interface modelling in which only the values of
the variable u ∈ [−1, 1] are meaningful. The Allen–Cahn equation can also be seen
as the gradient flow with respect to the L2(D)-metric of the associated free-energy
functional

E(u) :=
∫
D

(ν

2
|∇u|2 + F(u)

)
, (1.3)

where the former energy contribution penalises for high oscillations of u while the
latter takes into account the typical mixing/demixing effects.

Due to the singularity of the derivative F ′, for mathematical simplicity the double-
well potential F is often approximated by a smooth one in polynomial form. Let us
stress that although this may be useful in the mathematical treatment of the equation,
it is a severe drawback on the modelling side: for example, such choice does not
even ensure the preservation of the physically relevant bound u ∈ [−1, 1] in general.
For this reason, throughout the paper we deal only with thermodynamically relevant
potentials such as the logarithmic one (1.2), as required by the model.

The deterministic Allen–Cahn equation provides a good description of the evo-
lution of the phase separation. Nonetheless, it presents some disadvantages. Indeed,
it is not general enough to capture possible unpredictable effects which may affect
phase-separation, such as thermal fluctuations, magnetic disturbances, or microscopic
configurational phenomena. These can be taken into account by adding a Wiener
noise in the equation, as suggested originally in the well celebrated stochastic Cook
model for phase-separation [17] and then confirmed in several contributions (see e.g.
[10, 11]). By allowing for a stochastic Wiener-type forcing in (1.1), we deal with the
stochastic Allen–Cahn equation in the general form

⎧⎪⎨
⎪⎩
du − ν�u dt + F ′(u) dt = B(u) dW in (0, T ) × D,

αdu + αn∂nu = 0 in (0, T ) × ∂D,

u(0) = u0 in D,

(1.4)

where W is a cylindrical Wiener process defined on a certain separable Hilbert space
and B is a suitable stochastically integrable operatorwith respect toW . The parameters
αd , αn ∈ {0, 1} are such that αd + αn = 1 and are thus responsible for the choice of
Dirichlet or Neumann boundary conditions.

In the case of a logarithmic relevant potential (1.2), well-poseness for the stochastic
Allen–Cahn equation with Neumann boundary conditions has been addressed for the
first time in the very recent contribution [7]. Qualitative studies on the associated ran-
dom separation principle have then been analysed in [8]. Roughly speaking, the novel
idea to overcome the singularity of F ′ was to employ a degenerate noise coefficient B
that vanishes at the potential barriers ±1 in such a way to compensate the blow up of
F ′′: existence of analytically strong solutions (see Definition 2.2 below) is obtained
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for initial data satisfying

u0 ∈ V ∩ A, A :=
{
v ∈ L2(D) : |v(x)| ≤ 1 for a.e. x ∈ D

}
,

whereV is either H1(D) or H1
0 (D), depending on the boundary condition. Themethod

is quite robust, in the sense that it has been applied also to different singular phase-field
type equations: let us mention, above all, the contributions [25, 31] on the stochas-
tic thin-film equation, [49] on the stochastic Cahn-Hilliard equation with degenerate
mobility, and [6] on the stochastic Allen–Cahn equation with single obstacle potential.

In general, themathematical literature on stochastic phase-fieldmodels is becoming
increasingly popular, both in the analytical and probabilistic communities. We refer,
for example, to the works [35, 44] on the stochastic Allen–Cahn equation, and to [20,
47, 48] on the stochastic Cahn–Hilliard equation, as well as to the references therein.

The aim and novelty of the present paper is to investigate the elliptic Kolmogorov
equations associated to the stochastic dynamics given by (1.4) on the Hilbert space
H := L2(D). Themotivations are numerous. In particular, theKolmogorov equation is
intrinsically connected with the long-time behaviour of solutions and ergodicity of the
stochastic system (1.4). Indeed, provided to prove existence of invariant measures for
the associated transition semigroup, the Kolmogorov operator is the natural candidate
to be its respective infinitesimal generator.

For the stochastic Allen–Cahn Eq. (1.4), setting Q := BB∗ the Kolmogorov equa-
tion reads

αϕ(x) − 1

2
Tr

[
Q(x)D2ϕ(x)

]
+ (−�x + F ′(x), Dϕ(x)

)
H = g(x), x ∈ Astr ,

(1.5)
where α is a fixed positive constant, g ∈ C0

b (H) is a given forcing, and

Astr := {
v ∈ V ∩ A : −�v + F ′(v) ∈ H

}
.

Note that the nonlinear condition on x ∈ Astr is necessary. Indeed, the singularity of
the derivative F ′ in (1.2) forces the solution u to take values in (−1, 1): consequently,
the respective Kolmogorov Eq. (1.5) only makes sense on the bounded subsetAstr of
H .

The main severely pathological behaviour of Eq. (1.5) is that the second-order dif-
fusion operator is not uniformly elliptic in space: this is due to the degeneracy of B
at the boundary ∂A, which is needed in order to solve the SPDE (1.4), as pointed
out above. Of course, such degeneracy has important consequences on the mathe-
matical analysis of (1.5), as in general one cannot expect to obtain solutions with
some reasonable space-regularity. This inevitably calls for the introduction of weaker
notions of solutions which are better suited to incorporate such lack of control: the
idea is to employ so-called solutions à la Friedrichs (see Proposition 4.4 below), which
are defined, roughly speaking, as limits of classical solutions in suitable topologies.
Clearly, one needs to properly identify which is the natural functional setting in order
to pass to the limit. In this direction, a preliminary study on long-time behaviour and
ergodicity for the transition semigroup associated to (1.4) reveals that every invariant
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measure is concentrated on the bounded subset Astr . This suggests that the natural
functional setting that allows to pass to the limit in the sense of Friedrichs is the one
of Lebesgue spaces associated to some invariant measure for the SPDE (1.4), since
invariant measures for (1.4) basically “ignore” the behaviour of ϕ outside Astr .

The second difficulty that comes in play concerns the multiplicative nature of the
covariance operator Q. Indeed, in order to pass to the limit in the sense of Friedrichs,
one has to sharply balance the convergence of some regularised operators Qλ,n to
Q with the explosion of the second derivatives of the respective classical solutions
ϕλ,n , as the regularisation parameters λ and n vanish. Intuitively speaking, if one is
able to show that the convergence rate of Qλ,n − Q dominates the explosion rate of
D2ϕλ,n , a passage to the limit yields existence of solutions for the limit Kolmogorov
Eq. (1.5) à la Friedrichs. Of course, this calls for a sharp analysis on the explosion
and convergence rates of the approximating classical solutions with respect to their
respective regularising parameters.

The literature on long-time behaviour and ergodicity for stochastic systems is
extremely developed. A very general study on ergodicity and Kolmogorov equations
for stochastic evolution equations in variational form with additive noise was carried
out by Barbu and Da Prato [5] in a very general setting. Still in the framework of
variational approach to ergodicity of SDPEs, we can mention the contributions [41]
on Poisson-type noise and [38] in the case of semilinear equations with singular drift.
An extensive literature on ergodicity and Kolmogorov equations in the mild setting
has been growing in the last decades, for which we refer to the works [16, 18, 22, 51].
In particular, in the context of semilinear reaction-diffusion equations existence and
uniqueness of invariant measures, as well as moment estimates, are obtained in Ref.
[29, 30]. For stochastic porous media equations we refer to the recent contribution
[26]. Ergodicity for stochastic damped Schrödinger equation has been studied in [13,
14, 27], while long-time behaviour for Euler- and Navier-Stokes-type equations has
been addressed, among many others, in [9, 21, 33, 34, 46].

Concerning Kolmogorov equations with degenerate covariance operator Q, well-
posedness results are significantly less developed. To the best of our knowledge, the
main available contributions so far concern the parabolic Kolmogorov equations asso-
ciated to semilinear stochastic equations: through the notion of generalised solutions
existence is obtained “by hand” via regular dependence of the SPDE on the initial
datum, by exploiting some suitable smoothness assumptions on the nonlinearities
in play. For further detail we refer the reader to [23, Sect. 7.5]. In the same spirit,
parabolic Kolmogorov equations associated to stochastic PDEs with multiplicative
noise are dealt with in Ref. [19], still under appropriate smoothness requirements
on the coefficients or nondegeneracy conditions on the covariance. More generally,
the study of Kolmogorov equations associated to stochastic PDEs has become cru-
cial in the last years in the direction of uniqueness and regularisation by noise. Let
us point out, above all, the recent contributions [42] on non-explosion for SDEs via
Stratonovich noise and [1] on a BSDE approach to uniqueness by noise.

Let us conclude by briefly summarise the content of the paper. In Sect. 2 we intro-
duce the mathematical setting, state the main assumptions, and recall the available
well-posedness results. Section 3 is devoted then to the study of invariant measures
and ergodicity for Eq. (1.4): in particular, we show existence of (possibly ergodic and
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strongly mixing) invariant measures, we provide sufficient conditions for uniqueness,
and we characterise their support. In Sect. 4 we focus on the Kolmogorov equation
associated to (1.4). In particular, we first introduce the Kolmogorov operator, as well
as some suitable regularised Kolmogorov equations, depending on two approximating
parameters. Secondly, we construct classical solutions to such regularised equations
“by hand”, by exploiting appropriate regular dependence on the initial data for the
corresponding regularised SPDEs. Eventually, we obtain uniform estimates on the
approximated solutions and sharp blow-up rates on their derivatives, allowing us to
prove existence of solution for the original Eq. (1.5) through a passage to the limit
on a specific scaling of the parameters. This shows well-posedness à la Friedrichs for
the Kolmogorov equation, and characterises the Kolmogorov operator as the infinites-
imal generator of the transition semigroup in some Lebesgue space associated to
some invariant measure. Eventually, Appendices A–B contain useful estimates on the
stochastic Allen–Cahn Eq. (1.4) and a density result used in the proofs, respectively.

2 Mathematical framework

2.1 Notation and setting

For any real Banach space E , we denote its dual by E∗. The duality pairing between
E and E∗ will be indicated by 〈·, ·〉E . For any real Hilbert space H we denote by ‖·‖H
and (·, ·)H the norm and the scalar product respectively. Given any two Banach spaces
E and F , we use the symbol L(E, F) for the space of all linear bounded operators
form E to F . Furthermore, we write E ↪→ F , if E is continuously embedded in
F . If H and K are separable Hilbert spaces, we employ the symbol LHS(H , K ) for
the space of Hilbert-Schmidt operators from H to K . For any topological space E ,
the Borel σ -algebra on E is denoted by B(E). All measures on E are intended to be
defined on its Borel σ -algebra. The spaces of bounded Borel-measurable and bounded
continuous functions on E will be denoted by Bb(E) and C0

b (E) respectively.
If (A,A, μ) is a finite measure space, we denote by L p(A; E) the space of p-

Bochner integrable functions, for any p ∈ [1,∞). For a fixed T > 0, we denote by
C0([0, T ]; E) the space of strongly continuous functions from [0, T ] to E .

If quantities a, b ≥ 0 satisfy the inequality a ≤ C(A)b with a constant C(A) > 0
depending on the expression A, we write a �A b; for a generic constant we put no
subscript. If we have a �A b and b �A a, we write a �A b.

Throughout the paper, D ⊂ R
d , d = 2, 3, is a bounded domain with Lipschitz

boundary � and Lebesgue measure denoted by |D|. The coefficients αd , αn ∈ {0, 1}
are such that αd + αn = 1: the case (αd , αn) = (1, 0) corresponds to Dirichlet
boundary conditions, while (αd , αn) = (0, 1) yields Neumann boundary conditions.
We introduce the functional spaces

H := L2(D)
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and

V :=
{
H1
0 (D) if (αd , αn) = (1, 0),

H1(D) if (αd , αn) = (0, 1),

Z :=
{
H2(D) ∩ H1

0 (D) if (αd , αn) = (1, 0),{
v ∈ H2(D) : ∂nv = 0 a.e. on �

}
if (αd , αn) = (0, 1).

all endowedwith their natural respective norms ‖·‖H , ‖·‖V , and ‖·‖Z . Identifying the
Hilbert space H with its dual through the Riesz isomorphism, we have the following
continuous, dense and compact inclusions

Z ↪→ V ↪→ H � H∗ ↪→ V ∗ ↪→ Z∗.

In particular, (V , H , V ∗) constitutes a Gelfand triple. The norm of the continuous
inclusion V ↪→ H will be denoted by K0: note that K0 can be estimated by means of
Poincaré-type inequalities in terms of the first positive eigenvalue of the Laplacian.

We recall that the Laplace operator with homogeneous (Dirichlet or Neumann)
conditions can be seen either as a variational operator

−� ∈ L(V , V ∗), 〈−�u, v〉V :=
∫
D

∇u · ∇v, u, v ∈ V ,

or as an unbounded linear operator on H with effective domain Z . In the sequel wewill
use the same symbol−� to denote the Laplace operator intended both as a variational
operator and as an operator defined from Z with values in H .

Let (�,F ,P) be a probability space, U a separable real Hilbert space, with a
given orthonormal basis (ek)k∈N, and W a canonical cylindrical Wiener processes
taking values in U and adapted to a filtration F satisfying the usual conditions.
Given p, q ∈ [1,+∞), T > 0, and a Banach space E , we denote by the sym-
bol L p (�; Lq(0, T ; E)) the space of E-valued progressively measurable processes

X : � × (0, T ) → E such that E
(∫ T

0 ‖X(s)‖qE ds
)p/q

< +∞. When E is a sepa-

rable Hilbert space, p ∈ (1,+∞), and q = +∞, the symbol L p (�; L∞(0, T ; E∗))
denotes the space of weak star measurable random variables X : � → L∞ (0, T ; E∗)
such that E ‖X‖p

L∞(0,T ;E∗) < +∞, which by [28, Thm. 8.20.3] is isomorphic to the

dual of L
p

p−1
(
�; L1(0, T ; E)

)
.

2.2 Assumptions

Let us state the set of Assumptions that will be used throughout the paper. We work
in an analogous framework as the one of [7].

H1 The potential F : [−1, 1] → [0,∞) satisfies the following conditions:

(i) F ∈ C0([−1, 1]) ∩ C3(−1, 1) and F ′(0) = 0,
(ii) there exists K > 0 such that F ′′(r) ≥ −K for all r ∈ (−1, 1),
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(iii) it holds that

lim
r→(±1)∓

F ′(r) = ±∞.

In this setting, note that conditions (i)–(iii) ensure the existence of constants C0,C1 >

0 such that
F ′(r)r ≥ C0r

2 − C1. (2.1)

It is straightforward to see that the logarithmic potential (1.2) (up to some additive
constant) satisfies conditions (i)–(iii).

H2 Let {hk}k∈N ⊂ C1([−1, 1]) satisfy for every k ∈ N that hk(±1) = 0 and

CB :=
∑
k∈N

(
‖hk‖2C1([−1,1]) +

∥∥∥h2k F ′′
∥∥∥
L∞(−1,1)

)
< ∞. (2.2)

SettingA := {v ∈ H : |v(x)| ≤ 1 for a.e. x ∈ D}, condition (2.2) implies that the
operator

B : A → LHS(U , H), B(x)ek := hk(x), x ∈ A, k ∈ N, (2.3)

is well-defined and Lipschitz-continuous. Indeed, this amounts to saying that

B(x)e :=
∑
k∈N

(e, ek)Uhk(x), x ∈ A, e ∈ U ,

and (2.2) yields by a direct computation (see e.g. [7, Sect. 2]) that

‖B(x)‖2LHS(U ,H) ≤ CB |D| ∀ x ∈ A, (2.4)

‖B(x) − B(y)‖2LHS(U ,H) ≤ CB |D|‖x − y‖2H ∀ x, y ∈ A. (2.5)

2.3 Well posedness results

The existence and uniqueness of solutions to problem (1.4) is proved in Ref. [7] in the
case of Neumann boundary conditions and exclusively for relevant case of logarithmic
potential (1.2). One can easily check that the same results hold true in the case of
Dirichlet boundary conditions and under the more general assumption H1 for F , by
using (2.2) (see e.g. [49] for details). We recall here the main well posedness results.

Definition 2.1 Let

u0 ∈ L2(�,F0; H), P{u0 ∈ A} = 1. (2.6)
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A variational solution to problem (1.4) is a process u such that, for every T > 0,

u ∈ L2 (�;C([0, T ]; H)) ∩ L2
(
�; L2(0, T ; V )

)
, (2.7)

F ′(u) ∈ L2
(
�; L2(0, T ; H)

)
, (2.8)

and for all ψ ∈ V it holds that, for every t ≥ 0, P-a.s.,

∫
D
u(t)ψ + ν

∫ t

0

∫
D

∇u(s) · ∇ψ(s) ds +
∫ t

0

∫
D
F ′(u(s))ψ ds

=
∫
D
u0ψ +

∫
D

(∫ t

0
B(u(s)) dW (s)

)
ψ. (2.9)

Definition 2.2 Let

u0 ∈ L2 (�,F0; V ) , P{u0 ∈ A} = 1. (2.10)

An analitically strong solution to problem (1.4) is a process u such that, for every
T > 0,

u ∈ L2(�;C([0, T ]; H)) ∩ L2 (
�; L∞(0, T ; V )

) ∩ L2
(
�; L2(0, T ; Z)

)
,

(2.11)

F ′(u) ∈ L2(�; L2(0, T ; H)), (2.12)

and it holds that, for every t ≥ 0, P-a.s.,

u(t) − ν

∫ t

0
�u(s) ds +

∫ t

0
F ′(u(s)) ds = u0 +

∫ t

0
B(u(s)) dW (s). (2.13)

The well-posedness result following from [7, Thm. 2.1] is the following.

Theorem 2.3 AssumeH1–H2. For every u0 satisfying (2.6) there exists a unique vari-
ational solution to (1.4) in the sense of Definition 2.1. Furthermore, for every T > 0
there exists a positive constant CT such that, for every initial data u10, u

2
0 satisfying

(2.6) the respective variational solutions u1, u2 of (1.4) satisfy

‖u1 − u2‖L2(�;C([0,T ],H))∩L2(�;L2(0,T ,V )) ≤ CT ‖u10 − u20‖L2(�;H). (2.14)

Moreover, for every u0 satisfying (2.10) there exists a unique analytically strong solu-
tion to (1.4) in the sense of Definition 2.2.
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3 Invariant measures

This section is devoted to the long-time analysis of the stochastic Eq. (1.4), in terms
of existence-uniqueness of invariant measures and ergodicity. Before moving on, we
recall some general definitions that will be used in the sequel.

For every x ∈ A, the unique variational solution to Eq. (1.4) as given in Theorem2.3
will be denoted by ux , and for every t ∈ [0, T ] we set u(t; x) := ux (t) for its value
at time t . Note that for every t ∈ [0, T ] u(t; x) : � → H is a random variable in
L2(Ft ; H).

Themain issue in defining the concept of invariant measure in our framework is that
Eq. (1.4) can be solved only if the initial datum satisfies a nonlinear type condition (see
(2.6)). In this direction, it is useful to extend F to +∞ outside [−1, 1], and obtain a
proper convex lower semicontinuous function F : R → [0,+∞]. With this notation,
we have the characterisation (see again H2)

A = {
x ∈ H : ‖x‖L∞(D) ≤ 1

} =
{
x ∈ H : F(x) ∈ L1(D)

}
. (3.1)

We claim that A is a Borel subset of H . Indeed, one has that

A =
⋃
n∈N

{
x ∈ H :

∫
D
F(x) ≤ n

}
,

where the right-hand side is a countable union of closed sets in H by lower semicon-
tinuity of F , hence is a Borel subset of H . The equality in (3.1) follows from the fact
that the domain of F is exactly [−1, 1].

We consider on A the metric d given by the restriction to A of the metric on H
induced by the H -norm. BeingA a closed subspace of the complete separable metric
space (H , ‖ · ‖H ), (A,d) is also complete and separable.

The space (A,d) is therefore a separable complete metric space. We denote by
B(A) the σ -algebra of all Borel subsets of A and by P(A) the set of all proba-
bility measures on (A,B(A)). Also, the symbol Bb(A) denotes the space of Borel
measurable bounded functions from A to R. If A ∈ B(A), we denote by AC its
complement.

With this notation and by virtue of Theorem 2.3, we can introduce the family of
operators P := (Pt )t≥0 associated to Eq. (1.4) as

(Ptϕ)(x) := E[ϕ(u(t; x))], x ∈ A, ϕ ∈ Bb(A). (3.2)

Remark 3.1 Let us point out oncemore that, due to the nonlinear nature of the problem,
the solution of Eq. (1.4) exists on A, hence the transition semigroup can only make
sense as a family of operators acting onBb(A), and not onBb(H) as inmore classical
cases.

It is clear that Ptϕ is bounded for every ϕ ∈ Bb(A). We know from [43, Cor. 23]
that the transition function is jointly measurable, that is for any A ∈ B(A) the map
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A×[0,∞) � (x, t) �→ P{u(t; x) ∈ A} ∈ R is measurable. So Ptϕ is also measurable
for every ϕ ∈ Bb(A), hence Pt mapsBb(A) into itself for every t ≥ 0. Furthermore,
since the unique solution of (1.4) is an H -valued continuous process, then it is also
a Markov process, see [43, Theorem 27]. Therefore we deduce that the family of
operators {Pt }t≥0 is a Markov semigroup, namely Pt+s = Pt Ps for any s, t ≥ 0.

We are ready to give the precise definition of invariant measure.

Definition 3.2 An invariant measure for the transition semigroup P is a probability
measure μ ∈ P(A) such that

∫
A

ϕ(x) μ(dx) =
∫
A
Ptϕ(x) μ(dx) ∀ t ≥ 0, ∀ϕ ∈ Cb(A).

3.1 Existence of an invariant measure

We focus here on showing that P admits at least an invariant measure. The main idea
is to use an adaptation of the Krylov-Bogoliubov theorem to the case of complete
separable metric spaces, which we prove here for clarity. The proof is an adaptation
of the one in the more classical Hilbert space setting, which can be found in [24,
Thm. 11.7].

Theorem 3.3 (Krylov-Bogoliubov) Let R := {Rt }t≥0 be a time-homogeneousMarkov
semigroup on the complete separable metric space (A, d). Assume that

(i) the semigroup {Rt }t≥0 is Feller in A;
(ii) for some x0 ∈ A, the set (μt )t>0 ⊂ P(A) given by

μt (A) := 1

t

∫ t

0
(Rs111A)(x0) ds, A ∈ B(A), t > 0, (3.3)

is tight. Then there exists at least one invariant measure for R.

Proof By the Prokhorov Theorem (see e.g. [12, Vol. II, Thm 8.6.2]) there exists a
subsequence {tn}n with limn→∞ tn = ∞ and a probability measure μ ∈ P(A) such
that

lim
n→∞

∫
A

ϕ(x) μtn (dx) =
∫
A

ϕ(x) μ(dx) ∀ϕ ∈ Cb(A).

By (3.3) and the Fubini Theorem the above expression is equivalent to

lim
n→∞

1

tn

∫ tn

0
(Rtϕ)(x0) dt =

∫
A

ϕ(x) μ(dx) ∀ϕ ∈ Cb(A). (3.4)

Given s ≥ 0 and ψ ∈ Cb(A), we have that Rsψ ∈ Cb(A) by the Feller property.
Hence, we can choose ϕ = Rsψ in (3.4) and infer that

lim
n→∞

1

tn

∫ tn

0
(Rt+sψ)(x0) dt =

∫
A
Rsψ(x) μ(dx) ∀ψ ∈ Cb(A). (3.5)
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Now, bearing in mind equality (3.4) we have

1

tn

∫ tn

0
(Rt+sψ)(x0) dt = 1

tn

∫ s+tn

s
(Rtψ)(x0) dt

= 1

tn

∫ tn

0
(Rtψ)(x0) dt + 1

tn

∫ s+tn

tn
(Rtψ)(x0) dt − 1

tn

∫ s

0
(Rtψ)(x0) dt

−→
∫
A

ψ(x) μ(dx) as tn → ∞.

Taking this into account in the left had side of (3.5) shows that μ is invariant. ��

We are now ready to show that the transition semigroup P of Eq. (1.4) admits
invariant measures.

Theorem 3.4 Assume H1–H2. Then, the transition semigroup P is Feller and admits
at least one invariant measure.

Proof The result is a consequence of the Krylov-Bougoliuov Theorem 3.3, provided
that we check that P is Feller and the tightness property.
(i). Let us show first that P is Feller: this follows directly the continuous dependence
of the solution on the initial data. Indeed, let t > 0 and ϕ ∈ Cb(A) be fixed. We
have to prove that, given a sequence (xn)n ⊂ A which converges in A to x ∈ A as
n → ∞, the sequence Ptϕ(xn) converges to Ptϕ(x) as n → ∞. As a consequence of
the continuous dependence property w.r.t. the initial datum (2.14), we have that

‖u(t; xn) − u(t; x)‖L2(�;H) ≤ ‖uxn − ux‖L2(�;C([0,t];H)) ≤ Ct‖xn − x‖H

It follows that, as n → ∞, u(t; xn) → u(t; x) in L2(�; H), hence also in probability.
This in turn implies that ϕ(u(t; xn)) → ϕ(u(t; x)) in probability by the continuity of
ϕ. The boundedness of ϕ and the Vitali Theorem yield in particular that ϕ(u(t; xn)) →
ϕ(u(t; x)) in L1(�), and thus

|(Ptϕ)(xn) − (Ptϕ)(x)| ≤ E [|ϕ(u(t; xn)) − ϕ(u(t; x))|] → 0,

as n → ∞. This shows that P is Feller.
(ii). We prove now that P satisfies the tightness property of Theorem 3.3. To this end,
let x0 = 0 ∈ A and let ux0 be the corresponding variational solution of problem (1.4).
We are going to show that the family of measures (μt )t>0 ⊂ P(A) defined by

μt : A �→ 1

t

∫ t

0
(Ps111A)(0) ds = 1

t

∫ t

0
P {u(t; 0) ∈ A} ds, A ∈ B(A), t > 0,

is tight. Let Bn be the closed ball in V of radius n ∈ N, and set B̄n := Bn ∩ A.
Then B̄n is a compact subset of A since the embedding V ↪→ H is compact. Hence,
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Lemma A.1 and the Chebychev inequality yield, for any t > 0,

μt (B̄
C
n ) = 1

t

∫ t

0
(Ps111B̄C

n
)(0) ds = 1

t

∫ t

0
P

{
‖u(s; 0)‖2V ≥ n2

}
ds

≤ 1

tn2

∫ t

0
E‖u(s; 0)‖2V ds �C1,CB ,|D|,ν

1

n2
,

from which

sup
t>0

μt (B
C
n ) �C1,CB ,|D|,ν

1

n2
→ 0 as n → ∞,

and the thesis follows. ��

3.2 Support of the invariant measures

Once existence of invariant measures is establishes, we focus here on some qualitative
properties of the invariant measures concerning their support. In particular, we show
that every invariant measure is supported in a more regular set than just A. To this
end, we introduce the set

Astr := {
x ∈ A ∩ Z : F ′(x) ∈ H

}
. (3.6)

Proceeding as for (3.1) and exploiting the lower semicontinuity of |F ′|, one can show
that Astr is a Borel subset of H , hence of A.

Proposition 3.5 AssumeH1–H2. Then, there exists a constant C > 0, only depending
on C0, C1, CB, |D|, ν, K , and K0, such that every invariant measure μ ∈ P(A) for
the transition semigroup P satisfies

∫
A

(
‖x‖2Z + ‖F ′(x)‖2H

)
μ(dx) ≤ C . (3.7)

In particular, every invariant measure μ is supported in Astr , i.e. μ(Astr ) = 1.

Proof Let μ ∈ P(A) be an invariant measure for the transition semigroup P .
Step 1. First we note that the definition of A itself trivially implies that μ has finite
moments of any order on H . More precisely, it holds that

‖x‖L∞(D) ≤ 1 ∀ x ∈ A,

which readily ensures by the embedding L∞(D) ↪→ H that

∫
A

‖x‖2H dμ(x) ≤ |D|. (3.8)

123



294 Stoch PDE: Anal Comp (2024) 12:281–325

Step 2. Now we show that ∫
A

‖x‖2V μ(dx) ≤ C . (3.9)

To this end, we consider the mapping � : A → [0,+∞] defined as

� : x �→ ‖x‖2V111A∩V (x) + ∞ 111A∩VC (x), x ∈ A,

and its approximations {�n}n∈N, where for every n ∈ N �n : A → [0, n2] is defined
(setting BV

n as the closed ball of radius n in V ) as

�n : x �→
{

‖x‖2V if x ∈ BV
n ∩ A,

n2 otherwise,
x ∈ A.

It is not difficult to check that actually�n ∈ Bb(A) for every n ∈ N. Hence, exploiting
the invariance of μ, the boundedness of �n , the Definition (3.2) of P , and the Fubini-
Tonelli Theorem we have that

∫
A

�n(x) μ(dx) =
∫ 1

0

∫
A

�n(x) μ(dx) ds =
∫ 1

0

∫
A
Ps�n(x) μ(dx) ds

=
∫ 1

0

∫
A
E [�n(u(s; x))] μ(dx) ds =

∫
A

∫ 1

0
E [�n(u(s; x))] ds μ(dx).

Since

�n(·) = ‖ · ‖2V ∧ n2 ≤ ‖ · ‖2V ,

by Lemma A.1 and (3.8) we infer that

∫
A

�n(x) μ(dx) ≤
∫
A

∫ 1

0
E

[
‖u(s; x)‖2V

]
ds μ(dx)

�
∫
A

‖x‖2H μ(dx) + 1 ≤ C .

Since �n converges pointwise and monotonically from below to �, the Monotone
Convergence Theorem yields (3.9).
Step 3. We prove now that ∫

A
‖x‖2Z μ(dx) ≤ C . (3.10)

To this end, we argue as in Step 2, considering the map � : A → [0,+∞] defined
as

� : x �→ ‖x‖2Z111A∩Z (x) + ∞ 111A∩ZC (x), x ∈ A,
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and its approximations {�n}n∈N, where for every n ∈ N �n : A → [0, n2] is defined
(setting BZ

n as the closed ball of radius n in Z ) as

�n : x �→
{

‖x‖2Z if x ∈ BZ
n ∩ A,

n2 otherwise,
x ∈ A.

Again, one has that �n ∈ Bb(A) for every n ∈ N. Hence, arguing as above by using
the invariance ofμ, the boundedness of�n , the definition of P , and the Fubini-Tonelli
Theorem, exploiting the fact that μ is concentrated on A ∩ V by (3.9) yields

∫
A

�n(x) μ(dx) =
∫
A∩V

�n(x) μ(dx) =
∫
A∩V

∫ 1

0
E [�n(u(s; x))] ds μ(dx)

≤
∫
A∩V

∫ 1

0
E

[
‖u(s; x)‖2Z

]
ds μ(dx).

Lemma A.2 together with the estimate (3.9) entail then

∫
A

�n(x) μ(dx) �
∫
A

‖x‖2V μ(dx) + 1 ≤ C .

The Monotone Convergence Theorem establish then (3.10).
Step 4. Eventually, we show here that

∫
A

‖F ′(x)‖2H μ(dx) ≤ C (3.11)

by arguing as above. Define � : A → [0,+∞] as

� : x �→
{

‖F ′(x)‖2H if F ′(x) ∈ H ,

+∞ otherwise,
x ∈ A,

and its approximations {�n}n∈N, where for every n ∈ N �n : A → [0, n2] is defined
as

�n : x �→
{

‖F ′(x)‖2H if ‖F ′(x)‖H ≤ n,

n2 otherwise,
x ∈ A.

As above, it holds that �n ∈ Bb(A) for every n ∈ N. Using the the invariance of μ,
the boundedness of �n , the definition of P , the Fubini-Tonelli Theorem, and the fact
that μ is concentrated on A ∩ V , we infer that

∫
A

�n(x) μ(dx) =
∫
A∩V

�n(x) μ(dx) =
∫
A∩V

∫ 1

0
E [�n(u(s; x))] ds μ(dx)

≤
∫
A∩V

∫ 1

0
E

[
‖F ′(u(s; x))‖2H

]
ds μ(dx).
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At this point, Lemma A.3 implies directly that

∫
A

�n(x) μ(dx) ≤ C,

and (3.11) follows from the Monotone Convergence Theorem. ��

3.3 Existence of an ergodic invariant measure

Let us recall first the definition of ergodicity for the transition semigroup P . In this
direction, note that for every invariant measure μ, by density and by definition of
invariance the semigroup P can be extended (with the same symbol for brevity) to
a strongly continuous linear semigroup of contractions on L p(A, μ) for every p ∈
[1,+∞).

Definition 3.6 An invariant measure μ ∈ P(A) for the semigroup P is said to be
ergodic if

lim
t→∞

1

t

∫ t

0
Psϕ ds =

∫
A

ϕ(x) μ(dx) in L2(A, μ) ∀ϕ ∈ L2(A, μ).

The estimate (3.7) implies that the set of ergodic invariant measures is not empty.
More precisely, we have the following result.

Proposition 3.7 Assume H1–H2. Then, there exists an ergodic invariant measure for
the transition semigroup P.

Proof It is well known (see e.g. [2, Theorem 19.25]) that for an arbitrary Markov
transition semigroup {Pt }t≥0, the ergodic measures are precisely the extreme points of
the (possibly empty) convex set of its invariant measures. On the other hand, the Krein-
Milman Theorem (see e.g. [2, Theorem 7.68]) characterizes the convex compact sets,
in locally convex Hausdorff spaces, as closed convex hull of its extreme points. Let
us denote by � ⊂ P(A) the convex set of all invariant measures for the Markov
semigroup {Pt }t≥0. In Theorem 3.4 we proved that � is non empty, thus, in view of
the above discussion, it only remains to show that its closure is compact or equivalently
that� is tight. By estimate (3.7) in Proposition 3.5 we know that there exists a constant
C , depending on the structural data, such that

∫
A

‖x‖2V μ(dx) ≤ C ∀μ ∈ �.

Therefore, using the samenotation of the proof of Theorem3.4, by theMarkov inequal-
ity we infer that

sup
μ∈�

μ
(
B̄C
n

)
= sup

μ∈�

μ({x ∈ A : ‖x‖V > n}) ≤ 1

n2
sup
μ∈�

∫
A

‖x‖2V μ(dx) ≤ C

n2
→ 0,

123



Stoch PDE: Anal Comp (2024) 12:281–325 297

as n → ∞. Hence � is tight and admits extreme points, which are ergodic invariant
measures for P . ��

3.4 Uniqueness of the invariant measure

Intuitively, uniqueness of invariantmeasures depends on how dissipative the stochastic
Eq. (1.4) really is. Here, we show that for a “large enough” diffusion coefficient ν, the
invariant measure is unique and stronglymixing, according to the following definition.

Definition 3.8 An invariant measure μ ∈ P(A) for the semigroup P is said to be
strongly mixing if

lim
t→∞ Ptϕ =

∫
A

ϕ(x) μ(dx) in L2(A, μ) ∀ϕ ∈ L2(A, μ).

Theorem 3.9 Assume H1–H2 and suppose that

α0 := ν

(
1

K 2
0

− 1

)
− CB

2
− K > 0. (3.12)

Then, there exists a unique invariant measureμ for the transition semigroup P. More-
over, μ is ergodic and strongly mixing.

Remark 3.10 Note that condition (3.12) is relevant since K0 ∈ (0, 1) by definition of
K0 itself. Roughly speaking, the dissipativity inequality (3.12) is satisfied either when
the diffusion coefficient ν is large enough or when the structural coefficient K0 is small
enough. For the latter case, we recall that K0 depends exclusively on the domain D,
and can be estimated in terms of the first positive eigenvalue of the Laplacian operator
on D (according to the boundary conditions).

Proof of Theorem 3.9 Let x, y ∈ A and letux , uy be the respective variational solutions
to problem (1.4). Setting w := ux − uy , the Itô formula for the square of the H norm
of w yields for every t ≥ 0, P-almost surely, that

1

2
‖w(t)‖2H + ν

∫ t

0
‖∇w(s)‖2H ds +

∫ t

0

(
F ′(ux (s)

) − F ′ (uy(s)), w(s)
)
H ds

= 1

2
‖x − y‖2H + 1

2

∫ t

0
‖B (

ux (s)
) − B

(
uy(s)

) ‖2LHS(U ,H) ds

+
∫ t

0
(w(s),

(
B(ux (s)) − B(uy(s))

)
dW (s))H . (3.13)

Using the Lipschitz continuity of the operator B in H2 we estimate

1

2

∫ t

0
‖B(u(s)) − B(v(s))‖2LHS(U ,H) ds ≤ CB

2

∫ t

0
‖w(s)‖2H ds,
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while exploiting assumption H1 we have that

∫ t

0

(
F ′(ux (s)

) − F ′ (uy(s)
)
, w(s))H ds ≥ −K

∫ t

0
‖w(s)‖2H ds.

Noting that the last term in (3.13) is a square integrable martingale thanks to (2.4) and
the regularity of w, taking expectations we infer that

1

2
E ‖w(t)‖2H + ν E

∫ t

0
‖∇w(s)‖2H ds

≤ 1

2
‖x − y‖2H +

(
CB

2
+ K

)
E

∫ t

0
‖w(s)‖2H ds.

It follows that

1

2
E ‖w(t)‖2H + ν E

∫ t

0
‖w(s)‖2V ds

≤ 1

2
‖x − y‖2H +

(
CB

2
+ K + ν

)
E

∫ t

0
‖w(s)‖2H ds,

hence also, thanks to the continuous inclusion V ↪→ H , that

1

2
E ‖w(t)‖2H + α0 E

∫ t

0
‖w(s)‖2H ds ≤ 1

2
‖x − y‖2H .

Now, exploiting the fact that x, y ∈ A, hence in particular ‖x − y‖L∞ ≤ 2, by the
Gronwall lemma we obtain

E ‖(ux − uy)(t)‖2H ≤ e−α0t‖x − y‖2H ≤ 4|D|e−α0t ∀ t ≥ 0, ∀ x, y ∈ H . (3.14)

Consequently, let μ be an invariant measure for {Pt }t≥0. For any ϕ ∈ C1
b(H) and

x ∈ A, by definition of invariance and the estimate (3.14) we have

∣∣∣∣Pt (ϕ|A)(x) −
∫
A

ϕ(y) μ(dy)

∣∣∣∣
2

≤ ‖Dϕ‖2∞
∫
A
E

[
‖ux (t) − uy(t)‖2H

]
μ(dy)

≤ 2|D|‖Dϕ‖2∞e−α0t

uniformly in x . Since C1
b(H)|A is dense in L2(A, μ), we deduce that

∣∣∣∣Ptϕ(x) −
∫
A

ϕ(y) μ(dy)

∣∣∣∣ → 0 as t → ∞, ∀ϕ ∈ L2(A, μ),

that is the strong mixing property holds true. Notice that the above computation easily
implies also the uniqueness of the invariant measure. Indeed, let π be another invariant
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measure, then for all ϕ ∈ C1
b(H) we have

∣∣∣∣
∫
A

ϕ(y) μ(dy) −
∫
A

ϕ(x) π(dx)

∣∣∣∣
=

∣∣∣∣
∫
A

∫
A

(
Pt (ϕ|A)(y) − Pt (ϕ|A)(x)

)
π(dx)μ(dy)

∣∣∣∣
≤ 2|D|‖Dϕ‖2∞e−α0t → 0 as t → ∞.

The fact that the unique invariant measure is also ergodic follows fromProposition 3.7,
and this concludes the proof. ��

4 Analysis of the Kolmogorov equation

In this section we focus on the Kolmogorov operator associated to the stochastic Eq.
(1.4). We aim at characterising the infinitesimal generator of the transition semigroup
P in terms of the closure of the Kolmogorov operator associated to (1.4) in the space
L2(A, μ), where μ is an invariant measure for P .

Throughout the section, we assume H1–H2 and μ is an invariant measure for the
semigroup P . We have already pointed out that P extends by density to a strongly
continuous linear semigroup of contractions on L2(A, μ), which will be denoted by
the same symbol P for convenience. As such, for the semigroup P on L2(A, μ) it is
well defined the infinitesimal generator (L, D(L)), namely

D(L) :=
{
ϕ ∈ L2(A, μ) : lim

t→0+
Ptϕ − ϕ

t
exists in L2(A, μ)

}

and

−Lϕ := lim
t→0+

Ptϕ − ϕ

t
in L2(H , μ), ϕ ∈ D(L).

Themain issue that we address is to characterise the infinitesimal generator (L, D(L))

in terms of the Kolmogorov operator associated to (1.4).

4.1 The Kolmogorov operator

We define the Kolmogorov operator (L0, D(L0)) associated to the stochastic Eq. (1.4)
as follows. We set

D(L0) := C2
b (H)|A =

{
ϕ ∈ Cb(A) : ∃ ψ ∈ C2

b (H) : ϕ(x) = ψ(x) ∀ x ∈ A
}

.
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and

L0ϕ(x) := −1

2
Tr[B(x)∗D2ϕ(x)B(x)] + (−�x + F ′(x), Dϕ(x))H ,

x ∈ Astr , ϕ ∈ D(L0).

Note that the definition of the domain of L0 through restrictions on A is essential, as
the operators B and F ′ are not defined on the whole H . More specifically, let us stress
that not even considering x ∈ A is enough: this is because F ′(x) makes sense in H
only for x ∈ Astr , and not for any x ∈ A.

We note that for every ϕ ∈ D(L0), with this definition the element L0ϕ is actually
well defined as an element in L2(A, μ). Indeed, thanks to the estimate (2.4) one has,
for every y ∈ Astr , that

|L0ϕ(y)| ≤ ‖ϕ‖C2
b (H)

(
‖B(y)‖2LHS(U ,H) + ∥∥F ′(y)

∥∥
H + ‖�y‖H

)

≤ ‖ϕ‖C2
b (H)

(
CB + ∥∥F ′(y)

∥∥
H + ‖�y‖H

)
,

so that the estimate (3.7) yields that

L0ϕ ∈ L2(A, μ) ∀ϕ ∈ D(L0).

The fact that L0ϕ is explicitly defined only on Astr , and not on A, is irrelevant when
working in L2(A, μ) since μ(Astr ) = 1. It follows then that (D(L0), L0) is a linear
unbounded operator on the Hilbert space L2(A, μ).

The elliptic Kolmogorov equation associated to (1.4) reads

αϕ(x) + L0ϕ(x) = g(x), x ∈ Astr , (4.1)

where α > 0 is a given coefficient and g : A → R is a given datum.
The first natural result is the following.

Lemma 4.1 In this setting, it holds that D(L0) ⊂ D(L) and

Lϕ(x) = L0ϕ(x) for μ-a.e. x ∈ A, ∀ϕ ∈ D(L0).

Remark 4.2 As we have already point out above, notice that in this identity the expres-
sion L0ϕ(x) makes sense for μ-almost every x ∈ A (and not just in Astr ) by virtue
of Proposition 3.5, which ensures indeed that μ(Astr ) = 1.

Proof of Lemma 4.1 Let x ∈ A∩V and letu := ux be the respective unique analytically
strong solution to (1.4). Then, for every ϕ ∈ D(L0) the Itô formula yields directly, for
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every t ≥ 0,

Eϕ(u(t)) + E

∫ t

0
(−ν�u(s) + F ′(u(s)), Dϕ(u(s)))H ds

= Eϕ(x) + 1

2
E

∫ t

0
Tr

[
B(u(s))∗D2ϕ(u(s))B(u(s))

]
ds.

Since u(t) ∈ A P-almost surely for every t ≥ 0, this yields

Ptϕ(x) − ϕ(x) +
∫ t

0
Ps(L0ϕ)(x) ds = 0 ∀ x ∈ A. (4.2)

Since L0ϕ ∈ L2(A, μ) and P is strongly continuous on L2(A, μ), this implies

s �→ Ps(L0ϕ) ∈ C([0, t]; L2(A, μ)),

from which it follows that

lim
t→0+

1

t

∫ t

0
Ps(L0ϕ) ds = L0ϕ in L2(A, μ).

This shows by comparison in (4.2) that ϕ ∈ D(L). Moreover, dividing by t and taking
the limit in L2(A, μ) as t → 0+ in the identity (4.2), we get that

−Lϕ(x) + L0ϕ(x) = 0 for μ-a.e. x ∈ A,

and we conclude. ��

4.2 A regularised Kolmogorov equation

Afirstmain issue thatwe aimat addressing is to investigate existence and uniqueness of
strong solutions to the Kolmogorov Eq. (4.1) in L2(A, μ). However, some preliminary
preparations are necessary. In particular, we construct here a family of regularised
Kolmogorov equations that approximate (4.1) and for which we are actually able to
show existence of classical solutions on the whole space H . This will be done by
using a double approximation of the operators: one in the parameter λ > 0, which
basically removes the singularity of F ′ and allows to work on H rather than just A,
and one in the parameter n ∈ N, which conveys enough smoothness to the operators
themselves.

Due to the presence of the multiplicative noise, in order to tackle the Kolmogorov
equation, in the current Sect. 4.2 we shall need the following reinforcement of assump-
tion H2, namely:
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H2’ The sequence {hk}k∈N is included also inC2([−1, 1]) and satisfies for every k ∈ N

that h′
k(±1) = 0. Moreover, it holds that

C ′
B :=

∑
k∈N

‖h′′
k‖2C([−1,1]) < ∞. (4.3)

4.2.1 First approximation

Thanks to the assumption H1, the function

β : (−1, 1) → R, β(r) := F ′(r) + Kr , r ∈ (−1, 1), (4.4)

is continuous non-decreasing, hence can be identified to a maximal monotone graph
in R × R. In particular, for every λ > 0 it is well defined its resolvent operator
Jλ := (I + λβ)−1 : R → (−1, 1), i.e. for every r ∈ R, Jλ(r) is the unique element in
(−1, 1) such that Jλ(r) + λβ(Jλ(r)) = r . The Yosida approximation of β is defined
as βλ : R → R, βλ(r) := β(Jλ(r)), r ∈ R. We recall that βλ is Lipschitz-continuous
and non-decreasing: for further properties on monotone and convex analysis we refer
to [4].
Let also ρ ∈ C∞

c (R) with sup(ρ) = [−1, 1], ρ ≥ 0, ‖ρ‖L1(R) = 1, and set

ρλ : R → R, ρλ(r) := λ−1ρ(λ−1r), r ∈ R, λ > 0,

so that (ρλ)λ>0 is a usual sequence of mollifiers on R. Let us set for convenience

cρ := ∥∥ρ′∥∥
L1(R)

.

Let us construct the approximated operators. First of all, for λ > 0 we define the
λ-regularised potential Fλ : R → [0,+∞) as

Fλ(x) := F(0) − K

2
|x |2 +

∫ x

0
(ρλ2�βλ)(y) dy, x ∈ R.

Note that one has
F ′

λ(x) = (ρλ2�βλ)(x) − Kx, x ∈ R, (4.5)

and from the properties of the Yosida approximation and convolutions it is not difficult
to show that

|F ′′
λ (x)| ≤ K + 1

λ
∀ x ∈ R, |F ′′′

λ (x)| ≤ cρ

λ3
∀ x ∈ R. (4.6)

For clarity, let us use a separate notation for the superposition operator induced by the
Lipschitz real function F ′

λ on the Hilbert space H , namely we set

Fλ : H → H , (Fλ(v))(x) := F ′
λ(v(x)) for a.e. x ∈ D, v ∈ H .
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Since F ′
λ ∈ C∞(R) by definition and has bounded derivatives of any order, thanks

to the continuous embedding V ↪→ L6(D) and the dominated convergence theorem,
Fλ can be shown to be twice Fréchet differentiable in H along directions of V : more
precisely, this means that for every x ∈ H there exist two operators

DFλ(x) ∈ L(V , H), D2Fλ(x) ∈ L(V ;L(V , H)) ∼= L2(V × V ; H)

such that

lim‖h‖V →0

‖Fλ(x + h) − Fλ(x) − DFλ(x)[h]‖H
‖h‖V = 0,

lim‖h‖V →0

∥∥DFλ(x + h) − DFλ(x) − D2Fλ(x)[h, ·]∥∥L(V ,H)

‖h‖V = 0.

In particular, one has that

DFλ(x)[h] = F ′′
λ (x)h, x ∈ H , h ∈ V ,

D2Fλ(x)[h1, h2] = F ′′′
λ (x)h1h2, x ∈ H , h1, h2 ∈ V ,

so that (4.6) yields, for a constant c > 0 only depending on ρ, K , and D,

‖DFλ(x)‖L(V ,H) ≤ c

(
1 + 1

λ

)
∀ x ∈ H , (4.7)

∥∥∥D2Fλ(x)
∥∥∥L(V ;L(V ,H))

≤ c

λ3
∀ x ∈ H . (4.8)

As far as the operator B is concerned, for every k ∈ N we first extend hk to
h̃k : R → R by setting

h̃k(x) :=
{
hk(x) if x ∈ [−1, 1],
0 otherwise,

k ∈ N.

In this way, by assumptions H2 and H2’ it is clear that {h̃k}k∈N ⊂ W 2,∞(R), and we
define then

hk,λ := ρλγ �h̃k, k ∈ N, λ > 0,

where γ > 0 is a prescribed fixed rate coefficient that will be chosen later. The reason
of introducing γ here may sound not intuitive at this level, and will be clarified in the
following sections: roughly speaking, γ is needed in order to suitable compensate for
the blow-up in (4.8). With these definitions, we set then

Bλ : H → LHS(U , H), Bλ(x)ek := hk,λ(x), x ∈ H , k ∈ N. (4.9)
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Clearly, for every λ it holds that {hk,λ}k∈N ⊂ C∞
c (R) and, by the properties of convo-

lutions and assumptions H2 and H2’, for every λ > 0 it holds that

∑
k∈N

∥∥hk,λ∥∥2C2(R)
≤

∑
k∈N

‖h̃k‖2W 2,∞(R)
=

∑
k∈N

‖hk‖2C2([−1,1]) ≤ CB + C ′
B . (4.10)

It follows in particular that for every λ > 0 the operator Bλ constructed above is√
CB-Lipschitz continuous and bounded. Also, similarly as above one can check that

Bλ is twice Fréchet differentiable along the directions of V , in the sense that for every
x ∈ H there exist two operators

DBλ(x) ∈ L(V ,LHS(U , H)),

D2Bλ(x) ∈ L(V ;L(V ,LHS(U , H))) ∼= L2(V × V ;LHS(U , H))

such that

lim‖h‖V →0

‖Bλ(x + h) − Bλ(x) − DBλ(x)[h]‖LHS(U ,H)

‖h‖V = 0,

lim‖h‖V →0

∥∥DBλ(x + h) − DBλ(x) − D2Bλ(x)[h, ·]∥∥L(V ,LHS(U ,H))

‖h‖V = 0.

More precisely, it holds that

DBλ(x)[z]ek = h′
k,λ((x))z, x ∈ H , z ∈ V , k ∈ N,

D2Bλ(x)[z1, z2]ek = h′′
k,λ((x))z1z2, x ∈ H , z1, z2 ∈ V , k ∈ N.

From the continuous embedding V ↪→ L6(D), condition (4.10) ensures the existence
of a constant c independent of λ such that

‖DBλ(x)‖2L(V ,LHS(U ,H)) ≤ CB ∀ x ∈ H , (4.11)∥∥∥D2Bλ(x)
∥∥∥2L(V ,L(V ,LHS(U ,H)))

≤ c ∀ x ∈ H . (4.12)

Furthermore, it is not difficult to see that actually Bλ is alsoGâteaux differentiable from
the whole H to LHS(U , H), and DBλ is Gâteaux differentiable along the directions
of L4(D), so that for every x ∈ H DBλ(x) and D2Bλ(x) extend to well defined
operators in the spaces L(H ,LHS(U , H)) and L(L4(D),L(L4(D),LHS(U , H))),
respectively. Again by (4.10) we also have then

‖DBλ(x)‖2L(H ,LHS(U ,H)) ≤ CB ∀ x ∈ H , (4.13)∥∥∥D2Bλ(x)
∥∥∥2L(L4(D),L(L4(D),LHS(U ,H)))

≤ c ∀ x ∈ H . (4.14)
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4.2.2 Second approximation

While the approximation in λ is enough for proving well posedness of the stochastic
Eq. (1.4), in order to approximate the Kolmogorov Eq. (4.1) we needmore smoothness
on the coefficients. In this direction, we shall rely on some smoothing operators in
infinite dimensions. Let now λ > 0 be fixed.

Let C be the unbounded linear operator (I − �) on H with effective domain Z
(note that the definition of Z includes either Dirichlet or Neumann boundary condi-
tions, according to αd and αn). Then, C is linear maximal monotone, coercive on V ,
and −C generates a strongly continuous semigroup of contractions (e−tC)t≥0 on H .
Furthermore, since we are working in dimension d = 2, 3, it is possible to show that
C−1 ∈ LHS(H , H): this follows from the fact that the eigenvalues {λk}k of C satisfy
λk ≈ 1+ k2/d as k → ∞. We consider the Ornstein-Uhlenbeck transition semigroup
R := (Rt )t≥0 given by

Rtϕ(x) :=
∫
H

ϕ
(
e−tCx + y

)
NQt (dy), ϕ ∈ Bb(H),

where

Qt :=
∫ t

0
e−sCC−2e−sC ds = 1

2
C−3

(
I − e−2tC) , t ≥ 0. (4.15)

Note that Qt is trace class on H for every t ≥ 0 and

Tr(Qt ) ≤
∥∥∥C−1

∥∥∥2LHS(U ,H)
t ∀ t ≥ 0. (4.16)

Moreover, if {ck}k is a complete orthonormal system of H made of eigenfunctions of
C, with eigenvalues {λk}k , one has

∥∥∥Q−1/2
t e−tCck

∥∥∥
H

= √
2λ3/2k

e−λk t

(1 − e−2λk t )1/2
≤

√
2

t3/2
max
r>0

r3/2e−r

(1 − e−2r )1/2
,

from which it follows, thanks to the characterisation of null-controllability in [23,
Prop. B.2.1], that

e−tC(H) ⊂ Q1/2
t (H) and

∥∥∥Q−1/2
t e−tC

∥∥∥L(H ,H)
≤ C

t3/2
, ∀ t > 0. (4.17)

Thanks to (4.17), it is well known (see [23, Thm. 6.2.2]) that R is strong Feller, in the
sense that for every ϕ ∈ B(H) and t > 0 it holds that Rtϕ ∈ UC∞

b (H), as well as
Rtϕ(x) → ϕ(x) for every x ∈ H as t → 0+. It is natural then to introduce, for every
n ∈ N, the regularisations

Fλ,n : H → H , Bλ,n : H → LHS(U , H),
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as

Fλ,n(x) :=
∫
H
e−C

n Fλ

(
e−C

n x + y
)
NQ1/n (dy), x ∈ H , (4.18)

Bλ,n(x) :=
∫
H
e
− C

nδ Bλ

(
e
− C

nδ x + y

)
NQ1/nδ (dy), x ∈ H , (4.19)

where δ > 0 is a positive rate coefficient that will be chosen later on. Again, as for
the case of γ in the λ-approximation, the need of allowing for a general rate δ will be
needed to suitably compensate the blow-up of Fλ,n .

It follows for every n ∈ N that the approximated operators satisfy Fλ,n ∈
C∞(H ; H), Bλ,n ∈ C∞(H ;LHS(U , H)) and have bounded derivatives of any order.
Moreover, since e−C/n(H) ⊂ Z ⊂ V and Fλ and Bλ are twice differentiable along
directions of V , for every n ∈ N and for every x, z, z1, z2 ∈ H it holds that

DFλ,n(x)[z] :=
∫
H
e−C

n DFλ

(
e−C

n x + y
) [

e−C
n z

]
NQ1/n (dy),

DBλ,n(x)[z] :=
∫
H
e
− C

nδ DBλ

(
e
− C

nδ x + y

)[
e
− C

nδ z

]
NQ1/nδ (dy),

and

D2Fλ,n(x)[z1, z2] :=
∫
H
e−C

n D2Fλ

(
e−C

n x + y
) [

e−C
n z1, e

−C
n z2

]
NQ1/n (dy),

D2Bλ,n(x)[z1, z2] :=
∫
H
e
− C

nδ D2Bλ

(
e
− C

nδ x + y

)[
e
− C

nδ z1, e
− C

nδ z2

]
NQ1/nδ (dy).

In particular, from assumption H1, the non-expansivity of e−C/n and the estimates
(4.13)–(4.14) we have that

(DFλ,n(x)[z], z)H ≥ −K ‖z‖2H ∀ x, z ∈ H , (4.20)∥∥DBλ,n(x)
∥∥2L(H ,LHS(U ,H))

≤ CB ∀ x ∈ H , (4.21)
∥∥∥D2Bλ,n(x)

∥∥∥2L(L4(D),L(L4(D),LHS(U ,H)))
≤ c ∀ x ∈ H , (4.22)

wherewe note that all constants K ,CB , and c are independent of λ and n. Furthermore,
exploiting the estimate (4.8) and the fact that V = D(C1/2), for every x, z1, z2 ∈ H
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we infer that
∥∥∥D2Fλ,n(x)[z1, z2]

∥∥∥
H

≤
∫
H

∥∥∥D2Fλ(e
−C

n x + y)
∥∥∥L(V ,L(V ,H))

∥∥∥e−C
n z1

∥∥∥
V

∥∥∥e−C
n z1

∥∥∥
V

NQ1/n (dy)

≤ c

λ3

∥∥∥e−C
n z1

∥∥∥
V

∥∥∥e−C
n z1

∥∥∥
V

� 1

λ3
n1/2 ‖z1‖H n1/2 ‖z2‖H .

It follows that there exists a positive constant c > 0, independent of n and λ, such that

∥∥∥D2Fλ,n(x)
∥∥∥L(H ,L(H ,H))

≤ c
n

λ3
∀ x ∈ H . (4.23)

Analogously, thanks to the continuous embedding H3/4(D) ↪→ L4(D) in dimensions
d = 2, 3, one has that D(C3/8) ↪→ L4(D): hence, proceeding as above and using
(4.14) instead, one gets for every x, z1, z2 ∈ H that

∥∥∥D2Bλ,n(x)[z1, z2]
∥∥∥
H

≤
∫
H

∥∥∥∥D2Bλ(e
− C

nδ x + y)

∥∥∥∥L(L4(D),L(L4(D),LHS(U ,H)))

×
∥∥∥∥e− C

nδ z1

∥∥∥∥
L4(D)

∥∥∥∥e− C
nδ z1

∥∥∥∥
L4(D)

NQ1/nδ (dy)

≤ c

∥∥∥∥e− C
nδ z1

∥∥∥∥
L4(D)

∥∥∥∥e− C
nδ z1

∥∥∥∥
L4(D)

� n
3
8 δ ‖z1‖H n

3
8 δ ‖z2‖H .

It follows that there exists a positive constant c > 0, independent of n and λ, such that

∥∥∥D2Bλ,n(x)
∥∥∥L(H ,L(H ,LHS(U ,H)))

≤ cn
3
4 δ ∀ x ∈ H . (4.24)

4.2.3 Construction of classical solutions

Let now λ > 0 and n ∈ N be fixed. For every x ∈ H the doubly approximated
stochastic equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

duλ,n(t) − ν�uλ,n(t) dt + Fλ,n(uλ,n(t)) dt

= Bλ,n(uλ,n(t)) dW (t) in (0, T ) × D,

αduλ,n + αn∂nuλ,n = 0 in (0, T ) × �,

uλ,n(0) = x in D,

(4.25)
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admits a unique solution uλ,n = uxλ,n ∈ L p(�;C([0, T ]; H) ∩ L2(0, T ; V )), for all
p ≥ 2 and T > 0. Moreover, due to the smoothness of the coefficients Fλ,n and Bλ,n ,
by the regular dependence results in [36] (see also [39]) one can infer in particular that
the solution map satisfies, for all T > 0,

Sλ,n : x �→ uxλ,n ∈ C2
b (H ; L2(�;C([0, T ]; H))). (4.26)

Furthermore, for x, z, z1, z2 ∈ H , the derivatives of Sλ,n are given by

DSλ,n(x)[z] = vzλ,n, D2Sλ,n(x)[z1, z2] = w
z1,z2
λ,n ,

where

vzλ,n, w
z1,z2
λ,n ∈ L2

(
�;C([0, T ]; H) ∩ L2(0, T ; V )

)
∀ T > 0

are the unique solutions the stochastic equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dvzλ,n(t) − ν�vzλ,n(t) dt + DFλ,n(uλ,n(t))v
z
λ,n(t) dt

= DBλ,n(uλ,n(t))v
z
λ,n(t) dW (t) in (0, T ) × D,

αdv
z
λ,n + αn∂nv

z
λ,n = 0 in (0, T ) × �,

vzλ,n(0) = z in D,

(4.27)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dwz1,z2
λ,n (t) − ν�w

z1,z2
λ,n (t) dt

+DFλ,n(uλ,n(t))w
z1,z2
λ,n (t) dt

+D2Fλ,n(uλ,n)[vz1λ,n(t), v
z2
λ,n(t)] dt

= DBλ,n(uλ,n(t))w
z1,z2
λ,n (t) dW (t)

+D2Bλ,n(uλ,n(t))[vz1λ,n(t), v
z2
λ,n(t)] dW (t) in (0, T ) × D,

αdw
z1,z2
λ,n + αn∂nw

z1,z2
λ,n = 0 in (0, T ) × �,

w
z1,z2
λ,n (0) = 0 in D.

(4.28)

We are ready now to consider the approximated Kolmogorov equation, which is
the actual Kolmogorov equation associated to the doubly regularised problem (4.25).

We define the regularised Kolmogorov operator
(
D

(
Lλ,n
0

)
, Lλ,n

0

)
by setting

D
(
Lλ,n
0

)
:= C2

b (H)

and

Lλ,n
0 ϕ(x) := −1

2
Tr

[
Bλ,n(x)

∗D2ϕ(x)Bλ,n(x)
]

+ (−�x + F ′
λ,n(x), Dϕ(x)

)
H

,

x ∈ Z , ϕ ∈ D
(
Lλ,n
0

)
.
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Arguing exactly as in Lemma 4.1 but for the stochastic Eq. (4.25), it is straightforward
to see that on C2

b (H) the regularised operator −Lλ,n
0 coincides with the infinitesimal

generator of the transition semigroup Pλ,n =
(
Pλ,n
t

)
t≥0

associated to (4.25), i.e.

Pλ,n
t ϕ(x) := Eϕ(uλ,n(t; x)), x ∈ H , ϕ ∈ C2

b (H).

Thanks to the regular dependence on the initial datum, one is able to obtain well
posedness in the classical sense at λ and n fixed. We collect these results in the
following statement.

Lemma 4.3 In the current setting, there exists a positive constant ᾱ, independent of λ
and n, such that for every α > ᾱ there exists C = C(α) > 0 such that the following
holds: for every g ∈ C1

b(H), the function

ϕλ,n(x) :=
∫ +∞

0
e−αt

E
[
g(uλ,n(t; x))

]
dt, x ∈ H , n ∈ N, λ > 0, (4.29)

satisfies ϕλ,n ∈ C1
b(H) and

∥∥ϕλ,n
∥∥
C1
b (H)

≤ C ‖g‖C1
b (H) ∀ λ > 0, ∀ n ∈ N. (4.30)

Moreover, if the dissipativity condition (3.12) holds and g ∈ C2
b (H), then for every

λ > 0 and n ∈ N it also holds that ϕλ,n ∈ C2
b (H) with

∥∥ϕλ,n
∥∥
C2
b (H)

≤ C
(
1 + n

λ3
+ n

3
4 δ

)
‖g‖C2

b (H) ∀ λ > 0, ∀ n ∈ N, (4.31)

and
αϕλ,n(x) + Lλ,n

0 ϕλ,n(x) = g(x) ∀ x ∈ Z . (4.32)

Proof of Lemma 4.3 It is obvious that ϕλ,n ∈ Cb(H) and

∥∥ϕλ,n
∥∥
Cb(H)

≤ 1

α
‖g‖Cb(H) .

Let x ∈ H and uλ,n := uxλ,n . The Itô formula for the square of the H -norm in (4.27)
yields, exploiting (4.20)–(4.21), that

1

2

∥∥∥vzλ,n(t)
∥∥∥2
H

+ ν

∫ t

0

∥∥∥∇vzλ,n(s)
∥∥∥2
H

ds

≤ 1

2
‖z‖2H +

(
K + CB

2

)∫ t

0

∥∥∥vzλ,n(s)
∥∥∥2
H

ds

+
∫ t

0

(
vzλ,n(s), DBλ,n(uλ,n(s))v

z
λ,n(s) dW (s)

)
H

. (4.33)
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Taking expectations, we readily deduce by the Gronwall lemma that

∥∥∥vzλ,n(t)
∥∥∥2
L2(�;H)

≤ e(2K+CB )t ‖z‖2H ∀ t ≥ 0. (4.34)

If g ∈ C1
b(H), recalling (4.26), by the chain rule one has, for every t ≥ 0, that

x �→ g(uλ,n(t; x)) ∈ C1
b

(
H ; L2(�)

)
,

with

D
(
x �→ g(uλ,n(t; x))

) [z] = Dg(uλ,n(t; x))vzλ,n(t; x), x, z ∈ H .

It follows, thanks to (4.34) that

∥∥D (
x �→ g(uλ,n(t; x))

)∥∥L(H ;L2(�))
≤ ‖g‖C1

b (H) e
(K+CB/2)t ∀ t ≥ 0.

As soon as α > K + CB
2 (recall that K and CB are independent of λ and n), the

dominated convergence theorem implies that ϕλ,n ∈ C1(H) with

Dϕλn (x)[z] =
∫ +∞

0
e−αt

E

[
Dg(uλ,n(t; x))vzλ,n(t; x)

]
dt, z ∈ H ,

and

∥∥Dϕλ,n(x)
∥∥
H ≤ ‖g‖C1

b (H)

∫ +∞

0
e−(α−K−CB/2)t dt ∀ x ∈ H .

Choosing then α > K + CB
2 , this proves that actually ϕλ,n ∈ C1

b(H), as well as the
estimate (4.30).
Let us now further assume (3.12) and that g ∈ C2

b (H). From the Itô formula (4.33),
exploiting the continuous embedding V ↪→ H and the assumption (3.12), one gets
that

1

2

∥∥∥vzλ,n(t)
∥∥∥2
H

+ α0

∫ t

0

∥∥∥vzλ,n(s)
∥∥∥2
H

ds

≤ 1

2
‖z‖2H +

∫ t

0

(
vzλ,n(s), DBλ,n(uλ,n(s))v

z
λ,n(s) dW (s)

)
H

.

Noting that the Burkholder-Davis-Gundy inequality together with (4.21) yield

E sup
r∈[0,t]

∣∣∣∣
∫ r

0

(
vzλ,n(s), DBλ,n(uλ,n(s))v

z
λ,n(s) dW (s)

)
H

∣∣∣∣
2

≤ 4CB E

∫ t

0

∥∥∥vzλ,n(s)
∥∥∥4
H

ds,
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by raising to the square power in Itô’s formula and taking expectations we obtain

E sup
r∈[0,t]

∥∥∥vzλ,n(t)
∥∥∥4
H

≤ 2 ‖z‖4H + 32CB

∫ t

0
E

∥∥∥vzλ,n(s)
∥∥∥4
H

ds.

The Gronwall lemma ensures then that

∥∥∥vzλ,n

∥∥∥4
L4(�;C([0,t];H)

≤ 2e32CBt ‖z‖4H ∀ t ≥ 0. (4.35)

Similarly, using the Itô formula for the square of the H -norm in (4.28), and exploiting
now (4.20)–(4.24) and the Young inequality, we get for a constant C independent of
λ, n that

1

2
E

∥∥∥w
z1,z2
λ,n (t)

∥∥∥2
H

+ ν E

∫ t

0

∥∥∥∇w
z1,z2
λ,n (s)

∥∥∥2
H

ds

≤
(
K + CB

2
+ 1

2

)∫ t

0
E

∥∥∥w
z1,z2
λ,n (s)

∥∥∥2
H

ds

+ C

(
n2

λ6
+ n

3
2 δ

)
E

∫ t

0

∥∥∥v
z1
λ,n(s)

∥∥∥2
H

∥∥∥v
z2
λ,n(s)

∥∥∥2
H

ds.

Exploiting the Hölder inequality together with (4.35), it follows that

1

2
E

∥∥∥w
z1,z2
λ,n (t)

∥∥∥2
H

+ ν E

∫ t

0

∥∥∥∇w
z1,z2
λ,n (s)

∥∥∥2
H

ds

≤
(
K + CB

2
+ 1

2

)∫ t

0
E

∥∥∥w
z1,z2
λ,n (s)

∥∥∥2
H

ds

+ 2C

(
n2

λ6
+ n

3
2 δ

)
‖z1‖2H ‖z2‖2H

∫ t

0
e32CBs ds,

and the Gronwall lemma ensures that, for every t ≥ 0,

∥∥wλ,n(t)
∥∥2
L2(�;H)

≤ 4C

(
n2

λ6
+ n

3
2 δ

)
te(2K+33CB+1)t ‖z1‖2H ‖z2‖2H . (4.36)

Since g ∈ C2
b (H), condition (4.26) and the chain rule give, for every t ≥ 0, that

x �→ g(uλ,n(t; x)) ∈ C2
b

(
H ; L2(�)

)
,
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with

D2 (
x �→ g(uλ,n(t; x))

) [z1, z2]
= Dg

(
uλ,n(t; x)

)
w

z1,z2
λ,n (t; x)

+ D2g
(
uλ,n(t; x)

) [
v
z1
λ,n(t; x), vz2λ,n(t; x)

]
, x, z1, z2 ∈ H .

The estimates (4.35) and (4.36) imply then, possibly renominating the constant C
independently of λ and n, that

∥∥∥D2 (
x �→ g(uλ,n(t; x))

)∥∥∥L2(H×H ;L2(�))

≤ C ‖g‖C2
b (H)

[( n

λ3
+ n

3
4 δ

)√
te

1
2 (2K+33CB+1)t + e16CBt

]
∀ t ≥ 0,

Choosing then

ᾱ := 1

2
(2K + 33CB + 1) ∨ 16CB, (4.37)

(which is independent of λ and n), the dominated convergence theorem implies that
ϕλ,n ∈ C2

b (H) and, for z1, z2 ∈ H ,

D2ϕλn (x)[z1, z2] =
∫ +∞

0
e−αt

E

[
Dg(uλ,n(t; x))wz1,z2

λ,n (t; x)

+ D2g
(
uλ,n(t; x)

) [
v
z1,z2
λ,n (t; x), vz2λ,n(t; x)

]]
dt .

It follows for every x ∈ H that

∥∥∥D2ϕλ,n(x)
∥∥∥L(H ,H)

≤ C
( n

λ3
+ n

3
4 δ

)
‖g‖C2

b (H)

∫ +∞

0
(
√
t + 1)e−(α−ᾱ)t dt,

hence for α > ᾱ this shows that ϕλ,n ∈ C2
b (H), as well as the estimate (4.31).

Eventually, let us show that (4.32) holds. To this end, we readily note from the
stochastic Eq. (4.25) that for every x ∈ Z we have in particular that uλ,n ∈
L2

(
�; L2(0, T ; H)

)
. Hence, the fact that g ∈ C2

b (H), Itô’s formula, and the defi-

nition of Lλ,n
0 readily give for every t ≥ 0 that

E g
(
uλ,n(t)

) +
∫ t

0
E

(
Lλ,n
0 g

) (
uλ,n(s)

)
ds = g(x).

Since −Lλ,n
0 coincides on C2

b (H) with the infinitesimal generator of the transition

semigroup Pλ,n associated to (4.25) (so in particular Lλ,n
0 and Pλ,n commute on
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C2
b (H)), it holds in particular that

∫ t

0
E

(
Lλ,n
0 g

) (
uλ,n(s)

)
ds =

∫ t

0
Pλ,n
s

(
Lλ,n
0 g

)
(x) ds =

∫ t

0
Lλ,n
0

(
Pλ,n
s g

)
(x) ds

= Lλ,n
0

∫ t

0
Pλ,n
s g(x) ds = Lλ,n

0

∫ t

0
E g

(
uλ,n(s)

)
ds,

from which we get that

e−αt
E g

(
uλ,n(t)

) + α

∫ t

0
e−αs

E g
(
uλ,n(s)

)
ds

+ Lλ,n
0

∫ t

0
e−αs

E g
(
uλ,n(s)

)
ds = g(x).

By boundedness of g, letting t → +∞ yields (4.32). This concludes the proof. ��

4.3 Well posedness à la Friedrichs

We are now ready to show that the Kolmogorv Eq. (4.1) is well posed in the sense of
Friedrichs, as rigorously specified in Proposition 4.4 below. This will allow to fully
characterise the infinitesimal generator of the transition semigroup P on L2(A, μ) in
terms of the Kolmogorov operator.

Proposition 4.4 In the current setting, assume the dissipativity condition (3.12), let ᾱ
be as in (4.37), and let α > ᾱ. Then, for every g ∈ L2(A, μ) there exist a unique
ϕ ∈ L2(A, μ) and two sequences {gm}m∈N ⊂ L2(A, μ) and {ϕm}m∈N ⊂ D(L0) such
that

αϕm + L0ϕm = gm μ-a.s. in A, ∀m ∈ N,

and, as m → ∞,

ϕm → ϕ in L2(A, μ), gm → g in L2(A, μ).

In particular, the range of α I + L0 is dense in L2(A, μ).

Proof of Proposition 4.4 Given g ∈ L2(A, μ), we define g̃ : H → R by extending g
to zero outside A, namely

g̃(x) :=
{
g(x) if x ∈ A,

0 if x ∈ H \ A.

Analogously, note that the probability measure μ ∈ P(A) extends (uniquely) to a
probability measure μ̃ ∈ P(H), by setting

μ̃(E) := μ(E ∩ A), E ∈ B(H).
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With this notation, it is clear that g̃ ∈ L2(H , μ̃): by density of C2
b (H) in L2(H , μ̃),

there exists a sequence { f̃ j } j ⊂ C2
b (H) such that (see Lemma B.1)

lim
j→∞ ‖ f̃ j − g̃‖L2(H ,μ̃) = 0. (4.38)

Clearly, setting f j :=
(
f̃ j
)

|A for every j ∈ N, one has that { f j } j∈N ⊂ D(L0) by

definition of D(L0), and also, thanks to the definition of μ̃,

lim
j→∞

∥∥ f j − g
∥∥
L2(A,μ)

= 0. (4.39)

Let j ∈ N be fixed: for every λ > 0 and n ∈ N we set

ϕ̃λ,n, j (x) :=
∫ +∞

0
e−αt

E

[
f̃ j

(
uλ,n(t; x)

)]
dt, x ∈ H ,

and

ϕλ,n, j := (
ϕ̃λ,n, j

)
|A .

Lemma 4.3 ensures, for all λ > 0 and n ∈ N, that ϕ̃λ,n, j ∈ C2
b (H), hence in particular

that ϕλ,n, j ∈ D(L0), and

αϕ̃λ,n, j (x) + Lλ,n
0 ϕ̃λ,n, j (x) = f̃ j (x) ∀ x ∈ H .

It follows that, for every x ∈ Astr ,

αϕλ,n, j (x) + L0ϕλ,n, j (x) = f j (x) + L0ϕλ,n, j (x) − Lλ,n
0 ϕ̃λ,n, j (x). (4.40)

Let now j ∈ N be fixed. For every x ∈ Astr one has that

L0ϕλ,n, j (x) − Lλ,n
0 ϕ̃λ,n, j (x)

= −1

2
Tr

[
B(x)∗D2ϕλ,n, j (x)B(x) − Bλ,n(x)

∗D2ϕλ,n, j (x)Bλ,n(x)
]

+ (
F ′(x) − Fλ,n(x), Dϕλ,n, j (x)

)
H

= −1

2
Tr

[(
B(x)∗ − Bλ,n(x)

∗) D2ϕλ,n, j (x)B(x)
]

− 1

2
Tr

[
Bλ,n(x)

∗D2ϕλ,n, j (x)
(
B(x) − Bλ,n(x)

)]

+ (
F ′(x) − Fλ,n(x), Dϕλ,n, j (x)

)
H .
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It follows from Lemma 4.3 that there exists a constant C > 0, which is independent
of λ, n, and j , such that

|L0ϕλ,n, j (x) − Lλ,n
0 ϕ̃λ,n, j (x)|

≤ ∥∥ϕλ,n, j
∥∥
C2
b (H)

∥∥Bλ,n(x) − B(x)
∥∥2LHS(U ,H)

+ ∥∥ϕλ,n, j
∥∥
C1
b (H)

∥∥Fλ,n(x) − F ′(x)
∥∥
H

≤ C‖ f̃ j‖C2
b (H)

(
1 + n

λ3
+ n

3
4 δ

) ∥∥Bλ,n(x) − B(x)
∥∥2LHS(U ,H)

+ C‖ f̃ j‖C1
b (H)

∥∥Fλ,n(x) − F ′(x)
∥∥
H . (4.41)

Now, let us estimate the two terms on the right hand side. As for the first one, we have
that

∥∥Bλ,n(x) − B(x)
∥∥2LHS(U ,H)

≤ 3

∥∥∥∥Bλ,n(x) − e
− C

nδ Bλ(x)

∥∥∥∥
2

LHS(U ,H)

=: 3I1

+ 3

∥∥∥∥e− C
nδ Bλ(x) − e

− C
nδ B(x)

∥∥∥∥
2

LHS(U ,H)

=: 3I2

+ 3

∥∥∥∥e− C
nδ B(x) − B(x)

∥∥∥∥
2

LHS(U ,H)

=: 3I3.

Exploiting the definition of Bλ,n , the Jensen inequality, and the fact that Bλ is
√
CB-

Lipschitz continuous on H , we have

I1 =
∥∥∥∥Bλ,n(x) − e

− C
nδ Bλ(x)

∥∥∥∥
2

LHS(U ,H)

=
∥∥∥∥
∫
H
e
− C

nδ

(
Bλ

(
e
− C

nδ x + y

)
− Bλ(x)

)
NQ1/nδ (dy)

∥∥∥∥
2

LHS(U ,H)

≤
∫
H

∥∥∥∥Bλ

(
e
− C

nδ x + y

)
− Bλ(x)

∥∥∥∥
2

LHS(U ,H)

NQ1/nδ (dy)

≤ CB

∫
H

∥∥∥∥e− C
nδ x + y − x

∥∥∥∥
2

H
NQ1/nδ (dy)

≤ 2CB

∥∥∥∥e− C
nδ x − x

∥∥∥∥
2

H
+ 2CB

∫
H

‖y‖2H NQ1/nδ (dy)

≤ 4CB ‖x‖H
∥∥∥∥e− C

nδ x − x

∥∥∥∥
H

+ 2CB

∫
H

‖y‖2H NQ1/nδ (dy)
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from which we get, using definition (4.15), estimate (4.16), and the fact that x ∈
Astr ⊂ D(C) = Z with ‖x‖H ≤ |D|1/2,

I1 ≤ 4CB ‖x‖H
∫ 1/nδ

0

∥∥∥e−sCCx
∥∥∥
H

ds + 2CB Tr
(
Q1/nδ

)

≤ 4CB |D|1/2
nδ

‖x‖Z + 2CB

nδ

∥∥∥C−1
∥∥∥2LHS(H ,H)

Possibly renominating C independently of λ, n, and j , this shows that

I1 ≤ C

nδ
(1 + ‖x‖Z ) . (4.42)

As far as I2 is concerned, it is immediate to see, thanks to the non-expansivity of e−tC
and the definition (4.9), that

I2 ≤ ‖Bλ(x) − B(x)‖2LHS(U ,H) =
∑
k∈N

∣∣∣
(
h̃k�ρλγ

)
(x) − hk(x)

∣∣∣2

=
∑
k∈N

∣∣∣
(
h̃k�ρλγ

)
(x) − h̃k(x)

∣∣∣2 ≤ λ2γ
∑
k∈N

∥∥∥h̃′
k

∥∥∥2
L∞(R)

≤ CBλ2γ . (4.43)

Also, we have by the contraction of e− C
nδ and the Hölder inequality that

I3 =
∑
k∈N

∥∥∥∥e− C
nδ hk(x) − hk(x)

∥∥∥∥
2

H
≤ 2

∑
k∈N

‖hk(x)‖H
∥∥∥∥e− C

nδ hk(x) − hk(x)

∥∥∥∥
H

≤ 2C1/2
B

⎛
⎝∑

k∈N

∥∥∥∥∥
∫ 1/nδ

0
e−sCChk(x) ds

∥∥∥∥∥
2

H

⎞
⎠

1/2

≤ 2C1/2
B

nδ/2

(∑
k∈N

∫ 1/nδ

0

∥∥∥e−sCChk(x)
∥∥∥2
H

ds

)1/2

≤ 2C1/2
B

nδ

(∑
k∈N

‖Chk(x)‖2H
)1/2

,

where, by definition of C and the regularity of {hk}k , it holds that

‖Chk(x)‖H ≤ ‖hk(x)‖H + ∥∥h′
k(x)�x

∥∥
H +

∥∥∥h′′
k (x)|∇x |2

∥∥∥
H

≤ ‖hk‖C2([−1,1])
(
|D|1/2 + ‖�x‖H +

∥∥∥|∇x |2
∥∥∥
H

)
.

Noting that H2(D) ↪→ W 1,4(D) ↪→ L∞(D), the Gagliardo-Nierenberg interpolation
inequality yields that

‖∇ y‖L4(D) �D,d ‖y‖1/2
H2(D)

‖y‖1/2L∞(D) + ‖y‖L1(D) ∀ y ∈ H2(D),
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hence, recalling that ‖x‖L∞(D) ≤ 1 for all x ∈ Astr , one has

∥∥∥|∇x |2
∥∥∥
H

= ‖∇x‖2L4(D)
�D ‖x‖H2(D) ‖x‖L∞(D) + ‖x‖L1(D) � ‖x‖H2(D) + 1.

Putting this information together, byH2’wededuce that there exists a positive constant
C independent of λ, n, and j , such that

I3 ≤ C

nδ
(1 + ‖x‖Z )

(∑
k∈N

‖hk‖2C2([−1,1])

)1/2

≤ C

nδ
(1 + ‖x‖Z ) . (4.44)

Going back to (4.41), we infer that, possibly renominating the constant C indepen-
dently of λ, n, and j ,

|L0ϕλ,n, j (x) − Lλ,n
0 ϕ̃λ,n, j (x)|

≤ C‖ f̃ j‖C2
b (H)

(
1 + n

λ3
+ n

3
4 δ

)(
1

nδ
+ λ2γ

)
(1 + ‖x‖Z )

+ C‖ f̃ j‖C1
b (H)

∥∥Fλ,n(x) − F ′(x)
∥∥
H .

As for the second term on the right hand side, we proceed as above, getting

∥∥Fλ,n(x) − F ′(x)
∥∥
H ≤

∥∥∥Fλ,n(x) − e−C
n Fλ(x)

∥∥∥
H

=: J1
+

∥∥∥e−C
n Fλ(x) − e−C

n F ′(x)
∥∥∥
H

=: J2
+

∥∥∥e−C
n F ′(x) − F ′(x)

∥∥∥
H

=: J3.

The analogous computations as the term I1 above imply, using the definition (4.18),
the 1

λ
-Lipschitz continuity of Fλ : H → H , and (4.15)–(4.16), that

J1 ≤ 1

λ

∫
H

∥∥∥e−C
n x + y − x

∥∥∥
H

NQ1/n (dy)

≤ 1

λ

∫ 1/n

0

∥∥∥e−C
n Cx

∥∥∥
H

ds + 1

λ

∫
H

‖y‖H NQ1/n (dy)

≤ 1

λn
‖x‖Z + 1

λ

√
Tr(Q1/n) ≤ 1

λn
‖x‖Z + 1

λ
√
n
. (4.45)

Furthermore, the definition of Yosida approximation and (4.5), together with the con-

traction of e−C
n , yield

J2 ≤ ∥∥Fλ(x) − F ′(x)
∥∥
H = ∥∥(ρλ2�βλ)(x) − β(x)

∥∥
H

≤ ∥∥(ρλ2�βλ)(x) − βλ(x)
∥∥
H + ‖βλ(x) − β(x)‖H

≤ λ2
1

λ
+‖βλ(x) − β(x)‖H ≤ λ + ‖βλ(x) − β(x)‖H . (4.46)
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Hence, exploiting (4.38), (4.45), and (4.46) in (4.45), possibly renominating the con-
stant C independently of λ, n, and j , we obtain that

|L0ϕλ,n, j (x) − Lλ,n
0 ϕ̃λ,n, j (x)|

≤ C‖ f̃ j‖C2
b (H)

(1 + ‖x‖Z )

(
1 + n

λ3
+ n

3
4 δ

)(
1

nδ
+ λ2γ

)

+ C‖ f̃ j‖C1
b (H)

[
(1 + ‖x‖Z )

(
λ + 1

λ
√
n

)
+‖βλ(x) − β(x)‖H +

∥∥∥∥e−
C
n F ′(x) − F ′(x)

∥∥∥∥
H

]
,

(4.47)

where the constant C is independent of λ, n, and j . Choosing the specific sequence
λn := n−1/4 in (4.47), we deduce for every j, n ∈ N that

∣∣∣L0ϕλn ,n, j (x) − Lλn ,n
0 ϕ̃λn ,n, j (x)

∣∣∣
≤ C‖ f̃ j‖C2

b (H) (1 + ‖x‖Z )
(
1 + n

7
4 + n

3
4 δ

)(
1

nδ
+ 1

n
γ
2

)

+ C‖ f̃ j‖C1
b (H)

[
2

n
1
4

(1 + ‖x‖Z ) + ∥∥βλn (x) − β(x)
∥∥
H +

∥∥∥e− C
n F ′(x) − F ′(x)

∥∥∥
H

]
.

At this point, if we choose the rate coefficients γ and δ is such a way that

δ >
7

4
, γ >

7

2
, γ >

3

2
δ,

by setting for example

γ := 4, δ := 2,

renominating C independently of n and j it easily follows that

∣∣∣L0ϕλn ,n, j (x) − Lλn ,n
0 ϕ̃λn ,n, j (x)

∣∣∣
≤ C

n
1
4

‖ f̃ j‖C2
b (H) (1 + ‖x‖Z )

+ C‖ f̃ j‖C1
b (H)

[∥∥βλn (x) − β(x)
∥∥
H +

∥∥∥e−C
n F ′(x) − F ′(x)

∥∥∥
H

]
.

Since the right-hand side belongs to L2(A, μ) thanks to Proposition 3.5, this yields
integrating with respect to μ and renominating the constant C as usual that

∥∥∥L0ϕλn ,n, j − Lλn ,n
0 ϕ̃λn ,n, j

∥∥∥2
L2(A,μ)

≤ C

n
1
2

‖ f̃ j‖2C2
b (H)

+ C‖ f̃ j‖2C1
b (H)

∫
H

(∥∥βλn (x) − β(x)
∥∥2
H +

∥∥∥e−C
n F ′(x) − F ′(x)

∥∥∥2
H

)
μ(dx)

(4.48)
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We are ready now to construct the sequence {gm}m∈N. Let m ∈ N be arbitrary. By
virtue of (4.39), we can pick jm ∈ N such that

‖ f jm − g‖L2(A,μ) ≤ 1

m
.

Also, by the properties of theYosida approximation and of the semigroup generated by

−C one has
∥∥βλn (x) − β(x)

∥∥2
H +

∥∥∥e−C
n F ′(x) − F ′(x)

∥∥∥2
H

→ 0 as n → ∞ for all x ∈
Astr . Moreover, since also |βλn | ≤ |β| by the properties of the Yosida approximation

(see [4]), one has that
∥∥βλn (x) − β(x)

∥∥2
H +

∥∥∥e−C
n F ′(x) − F ′(x)

∥∥∥2
H

� ‖β(x)‖2H +∥∥F ′(x)
∥∥2
H �K 1 + ∥∥F ′(x)

∥∥2
H . Consequently, the Proposition 3.5 and the dominated

convergence theorem imply

lim
n→∞

∫
H

(∥∥βλn (x) − β(x)
∥∥2
H +

∥∥∥e−C
n F ′(x) − F ′(x)

∥∥∥2
H

)
μ(dx) = 0.

Hence, given jm as above, we can then choose n = nm ∈ N sufficiently large such
that

1

n
1
2
m

∥∥∥ f̃ jm

∥∥∥2
C2
b (H)

≤ 1

m2

and

‖ f̃ jm‖2
C1
b (H)

∫
H

(∥∥βλn (x) − β(x)
∥∥2
H +

∥∥∥e−C
n F ′(x) − F ′(x)

∥∥∥2
H

)
μ(dx) ≤ 1

m2 .

Setting then

ϕm := ϕλnm ,nm , jm ∈ D(L0),

gm := f jm + L0ϕλnm ,nm , jm − L
λnm ,nm
0 ϕ̃λnm ,nm , jm ∈ L2(A, μ),

thanks to (4.40) one has exactly

αϕm + L0ϕm = gm μ-a.s. in A, ∀m ∈ N,

while the estimate (4.48) yields, by the choices made above,

‖gm − g‖L2(A,μ) ≤ C

m
−→ 0 as m → ∞.

Also, we note that L is accretive in L2(A, μ) because it is the infinitesimal generator
of the semigroup of contractions P on L2(A, μ): hence, since by Lemma 4.1 we know
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that L0 = L on D(L0), it is immediate to deduce that

α
∥∥ϕm1 − ϕm2

∥∥
L2(A,μ)

≤ ∥∥gm1 − gm2

∥∥
L2(A,μ)

∀m1,m2 ∈ N.

It follows that {ϕm}m∈N is Cauchy in L2(A, μ), hence it converges to some ϕ ∈
L2(A, μ). It is not difficult to see by using again the accretivity that ϕ is unique, in
the sense that it does not depend on the sequences {ϕm}m∈N and {gm}m∈N. This finally
concludes the proof of Proposition 4.4. ��

We are now ready to state the main result of this section, which completely charac-
terises the infinitesimal generator of the transition semigroup P on L2(A, μ) in terms
of the Kolmogorov operator L0.

Theorem 4.5 In the current setting, assume the dissipativity condition (3.12). Then,
the Kolmogorov operator L0 is closable in L2(A, μ), and its closure L0 coincides
with the infinitesimal generator L of the transition semigroup P on L2(A, μ).

Proof Since P is a semigroup of contractions in L2(A, μ), its infinitesimal generator
L is m-accretive in L2(A, μ). Since by Lemma 4.1, we know that L0 = L in D(L0),
it follows that L0 is accretive in L2(A, μ), hence closable. Let

(
L0, D

(
L0

))
denote

such closure and let α > ᾱ, where ᾱ is given as in (4.37). By the Lumer-Philips
theorem, the range of α I + L0 coincides with the closure in L2(A, μ) of the range
of α I + L0. Since the range of α I + L0 is dense in L2(A, μ) by Proposition 4.4, it
follows that

(
L0, D

(
L0

))
is m-accretive in L2(A, μ), hence it generates a strongly

continuous semigroup of contractions in L2(A, μ). Since D(L0) is a core for L0 and
L = L0 on D(L0), it follows that (L, D(L)) = (

L0, D
(
L0

))
. ��
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A A priori estimates

We collect here the needed apriori estimates on the solution process.
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Lemma A.1 Assume H1–H2. Then, for every initial datum x ∈ A the respective vari-
ational solution to Eq. (1.4) satisfies

E sup
r∈[0,t]

‖u(r; x)‖2H +
∫ t

0
E

[
‖u(s; x)‖2V

]
ds �C1,CB ,|D|,ν

(
‖x‖2H + t

)
.

Proof Let u := ux be the unique variational solution to Eq. (1.4) starting from x . The
Itô formula for the squared H -norm ‖ · ‖2H yields, for every t ≥ 0, P-almost surely,

1

2
‖u(t)‖2H + ν

∫ t

0
‖∇u(s)‖2H ds +

∫ t

0

(
F ′(u(s)), u(s)

)
H ds

= 1

2
‖x‖2H +

∫ t

0
(u(s), B(u(s))dW (s))H + 1

2

∫ t

0
‖B(u(s))‖2LHS(U ,H) ds.

(A.1)

By means of (2.1) we estimate

∫ t

0

(
F ′(u), u

)
H ds ≥ C0

∫ t

0
‖u(s)‖2H ds − C1t,

while from (2.4) we immediately get

1

2

∫ t

0
‖B(u(s))‖2LHS(U ,H) ds ≤ CB |D|t

2
.

Hence, taking the supremum in time and expectations in (A.1) we have

1

2
E sup

r∈[0,t]
‖u(r)‖2H + ν

∫ t

0
E ‖∇u(s)‖2H ds

≤ 1

2
‖x‖2H +

(
CB |D|

2
+ C1

)
t + E sup

r∈[0,t]

∫ r

0
(u(s), B(u(s))dW (s))H .

Bymeansof theBurkholder-Davis-GundyandYoung inequalities (see [37,Lemma4.3]
and [40, Lemma A.1] for details), we estimate the last term in the above expression as

E sup
r∈[0,t]

∫ r

0
(u(s), B(u(s))dW (s))H ≤ 1

4
E sup

r∈[0,t]
‖u(r)‖2H + Ct,

where the constant C depends only on CB and |D| (not on t). Combining the above
estimates, the thesis follows. ��
Lemma A.2 Assume H1–H2. Then, for every initial datum x ∈ A ∩ V the respective
analytically strong solution to Eq. (1.4) satisfies

E sup
r∈[0,t]

‖u(r; x)‖2V +
∫ t

0
E‖u(s; x)‖2Z ds �K ,C0,C1,CB ,|D|,ν

(
‖x‖2V + t

)
.
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Proof Let u := ux be the unique analytically strong solution to Eq. (1.4) starting from
x . We apply the Itô formula in [45, Theorem 4.2] (see also [50, Prop. 3.3]) to the
functional 1

2‖∇ · ‖2H . We obtain, for any t ≥ 0, P-almost surely,

1

2
‖∇u(t)‖2H + ν

∫ t

0
‖�u(s)‖2H ds +

∫ t

0

∫
D
F ′′(u(s))|∇u(s)|2 ds

= 1

2
‖∇x‖2H + 1

2

∫ t

0

∑
k∈N

∫
D

|h′
k(u(s))∇u(s)|2 ds

−
∫ t

0
(�u(s), B(u(s)) dW (s))H . (A.2)

By H1 we have that

∫ t

0

∫
D
F ′′(u(s))|∇u(s)|2 ds ≥ −K

∫ t

0
‖∇u(s)‖2H ds,

while assumption H2 yields

1

2

∫ t

0

∑
k∈N

∫
D

|h′
k(u(s))∇u(s)|2 ds ≤ CB

2

∫ t

0
‖∇(u(s))‖2H ds.

Using again theBurkholder-Davis-Gundy andYoung inequalities (as in [37, Lem. 4.3])
together with (2.4) we get that

E sup
r∈[0,t]

∫ r

0
(�u(s), B(u(s))dW (s))H ≤ ν

2
E

∫ t

0
‖�u(s)‖2H ds + Ct,

where the constant C depends only on ν, CB , and |D| (not on t). Hence, taking
supremum in time and expectations in (A.2), rearranging the terms we obtain

1

2
E sup

r∈[0,t]

[
‖∇u(r)‖2H

]
+ ν

2

∫ t

0
E ‖�u(s)‖2H ds

≤ 1

2
‖∇x‖2H +

(
K + CB

2

)∫ t

0
E

[
‖∇u(s)‖2H

]
ds + Ct,

and the thesis follows from Lemma A.1. ��

Lemma A.3 Assume H1–H2. Then, for every initial datum x ∈ A ∩ V the respective
analytically strong solution to Eq. (1.4) satisfies

∫ t

0
E‖F ′(u(s; x))‖2H ds �K ,C0,C1,CB ,|D|,ν (1 + t) .
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Proof As a consequence of Itô formula on suitable Yosida-type approximations of F ′
(see [7, Sec. 4.2] for details) it holds for every t ≥ 0 that

E

∫
D
F(u(t; x))+ν E

∫ t

0

∫
D
F ′′(u(s; x))|∇u(s; x)|2 ds+E

∫ t

0

∥∥F ′(u(s; x))∥∥2H ds

≤
∫
D
F(x)+ 1

2
E

∫ t

0

∑
k∈N

∫
D
F ′′(u(s; x))|hk(u(s; x))|2 ds.

Combining then assumptions H1–H2 yields

E
∫ t

0

∥∥F ′(u(s; x))∥∥2H ds ≤ |D| ‖F‖C([−1,1]) + Kν

∫ t

0
‖∇u(s; x)‖2H ds + CB |D|

2
t,

and the thesis follows from Lemma A.2. ��

B A density result

Lemma B.1 Let μ̃ ∈ P(H) and g̃ ∈ L2(H , μ̃). Then, there exists a sequence
{ f̃ j } j∈N ⊂ C2

b (H) such that

lim
j→∞

∥∥∥ f̃ j − g̃
∥∥∥
L2(H ,μ̃)

= 0.

Proof For every i ∈ N we define Ti : R → R as Ti (r) := max{−i,min{r , i}}, r ∈ R.
Then, for every � ∈ N we set

f̃i,�(x) := R1/�Ti (g̃)(x) =
∫
H
Ti

(
g̃
(
e−C

� x + y
))

NQ1/� (dy), x ∈ H .

Since Ti (g̃) ∈ B(H) and R is strong Feller, we have that f̃i,� ∈ UC∞
b (H) for every

i, � ∈ N. Moreover, since R extends to a strongly continuous semigroup on L2(H , μ̃),
one has by the dominated convergence theorem that

lim
�→∞ ‖ f̃i,� − Ti (g̃)‖L2(H ,μ̃) = 0 ∀ i ∈ N, lim

i→∞ ‖Ti (g̃) − g̃‖L2(H ,μ̃) = 0,

so the conclusion follows trivially. ��
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