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Abstract
A finite element cochain complex on Cartesian meshes of any dimension based on the
H1-inner product is introduced. It yields H1-conforming finite element spaces with
exterior derivatives in H1. We use a tensor product construction to obtain L2-stable
projectors into these spaces which commute with the exterior derivative. The finite
element complex is generalized to a family of arbitrary order.
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1 Introduction

We present a family of finite element cochain complexes in H1(Ω) on Cartesian
meshes. By adhering to a strict tensor product construction, we obtain commuting
interpolation operators which are bounded on L2(Ω).
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It has been pointed out for instance in [27] that the reliable computation of high
Reynolds number incompressible flow hinges on pressure robustness of the discretiza-
tion, which in turn is guaranteed by exact implementation of the divergence condition.
We have demonstrated the importance of the cochain property for error estimates and
adaptive mesh refinement in [19,29]. These works have in common that they rely on
divergence-conforming discontinuous Galerkin methods, which started with [12,18].
Thus, they are consistent with the Laplacian, but not conforming in H1(Ω).

Due to the importance of the divergence constraint, considerable effort was put
into the development of H1-conforming methods with exact divergence constraint in
recent years. In particular on simplicial meshes, there is a wide variety of methods.
We refer the reader to the recent review[20] and the literature cited therein.

The use of the Raviart-Thomas polynomial space Q3,2 × Q2,3 with node function-
als yielding H1-conforming finite elements on rectangular meshes goes back to [5].
They already use a tensor product of Hermitian and Lagrangian interpolation on each
rectangle, such that the divergence is in the space of continuous functions and cellwise
in Q2,2.

The same polynomial space for the velocity, but with different degrees of freedom
is used in [30], but with an implicitly defined pressure space. The author obtains a
solution by a procedure which does not require setting up a basis for the pressure
space, and thus the construction is valid. Nevertheless, the discretization spaces are
bound to a specific solution scheme for the discrete problem. This was overcome later
in [21] by using partly Hermitian interpolation, thus obtaining a local characterization
of the pressure space. They use Hermitian degrees of freedom in vertices, but only
Lagrangian on edges, such that the pressure space can be discontinuous. As a result,
the velocity space does not result from tensorization of one-dimensional elements,
which is one of our construction principles. Also the inf-sup stable Stokes pair of
finite elements yielding diverge-free solutions in [22] does not have tensor product
structure.

Discretization spaces which are H1-conforming and yield diverge-free solutions
have been object of the Isogeometric Analysis (IGA) literature, too. In this framework,
tensor productmeshes and spline-based approximation spaces are considered.We refer
to [8] for IGA techniques applied to the Stokes problem, and to [14,15] for applications
to the steady and unsteady Navier-Stokes equations.

Quasi-interpolation operators for the element from[5] which commute with the
divergencewerefirst introduced in [29].Here,we systematically reconstruct the canon-
ical interpolation operators used there and generalize them to any space dimension
and forms of any index.

While these publications were concerned with H1-conforming elements with con-
trollable divergence in two and three dimensions (reference [21] generalizes to any
dimension), this paper is concerned with the full finite element cochain complex
on Cartesian meshes of arbitrary dimension, such that for each finite element form
uh ∈ V k ⊂ H1Λk(Ω) its exterior derivative is duh ∈ V k+1 ⊂ H1Λk+1(Ω). Based
on a general lemma on the cochain property of interpolation operators, we provide
commuting interpolation operators for differentiable functions as well as commuting
quasi-interpolation operators which are continuous on L2. For the latter, we follow
the route laid out in [24–26] in one dimension and tensorize afterwards.
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This article is laid out as follows: after some preliminaries in Sect. 2 we present a
general construction principle for commuting interpolation operators in Sect. 3. The
one-dimensional finite element cochain complex based on cubic polynomials with
Hermitian interpolation is outlined in Sect. 4 and its quasi-interpolation operators are
introduced in Sect. 5. The tensorization for higher-dimensional complexes is presented
in Sects. 6 and 7, respectively. Sect. 8 presents the extension to higher order polynomial
spaces.

2 Notation and preliminaries

Following [4], we introduce the notation and definitions concerning the finite element
exterior calculus that we will need throughout the paper. Let n ≥ 1 and 0 ≤ k ≤ n
integers. We denote with Altk Rn the space of alternating k-linear forms on Rn , with
inner product (·, ·)Altk Rn . Let Ω be a n-dimensional open bounded subset of Rn . A
differential k-form on Ω is a map u which associates to each x ∈ Ω an element
u ∈ Altk Rn . It can be expressed uniquely as

u =
∑

σ∈Σ(k,n)

uσ dxσ , (1)

where uσ are coefficient functions defined on Ω , and Σ(k, n) is the set of increasing
maps {1, . . . , k} → {1, . . . , n}. The set {dx1, . . . , dxn} denotes the basis of Alt1 Rn =
(Rn)∗ dual to the canonical basis, and dxσ = dxσ1 ∧· · ·∧dxσk ∈ Altk Rn . We denote
by Λk(Ω) the space of smooth differential k-forms, i.e., the space of k-forms with
smooth coefficient functions.

Let dk : Λk(Ω) → Λk+1(Ω) be the exterior derivative, i.e, the linear map which
associates u ∈ Λk(Ω) as in (1) to dku ∈ Λk+1(Ω) given by

dku =
∑

σ∈Σ(k,n)

n∑

j=1

∂uσ

∂x j
dx j ∧ dxσ .

In the following, when no confusion occurs, we will denote the exterior derivative
simply as d, suppressing the superscript k.

Given F (Ω) a space of functions defined on Ω , we denote with FΛk(Ω) the
space of differential k-forms with coefficients inF (Ω). As examples, we mention the
space of Cm-regular differential k-forms CmΛk(Ω), the space of L2(Ω)-integrable
k-forms L2Λk(Ω), and the space of polynomial differential k-forms PmΛk(Ω).

The space L2Λk(Ω) is a Hilbert space, with inner product

(·, ·)L2Λk : L2Λk(Ω) × L2Λk(Ω) → R

(u, v)L2Λk =
∑

σ∈Σ(k,n)

(uσ , vσ )L2(Ω) .
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We define the space HΛk(Ω) as

HΛk(Ω) :=
{
u ∈ L2Λk(Ω) | du ∈ L2Λk+1(Ω)

}
.

It is a Hilbert space, with the inner product

(·, ·)HΛk : HΛk(Ω) × HΛk(Ω) → R

(u, v)HΛk = (u, v)L2Λk + (du, dv)L2Λk+1 . (2)

The extended de Rham complex is the following sequence of spaces and maps:

0
⊂−−→ R

⊂−−→ Λ0(Ω)
d−−→ Λ1(Ω)

d−−→ · · · d−−→ Λn(Ω)
d−−→ 0. (3)

From the relation d ◦ d = 0, it follows that

Im
(
dk−1

)
⊂ Ker

(
dk

)
,

where Im and Ker denote the range and the kernel, respectively. In the case of a
contractible domain, the sequence (3) is exact, meaning that

Im
(
dk−1

)
= Ker

(
dk

)
.

In the case of a noncontractible domain, the codimension of Im(dk−1) in Ker(dk) is
equal to the corresponding Betti number.

The complex

0
⊂−−→ R

⊂−−→ HΛ0(Ω)
d−−→ HΛ1(Ω)

d−−→ · · · d−−→ HΛn(Ω)
d−−→ 0 (4)

is the bounded L2 de Rham complex on Ω .
In the same way, given m ≥ n integer, it is possible to construct a cochain complex

with the set of spaces {Cm−kΛk(Ω), k = 0, . . . , n}, as follows

0
⊂−−→ R

⊂−−→ CmΛ0(Ω)
d−−→ Cm−1Λ1(Ω)

d−−→ · · ·Cm−nΛn(Ω)
d−−→ 0. (5)

3 Construction of a commuting interpolation operator

Let 0 ≤ k < n be fixed, and let PΛk(Ω) and PΛk+1(Ω) be polynomial forms
such that dPΛk(Ω) ⊂ PΛk+1(Ω). Denote with r the dimension of the range of
d, that is, by the rank-nullity theorem, r = dim PΛk − dimKer d. Moreover, let
Ik : Λk(Ω) → PΛk(Ω) and Ik+1 : Λk+1(Ω) → PΛk+1(Ω) denote the interpolation
operators defined by
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I j u =
dim PΛ j∑

i=1

N
j

i (u)ϕ
j
i , j = k, k + 1, (6)

where

– {ϕ j
i }i=1,...,dim PΛ j (Ω) is a basis for PΛ j (Ω);

– {N j
i }i=1,...,dim PΛ j (Ω) is a set of node functionals in (Λ j (Ω))∗;

– both sets are chosen such that there holds the interpolation condition

N
j

i (ϕ
j
m) = δim . (7)

The following lemma gives sufficient conditions on {ϕ j
i }i and {N j

i }i such that

Λk(Ω) Λk+1(Ω)

PΛk(Ω) PΛk+1(Ω)

d

I I

d

is a commuting diagram. Here we used the convention that I = Ik if its domain is
Λk . It simplifies the construction of commuting quasi-interpolation operators, since
it later on only requires the transformation of node functionals to perturbed cells, not
the transformation of basis functions.

Lemma 1 With the notations introduced above, assume that the bases {ϕk
i } and {ϕk+1

i }
fulfill

dϕk
i = ϕk+1

i i = 1, . . . , r ,

dϕk
i = 0 i = r + 1, . . . , dim PΛk(Ω).

(8)

Moreover, assume that the node functionals {N k
i } and {N k+1

i } fulfill for any u ∈
Λk(Ω)

N k+1
i (du) = N k

i (u) i = 1, . . . , r ,

N k+1
i (du) = 0 i = r + 1, . . . , dim PΛk+1.

(9)

Then, the interpolation operator I defined in (6) commutes with the exterior derivative
d, namely, there holds:

dk Iku = Ik+1d
ku ∀u ∈ Λk(Ω).

Proof By linearity, we have

dk Iku = dk

⎛

⎝
dim PΛk∑

i=1

N k
i (u)ϕk

i

⎞

⎠ =
dim PΛk∑

i=1

N k
i (u)dkϕk

i =
r∑

i=1

N k
i (u)ϕk+1

i .
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On the other hand,

Ik+1d
ku =

dim PΛk+1∑

i=1

N k+1
i (dku)ϕk+1

i =
r∑

i=1

N k+1
i (dku)ϕk+1

i .

Employing (9) concludes the proof. ��
The lemma states that we can construct commuting interpolation operators in five

steps:

1. Choose node functionals for Im d ⊂ PΛk+1.
2. Choose node functionals for PΛk according to (9).
3. Choose a basis for Im d ⊂ PΛk+1 such that interpolation condition (7) holds.
4. Choose a basis for PΛk according to (7) and (8).
5. Choose the remaining basis functions and node functionals such that (8) and (9)

hold.

Remark 1 Lemma1 applies naturally to

Ik : Cm−kΛk(Ω) → PΛk(Ω)

Ik+1 : Cm−k−1Λk+1(Ω) → PΛk+1(Ω)

for all m ≥ k + 1, entailing the commutativity of the following diagram

Cm−kΛk(Ω) Cm−k−1Λk+1(Ω)

PΛk(Ω) PΛk+1(Ω)

d

I I

d

4 The one-dimensional complex on the reference interval

Within this section we take Ω equal to the unit intervalI = [0, 1], and m = 1. Then
the cochain complex (5) becomes the exact sequence

0
⊂−−→ R

⊂−−→ C1Λ0(I )
d−−→ C0Λ1(I )

d−−→ 0.

We discretize the spaces C1Λ0(I ) and C0Λ1(I ) by polynomial spaces

P3Λ
0(I ) = P3(I ) and P2Λ

1(I ) = P2(I ),

respectively. In particular, we consider

– the space P3Λ0(I ) = P3(I ) with the interpolation operator I0 : C1Λ0(I ) →
P3Λ

0(I ) defined by the conditions N 0
i I0u = N 0

i u, for i = 1, 2, 3, 4, where
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the node functionals N 0
i : C1Λ0(I ) → R are given by a modified Hermitian

interpolation:

N 0
1 (u) = u′(0) N 0

3 (u) = u(1) − u(0)

N 0
2 (u) = u′(1) N 0

4 (u) = u(1) + u(0)
(10)

– the space P2Λ
1(I ) = P2(I ) with the interpolation operator I1 : C0Λ1(I ) →

P2Λ
1(I ) defined by the conditions N 1

j I1v = N 1
j v, for j = 1, 2, 3, where the

node functionals N 1
j : C0Λ1(I ) → R are given by:

N 1
1 (v) = v(0)

N 1
2 (v) = v(1)

N 1
3 (v) =

∫

I
v(x) dx . (11)

The second set of node functionals is a well-known alternative to Lagrange inter-
polation and it yields a unisolvent finite element. The basis of P2(I ) dual to the set
of node functionals in (11) is:

ϕ1
1(x) = 1 − 4x + 3x2, ϕ1

2(x) = −2x + 3x2, ϕ1
3(x) = 6x − 6x2. (12)

By straight forward computation, we obtain the following result.

Lemma 2 If in P3(I ) we choose the basis

ϕ0
1(x) = x − 2x2 + x3 ϕ0

3(x) = − 1
2 + 3x2 − 2x3

ϕ0
2(x) = −x2 + x3 ϕ0

4(x) = 1
2

(13)

there holds N 0
i (ϕ0

j ) = δi j , and the element is unisolvent.

In this framework, the interpolation operators defined in (6) become:

I0u(x) =
4∑

i=1

N 0
i (u) ϕ0

i (x), I1v(x) =
3∑

j=1

N 1
j (v) ϕ1

j (x).

The following lemma shows that I0 and I1 commute with the exterior derivative.

Lemma 3 The following diagram commutes:

C1Λ0(I ) C0Λ1(I )

P3Λ
0(I ) P2Λ

1(I )

d

I I

d

that is, for every u ∈ C1Λ0(I ), there holds

d0 I0u = I1d
0u.
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Proof To prove the result, it is enough to verify that the assumptions of Lemma1 are
fulfilled. Comparing the bases in (13) and (12), we see by straightforward computation
that (8) holds. In particular, dϕ0

4 ≡ 0, such that ϕ0
4 spans the kernel of d. Moreover,

N 1
1 (du) = du(0) = u′(0) = N 0

1 (u).

The same argument yields for N 1
2 (du) = N 0

2 (u). Furthermore,

N 1
3 (du) =

∫

I
du dx =

∫

I
u′ dx = u(1) − u(0) = N 0

3 (u).

��
Remark 2 The set of node functionals {N 0

j }4j=1 doesn’t contain the evaluation func-
tionals in the end points of the interval I individually. Hence it is not immediately
obvious that the interpolation operator I0 generates continuity.

Nevertheless, when interpolating a function u ∈ C(I ), we have

I0u(0) = N3(u)ϕ0
3(0) + N4(u)ϕ0

4(0) = − 1
2

[
u(1) − u(0)

] + 1
2

[
u(1) + u(0)

] = u(0),

I0u(1) = N3(u)ϕ0
3(1) + N4(u)ϕ0

4(1) = 1
2

[
u(1) − u(0)

] + 1
2

[
u(1) + u(0)

] = u(1).

Thus, I0 interpolates the function values at the interval end points like standardHermite
interpolation does. In particular, if several intervals are put adjacent to each other,
forming a one-dimensional mesh, global C1-continuity of the interpolated function is
guaranteed by the standard procedure of identifying the degrees of freedom on shared
vertices.

To conclude this remark: from the implementation point of view, the original node
functionals for Hermite interpolation are preferred. The node functionals introduced
in (10) are purely for the purpose of analysis.

Remark 3 While we follow the finite element approach of studying cellwise properties
together with degrees of freedom such as to generate the necessary global continuity,
we could have adopted the global view of splines instead. There, the construction starts
out with a string of intervals in one dimension and defines piecewise polynomials for
instance by the technique of B-splines employed in isogeometric analysis. A tensor
product cochain complex of this type was developed in [9]. Discounting the different
choice of node functionals and basis functions, our complex can be viewed as a special
case of theirs in one dimension and on tensor product domains. Nevertheless, as soon
as multipatch domains are needed for more complex geometries in higher dimension,
the local view of finite element degrees of freedom handles the “patch boundaries” in
a natural way, while additional efforts are needed in isogeometric analysis.

5 Quasi-interpolation operators

The node functionals introduced in Sect. 4 require point values of the first derivative
of u. In this section we want to weaken this condition, by defining weighted node
functionals, which yield quasi-interpolation operators on L2.

123



H1-conforming finite element cochain complex Page 9 of 29    18 

5.1 Node functionals on perturbed intervals

We begin by introducing perturbations of the reference interval I = [0, 1]. Let
0 < 	 ≤ 1

3 be a fixed parameter andI	 = [−	, 1+	]. Choose yl , yr ∈ I	 such that
yl ∈ B	(0) and yr ∈ B	(1), where B	(x) denotes the interval of radius 	 and center
x . The perturbed interval Ĩyl ,yr = [yl , yr ] is defined as the image of the reference
interval I via a monotone, possibly non-linear mapping

Φyl ,yr : I → Ĩyl ,yr

satisfyingΦ ′
yl ,yr ≡ 1 on B	(0) and B	(1). It turns out that the actual shape of Φ is not

needed in the definition of the quasi-interpolation operators. We transform the node
functionals for P3Λ

0 in (10) as:

Ñ 0
1 (u) = u′(yl) Ñ 0

3 (u) = u(yr ) − u(yl)

Ñ 0
2 (u) = u′(yr ) Ñ 0

4 (u) = u(yr ) + u(yl)
(14)

and those for P2Λ
1 in (11) as:

Ñ 1
1 (v) = v(yl)

Ñ 1
2 (v) = v(yr )

Ñ 0
3 (v) =

∫

Ĩyl ,yr

v(x̃) dx̃ . (15)

By proceeding as in the proof of Lemma3, we obtain the following result.

Lemma 4 The transformed node functionals (14) and(15) satisfy the following prop-
erty:

Ñ 1
i (du) = Ñ 0

i (u), i = 1, 2, 3,

for all u ∈ C1Λ0(I	).

5.2 Weighted node functionals

Let η ∈ C∞(R) be the standard mollifier

η(x) :=
{
C exp

(
1

|x |2−1

)
, if |x | < 1

0, if |x | > 1

where the constant C normalizes the integral to 1. Then, the cut-off functions for the
intervals Bl := B	(0) and Br := B	(1) are given by

ηl(x) := 1

	
η

(
x

	

)
, ηr (x) := 1

	
η

(
x − 1

	

)
.
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Note that, due to normalization, it holds

∫

R

ηl(x) dx =
∫

R

ηr (x) dx = 1, ‖ηl‖L2(R) = ‖ηr‖L2(R) = ‖η‖L2(R)√
	

.

We introduce the weighted node functionals N k
i ∈ (C1−kΛk(I	))∗ as follows:

N k
i (u) =

∫∫

Bl Br
ηl(ξl)ηr (ξr )̃N

k
i (u) dξr dξl , (16)

for k = 0, 1 and all admissible values of i .

Remark 4 The normalization entails, for instance,

N 0
1 (u) =

∫

Bl
ηl(ξ )̃N 0

1 (u) dξ.

Thus, the weighted node functionals N 0
1 (u), N 0

2 (u), N 1
1 (v) and N 1

2 (v) are
characterized by the transformations of only a single end point. Therefore, on a
one-dimensional mesh of several intervals, we can ensure that the result of the quasi-
interpolation operator below is continuously differentiable, if we choose consistent
averaging in each vertex shared by two intervals. This holds even for intervals of
different length.

The remaining node functionalsN 0
3 (u),N 0

4 (u) andN 1
3 (v) are truly double inte-

grals on the balls around both end points.

5.3 Quasi-interpolation operators

We define now the quasi-interpolation operators.

Definition 1 Let {N 0
i }, {N 1

i } be the weighted node functionals as in (16), and {ϕ0
i },

{ϕ1
i } be the basis functions on the reference elementI as in (12) and (13). The quasi-

interpolation operators on I	 are defined as:

Π0 : C1Λ0(I	) → P3Λ
0(I ) u �→

4∑

i=1

N 0
i (u) ϕ0

i ,

Π1 : C0Λ1(I	) → P2Λ
1(I ) v �→

3∑

i=1

N 1
i (v) ϕ1

i .

(17)

Furthermore, for later convenience, we extend both operators such that

Π0 : C0Λ1(I	) → 0, Π1 : C1Λ0(I	) → 0. (18)
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We show now that the quasi-interpolation operators Π0 and Π1 are well-defined
and bounded on L2(I	).

Theorem 1 The quasi-interpolation operators admit the following estimates:

‖Π0u‖L2Λ0(I	) ≤ CΠ0 ‖u‖L2Λ0(I	) , ∀u ∈ L2Λ0(I	),

‖Π1v‖L2Λ1(I	) ≤ CΠ1 ‖v‖L2Λ1(I	) , ∀v ∈ L2Λ1(I	),

where CΠ0 , CΠ1 are positive constants depending on 	, but independent of u and v.

Proof It is enough to show that the weighted node functionals N k
i , for k = 0, 1, and

for all admissible values of i , are bounded on L2. First, for u ∈ L2(Ω)

∣∣∣N 1
1 v

∣∣∣ =
∣∣∣∣
∫

Bl

∫

Br
ηl(ξl)ηr (ξr )v(ξl) dξr dξl

∣∣∣∣ =
∣∣∣∣
∫

Bl
ηl(ξl)v(ξl) dξl

∣∣∣∣

≤ ‖ηl‖L2(Bl ) ‖v‖L2(Bl ) ≤ 	−1/2 ‖η‖L2(R) ‖v‖L2(I	) .

This argument immediately transfer toN 1
2 . ForN 0

3 (and with appropriate modifica-

tion for N 0
4 ) we obtain by the same means

∣∣∣N 0
3 u

∣∣∣ =
∣∣∣∣
∫

Bl

∫

Br
ηl(ξl)ηr (ξr )

(
u(ξr ) − u(ξl)

)
dξr dξl

∣∣∣∣

=
∣∣∣∣
∫

Br
ηr (ξr )u(ξr ) dξr −

∫

Bl
ηl(ξl)u(ξl) dξl

∣∣∣∣

≤ 2 	−1/2 ‖η‖L2(R) ‖u‖L2(I	) .

For the integral node value we observe

∣∣∣N 1
3 v

∣∣∣ =
∣∣∣∣
∫

Bl

∫

Br

∫

Ĩ
ηl(ξl)ηr (ξr )v(x̃) dx̃ dξr dξl

∣∣∣∣

≤
∫

Bl

∫

Br

∫

Ĩ
ηl(ξl)ηr (ξr ) |v(x̃)| dx̃ dξr dξl

≤ ‖v‖L1(I	)

∫

Bl

∫

Br
ηl(ξl)ηr (ξr ) dξr dξl

≤ √
1 + 2	 ‖v‖L2(I	) .

Finally, we estimate the degrees of freedom involving derivatives using integration by
parts, for instance

∣∣∣N 0
1 u

∣∣∣ =
∣∣∣∣
∫

Bl

∫

Br
ηl(ξl) ηr (ξr )u

′(ξl) dξr dξl

∣∣∣∣ =
∣∣∣∣
∫

Bl
ηl(ξl)u

′(ξl) dξl

∣∣∣∣

=
∣∣∣∣
∫

Bl
η′
l(ξl)u(ξl) dξl

∣∣∣∣ ≤ 	−3/2
∥∥η′∥∥

L2(R)
‖u‖L2(I	) .

(19)
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The statement is then proved, with

CΠ0 = 	−3/2
∥∥η′∥∥

L2(R)

(∥∥∥ϕ0
1

∥∥∥
L2(I	)

+
∥∥∥ϕ0

2

∥∥∥
L2(I	)

)

+ 2	−1/2 ‖η‖L2(R)

(∥∥∥ϕ0
3

∥∥∥
L2(I	)

+
∥∥∥ϕ0

4

∥∥∥
L2(I	)

)
,

CΠ1 = 	−1/2 ‖η‖L2(R)

(∥∥∥ϕ1
1

∥∥∥
L2(I	)

+
∥∥∥ϕ1

2

∥∥∥
L2(I	)

)

+ √
1 + 2	

∥∥∥ϕ1
3

∥∥∥
L2(I	)

.

��
Remark 5 Showing boundedness in L2 may not seemwellmotivated. Indeed, formany
applications, boundedness in H1 or HΛ may be sufficient. We point out though, that
the tensor product space H1(I ) ⊗ · · · ⊗ H1(I ) is a proper subspace of H1(I ×
· · · ×I ). Thus, H1-stability in one dimension does not immediately imply the same
for the tensor product, while we have equality of the corresponding L2-spaces by
Fubini’s theorem (see Remark6 below). Note that stability with respect to stronger
norms follows by stability in L2.

On the other hand, we could have considered stability in the even weaker L1-norm
as in [13]. We did not do so since we use readily available strong results on tensor
products of Hilbert spaces. These arguments, if they hold at all, would become more
complicated for a space like L1.

The following lemma shows that the quasi-interpolation operators Π0 and Π1 are
co-chain operators.

Lemma 5 The exterior derivative and the quasi-interpolation operators in (17) com-
mute, namely, for all u ∈ HΛ0(I	) there holds

d0Π0u = Π1d
0u.

Proof From Lemma4 it follows immediately that for all u ∈ HΛ0(I	)

N 1
i (du) = N 0

i (u), i = 1, 2, 3.

Thus, the assumptions ofLemma1 forΠ0 andΠ1 are fulfilled. Since the basis functions
are the same as for the canonical interpolation operator I , the result follows. ��

We note that Π0 and Π1 are not interpolation operators in the classical sense. In
particular, they do not act as the identity on their range. They share this with the
classical quasi-interpolation operators in [11,13,28] as well as the commuting ones
in [10,25]. By using a trick from[26], we can define new operators Π̂0 and Π̂1 which
have the projection property.
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To this end, let us first highlight the dependence of Πk on the size of the intervals
B	 by writing Πk(	) for k = 0, 1. By the definition of the node functionals, we have
for any polynomial p ∈ PΛk

Πk(	)p → Ik p as 	 → 0.

Since Ik acts as identity on PΛk the operator Πk is invertible on this space for suffi-
ciently small 	. Then, we can set

Π̂k = (
Πk|PΛk

)−1
Πk .

6 Tensor complex in n dimensions

We start the section with a brief introduction to the tensor product of cochain com-
plexes. Then, we detail two particular cases: the tensorization of the L2 de Rahm
complex (4) on I	, and the tensorization of the finite element complex on I intro-
duced in Sect. 4.

6.1 Introduction to the tensor product of cochain complexes

Let S ⊂ Rn and T ⊂ Rm be two open bounded domains, and let V ⊂ HΛk(S) and
W ⊂ HΛ�(T ) be Hilbert spaces of differential forms, with inner products (·, ·)HΛk

and (·, ·)HΛ� , respectively (see (2)). Following [23, Chapter 2] we recall the definition
of the tensor product V ⊗ W .

Given two differential forms v ∈ V and w ∈ W , with

v =
∑

σ∈Σ(k,n)

vσdx
σ , w =

∑

τ∈Σ(�,m)

wτdx
τ ,

their tensor product v ⊗ w is the (k + �)-form, expressed in coordinates as

v ⊗ w =
∑

σ∈Σ(k,n)
τ∈Σ(�,m)

vσ ⊗ wτ dx
σ∧ dxτ . (20)

Denote with E the set of finite linear combinations of tensor product differential
forms as in (20). We define an inner product on E as

(v1 ⊗ w1, v2 ⊗ w2)HΛk⊗HΛ� = (v1, v2)HΛk (w1, w2)HΛ� , (21)

and we extend it by linearity to E . The tensor product space V ⊗ W is the Hilbert
space obtained as completition of E under the inner product (21). If {ζi } and {ξ j } are
orthonormal bases of the Hilbert spaces V and W , respectively, then the set {ζi ⊗ ξ j }
is an othonormal basis for V ⊗W , which we refer to as rank-one basis since it consists
of elements of tensor rank one.
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Following [2], we recall the definition of tensor product of complexes of differential
forms. Let there be given two complexes S ⊂ Rn T ⊂ Rm

0
⊂−−→ R

⊂−−→ V 0 d−−→ V 1 d−−→ · · · d−−→ V n d−−→ 0

0
⊂−−→ R

⊂−−→ W 0 d−−→ W 1 d−−→ · · · d−−→ Wm d−−→ 0
(22)

which are subcomplexes of the L2 de Rham complex of S ⊂ Rn and T ⊂ Rm ,
respectively, meaning that V k ⊂ HΛk(S) and d(V k) ⊂ V k+1 for all k = 0, . . . , n,
and W j ⊂ HΛ j (T ) and d(W j ) ⊂ W j+1, for all j = 0, . . . ,m. The tensor product
of the two complexes in (22) is the complex

0
⊂−−→ R

⊂−−→ (V ⊗ W )0
d−−→ (V ⊗ W )1

d−−→ · · · d−−→ (V ⊗ W )m+n d−−→ 0,

(23)

where the space (V ⊗ W )k is defined as

(V ⊗ W )k :=
⊕

i+ j=k

(
V i ⊗ W j

)
, k = 0, . . . ,m + n, (24)

and the exterior derivative d : (V ⊗ W )k → (V ⊗ W )k+1 is defined as

dk(u ⊗ v) = diu ⊗ v + (−1)i u ⊗ d jv, u ∈ V i , v ∈ W j , i + j = k. (25)

Note that the complex (23) is a subcomplex of the de Rham complex on the Cartesian
product S×T . This construction generalizes to the tensor product of any finite number
of subcomplexes of the L2 de Rham complex.

6.2 Tensorization of the L2 de Rham complex

We detail now the particular case where S = T = I	 ⊂ R, and the complexes in (22)
coincide with the L2 de Rham complex on I	 (see (4))

0
⊂−−→ R

⊂−−→ HΛ0(I	)
d−−→ HΛ1(I	)

d−−→ 0. (26)

The tensorization of the complex (26) with itself gives the following complex on the
square I	 × I	

0
⊂−−→ R

⊂−−→ (HΛ ⊗ HΛ)0
d−−→ (HΛ ⊗ HΛ)1

d−−→ (HΛ ⊗ HΛ)2
d−−→ 0,

(27)
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where, in accordance with (24), we have

(HΛ ⊗ HΛ)k :=
⊕

i+ j=k
i, j=0,1

HΛi ⊗ HΛ j , k = 0, 1, 2. (28)

In particular, we have

(HΛ ⊗ HΛ)0 = HΛ0 ⊗ HΛ0,

(HΛ ⊗ HΛ)1 =
(
HΛ0 ⊗ HΛ1

)
⊕

(
HΛ1 ⊗ HΛ0

)
,

(HΛ ⊗ HΛ)2 = HΛ1 ⊗ HΛ1.

The exterior derivative d : (HΛ ⊗ HΛ)k → (HΛ ⊗ HΛ)k+1 is defined in Eq. (25).
In particular, it holds

d0(u0 ⊗ v0) = d0u0 ⊗ v0 + u0 ⊗ d0v0, ∀ u0 ⊗ v0 ∈ HΛ0 ⊗ HΛ0,

d1(u0 ⊗ v1) = d0u0 ⊗ v, ∀ u0 ⊗ v1 ∈ HΛ0 ⊗ HΛ1,

d1(u1 ⊗ v0) = u1 ⊗ d0v0, ∀ u1 ⊗ v0 ∈ HΛ1 ⊗ HΛ0.

Formula (27) and (28) generalize to the n-fold tensor product, leading to the fol-
lowing complex on the n-dimensional hypercube I ×n

	

0
⊂−−→ R

d−−→ (HΛ⊗n)0
d−−→ (HΛ⊗n)1

d−−→ · · · d−−→ (HΛ⊗n)n
d−−→ 0.

The space (HΛ⊗n)k , for k = 0, . . . , n, is defined as

(HΛ⊗n)k :=
⊕

i∈χk

HΛi1 ⊗ · · · ⊗ HΛin . (29)

Here we employ an alternative representation of Σ(k, n) by characteristic vectors,
where the binary vector i selects k out of the n fibers, and is thus taken from the set

χk :=
⎧
⎨

⎩� = (�1, . . . , �n) ∈ {0, 1}n ∣∣
n∑

j=1

� j = k

⎫
⎬

⎭ . (30)

Note that the tensor product space (HΛ⊗n)k is a proper, dense subspace of the space
HΛk(I ×n

	 ). For H1 = HΛ0, see [17, Section 3.4.2], for the other spaces, note that

(C∞Λ⊗n)k is dense in (HΛ⊗n)k as well as in HΛk(I ×n
	 ).

By straightforward computations, and making use of (25), we derive the following
formula for the exterior derivative d : (HΛ⊗n)k → (HΛ⊗n)k+1:

dk(u1 ⊗ · · · ⊗ un) =
n∑

j=1

θ j (u1 ⊗ · · · ⊗ du j ⊗ · · · ⊗ un), (31)
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where θ j ∈ {−1, 1} is defined as θ j := (−1)
∑ j−1

�=1 i� .

6.3 Tensorization of the finite element complex

We focus now on the finite element complex

0
⊂−−→ R

⊂−−→ P3Λ
0(I )

d−−→ P2Λ
1(I )

d−−→ 0 (32)

with node functionals as in (16). We write the generic PΛ to refer to either space of
polynomial forms, with the understanding that PΛ0 ≡ P3Λ

0 and PΛ1 ≡ P2Λ
1.

Applying the tensor product construction to (32), we find the following tensor prod-
uct complex on I ×n

0
⊂−−→ R

⊂−−→ (PΛ⊗n)0
d−−→ (PΛ⊗n)1

d−→ · · · (PΛ⊗n)n
d−−→ 0, (33)

where the space (PΛ⊗n)k , for k = 0, . . . , n, is defined as

(PΛ⊗n)k =
⊕

i∈χk

PΛi1 ⊗ · · · ⊗ PΛin , (34)

the characteristic vectors χk being introduced in (30). The exterior derivative d :
(PΛ⊗n)k → (PΛ⊗n)k+1 is as in (31).

Using the bases {ϕi
j } in one dimension, the rank-one basis of the tensor product

space (PΛ⊗n)k consists of polynomial forms like

ϕi
j = ϕ

i1
j1

⊗ . . . ϕ
in
jn

where i is from the set χk of characteristic vectors of permutations and the components
of j enumerate the polynomial basis. The tensor product construction yields node
functionals for (PΛ⊗n)k of the formN i

j = N i1
j1

⊗ · · · ⊗N in
jn

defined on a rank-one
tensor f1 ⊗ · · · ⊗ fn of suitable forms as

N i
j ( f1 ⊗ · · · ⊗ fn) = N i1

j1
( f1) · · ·N in

jn
( fn),

and extended to the whole space by linearity. Note that the one-dimensional interpo-
lation conditions immediately yield

N i
j (ϕl

m) = δi,lδj,m,

which in turn implies duality of the two bases and thus unisolvence of the tensor
product element.

Thus, the complex in (33) is a complex of finite element differential forms.
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7 Tensor product of quasi-interpolation operators

7.1 Introduction to the tensor product of operators on Hilbert spaces

We start recalling the definition and some properties of the tensor product of operators
on Hilbert spaces (see [23]).

Definition 2 Let V , W be two Hilbert spaces, and let F : V → V ′ and G : W → W ′
be continuous operators. The tensor product operator F ⊗ G : V ⊗ W → V ′ ⊗ W ′ is
defined on functions of the type v ⊗ w as

(F ⊗ G)(v ⊗ w) = F(v) ⊗ G(w),

and is then extended by linearity and density.

In [23, Chapter 8] the authors prove the following result.

Lemma 6 Let the spaces V , W and the operators F, G be as in Definition2. Then,
the tensor product operator F ⊗ G is bounded. In particular, it holds

‖F ⊗ G‖L (V⊗W ,V ′⊗W ′) = ‖F‖L (V ,V ′) ‖G‖L (W ,W ′) .

Definition2 and Lemma6 generalize to the tensor product of any finite number of
bounded operators on Hilbert spaces.

7.2 Commuting quasi-interpolation operators in n dimensions

Let us take F = G = Π0, where Π0 is the commuting quasi-interpolation operator in
one dimension fromSect. 5.3.UsingDefinition2 and theRiesz representation theorem,
we define the tensor product operator

Π0 ⊗ Π0 : L2Λ0 ⊗ L2Λ0 → P3Λ
0 ⊗ P3Λ

0.

In the same way, we define

Π0 ⊗ Π1 : L2Λ0 ⊗ L2Λ1 → P3Λ
0 ⊗ P2Λ

1,

Π1 ⊗ Π0 : L2Λ1 ⊗ L2Λ0 → P2Λ
1 ⊗ P3Λ

0,

Π1 ⊗ Π1 : L2Λ1 ⊗ L2Λ1 → P2Λ
1 ⊗ P2Λ

1.

Definition 3 Given the commuting quasi-interpolation operators in one dimension
from Sect. 5.3, we define the tensor product quasi-interpolator in two dimensions for
k = 0, 1, 2, namely

Π⊗2
k : (L2Λ⊗2)k → (PΛ⊗2)k
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by

Π⊗2
0 = Π0 ⊗ Π0,

Π⊗2
1 = Π0 ⊗ Π1 + Π1 ⊗ Π0,

Π⊗2
2 = Π1 ⊗ Π1,

where the space (PΛ⊗2)k has been defined in (34), and the space (L2Λ⊗2)k is defined
as

(L2Λ⊗2)k =
⊕

i+ j=k
i, j=0,1

L2Λi ⊗ L2Λ j , k = 0, 1, 2.

Using the extension by zero in (18), we can write

Π⊗2
k :=

∑

i+ j=k
i, j=0,1

Πi ⊗ Π j , (35)

since for u ∈ L2Λi ′ , v ∈ L2Λ j ′ , with i ′ + j ′ = k, we have

Π⊗2
k (u ⊗ v) =

∑

i+ j=k
i, j=0,1

Πi (u) ⊗ Π j (v) = Πi ′(u) ⊗ Π j ′(v), (36)

Definition (36) extends by linearity and density to all elements of (L2Λ⊗2)k .
The definition of quasi-interpolation operators in the form(35) generalizes to the

tensor product of any finite number of quasi-interpolation operators by the follow-
ing construction. We start defining the domain of this tensor product operator in n
dimensions:

(L2Λ⊗n)k =
⊕

i∈χk

L2Λi1 ⊗ · · · ⊗ L2Λin , k = 0, . . . , n.

Remark 6 Note that, by Fubini’s theorem, the following isomorphisms hold:

(L2Λ⊗n)0(I ×n
	 ) = L2Λ0(I	) ⊗ · · · ⊗ L2Λ0(I	)

︸ ︷︷ ︸
n times

� L2Λ0(I ×n
	 ),

(L2Λ⊗n)n(I ×n
	 ) = L2Λ1(I	) ⊗ · · · ⊗ L2Λ1(I	)

︸ ︷︷ ︸
n times

� L2Λn(I ×n
	 ).

Definition 4 Given the commuting quasi-interpolation operators in one dimension
from Sect. 5.3, we define the tensor product quasi-interpolator in n dimensions, for
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k = 0, 1, . . . , n, as

Π⊗n
k : (L2Λ⊗n)k → (PΛ⊗n)k, Π⊗n

k :=
∑

i∈χk

Πi1 ⊗ · · · ⊗ Πin . (37)

The operator Π⊗n
k applies to the tensor product of rank-one functions as follows:

given u1 ⊗ · · · ⊗ un ∈ (L2Λ⊗n)k , with u j ∈ L2Λi j and i = (i1, . . . , in) ∈ χk , it
holds

Π⊗n
k (u1 ⊗ · · · ⊗ un) =

∑

i′∈χk

Πi ′1(u1) ⊗ · · · ⊗ Πi ′n (un) = Πi1(u1) ⊗ · · · ⊗ Πin (un),

(38)

where in the second equality we have used (18). Definition (38) extends by linearity
and density to all elements of (L2Λ⊗n)k .

Lemma 7 The quasi-interpolation operator Π⊗n
k defined in (37) is bounded in

L2(I ×n
	 ).

Proof Lemma6 states that the tensor product of bounded operators on Hilbert spaces
is bounded, with constant given as product of the individual constants. Then, it holds:

∥∥Π⊗n
k

∥∥ ≤
∑

i∈χk

∥∥Πi1 ⊗ · · · ⊗ Πin

∥∥ =
∑

i∈χk

∥∥Πi1

∥∥ · · · ∥∥Πin

∥∥

≤
⎛

⎝
∑

i∈χk

1

⎞

⎠Cn
Π =

(
n
k

)
Cn

Π,

whereCΠ = max{CΠ0 ,CΠ1}, the constantsCΠ0 ,CΠ1 being introduced in Theorem1.
��

The following lemma shows that Π⊗n
k is a co-chain operator.

Lemma 8 The tensor product operator Π⊗n
k commutes with the exterior derivative.

More precisely, for u ∈ (HΛ⊗n)k , there holds

Π⊗n
k+1(d

ku) = dkΠ⊗n
k u

Proof We start proving the result on rank-one functions u1 ⊗ · · · ⊗ uk ∈ (L2Λ⊗n)k ,
with u j ∈ L2Λi j , i = (i1, . . . , in) ∈ χk . Using (31), the linearity of Π⊗n

k , (18) and
Lemma5, there holds

Π⊗n
k+1(d

k(u1 ⊗ · · · ⊗ un)) = Π⊗n
k+1

⎛

⎝
n∑

j=1

θ j u1 ⊗ · · · ⊗ di j u j ⊗ · · · ⊗ un

⎞

⎠
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=
n∑

j=1

θ jΠ
⊗n
k+1(u1 ⊗ · · · ⊗ di j u j ⊗ · · · ⊗ un)

=
n∑

j=1

θ jΠi1(u1) ⊗ · · · ⊗ Πi j+1(d
i j u j ) ⊗ · · · ⊗ Πin (un)

=
n∑

j=1

θ jΠi1(u1) ⊗ · · · ⊗ di j Πi j (u j ) ⊗ · · · ⊗ Πin (un)

= dk(Π⊗n
k (u1 ⊗ · · · ⊗ un)).

The result extends by linearity and density to all elements of the tensor product space
(L2Λ⊗n)k . ��

Remark 7 A similar tensor product construction has been applied to bounded cochain
projectors in [7].

Remark 8 We did not address the question of boundary conditions in our construction.
This remark discusses how to define a quasi-interpolation operator which preserves
boundary data and implications on regularity.We do not claim here that we have found
a viable solution, but rather provide some discussion points for further research.

Formally, it is very simple to modify our tensor product weighted node functionals
by removing the integral over the direction normal to the boundary and only averaging
over points on the boundary itself, a construction similar to the operator in [28]. But
this is only well-posed, if the trace of the interpolated function on the boundary exists.
Clearly, such an interpolator cannot be bounded on L2(Ω). It is bounded on H1(Ω), if
no derivatives are involved. Node functionals with tangential derivatives can be dealt
with by integration by parts in the sameway as in (19), such that for these no additional
regularity is needed.

If the node functionals on the boundary involve normal derivatives the interpolation
operator constructed in this way is not even bounded on H1(Ω). Thus, we are thrown
back to the L2-cochain complex. On the other hand, for boundary values of the normal
derivative in L2(∂Ω), we can replace the integral over the interpolated function, which
is typically the unknown solution, by the integral over the boundary data. This is well-
posed, and it is consistent if the boundary value problem is well-posed. The functional
analytic foundations of this technique for the case k = n − 1 can be found in [16,
Section 2]. A generalization to arbitrary k is still lacking.

8 Higher-order polynomial spaces

In this section, we repeat the construction of Sects. 4 and 5 to obtain commuting
quasi-interpolation operators for finite elements of arbitrary polynomial order.
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8.1 Canonical interpolation operators

The canonical commuting interpolation operators in Sect. 4 extend to higher order
polynomial spaces in a straightforward way, if we introduce additional node func-
tionals and corresponding basis functions. To this end, let �m ∈ Pm be the Legendre
polynomial of degreem on the intervalI , normalized such that �m(1) = 1. Then, the
sequence {�m}m=0,... is mutually L2(I )-orthogonal. We also introduce the integrated
and twice integrated Legendre polynomials

Lm(x) =
∫ x

0
�m(t) dt, Km(x) =

∫ x

0
Lm(t) dt .

We recall the well known relation

2(2m + 1)Lm(x) = �m+1(x) − �m−1(x), (39)

which implies the following properties:

(i) Lm(0) = Lm(1) = 0 and equivalently K ′
m(0) = K ′

m(1) = 0 for m ≥ 1, since Lm

is the difference of two Legendre polynomials of equal parity.
(ii) Km(0) = Km(1) = 0, for m ≥ 2, since Km (m ≥ 2) is the integral of a function

with zero mean vanishing at the interval ends.

We define the node functionals for higher-order polynomial finite elements PmΛ0

and Pm−1Λ
1 by the following interpolation conditions.

– For PmΛ0(I ), use

N 0
1 (u) = u′(0) N 0

m+1(u) = u(0) + u(1)

N 0
2 (u) = u′(1)

N 0
i+3(u) =

∫

I
�i u

′ dx, i = 0, . . . ,m − 3.

(40)

While N 0
1 and N 0

2 are identical to (10), we replaced N 0
3 by an integral over

u′, which evaluates to the same as the original. The functional N 0
4 stayed the

same, but now received the index m + 1 to be conforming with Lemma1. In what
follows, we will refer to {N 0

1 ,N 0
2 ,N 0

3 ,N 0
m+1} as the original node functionals

and introduce the corresponding index set Jo = {1, 2, 3,m + 1}.
– For Pm−1Λ

1(I ), introduce the node functionals

N 1
1 (v) = v(0)

N 1
2 (v) = v(1)

N 1
i+3(v) =

∫

I
�iv dx i = 0, . . . ,m − 3. (41)

Moreover, we choose the basis {ϕ0
i } and {ϕ1

i } for the spaces Pm = PmΛ0(I ) and
Pm−1 = Pm−1Λ

1(I ), respectively, as follows:
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– ϕ0
1 , ϕ0

2 , ϕ0
3 and ϕ0

m+1 are chosen identical to (13). The remaining polynomials are
chosen as

ϕ0
i (x) = Ki−2(x), i = 4, . . . ,m, (42)

where we note that Ki−2 has degree i .
– ϕ1

1 , ϕ1
2 and ϕ1

3 are chosen identical to (12). The remaining polynomials are chosen
as

ϕ1
i (x) = Li−2(x), i = 4, . . . ,m, (43)

where we note that Li−2 has degree i − 1.

The canonical interpolation operators, as before I0 : Λ0(I ) → PmΛ0(I ) and
I1 : Λ1(I ) → Pm−1Λ

1(I ) are then defined as

I0u(x) =
m+1∑

i=1

N 0
i (u) ϕ0

i (x), I1v(x) =
m∑

j=1

N 1
j (v) ϕ1

j (x).

Lemma 9 The space Pm = PmΛ0(I ) with the node functionals in (40) forms a uni-
solvent finite element.

Proof First, we note that the dimension of Pm equals the number of node functionals.
Thus, it is sufficient to show that for p ∈ Pm there holds

[
N 0

i (p) = 0 ∀ i = 1, . . . ,m + 1

]
�⇒

[
p ≡ 0

]
. (44)

We show(44) by writing p as linear combination of the basis {ϕ0
i }:

p(x) =
m+1∑

i=1

αiϕ
0
i (x).

Since Ki for i ≥ 2 has double roots at 0 and 1, there holds

N 0
i (ϕ0

j ) = 0 i ∈ Jo, j = 4, . . . ,m.

Therefore, by standard Hermitian interpolation conditions, we obtain

[
N 0

i (p) = 0 ∀i ∈ Jo
]

�⇒
[

αi = 0 ∀i ∈ Jo
]
.

For the remaining coefficients we prove αi = 0 by induction. First note for i =
1, . . . ,m − 3

N 0
i+3(p) =

m∑

j=4

∫

I
�i (x)α j K

′
j−2(x) dx =

m∑

j=4

∫

I
�i (x)α j L j−2(x) dx
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(39)=
m∑

j=4

α j
2(2 j−3)

∫

I
�i (x)

(
� j−1(x) − � j−3(x)

)
dx .

Thus, by orthogonality of the Legendre polynomials

N 0
4 (p) = α4

10

∫

I
�21(x) dx .

We conclude that N 0
4 (p) = 0 implies α4 = 0. Assume now that 4 < n < m, and

αk = 0 for all 1 ≤ k ≤ n − 1. Then,

N 0
n (p) =

m∑

j=n

α j
1

2(2 j−3)

∫

I
�n−3(x)

(
� j−1(x) − � j−3(x)

)
dx

= αn
2(2n−3)

∫

I
�2n−3(x) dx .

Hence, N 0
n (p) = 0 implies αn = 0. ��

By a similar, but simpler argument, we can prove

Lemma 10 The space Pm−1 = Pm−1Λ
1(I ) with the node functionals in (41) forms a

unisolvent finite element.

Analog to Lemma3, we have the following lemma.

Lemma 11 The following diagram commutes:

C1Λ0(I ) C0Λ1(I )

PmΛ0(I ) Pm−1Λ
1(I )

d

I I

d

that is, for every u ∈ C1Λ0(I ), there holds

d0 I0u = I1d
0u.

Proof We show that Lemma1 applies to the node functionals (40) and (41), and the
basis functions (42) and (43). Since the functionals N 0

i with i ∈ Jo and N 1
i with

i ∈ {1, 2, 3} have not changed except for the reformulation of N 0
3 , the result of

Lemma3 still applies to those. For the remaining ones, we have

N 1
i+3(du) =

∫

I
�i du dx =

∫

I
�i u

′ dx = N 0
i+3(u), i = 1, . . . ,m − 3.

Weconcludeobserving that, bydefinition,dϕ0
i = ϕ1

i for i = 1, . . . ,m, anddϕ0
m+1 = 0

holds. ��
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8.2 Quasi-interpolation operators

Again, we introduce node functionals on the perturbed interval Ĩyl ,yr . To this end, it is
sufficient to define transformed versions of the new node functionals in (40) and (41),
since the original ones with index in Jo are transformed as before (see Eqs. (14)
and (15)). To this end, let {�̃i } be the sequence of orthogonal polynomials on Ĩyl ,yr ,
normalized such that �̃i (yr ) = 1. The transformed node functionals are:

Ñ 0
i+3(u) =

∫

Ĩyl ,yr

�̃i (x̃)u
′(x̃) dx̃,

Ñ 1
i+3(u) =

∫

Ĩyl ,yr

�̃i (x̃)u(x̃) dx̃ .

Note that by this definition, we still have the commutation property

Ñ 1
i+3(du) = Ñ 0

i+3(u) i = 0, . . . ,m − 3.

We can now define the weighted node functionals as in (16), and the quasi-
interpolation operator as in (17). Lemma1 applies, hence the quasi-interpolation
operators commute with the exterior derivative. Moreover, the tensor product con-
struction of Sect. 6 leads to commuting quasi-interpolation operators with values in
(PΛ⊗n)k as in (34), where PΛ0 = PmΛ0(I ) and PΛ1 = Pm−1Λ

1(I ).

9 Conclusions

The one-dimensional H1-conforming finite element cochain complex based on cubic
and higher-order polynomials, and its quasi-interpolation operators were introduced.
The tensor product construction was employed to derive (i) H1-conforming finite ele-
ment cochain complexes on meshes with Cartesian mesh cells of arbitrary dimension;
(ii) L2-stable quasi-interpolation cochain operators.

The construction principle in Sect. 8 can be generalized to higher differentiabil-
ity by adding more derivative degrees of freedom at the interval edges and adjusting
the remaining degrees of freedom. The argument using integration by parts in Theo-
rem1 remains valid if applied multiple times and yields L2-stable quasi-interpolation
operators also for this case.

When we refer to meshes with Cartesian mesh cells, we mean that all boundaries
of mesh cells are axiparallel. While this is more general than a Cartesian mesh and
allows for domains with nontrivial topology, it is nevertheless very restrictive. Lifting
this condition is not trivial though. First, it is known that the relation dV k ⊂ V k+1

does not hold anymore directly for finite element spaces, but only after applying
an additional Riesz isomorphism, see [3]. Second, the tensor product construction of
degrees of freedom requires coordinate systems in vertices, which are consistent over
all attached cells. This can be achieved at “regular vertices”, see [1], but it is not clear,
whether a construction at irregular vertices can be obtained.
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A Appendix: Vector proxies

Based on the identifications of the spaces Alt0 Rn and Altn Rn with R, as well as of
Alt1 Rn and Altn−1 Rn with Rn , natural correspondences may be established between
spaces of differential 0 and n forms with scalar-valued fields, as well as spaces of
differential 1 and (n − 1) forms with vector-valued fields. The associated fields are
known as proxy fields. In the following, we detail the tensor product FE space of
differential forms (34) for n = 2 and k = 0, 1, 2 and the vector proxy complex

0
⊂−−→ R

⊂−−→ H1(I × I )
∇×−−−→ Hdiv(I × I )

∇·−−→ L2(I × I ) −→ 0.

The commuting degrees of freedom in Eq. (10) are only used for analysis and
complicate the discussion below considerably. Therefore, we employ Remark2 to
replaceN 0

3 andN 0
4 by the values in the end points. We will abuse the notation below

and use the same symbol for these simplified degrees of freedom.

Case k = 0.

The space (PΛ⊗2)0(I × I ) = P3Λ
0(I ) ⊗ P3Λ

0(I ) is identified with the scalar
proxy field P3(I ) ⊗ P3(I ), also denoted by P3,3(I × I ). It has cardinality 16.
The node functionals for P3,3(I ×I ) are the tensor product of node functionals for
P3(I ). For example, the four node functionals {N 0

1 ⊗ N 0
h }h=1,...,4 are defined on

u(x, y) ∈ P3,3(I × I ) as

(N 0
1 ⊗ N 0

1 )(u) = ∂2u

∂x∂ y
(0, 0) (N 0

1 ⊗ N 0
3 )(u) = ∂u

∂x
(0, 0)

(N 0
1 ⊗ N 0

2 )(u) = ∂2u

∂x∂ y
(0, 1) (N 0

1 ⊗ N 0
4 )(u) = ∂u

∂x
(0, 1).

Altogether, the node functionals for P3,3(I × I ) are (see also Fig. 1):
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Fig. 1 Node functionals of the vector proxies in two dimensions for k = 0, 1, 2 from left to right. Bullets
are point values, arrows are derivatives in a point and double diagonal arrows are mixed second derivatives.
Lines and the circle are integrals in one and two dimension, respectively. Flat triangles are integrals over
the normal derivative. In the center, blue and red degrees of freedom refer to the horizontal and vertical
vector components, respectively

1. The mixed second derivatives in each vertex
2. The two components of the gradient in each vertex
3. The function values in each vertex

In summary, we obtain the finite element of Bogner, Fox, and Schmit [6].

Case k = 1.

The space (PΛ⊗2)1(I ×I ) = (P3Λ
0(I )⊗P2Λ

1(I ))⊕ (P2Λ
1(I )⊗P3Λ

0(I ))

is identified with the proxy vector field (P3(I ) ⊗ P2(I )) ⊕ (P2(I ) ⊗ P3(I )),
also denoted by P3,2(I × I ) ⊕ P2,3(I × I ). This is the tensor product Raviart-
Thomas space of corresponding order on the square. Both spaces P3,2(I × I ) and
P2,3(I × I ) have cardinality 12.

Again, the node functionals are constructed as tensor products. For example, the
three nodal functionals {N 0

1 ⊗ N 1
h }h=1,2,3 are defined on v(x, y) ∈ P3,2(I × I )

as

(N 0
1 ⊗ N 1

1 )(v) = ∂v

∂x
(0, 0)

(N 0
1 ⊗ N 1

2 )(v) = ∂v

∂x
(0, 1)

(N 0
1 ⊗ N 1

3 )(v) =
∫ 1

0

∂v

∂x
(0, y) dy.

For each of the four edges, we obtain the following set of six node functionals (see
also Fig. 1):

1. The values of the normal derivative of the normal component in the two end points
of the edge

2. The integral of the normal derivative of the normal component over the edge
3. The function values of the normal component in the two end points of the edge
4. The integral of the normal component over the edge

This is the element of Austin, Manteuffel, and McCormick [5] with the degrees of
freedom of Kanschat and Sharma [19].
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Case k = 2.

The space (PΛ⊗2)2(I × I ) = P2Λ
0(I ) ⊗ P2Λ

0(I ) is identified with the scalar
proxy field P2(I )⊗P2(I ), also denoted by P2,2(I ×I ). It has cardinality 9. Node
functionals for P2,2(I × I ) areN 1

� ⊗ N 1
h , for �, h = 1, 2, 3. For example,

(N 1
1 ⊗ N 1

1 )(w)=w(0, 0), (N 1
1 ⊗ N 1

3 )(w)=
∫ 1

0
w(0, y) dy,

(N 1
1 ⊗ N 1

2 )(w)=w(0, 1), (N 1
3 ⊗ N 1

3 )(w)=
∫∫ 1

0
w(x, y) dx dy,

for w(x, y) ∈ P2,2(I × I ). Altogether, the node functionals for P2,2(I × I ) are
(see also Fig. 1):

1. The function values at the four vertices
2. The integrals of function values over each edge
3. The integral of the function over the square

This is the standard continuous Q2 element with moment degrees of freedom.

Comparison to other elements

The construction of the isogeometric methods in [8] and [9] is done by tensor products
of one-dimensional elements. Thus, for the same polynomial degree and the same
continuity, they have the same number of degrees of freedom on a single patch.

In [21] two finite element pairs for velocity and pressure have been proposed. For
the first, the discrete velocity lives in the space P3,2(I ×I ) ⊕ P2,3(I ×I ), where
P3,2(I × I ), the same Raviart-Thomas space as above for k = 1. There, this space
is equipped with the following set of degrees of freedom:

1. On each edge, the value of the function and the normal derivative of the normal
component at the end points

2. On each edge, the function evaluation in the center point
3. Function evaluation at two interior points for each velocity component

The pressure spaceP2,2(I ×I ) is equippedwith the following set of node functionals

1. The function evaluation in each vertex
2. Five internal degrees of freedom

The second pair in [21] is a reduced version with smaller function spaces. We com-
pare the number of degrees of freedom involved for the pure tensor product elements
and the Neilan/Sap pairs in Table1. Nevertheless, the value of this comparison is lim-
ited, since it must be put in relation with the approximation properties and ease of
implementation.
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Table 1 Comparison of the number of degrees of freedom per cell for the tensor product elements in this
article and the two elements by Neilan and Sap. Comparison for a single cell and for an infinite lattice in
two dimensions

Element Single cell Asymptotically

Velocity Pressure Velocity Pressure

Tensor product 24 9 8 4

Neilan/Sap I 24 9 10 6

Neilan/Sap II 20 5 6 2
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