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Abstract
This work presents a series of functional tests of two data-driven image processing algorithms based on two

different convolutional neural networks architectures and designed for the application to the European Space
Agency’s Hera mission with the target of binary asteroid system (65803) Didymos. The two data-driven methods
estimate the position of the centroid of Didymos and its range from the spaccecraft. Through different image
datasets and comparative analyses, this work evaluates the two algorithms’ performance under conditions of
adverse illumination conditions, different shape of the target asteroid and different noise levels of the images,
addressing questions on performance deviations and architectural discrepancies, and fine-tuning requirements
upon encountering real-world scenarios. The analyses indicate that algorithms with more sophisticated and
complex architectures exhibit greater robustness across various contingencies, despite being less accurate in their
estimations. Furthermore, the results show that fine-tuning datasets improve the performances of the algorithms
in the specific mission scenario they are generated, while reducing the performances in other circumstances.

Keywords: Hera, Image Processing, Guidance Navigation and Control, Autonomous visual based Navigation,
Functional Test, Data-driven algorithms

1 Introduction

Space rendezvous operations require high levels of accu-
racy in terms of relative navigation. When the target is un-
cooperative, with a highly uncertain dynamical environ-
ment and with a large distance from the Earth, spacecraft
are equipped with an Autonomous Visual Based Naviga-
tion (AVBN) system, which provides a precise visualiza-
tion of the mission scenario and a navigation system with
a high dynamic response to the unknown settings. As
such, the design, implementation and testing of an AVBN
system is a crucial step in the development of a space ren-

dezvous mission. The AVBN system is integrated with
the Guidance, Navigation and Control (GNC) algorithm
implemented on the On-Board Computer (OBC) of the
spacecraft. The end goal is to have the spacecraft able
to estimate autonomously its relative position and/or atti-
tude with respect to the target, and perform manoeuvres
(ground-based or calculated on-board) to operate safely
around the target [1]. An AVBN system of a space ren-
dezvous mission usually consists of the following three
main components [2, 3]:

❖ An optical sensor that may represent the payload of
the spacecraft and that acquires images of the target
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body.

❖ An Image Processing (IP) algorithm that analyses
the acquired image and measures pre-defined quan-
tities that gives information on the mission scenario.
These may include the range from the target, the rel-
ative orientation of the spacecraft with respect to the
stellar background, the position of relevant features
on the target’s surface, etc.;

❖ A navigation filter that combines the outputs of the
IP algorithm with the dynamical environment and
provides the best estimate of the relative state of the
spacecraft with respect to the target.

In this work we focus on the IP algorithm of an AVBN
system. The Design, Development, Validation and Verifi-
cation (DDVV) strategy for the IP algorithm is incremen-
tal and it is based on a chain of different tests that aim
to analyze the robustness of the algorithm against poten-
tial contingencies [4, 5]. The main tests that are part of a
standard DDVV strategy are:

1. Functional Tests (FT): the IP algorithm is tested
with synthetic images generated with rendering en-
gines that represent the mission scenario; these im-
ages include information on the target, illumination
conditions considering the Sun-spacecraft-target rel-
ative geometry, relative pose of the spacecraft with
respect to the target, and other additional parame-
ters (background noise, distortions etc...). The aim of
these tests is to prove that the IP algorithm can pro-
vide the required measurements with a level of accu-
racy high enough for the navigation filter to estimate
the spacecraft’s state. Additional objectives of these
tests are the robustness over external disturbances
and noise/distortions of the image. For this purpose,
rendering software such as the Planet and Aster-
oid Natural Scene Generation Utility (PANGU), Sur-
Render, and Blender-based software such as CORTO
and SISPO can be used [6, 7, 8, 9, 10].

2. Model-In-The-Loop (MIL) tests: the IP algorithm
is integrated to the Functional Engineering Simula-
tor (FES) of the GNC prototype of the spacecraft.
The FES is a SW environment that includes refer-
ence models of the selected GNC solutions and al-
gorithms defined specifically for the mission, and it
allows to test the validity of the designed GNC at
SW level. The aim of the MIL is to test the inter-
faces of the IP algorithm with the rest of the GNC
models, and more in general that the GNC algorithm

is robust to the measurements provided by the IP.

3. Software-In-The-Loop (SIL) tests: the GNC algo-
rithm with the embedded IP algorithm is exported to
the final programming language that will be used on
the OBC of the spacecraft. The aim of the SIL is
to verify the correctness of the SW implementation
with respect to the FES and to test the interfaces with
all the other on-board SW.

4. Processor-In-The-Loop (PIL) tests: the validated
SW from the previous step is implemented on the
qualified processor of the spacecraft. These tests are
aimed to profile the different algorithms of the SW
and to check the performances in terms of computa-
tional time and on-board memory requirements. This
test allows to tackle the issue of the HW implemen-
tation.

5. Hardware-In-The-Loop (HIL) tests: in these tests
a representative GNC sensor/actuator is included in
the loop, for an AVBN usually being the Functional
Model (FUMO) of the camera designed for the mis-
sion. The aim of the HIL is to test the robust-
ness of the embedded IP algorithm to the noise, er-
rors and any other electro-optical effect introduced
by the camera. This test is usually executed using
optical testbenches projecting the scenery on high-
resolution screens or in a robotic facility using 3D-
printed mock-up of the target body [11, 12, 13, 14].

This work presents a series of FTs of two data-driven-
based IP algorithms developed by the authors and pre-
sented in [15, 16]. The aim of this work is to validate the
functionality and test the robustness of the developed al-
gorithms to multiple mission scenarios and contingencies
that are typical of a space rendezvous mission.

In particular, the case study of this work is the Eu-
ropean Space Agency (ESA)’s Hera mission during the
proximity operations around the target binary asteroid
system (65803) Didymos, which consists in a primary
body, Didymos, and a secondary body, its moon Dimor-
phos [17]. During the first phases of the proximity op-
erations the navigation is an AVBN system that relies on
an IP algorithm that estimates the position of the Cen-
ter of Mass (COM) of the primary body from the images
captured by the on-board camera. In order to estimate
the relative position of the spacecraft with respect to the
target, the COM measurements are combined with range
measurements from the primary retrieved by the on-board
LIDAR (Light Detection and Ranging) system [18, 19].
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with permission and released to the IAF to publish in all forms.

The application of data-driven methods to the IP algo-
rithm in asteroid rendezvous missions is driven by the
possibility to overcome challenges represented by ad-
verse illumination conditions, irregular shape of the tar-
get, background noise or the presence of other bodies
such as stars or moons that are usually affecting the per-
formances of standard IP algorithms. Recent trends in
data-driven based IP algorithms are exploring the use
of Artificial Intelligence (AI), particularly deep learning,
to address these challenges and bypass traditional tech-
niques. Their utilization in space IP and navigation is
becoming more and more relevant given their capabil-
ity of learning complex features from the provided data
[20, 21, 22, 23, 16]. The two data-driven methods an-
alyzed in this work are based on Convolutional Neural
Networks (CNNs) with different architectures, number of
parameters and with a different set of outputs.

Nevertheless, AI-based methods are not yet in general
validated for critical functions of space missions. This is
mainly due to the lack of complete mathematical meth-
ods to cope with the ”reality gap” that separates sim-
ulated data with real data. Thus, it remains uncertain
how unforeseen changes during the data acquisition pro-
cess will impact the outcome of AI-based methods. For
instance, input data could be blurred, suffer from un-
der/overexposure or contain some noise sources. There-
fore, it is important to assess the robustness of AI-based
methods against input data alterations [24]. Most of the
robustness analysis of AI techniques have been applied
considering as inputs adversarial examples [24, 25] and
quality distorted data [26, 27]. With the FTs presented
in this work, we analyze the performance of the two
data-driven methods applied to the IP algorithm of the
Hera mission when estimating the position of the COM
of Didymos and the range from it, using images repre-
senting conditions never encountered during training. In
particular, the FTs aim to provide answers to the fol-
lowing research questions: 1) What degree of deviations
from design conditions can CNN approaches endure in
terms of performance drop? 2) Are there fundamental
discrepancies in terms of performance between different
architectures? 3) Once Hera arrives at the Didymos sys-
tem, how many images would be required to fine-tune
the data-driven IP algorithms to ensure optimal perfor-
mances? The first question is assessed by developing a
series of challenging datasets that assess network perfor-
mance with unseen conditions such as high Sun phase an-
gles (Sun-asteroid-spacecraft), different noise levels in the
images, and different shape models of the target asteroid

system. The second is addressed by performing the analy-
sis with two different convolutional approaches. The third
is assessed by performing a series of fine-tuning episodes
with incremental dataset sizes. This emulates a possible
operational scenario applicable to any data-driven method
applied to a space mission, which would require a small
subset of images from the real system to be fine-tuned.

While the Hera mission GNC algorithm implemented
on the OBC of the spacecraft is going to use the Maxi-
mum Correlation with a Lambertian Sphere (MCLS) IP
algorithm, the FTs carried in this work represent a fun-
damental validation step toward the applicability of data-
driven methods in the AVBN of asteroid rendezvous mis-
sions [5].

This paper is structured as follows. Section 2 describes
in detail the data-driven methods, the case study and the
FTs carried in this work. Section 3 shows the obtained
results and discusses the applicability of the developed
methods to the Hera mission. Finally, Section 4 concludes
this work.

2 Methodology

This section describes the methodology applied in this
work to validate through FTs the data-driven methods de-
veloped by the authors. Firstly, the case study is pre-
sented, in Section 2.1. Then the data-driven methods are
described in Section 2.2. The first data-driven method re-
lies on a CNN-based architecture called High Resolution
Network (HRNet), developed in [15] and it is briefly out-
lined in Section 2.2.1. The second data-driven method
relies on an architecture applied to the AVBN system of
Milani, one of the CubeSats of the Hera mission [28, 29].
It is developed in [16] and it is introduced in Section 2.2.2
. We refer to the first data-driven method as M1 and to the
second as M2. Finally, the FTs with their objectives and
the datasets used are detailed in Section 2.4. To facilitate
the discussion, we refer to Didymos as B1 and to Dimor-
phos as B2. The geometrical center of B1 is considered
its COM for simplicity.

2.1 Case Study

The proximity operations of the Hera mission around the
target binary asteroid system Didymos represent the case
study of this work. Hera serves as Europe’s contribu-
tion to the Asteroid Impact and Deflection Assessment
(AIDA) international collaboration with NASA. AIDA
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Figure 1: ECP and DCP trajectories.

aims to demonstrate asteroid deflection using NASA’s ki-
netic impactor Double Asteroid Redirection Test (DART)
spacecraft, which achieved successfully its objective on
September 26, 2022. Hera will rendezvous with the target
asteroid in early 2027 to study its physical and dynamic
properties, including the impact crater and the momen-
tum transfer efficiency [30, 31, 29]. The current knowl-
edge on the shapes of B1 and B2 is provided by DART’s
latest observations, and it is that they are two oblate ellip-
soids, with the extent along the principal axes and the re-
spective uncertainties given in Table 1 [32, 33]. The table
shows the data retrieved by DART prior to the impact, as
the shape resulted from the collision will be only resolved
once the Hera spacecraft will reach the asteroid [34].

The properties of the Hera on-board Asteroid Framing
Camera (AFC) shown in Table 2 are used for the genera-
tion of the synthetic images [35, 36].

The images of the FTs are generated with the aim to
prove the robustness of the algorithm in different scenar-
ios, including two specific phases of the proximity opera-
tions, the Early Characterization Phase (ECP) and the sub-
sequent Detailed Characterization Phase (DCP), shown in
Fig. 1 (courtesy of ESA). The two trajectories are repre-
sented in the Target Body reference frame (TB), which
uses B1’s COM as origin, the x-axis parallel to the one of
the Earth-centered inertial coordinate frame and the xy-
plane coplanar to the orbit of B2. During the ECP, the nav-
igation and the attitude profile is ground based and images

of the target are captured and downlinked to Earth in order
to tune the on-board IP algorithm to optimize its perfor-
mances. The range of the spacecraft from B1 varies from
∼ 20 km to ∼ 30 km and the Sun phase angle ranges
from ∼ 45◦ to ∼ 80◦. During the DCP, the navigation is
fully autonomous and it relies on the tuned IP algorithm.
The range of the spacecraft from B1 varies from ∼ 9 km

to ∼ 20 km and the Sun phase angle ranges from ∼ 0◦ to
∼ 80◦ [37, 38]. The orbit of Dimorphos prior to DART’s
impact is considered as the orbital changes resulted in the
collision are not affecting the FTs carried out in this work.

2.2 Data-driven methods

2.2.1 M1

M1’s pipeline is shown in Fig. 2 and it consists of the
following blocks:

1. Pre-Processing: The input images are scaled down
(256 × 256 px) and the magnitude of each pixel is
normalized for the convergence of the HRNet;

2. HRNet: The HRNet block applies the HRNet to the
input image in order to regress the position of the
COM of B1, the COM of B2, and 24 points on the
illuminated border of B1. The latter are used to-
gether with the COM of B1 to derive its range from
the spacecraft geometrically, by approximating the
shape of B1 to a sphere of diameter D = 780 m.
The output of the HRNet block is a set of 26 64× 64
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Parameter B1 B2

Extent along principal axis x [m] 849± 5.6 177± 1.2

Extent along principal axis y [m] 851± 5.6 174± 1.2

Extent along principal axis z [m] 620± 5.6 116± 1.2

Table 1: Shapes of B1 and B2 prior to DART’s impact [32, 33].

Field Of View (FOV) Focal Length Aperture Image size Pixel Size

5.5◦ 10.6 cm 2.5 cm 1024× 1024 px 10 µm

Table 2: AFC’s properties [35, 36].

Pre 
Processing HRNet Post 

Processing Measurements

Flag 
Availability

Covariance 
computation

Input Normalized Image Heatmap

1024 x 1024 256 x 256 64 x 64

Figure 2: M1 data-driven method.

px heatmaps, each one associated with the regressed
point [39, 40]. A heatmap manifests as a cluster of
white pixels encircling the predicted point, indicat-
ing the degree of accuracy in determining its posi-
tion. The denser and more concentrated the heatmap,
the more precise the estimation of the point’s loca-
tion.

3. Post-Processing: Each heatmap is denoised and an-
alyzed to calculate the exact position of the de-
sired point. A statistical population of pixels of the
heatmap around the desired point is extracted.

4. Flag Availability: If the pixels of a heatmap are less
intense than a pre-defined threshold, the associated
point is not given as an output and the corresponding
measurement is not available.

5. Covariance Computation: If the pixels of the
heatmap are more intense than the pre-defined
threshold, the associated point is given as an output,
the measurement is available and its covariance is de-
rived by the magnitude and shape of the heatmap.

Further details about this algorithm can be found in [41,

15].

2.2.2 M2

M2’s pipeline is shown in Fig. 3 while the CNN architec-
ture is illustrated in Table 3 using TensorFlow 2.10 nota-
tion. The architecture’s hyper-parameters are a result of a
thorough search based on the use of extreme-learning ma-
chine methods and hierarchical grid search, an approach
that can be found in [42].

The convolutional portion of the architecture is divided
into 5 depth levels that make extensive use of dilated con-
volutions of 1, 2, and 3 rates (represented at each i − th

depth level by the Ci1, Ci2, and Ci3 layers), concatena-
tion, activation, and max-pooling layers. The head of
the architecture is represented by a single dense output
layer connected directly to the fully connected FC5 layer.
Dropout is applied on this layer with a probability of 15%.

Differently from M1, M2 is an end-to-end architecture,
since it generates an output vector consisting of B1 COM
components, range from B1, and Sun phase angle. More-
over, M2 uses as input a cropped and/or resized version of
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Figure 3: M2 data-driven method.

the original 1024× 1024 px image. Each image acquired
by the camera, thus needs to be pre-processed outside
the network before being considered as an input. During
training, labels need to be modified accordingly to reflect
the reduced input size.

While M1 uses resized 256 × 256 px images from
the original 1024 × 1024 px, M2 needs a more elabo-
rate image-label preprocessing to reduce each input to
128×128 px images. This is performed with an adaptable
cropping algorithm that first produces a region of interest
on the image which is one of four possible sizes (128×128

px, 256× 256 px, 512× 512 px, and 1024× 1024 px de-
pending on how the body appears in the image at a specific
range) and then generates a resized 128 × 128 px image.
This process also changes the values of the COM of B1
and range, which need to be adjusted both during training
and testing. Further details about this algorithm can be
found in [16, 42].

2.3 Overview of data-driven methods

Table 4 reports the main parameters and characteristics
of the IP algorithms described in this section. It can be
seen that M1 has roughly 8 times more parameters than
M2, due to its heavier and more complex architecture.
This also affects the higher Average Computational Time
(ACT) required by M1 to process a single image on a
Zynq-7000 System on a Chip (SoC) processor considered
in this work as representative of a typical OBC. It can also
be noted that M2 is an end-to-end data-driven method and
derives the range from B1 directly with the CNN architec-
ture, while M1 takes advantage of B1’s shape and derives
it geometrically.

2.4 FTs analysis

The FTs run in this work are designed to test the ro-
bustness and performances of the developed IP algorithm
against multiple adverse conditions that could occur dur-
ing mission operations. Specifically, the objective of the
FTs is to analyze the capability of the trained IP algo-
rithm to generalize their solution when facing conditions
never seen during training. In particular, the conditions
analyzed in this work are of different illumination, differ-
ent shape of the target body, presence/absence of B2, dif-
ferent Signal-to-Noise ratio, and, more in general, differ-
ent images than the ones generated synthetically and used
on ground. Furthermore, we analyze the applicability of
the algorithm during Hera’s proximity operations. Since
the baseline Hera AVBN system consists of the measure-
ments of the position of the COM of B1 given by the on-
board IP MCLS algorithm and the range from B1 given
by the on-board LIDAR system, only these two outputs
of the developed IP algorithms are analyzed with the FTs.
The next section describes in detail the different types of
datasets generated in this work.

2.4.1 Training and Testing Datasets

In this work, several datasets are generated to train and
test the data-driven methods. A summary of their main
properties is represented in Table 6 and Table 7, while
a representation of the distribution of the dataset in the
space surrounding the Didymos system is illustrated in
Fig. 4. Table 5 reports the values of the length of the
principal axes of the different shape models of B1 and B2
used in this work. S1 represents the current knowledge of
these shape models without uncertainties as shown in Ta-
ble 1 [32]. The shape models of S2 instead, considers as
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Layer Type Output Shape Parameters Connected to

I InputLayer B, 128, 128, 1 0 -

C11 Conv2D B, 128, 128, 16 160 I

C12 Conv2D B, 128, 128, 16 160 I

C13 Conv2D B, 128, 128, 16 160 I

CC1 Concatenate B, 128, 128, 48 0 C11, C12, C13

A1 Activation B, 128, 128, 48 0 CC1

P1 MaxPooling2D B, 64, 64, 48 0 A1

C21 Conv2D B, 64, 64, 32 13856 P1

C22 Conv2D B, 64, 64, 32 13856 P1

C23 Conv2D B, 64, 64, 32 13856 P1

CC2 Concatenate B, 64, 64, 96 0 C21, C22, C23

A2 Activation B, 64, 64, 96 0 CC2

P2 MaxPooling2D B, 32, 32, 96 0 A2

C31 Conv2D B, 32, 32, 64 55360 P2

C32 Conv2D B, 32, 32, 64 55360 P2

C33 Conv2D B, 32, 32, 64 55360 P2

CC3 Concatenate B, 32, 32, 192 0 C31, C32, C33

A3 Activation B, 32, 32, 192 0 CC3

P3 MaxPooling2D B, 16, 16, 192 0 A3

C41 Conv2D B, 16, 16, 128 221312 P3

C42 Conv2D B, 16, 16, 128 221312 P3

C43 Conv2D B, 16, 16, 128 221312 P3

CC4 Concatenate B, 16, 16, 384 0 C41, C42, C43

A4 Activation B, 16, 16, 384 0 CC4

P4 MaxPooling2D B, 8, 8, 384 0 A4

C51 Conv2D B, 8, 8, 256 884992 P4

C52 Conv2D B, 8, 8, 256 884992 P4

C53 Conv2D B, 8, 8, 256 884992 P4

CC5 Concatenate B, 8, 8, 768 0 C51, C52, C53

A5 Activation B, 8, 8, 768 0 CC5

P5 MaxPooling2D B, 4, 4, 768 0 A5

FC5 Flatten B, 12288 0 P5

DO Dropout B, 12288 0 FC5

D Dense B, 3 49156 DO

Table 3: M2 Architecture, made of 3563907 parameters, all of which are trainable.
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with permission and released to the IAF to publish in all forms.

Parameter M1 M2

Number of model parameters 28.5 M 3.6 M

Weight 109MB 13.6 MB

ACT on a Zynq-7000 SoC 165 s 9.94 s

Outputs
COM B1, COM B2, Range from B1,
Associated covariances,
Flag if measurements are available or not

COM B1, Range from B1,
Sun phase angle

Range estimation Derived geometrically Estimated from network

Table 4: Overview of the architectures of M1 and M2.

Figure 4: Visualization of the training (left column), and testing (right column) datasets in TB. The Sun is illuminating
the asteroid system from the +Y axis.

principal axes the ones retrieved from radar observations,
prior to DART’s arrival when B1’s shape was thought to
be more spherical [33]. S3 represents an expanded ver-
sion of S1 in all axes. While the first three shape models
are generated with the software Blender, the last one, S4,
is made with the software PANGU and it uses the same
principal axes length of S1.

The same pipeline is used to generate all the images.
However, all but DS6 and DS7 are generated in CORTO
[9], while PANGU is instead used to generate DS8 and
DS9. CORTO stands for Celestial Object Rendering
TOol and it is an open-access tool that uses Blender to
generate high-fidelity, large, annotated datasets of celes-
tial bodies. The tool represents a versatile and comprehen-
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Shape models B1x [m] B1y [m] B1z [m] B2x [m] B2y [m] B2z [m] Modeling software

S1 849 851 620 177 174 116 Blender

S2 821 823 786 202 159 134 Blender

S3 861 862 626 178 175 117 Blender

S4 849 851 620 177 174 116 PANGU

Table 5: Axes elongation of the shape models used in this work.

sive solution for generating synthetic images of celestial
bodies, aiding the development and validation of image
processing and navigation algorithms for space missions.

The training datasets are represented in Table 6 while
the testing datasets are in Table 7. DS1a and DS1b are
used to train M2 and M1 respectively. The trained M1
and M2 are then tested with DS1c, DS2, DS3, DS4 and
DS5. The fine-tuning of M1 and M2 is carried with DS6

and DS8 and the respective tests are done with DS7 and
DS9 subsequently.

The geometric distributions of the locations where the
images are generated are illustrated in Fig. 4. The distri-
bution of DS1a, DS1b, DS1c, DS3, DS4, and DS5 is
characterized by random points between 10 km and 40

km from Didymos, with Sun phase angles ranging from
0◦ to 120◦, and absolute values of elevation angle with
respect to Didymos’ equator between 0◦ and 30◦. The
training dataset DS1b differs from DS1a simply by the
absence of B2 from the images, which is necessary to
train M1. DS3 and DS4 are used to assess the IP per-
formance with a different B1 shape model with principal
axes shown in Table 5. While DS3 represents only B1
and is used to isolate the error introduced by the differ-
ent shape of the target, DS4 represents both B1 and B2,
therefore including also the dependence of the IP algo-
rithms performances on the presence of B2.

DS5 represents a small subset of the first 500 points
of DS1 in which the settings of the artificial noise are
varied. For the noise model used, the reader is directed to
[9]. In this work, the number of pixels considered in the
horizontal motion blur (νmb), a generic isotropic blur (νb),
a gamma correction factor (γ), mean (νµ) and variance
(νσ) of Gaussian noise are sampled with random uniform
distributions according to the extremal values reported in
Table 8 (note, however, that νµ and νσ are sampled in
logarithmic scale).

The subsets of DS5 from 1 to 4 are referred to as ”high

blur” (B) while those from 5 to 9 are considered ”low
blur” (b). The subsets 1, 2, 5, and 6 are referred as ”low
gamma” (g), the subsets 3, 4, 7, and 8 are referred as ”high
gamma” (G), while the subset 9 is considered ”nominal
gamma”(g0). Similar distinctions are also made for ”low
mean and low variance” (l), such as for subsets 2, 3, 5,
7, and 9, and ”high mean and high variance” (L), such as
for subsets 1, 4, 6, and 8. Lastly, the distribution of DS2

points differs from all those described above only for one
condition: the illumination conditions are adverse, with
the Sun phase angles ranging from 120◦ to 150◦.

Finally, DS6 and DS8 distributions represent points
scattered uniformly across the ECP trajectory of the Hera
mission. The same is done for DS7 and DS9 with
the DCP. However, while DS6 and DS8 are rendered
with CORTO using shape models generated with Blender,
DS7 and DS9 are using shape models with the same
length of the principal axes as S1 but generated with
PANGU. Both DS6 and DS8 are used in eight, sepa-
rate, fine-tuning episodes in which the number of images
used is doubled each time from 8 to 1024. These datasets
mimic real mission scenarios in which a limited amount
of images could be available to fine-tune a data-driven
method. The eight different fine-tuned networks are then
tested with DS7 and DS9 respectively, as they would be
deployed in the next phase of the Hera mission, to assess
the impact of the fine-tuning performed during the ECP.

All datasets except for DS9 consider a random rela-
tive attitude of the spacecraft with respect to B1 for each
image, showing therefore illumination coming from any
possible direction. In DS9 the Hera spacecraft’s body
reference frame is considered, having the Sun-B1 vector
always lying on the horizontal axis of the image plane,
thus showing the target asteroid illuminated from the right
side.
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Acronym Number of images Description Shape model Image generation tool

DS1a 30000 Nominal scenario S1 CORTO

DS1b 30000 Nominal scenario, without B2 S1 CORTO

DS6 8, 16, 32, 64, 128, 256, 512, 1024 ECP, new shape S3 CORTO

DS8 8, 16, 32, 64, 128, 256, 512, 1024 ECP, new shape S4 PANGU

Table 6: Summary of the properties of the training datasets.

Acronym Number of images Description Shape model Image generation tool

DS1c 5000 Nominal scenario S1 CORTO

DS2 5000 High Sun phase angles S1 CORTO

DS3 5000 Nominal scenario, new shape, without B2 S2 CORTO

DS4 5000 Nominal scenario, new shape, with B2 S2 CORTO

DS5 500× 9 Nominal scenario, different noises S1 CORTO

DS7 450 DCP, new shape S3 CORTO

DS9 450 DCP, new shape S4 PANGU

Table 7: Summary of the properties of the testing datasets.

Subset νmb νb γ νµ νσ Acronym

Nominal values [0.10, 2.00] 0.5 [0.9,1.1] [1e-4,1e-1] 1e-4 -

1 [1.00, 2.00] [1.00, 2.00] [0.70, 1.00] [1e-3, 1e-2] [1e-3, 1e-2] BgL

2 [1.00, 2.00] [1.00, 2.00] [0.70, 1.00] [1e-5, 1e-3] [1e-5, 1e-3] Bgl

3 [1.00, 2.00] [1.00, 2.00] [1.00, 1.30] [1e-5, 1e-3] [1e-5, 1e-3] BGl

4 [1.00, 2.00] [1.00, 2.00] [1.00, 1.30] [1e-3, 1e-2] [1e-3, 1e-2] BGL

5 [0.20, 1.00] [0.20, 1.00] [0.70, 1.00] [1e-5, 1e-3] [1e-5, 1e-3] bgl

6 [0.20, 1.00] [0.20, 1.00] [0.70, 1.00] [1e-3, 1e-2] [1e-3, 1e-2] bgL

7 [0.20, 1.00] [0.20, 1.00] [1.00, 1.30] [1e-5, 1e-3] [1e-5, 1e-3] bGl

8 [0.20, 1.00] [0.20, 1.00] [1.00, 1.30] [1e-3, 1e-2] [1e-3, 1e-2] bGL

9 [0.20, 0.21] [0.20, 0.21] [0.99, 1.01] [1e-6, 1e-5] [1e-6, 1e-5] bg0l

Table 8: Summary of the noise properties varied in the different subsets of DS5. For comparison, the first row
represents the nominal values used in all other datasets.

3 Results

In this section, the results of the FTs of the developed
data-driven methods are presented. As mentioned, the
performances of the algorithms on the testing datasets are
analyzed only for the estimation of the position of the
COM of B1 and the range from B1. The metrics defined
in Eq. 1 and Eq. 2 are used to evaluate the performances

of each data-driven method for each FTs.

εCoM = CoMe − CoM t (1)

ερ = ρe − ρt (2)

where CoM and ρ indicate the COM of B1 and the range
from B1 respectively, while the superscripts t and e indi-
cate respectively the ground truth and the estimated value.
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εCoM represents the error of the estimated position of the
COM in the image plane and is calculated in px while ερ
represents the error of the estimated range and is calcu-
lated in km. Since the position of the COM of B1 on the
image is defined by its (u, v) coordinates on the image
plane, εCoM is a vector with coordinates (εuCoM , εvCoM ),
and its norm is εnCoM . Lastly, ε%ρ is used to represent ερ
as relative percentage error with respect to the true range
ρt, as described in Eq. 3

ε%ρ =
ρe − ρt

ρt
· 100% (3)

In order to assess the robustness of the data-driven meth-
ods against the various noises, different shape models and
adverse illumination conditions, the results of DS2, DS3,
DS5, DS7 and DS9 are compared with the results ob-
tained on the nominal scenario of the images of DS1c.
The results of DS4 are compared to the ones of DS3, to
analyze the robustness of the algorithm to the presence of
B2.

As mentioned in Section 2.2.1, the availability of the
measurements of M1 depends on the intensity of the
heatmap generated by the HRNet from an input image.
This is not the case for M2, that always converge to a so-
lution. Therefore, it is relevant to assess the convergence
of M1 for each dataset, as shown in Table 9, which shows
for each dataset the amount of images not solved by M1.
For DS5, DS7 and DS9 the best and worst subset results
are shown. It can be seen that the worst scenarios are

Dataset Absolute [−] Rate [%]

DS1c 195 3.90

DS2 751 15.02

DS3 359 7.18

DS4 350 7.00

DS5 7-47 1.40-9.40

DS7 31-151 6.89-33.56

DS9 37-219 8.22-48.67

Table 9: Images not solved by M1 in absolute and relative
terms.

given by the fine-tuning tests DS7 and DS9 for which up
to 48.67% of the images are not solved by M1. In these
cases, the heavier architecture of M1 seems to exhibit a
higher inertia to the fine-tuning. In order for M1 to be
more confident with the provided solution and thus, ex-

hibit intense heatmaps, M1 would require additional im-
ages for the fine-tuning.

3.1 From DS1c to DS4

Fig. 5, Fig. 6, Fig. 7 and Fig. 8 illustrate the performances
of M1 and M2 on the estimation of the position of the
COM of B1 and the range from B1 for the testing datasets
DS1c, DS2, DS3 and DS4, respectively. Table 10 re-
ports the value of each mean µ and standard deviation σ

of the metric in the curly brackets. It can be seen from the
values of εuCoM and εvCoM that both methodologies intro-
duce a small bias in estimating the position of the COM
of B1. Independently from the shape model, noise con-
dition, and the direction of the incoming light, M1 un-
derestimates CoMu, while overestimating CoMv . On
the other hand, M2 overestimates only CoMv , but with
higher values compared to M1.

3.1.1 DS1c: Nominal scenario

It can be seen from the top left plot of Fig. 5 that the error
made by M1 on estimating the range from B1 is biased to-
wards negative values (µ{ερ} = −2.77 km), while the er-
ror made by M2 is distributed around 0 (µ{ερ} = −0.05

km). Moreover, the error of the estimates made by M2 is
less dispersed than those of M1, with a standard deviation
respectively of σ{ερ} = 1.73 km and σ{ερ} = 1.10 km.

The worse performance of M1 on ερ is due to the in-
accurate approximation of the shape of B1 to a sphere to
derive geometrically the range. This is also visible in the
bottom left plot of Fig. 5, where the percent error of ερ is
plotted against the ground truth value of the range, show-
ing that the error made by M1 is higher and spread more
widely. Nevertheless, the bottom left plot also highlights
that the range estimate of both algorithms does not exhibit
any relevant trend with respect to the true range.

The top right plot of Fig. 5 shows the distribution of
εnCoM for M1 and M2. It can be seen that the perfor-
mances are very similar, with the mean value of εnCoM

obtained by M1 slightly higher (µ{εnCoM} = 12.73 px for
M1, and µ{εnCoM} = 10.67 px for M2), with a standard
deviation of σ{εnCoM} = 7.79 px and σ{εnCoM} = 8.66

px respectively. This is also visible in the bottom right
plot of Fig. 5, where the distribution of εCoM is plotted
with its (u, v) coordinates in a neighborhood of 64 × 64

px around the ideal results of εCoM = (0, 0).

In conclusion, in the nominal scenario where the testing
dataset is similar to the training one, M2 is more accurate
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Dataset IP µ(σ){εuCoM}[px] µ(σ){εvCoM}[px] µ(σ){εnCoM}[px] µ(σ){ερ}[km] µ(σ){|ερ|}[km]

DS1c M1 -7.24 (-5.75) 7.82 (8.72) 12.73 (7.79) -2.77 (1.73) 2.77 (1.72)

DS1c M2 1.80 (0.44) 9.69 (9.57) 10.67 (8.66) -0.05 (1.10) 0.79 (0.77)

DS2 M1 -7.12 (-7.55) 20.31 (21.39) 25.99 (17.38) -4.91 (4.29) 4.93 (4.27)

DS2 M2 1.98 (2.05) 38.18 (40.06) 44.07 (33.60) -2.45 (3.38) 2.89 (3.01)

DS3 M1 -7.47 (-6.14) 17.02 (17.07) 20.56 (15.86) 1.22 (1.37) 1.41 (1.18)

DS3 M2 1.97 (0.48) 20.35 (19.30) 21.07 (18.62) 2.82 (1.51) 2.83 (1.50)

DS4 M1 -7.49 (-6.16) 17.18 (17.11) 20.57 (16.08) 1.19 (1.37) 1.39 (1.17)

DS4 M2 2.15 (0.62) 19.80 (18.98) 20.70 (18.14) 2.79 (1.51) 2.80 (1.50)

Table 10: Performances of M1 and M2 on the estimation the position of the COM of B1 and the range from B1 for
DS1c, DS2, DS3 and DS4.

Figure 5: Range (left column) and centroiding (right column) error results of M1 and M2 for DS1c.

and precise than M1 in estimating both range and COM
coordinates.

3.1.2 DS2: High Sun phase angles

It can be seen from Table 10 and from Fig. 6 that the
adverse illumination conditions represented by the high
Sun phase angles of DS2 affect the performances of

M1 and M2, shown by the higher values of µ{ερ} and
µ{εnCoM}. As in DS1c, the error distribution on the
range estimation is biased towards negative values for M1
(µ{ερ} = −4.91 km, σ{ερ} = 4.29 km) with respect to
M2 (µ{ερ} = −2.45 km, σ{ερ} = 3.38 km). For the es-
timation of the position of the COM of B1, M1 performs
better than M2, with a µ{εnCoM} = 25.99 px for M1 and
µ{εnCoM} = 44.07 px for M2, and with a standard devia-
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Figure 6: Range (left column) and centroiding (right column) error results of M1 and M2 for DS2.

tion of σ{εnCoM} = 17.38 px and σ{εnCoM} = 33.60 px

respectively. The worse performances of the two meth-
ods with respect to the nominal scenario can be seen from
the bottom left and the bottom right plots of Fig. 6, which
show that ερ and εnCoM are less precise compared to the
nominal scenario.

To conclude, in the scenario in which higher phase an-
gles are considered, both methods suffer a considerable
drop in performance compared to the results in DS1c.
However, M1 seems to suffer a smaller drop compared
to M2, indicating a higher degree of robustness. From the
results presented in this section, it appears that the visible
edge of the body in such challenging illumination condi-
tions works better with the geometrical derivation strategy
performed with the HRNet in M1 than with the end-to-end
approach of M2. This is particularly visible looking at the
performance on the range, which greatly degrade for M2,
while they only mildly degrade for M1 with respect to the
ones obtained with DS1c. However, it is also noted that
M1 does not converge for a higher number of cases (∼4
times higher than in DS1c, see Table 9).

3.1.3 DS3: Nominal scenario, new shape of B1, with-
out B2

It can be seen from Table 10 and from Fig. 7 that the
different shape of B1 affect slightly the performances of
M1 and M2. Contrarily to the results obtained in DS1c
and DS2, the error distribution on the range estimation is
now biased towards positive values for M1 (µ{ερ} = 1.22

km, σ{ερ} = 1.37 km), with a higher accuracy than M2
(µ{ερ} = 2.82 km, σ{ερ} = 1.51 km). Considering that
in this dataset the shape of B1 is more spherical, the ge-
ometrical derivation of the range from its shape improves
the performances of M1, while reducing the ones of M2.
For the estimation of the position of the COM of B1,
M1 performs slightly better than M2, with a µ{εnCoM} =

20.56 px for M1 and µ{εnCoM} = 21.07 px for M2 and
with a standard deviation of σ{εnCoM} = 15.86 px and
σ{εnCoM} = 18.62 px respectively. The better perfor-
mances of M1 in the range estimation can be seen from
the bottom left and bottom right plots of Fig. 7, which
show that ερ and εnCoM have values closer to 0 with re-
spect to M2.

To conclude, the different shape of B1 tested in DS3

seems to have a less drastic effect than unforeseen illu-
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Figure 7: Range (left column) and centroiding (right column) error results of M1 and M2 for DS3.

mination conditions tested in DS2 as both M1 and M2
performance are closer to those in DS1c. The different
shape models seem to favor both the accuracy and preci-
sion of the range estimate of M1 compared to M2. This is
attributed to the more spherical shape of B1 in this dataset,
which performs better in the apparent diameter formula-
tion used by M1 compared to the end-to-end approach
used in M2. Centroiding performance on the other hand
are basically very similar between M1 and M2.

3.1.4 DS4: Nominal scenario, new shape of B1, with
B2

It can be seen from Table 10 and from Fig. 8 that the pres-
ence of B2 does not affect the results, as they remain quite
similar to the ones obtained for DS3. The error distri-
bution on the range estimation is biased towards positive
values for M1 (µ{ερ} = 1.19 km, σ{ερ} = 1.37 km),
with a higher accuracy with respect to M2 (µ{ερ} = 2.79

km, σ{ερ} = 1.51 km). For the estimation of the
position of the COM of B1, M1 performs slightly bet-
ter than M2, with a µ{εnCoM} = 20.57 px for M1 and
µ{εnCoM} = 20.70 px for M2 and with a standard devia-
tion of σ{εnCoM} = 16.08 px and σ{εnCoM} = 18.14 px

respectively.

To conclude, both M1 and M2 are essentially unaf-
fected by the presence of B2 in the images, as negligible
differences are observed with respect to DS3 of the mean
values of ερ and εnCoM are negligible.

3.2 DS5: Nominal scenario, different
noises

Table 11 reports in a synthetic form the values of the mean
and standard deviation of ερ and εnCoM for the images of
DS5. Since the interest is to quantify the error introduced
by the different noises, the absolute value of ερ is ana-
lyzed, differently from the previous cases. The values of
the mean are also represented in Fig. 9 for a simpler visu-
alization.

It can be seen that in the overwhelming majority of
the cases, both M1 and M2 performance suffer degrada-
tion when extra noise is added to the images. Both data-
driven methods’ performances worsen with the conditions
of high blur, for both the estimations of the centroid of B1
and the range from it. The highest values of the means
of |ερ| of M1 and M2 are 3.42 km (BGL) and 1.96 km

(BgL) respectively, with a standard deviation of 2.43 km

and 1.85 km respectively. The worst performance on the
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Figure 8: Range (left column) and centroiding (right column) error results of M1 and M2 for DS4.

Figure 9: Range (top) and centroiding (bottom) error results of M1 and M2 for DS5.
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with permission and released to the IAF to publish in all forms.

Dataset IP µ(σ){εnCoM}[px] µ(σ){|ερ|}[km]

BgL M1 15.37 (11.38) 3.19 (2.17)

BgL M2 15.52 (9.60) 1.96 (1.85)

Bgl M1 13.98 (9.13) 3.12 (1.91)

Bgl M2 12.59 (8.52) 1.02 (1.08)

BGl M1 13.64 (8.67) 3.08 (2.09)

BGl M2 13.38 (10.26) 1.20 (1.29)

BGL M1 14.11 (9.29) 3.42 (2.43)

BGL M2 16.12 (11.78) 1.27 (1.26)

bgl M1 13.06 (8.69) 2.78 (1.64)

bgl M2 11.34 (7.94) 0.91 (0.96)

bgL M1 14.33 (10.25) 2.76 (1.84)

bgL M2 13.71 (8.90) 1.86 (1.75)

bGl M1 12.76 (8.03) 2.71 (1.84)

bGl M2 11.28 (9.43) 0.87 (0.88)

bGL M1 13.47 (8.54) 3.01 (2.06)

bGL M2 13.87 (10.95) 1.12 (1.10)

bg0l M1 12.19 (6.98) 2.56 (1.59)

bg0l M2 10.86 (8.18) 0.83 (0.86)

Table 11: Performances of M1 and M2 on the estimation the position of the COM of B1 and the range from B1 for the
different conditions of blur, gamma and mean and variance of the images of DS5.

centroiding estimation are given with conditions of BgL
for M1, with a mean value of εnCoM of 15.37 px and a
standard deviation of 11.38 px, and with conditions of
BGL for M2, with a mean value of εnCoM of 16.12 px and
a standard deviation of 11.78 px.

Fig. 9 shows also the values of |ερ| and εnCoM obtained
with the nominal scenario of DS1c, as a reference to as-
sess the robustness of the two algorithms with respect to
the noises introduced with DS5. The performance of M1,
when extra noise is added to the images, is consistent with
that in DS1c while M2 seems more susceptible.

Finally, it is interesting to note that higher blur is neg-

atively affecting both networks. Higher blur levels could
challenge the convolutional kernels obtained during train-
ing, spreading the input image content across larger im-
age patches. This result could inspire future data-driven
IP designers to include a higher blur level in the training
dataset in those cases in which robustness to noise is more
demanding.

3.3 DS7 and DS9: DCP, new shape

Fig. 10 and Fig. 11 show the results on |ερ| and εnCoM on
the testing datasets DS7 and DS9 obtained by fine-tuning
M1 and M2 using an incremental batch of images (8, 16,
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32, 64, 128, 256, 512 and 1024) from the ECP phase rep-
resented in DS6 and DS8. The results obtained with M1
and M2 prior to the fine-tuning are also shown, repre-
sented by a batch size of 0 images. The pair DS6−DS7

is expected to stress the difference in shape while the pair
DS8 − DS9 stresses a greater shape difference, exacer-
bated in this setup also by the different rendering soft-
ware used to generate the datasets (i.e. PANGU instead of
CORTO). The aim of this analysis is to find the amount of
images taken during the ECP that minimizes the estima-
tion errors during the DCP, i.e. the number of images that
tunes the two models’ parameters to adapt their solution to
a target different from the one seen during training. This
scenario is especially relevant for small body missions,
since the property of the target body are rarely precisely
known before arrival.

Ideally, using a higher amount of images of the ECP for
fine-tuning is expected to improve performances, as the
data-driven models would have more information about
the real target, minimizing possible discrepancies due to
different modeling of the body’s shape. However, as il-
lustrated in this section, this scenario is more challenging
than anticipated.

Considering the DS6−DS7 case, observing the trends
reported in Fig. 10, the number of images used for the
fine-tuning of M1 and M2 is not improving performances
on DS7 apart from the range estimate in M1.

Also, it is noted that all versions of fine-tuned M1 and
M2 are performing worse than the untrained versions.
Considering the DS8 − DS9 case, similar conclusions
are obtained. Observing the trends reported in Fig. 11,
the number of images used for the fine-tuning of M1 and
M2 is not improving performances on DS9 apart from
the centroid estimate in M2. The centroid estimate of M1
also seems to improve by increasing the number of im-
ages up to 256, after which it suffers a sudden drop in
performance.

Lastly, it is also noted that both M1 and M2 have ro-
bust performances prior to fine-tuning, even in the case
when different artificial environments are used (CORTO
and PANGU) to generate training images. In particular,
it can be seen from Fig. 11 that M1 performs better than
M2, despite its worse performance with the other testing
datasets generated using the same image generation tool
of the training. However, it is also noted that M1 suffers
in this dataset from the highest drop in convergence rates
compared to all other scenarios presented in this work, as
illustrated from the rates in Table 9.

A key conclusion is drawn from these results. Firstly,
apart from specific cases (M1’s range in DS7 and M2’s
centroid in DS9) in the majority of the cases considered,
training episodes from the ECP dataset are drastically de-
grading both M1 and M2 performance for a robust ap-
plication on the DCP datasets. A possible explanation of
this phenomenon is given by the fact that both DS1a and
DS1b used for the initial training are generated with a
distance from the target that varies from 10 km to 40 km.
The images from ECP that are used for fine-tuning repre-
sent a new target shape at a distance between 20 km and
30 km. Lastly, the testing dataset shows the new target
shape at a range between 9 km and 20 km. These differ-
ent range intervals may explain why the DS1 dataset is
more representative of the entire mission conditions than
those encountered in ECP. Therefore, a possible explana-
tion for the trend observed is that both data-driven meth-
ods are performing better when not fine-tuned, as their
parameters were already optimized for ranges including
the ones shown with DS7 and DS9. Effectively, both
methods are challenged by the new training datasets of
DS6 and DS8 to learn two contradicting information:
learn about the new shape, and do that in a limited range
interval. Even in an ideal training instance, in which a
network would have specialized on the new shape but
in a limited range interval, poor generalization perfor-
mance would have been observed in a different geometric
regime. This poses an interesting challenge in terms of
fine-tuning data-driven methods for small-body applica-
tions. Fine-tuning episodes should be carefully designed
to introduce the desired effect in the final networks.

4 Conclusion

This paper analyzes the robustness of two data-driven
based IP algorithms designed to address the issue of cen-
troiding (geometrical center) and range estimation of a bi-
nary asteroid system. The study examines the Hera mis-
sion’s target proximity operations around the Didymos
system as a case scenario. The data-driven methods are
based on two different CNN approaches: M1, a heavier
method based on the HRNet architecture and the poin re-
gression strategy, and M2, a custom-built end-to-end ar-
chitecture made of subsequent dilated convolutional lay-
ers.

The test campaign includes FTs with images generated
with CORTO and PANGU, representing conditions dif-
ferent from the ones seen during training. In particular,
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Figure 10: Range (left) and centroiding (right) error results of M1 and M2 for DS7.

Figure 11: Range (left) and centroiding (right) error results of M1 and M2 for DS9.

the two data-driven methods are stress-tested with im-
ages showing the target asteroid system in conditions of
high Sun phase angles, different noise levels, and different
shape models of the target. Considering overall perfor-
mances, the results show that neither method is affected
by the presence of the secondary, that M2 is slightly more
accurate and precise in the estimation of the centroid and
range, but also shows greater sensibility to noises com-
pared to the more robust M1.

Lastly, a potential operational scenario applicable to
any data-driven method is also analyzed, considering a
series of fine-tuning sessions simulating different batches
of images downlinked to ground from the ECP phase of
the Hera mission. This analysis turned out more complex
and counterintuitive than expected, highlighting the chal-
lenges in fine-tuning these algorithms on specific charac-
teristics of the target body. Indeed, both methods per-
formed better in the DCP phase when fine-tuning was
not applied, suggesting that both networks’ training is af-
fected more by different ranges than different shape mod-
els of the target asteroid. A possible explanation is that
given the reference trajectories and the asteroid’s rotation,

both data-driven methods are trained considering images
showing different orientations of the target with respect to
the spacecraft. Therefore, the two methodologies are al-
ready trained with images showing a target with different
shapes, since Didymos’ irregular shape is shown differ-
ently in each image. On the other hand, the range depends
on the apparent size of the asteroid in the images, which
is unique at different range intervals.

To conclude, this work demonstrates that different data-
driven approaches possess subtle differences that a coher-
ent validation campaign can highlight. This ultimately
represents an important tool for a mission designer to
make informed decisions on their use. Considering over-
all performance, robustness, computational time, and fine-
tuning inertia, one network was not clearly better than an-
other, both exhibiting different sets of strengths and weak-
nesses that resonate for the better or for the worse in dif-
ferent untested conditions. M1 is less sensible to new
untested conditions due to its larger capacity (with ∼8
times more parameters than M2), showing greater robust-
ness. This comes at a cost of high inertia to fine-tuning,
slower computational time, and some highly variable con-
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vergence rates due to unclear heatmaps. M2 is a more ef-
ficient network, exhibiting greater accuracy and precision,
shorter computational times, more agile fine-tuning, and
always convergent to a solution. This comes at the cost of
an increased sensibility to untested conditions.

Finally, the analysis illustrated in this work would have
not been possible without a shared testbench serving as a
common baseline. This also motivates the decision of the
authors to make both datasets and results publicly avail-
able to encourage other researchers to propose different
approaches. Future works could be focused specifically
on the fine-tuning campaign of the ECP, including data-
augmentation and image-manipulations as pre-processing
steps of the ECP dataset. Furthermore, a hybrid training
strategy and different architectures could be investigated.
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with permission and released to the IAF to publish in all forms.

no. 6, pp. 2010–2029, 2021. [Online]. Available:
https://doi.org/10.1016/j.asr.2020.12.034

[30] P. Michel, A. F. Cheng, and M. Küppers,
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