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Abstract

Hardware Trojan Horses (HTHs) represent today a serious issue not only for academy but also for industry because of the dramatic complexity
and dangerousness attackers can count on. It has been shown that HTHs can be inserted in modern and complex microprocessors allowing the
attacker to run malicious software, to acquire root privileges and to steal secret user information. In this paper we propose DETON, an automatic
methodology for software manipulation aimed at introducing obfuscation in programs’ execution to protect microprocessor-based systems against
information stealing HTHs. The high-level goal of DETON is to produce an obfuscated version of the program under protection in order to
allow a trusted execution over a (possibly) untrusted CPU-based system. The obfuscated program will then be the one actually executed on
the target hardware platform. DETON aims at i) reducing the amount of sensitive information exposed to the attacker by spreading it through
microprocessor’s registers and by submerging it among garbage information, and ii) reducing the time for which sensitive information is exposed
to the attacker by scrambling data among microprocessor’s registers. We first present a set of guidelines, requirements and metrics aimed at
driving and assessing software obfuscation against always-on information-stealing HTHs and we then present the DETON framework. We prove
the e↵ectiveness and e�ciency of DETON on the Ariane version of the 64bit RISC V microprocessor running a set of MiBench programs.
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1. Introduction

The increasing complexity of modern integrated circuits (ICs)
and the continuous seek for low production cost and short time-
to-market, pushed the ICs design and fabrication towards a glob-
alized supply chain [1]. Indeed, after system requirements have
been specified, the design house often outsources the design of
some of the hardware modules, or it resorts to third-party intel-
lectual property cores (3PIPs) and even it outsources the masks
definition and the final chip fabrication [2].

The benefit of such a globalized supply chain is a significant
reduction of design cost and time. On the other hand, this comes
at the cost of a significant loss of trust in the final delivered
ICs [3]. The consequence of this globalization is that it is very
hard to ensure the trustworthiness of all the parties involved in
the supply chain. Therefore, the product is exposed to a huge
number of threats: ICs may be overproduced by the foundry and
sold in the black market [4]; defective or dismissed ICs may be
delivered as good ones [5]; IP core licenses may be violated
and IP cores may be overused [6]; designs may be maliciously
modified to insert stealthy unwanted functionalities in the final
product, also known as Hardware Trojan Horses (HTHs) [7].

A HTH can be defined as a very-hard-to-detect malicious
modification of a design meant i) to stay silent most of the time
and to activate in a specific (usually rare) working condition to
alter the nominal behavior of the system, or ii) to stay constantly
active and to secretly steal sensitive information processed by

the system [7]. HTHs may be inserted in any stage stage of the
design process and at any level of abstraction: untrusted IP ven-
dors may sell IP cores infected both at the hardware description
language-level and at netlist-level [8]; rogue employees and un-
trusted CAD tools may maliciously modify the design [9]; fi-
nally, untrusted mask providers and silicon foundries may alter
the layout [10].

In the past, HTHs have been considered a purely academic
issue because they generally exposed reduced complexity and,
as a consequence, limited dangerousness. In the very last years,
a new menace raised: the so called software exploitable HTHs [11].
Indeed, it has been demonstrated that complex and highly dan-
gerous HTHs may be implanted in real-world microprocessors.
A software-exploitable HTH may allow the attackers to exe-
cute their own malicious software, to modify the running soft-
ware or to steal secret information [12], or even to acquire root
privileges on the system [13]. Finally, in 2018, security re-
searchers demonstrated the presence of a hardware backdoor,
called the Rosenbridge backdoor, on a commercial Via Tech-
nologies C3 processor [14, 15]. This hardware backdoor can
be activated and exploited via software (by making the CPU
fetch a pre-define sequence of instructions) to enter in supervi-
sor mode. The feasibility of implanting and activating software
exploitable HTHs in real-world microprocessors makes such at-
tacks not only a concern for academy but also a serious threat
for industry.

There is a vast literature about HTHs detection techniques [16].
Most of these methodologies attempt to detect the HTH be-
fore the circuit has been deployed, by exploiting a plethora of
techniques: logic testing [17], formal property verification [18],
side-channel analysis [19], optical inspection [20], proof-carrying
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hardware [21]. All these techniques su↵er from a number of
limitations, among which the di�culty of triggering the HTHs
at design time for detection, the need for a golden reference of
the circuit under analysis, the ability of detecting only a spe-
cific sub-class of HTHs. More recently, the need for HTHs tol-
erance techniques able to build trusted systems from untrusted
components or to provide trusted execution from untrusted sys-
tems has been pointed out, moving towards the Design for Trust
paradigm [22, 23]. The existing anti-Trojan Design-for-Trust
approaches are based on the integration of redundant function-
ally equivalent IP cores belonging to di↵erent IP vendors, like
the proposals in [24, 25]. Moreover, security-aware task schedul-
ing techniques for systems built by integrating redundant IP
cores belonging to di↵erent vendors have been proposed [26,
27, 28]. The applicability of these approaches is confined to
those scenarios where the hardware platform is still to be devel-
oped and the designer has the freedom to add redundancy and
diversity. Moreover, all these approaches protect the system
against those HTHs that aim at modifying the functionality of
the system itself, while they are ine↵ective against those HTHs
that steal secret information from the system.

In this paper we propose DETON, a software obfuscation
methodology for mitigating the dangerousness of information-
stealing HTHs in microprocessors without requiring any modi-
fication to the underlying HW platform. The high-level goal of
DETON is to produce an obfuscated version of the program un-
der protection in order to allow a trusted execution over a (pos-
sibly) untrusted CPU-based system. The obfuscated program
will then be the one actually executed on the target hardware
platform. DETON exploits software obfuscation to reduce the
probability of exposing sensitive information to the HTH. In-
deed, starting from the original software, DETON increases the
usage of the microprocessor’s registers, adds garbage instruc-
tions and reduces the time in which any register holds sensi-
tive information. More in details, to achieve such minimiza-
tion of the probability of exposing sensitive information to the
HTH, DETON spreads sensitive information through micropro-
cessor’s registers and submerges it among garbage data

With respect to the state-of-the-art anti-Trojan Design- for-
Trust techniques, DETON is a pure software-based methodol-
ogy. It can therefore be applied both when the system is still
to be designed as well as on already designed and deployed
systems. Moreover, DETON does not require any redundancy
or modification to standard microprocessors. The only work
proposing a similar idea is the one reported in [29] where soft-
ware diversity is achieved by substituting program instructions
with equivalent ones. Nevertheless, the proposal in [29] only
considers sequentially-triggered change-functionality HTHs and
equivalent instructions substitution is solely employed. By sum-
marizing, the main contributions presented in this paper are:

• the definition of security-aware guidelines and require-
ments aimed at driving the process of software obfusca-
tion to alleviate the dangerousness of always-on information-
stealing HTHs,

• the subsequent definition of two novel quantitative met-
rics specifically aimed at assessing the susceptibility of

the running software to always-on information-stealing
HTHs,

• the DETON framework for anti-HTH software obfusca-
tion, and

• an in depth experimental campaign aimed at assessing
the e↵ectiveness and e�ciency of DETON on a set of
MiBench programs [30] executed on the Ariane RISC V
64bit processor [31].

The remainder of this paper is organized as follows: Sec-
tion 2 presents the background on HTHs and the considered
threat model; Section 3 discusses the defined guidelines for
anti-HTH software obfuscation and presents the metrics defined
for the evaluation of the susceptibility to information stealing of
a running program; Section 4 discusses the DETON framework
while Section 5 presents the results of the performed experi-
mental campaign and depicts a security analysis; Section 6 re-
views the state-of-the-art approaches for HTHs detection and
tolerance while Section 7 concludes the paper.

2. Background

We here first comment about the most common types of
HTHs and we then specify the HTH model taken into account
by DETON as a threat model.

2.1. Hardware Trojan Horses
As it has been previously discussed, a HTH is a very hard-

to-detect modification of a system i) that keeps silent most of
the time, and becomes active under specific rare conditions, al-
tering the nominal behavior of the system, or ii) that is always
active and covertly steal sensitive information processed by the
system. According to the taxonomy presented in [7], HTHs
may be classified based on their triggering mechanism, payload
and insertion phase.

A HTH may be triggered:

• internally by logical signals (or sequences of logical sig-
nals, in case of sequential HTHs) or by physical quanti-
ties, e.g., internal temperature or voltage, or by a hidden
ad-hoc configured counter (the so-called time bombs);

• externally by either received messages or commands, or
by physical interactions, e.g., again the external temper-
ature or voltage; and

• always-on, i.e., HTHs that become active as soon as the
system is turned on.

Under the point of view of the payload, i.e., their e↵ect on
the infested system, HTHs may be classified in:

• Change functionality HTHs that alter the nominal func-
tionality of the infected system, e.g., make the system
execute a malicious code;
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• Information stealing HTHs that steal secret information
from the system either through the available communi-
cation interfaces, e.g., by sending unauthorized messages
to the attacker, or through covert side-channels, e.g., tem-
perature or magnetic field; and

• Denial-of-service HTHs that stop the functioning of the
system, e.g., by introducing nop instructions, by draining
the system’s batteries, or by jamming the communication
interfaces.

Finally, from the insertion point of view, HTHs may be ma-
liciously added in the design by IP providers in the purchased
3PIPs, by rogue designers and by the employed CAD tools pos-
sibly in every stage of the design flow and by the foundry during
chip fabrication.

2.2. The Considered Threat Model
Referring to the classical HTHs classification [7], DETON

takes into account both triggered and always-on information
stealing HTHs infesting microprocessor’s logic, inserted during
any phase of the design process, i.e., by malicious IP providers,
employees, CAD tools or by the foundry, and at any level of
abstraction, i.e., logic netlist, physical design or layout. More
in details, we assume a two-level information stealing attack:
first, the HTH repeatedly exfiltrates the content of a number
of registers of the processor and covertly sends this raw data
to the attacker. Then, the attacker collects this data and post-
processes it to retrieve the sensitive information of interest. We
assume that, when injecting the trojan at design- or fabrication-
time, the attacker knows all the details of the hardware platform
he/she is attacking. Moreover, we assume that the attacker has
an idea about which operating system and programs will be ex-
ecuted but, on the other hand, he/she cannot have all the details
about software versions and implementations.

We assume that the injected HTH monitors and exfiltrates
data only from a reduced number of registers of the infested
processor, i.e., the attacker cannot count on a full dump of the
content of all the registers of the infested microprocessor. We
believe that this assumption is totally reasonable if we keep
in mind that: i) the HTH needs to be small enough not to be
detected via optical inspection, ii) the HTH needs to have an
extremely reduced impact on power consumption, electromag-
netic emission and timing, and iii) the HTH cannot occupy the
transmission channel for long without being discovered. There-
fore, we assume that the HTH monitors the content of a fixed
(at injection-time) and small set of registers and exifiltrates data
through a (possibly large) number of clock cycles. On the other
hand, because of the previously mentioned limitation to the
HTH complexity, we assume that the HTH is not able to change
the monitored registers, e.g., in a round-robin fashion. Finally,
we may also assume that the attacker knows all the details of
the deployed software-based countermeasure but this does not
bring him/her any additional advantage.

On the other hand, we do not take into account change the
functionality and denial-of-service HTHs.

3. Obfuscation principles

Obfuscation has been widely employed both for hardware [32]
and for software protection [33]. The goal of obfuscation is
generally to protect the intellectual property associated with a
program or a circuit from unauthorized use or reproduction.

Hardware obfuscation has been proposed to avoid i) reverse
engineering of the circuit’s functionality by observing the cir-
cuit’s netlist or layout and ii) overproduction of unauthorized
chips that could then be sold in the black market. To do so, non
standard cells may be employed (camouflaging) or the netlist
may be "locked" in order to make the fabricated circuit unus-
able before unlocking it through a secret key (logic locking).
The metrics generally adopted to evaluate the strength of hard-
ware obfuscation techniques measure i) the number of brute
force attempts required to unlock the circuit without knowing
the secret key or to guess the secret key itself, ii) the Hamming
distance between the outputs of an obfuscated circuit when ap-
plying an incorrect key and the output of the unlocked circuit,
and iii) the number of input patterns that produce an incorrect
output when applying an incorrect key to the circuit.

Similarly, software obfuscation aims at making hard for a
reader (for example a decompilation tool) to understand the
functionality implemented by a program, the meaning of a given
construct or variable, the value of constants, the structure of
classes and arrays. As for hardware obfuscation, the goal of ob-
fuscating programs is to avoid intellectual property break. To
do so, never-executed dummy code may be inserted, instruc-
tions may be reordered or hidden, loops may be unrolled, in-
tersected or extended, logic conditions may be opacified, arrays
and data structures may be split or merged. The metrics gen-
erally adopted to evaluate the strength of software obfuscation
techniques aim at assessing how di�cult is for a human reader
or a decompiler to understand the behavior of a program.

Given the above considerations, we argue that obfuscation
techniques have been traditionally meant to deal with a static
external attacker while we consider information stealing HTHs
as dynamic internal threats. In the following of this section
we first discuss the deep di↵erence between these two attacks
that drive the need for new software obfuscation guidelines and
metrics. Then, we give details about the obfuscation guidelines
we have identified and integrated into DETON and the met-
rics we developed to evaluate the e↵ectiveness and e�ciency of
DETON.

3.1. Guidelines for software obfuscation against HTHs
As discussed above, we believe that obfuscation techniques

have been traditionally designed to deal with a static external
attacker that looks at the circuit’s structure or at the program’s
code with the aim of gaining knowledge and being able to re-
produce it. On the other hand, according to the previously dis-
cussed threat model, we observe that the considered informa-
tion stealing HTHs represent a dynamic internal attacker threat.
Indeed, the considered HTHs act by observing the behavior of
the running program from inside and they aim at discovering
the data computed by the running program at runtime. Given
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these peculiarities, we believe that i) novel obfuscation guide-
lines have to be drawn to deal with information stealing HTHs,
and ii) new metrics have to be proposed to capture how well a
program has been obfuscated not to expose secret information
to such a HTH model.

We defined the following guidelines to drive the process of
obfuscating software against information stealing HTHs.

Guideline 1: The variables of the program under protection
should reside in the largest possible set of registers during pro-
gram execution. In this way, the probability of exposing sensi-
tive information to the attacker through the few registers moni-
tored by the HTH is kept small.

Guideline 2: The amount of non sensitive information per time
unit processed by the program under protection should be kept
as large as possble. In this way again, for each time unit, the
probability of exposing sensitive information to the attacker
through the few registers monitored by the HTH is kept small.

As a last, non security-related requirement, it is of course funda-
mental not to excessively degrade performance while ensuring
security, i.e., not excessively increase the execution time of the
program under protection.

3.2. The defined metrics
In the very last years a number of metrics and methods for

measuring the susceptibility of digital systems to side-channel
attacks have been proposed [34, 35, 36]. These approaches aim
at measuring how much the significant information processed
by the system is correlated to side information, e.g., timing be-
havior, power consumption or electromagnetic emission, and
thus, how much significant information the attacker may re-
trieve by observing such side information. We claim that such
metrics do not apply for the considered information-stealing
HTH model. Indeed, in our scenario the HTH is assumed to
work within the infested microprocessor, thus it is able to ob-
serve plain information from processor’s registers. Therefore,
the problem for an attacker that exploits the considered HTH
model is not to infer sensitive information from side informa-
tion but to identify the sensitive data among all the data chunks
leaked and transmitted by the HTH (that possibly contain both
garbage and sensitive data) and then to reconstruct the sensi-
tive information based on the received data chunks. Therefore,
we believe that novel HWH-aware metrics are required to mea-
sure the susceptibility to information leakage of a CPU-based
system executing a given software.

Based on these considerations and on the previously dis-
cussed design guidelines we defined the following security-related
metric plus an overhead metric to assess the e↵ectiveness and
the e�ciency of DETON.

Registers heat (H): given a processor’s register r, this metric,
noted as Hr, is a reverse measure of time elapsed since the last
data has been written in r. When a data is written in r, Hr is set
to a given configurable value HMAX and it is then decreased at
each instruction cycle until either a new data is written in r or
Hr equals 0. The higher the average heat of a register over time,
and more in general of all processor’s registers, the larger the

amount of data processed by a program. As a consequence, the
higher the average registers’ heat the harder for an attacker to
identify the sensitive information among all the processed data.

Program enlargement (E): given a plain program p and the
associated obfuscated program po, this metric, noted as Ep

po ,
measures the di↵erence between p and po in terms of number of
assembly instructions. The higher Ep

po the higher the overhead
introduced by obfuscation.

4. The DETON Framework

DETON is a design time framework for software obfus-
cation aimed at mitigating the dangerousness of information-
stealing HTHs in microprocessors by implementing the soft-
ware obfuscation guidelines defined in Section 3.1. The high-
level goal of DETON is to produce an obfuscated version of
the program under protection in order to allow a trusted exe-
cution over a (possibly) untrusted CPU-based system. More in
details, DETON takes the program under protection and pro-
duces an obfuscated version of the program such that the two
versions are functionally equivalent but the obfuscated program
has higher values of the previously discussed security metrics.
The obfuscated version of the program will then be the one ac-
tually executed on the target hardware platform. DETON ex-
ploits software obfuscation at the assembly-level to reduce the
amount of significant information exposed to HTHs. Starting
from the original assembly of a program, DETON produces an
obfuscated version of the program to be then deployed in the
system.

From a high-level point of view, the strategy adopted by
DETON aims at: i) spreading sensitive information through
microprocessor’s registers and submerging it among garbage
information, and ii) periodically scrambling sensitive informa-
tion among microprocessor’s registers. In this way, keeping in
mind that the considered HTH model is able to monitor and
send to the attacker the content of a reduced number of proces-
sor’s registers, DETON achieves two benefits: i) reducing the
amount of sensitive information exposed to the attacker, and
ii) increasing the amount of garbage information exposed to
the attacker. More in details, the software obfuscation tech-
niques implemented by DETON are: i) garbage code inser-

tion, ii) constants obfuscation, and iii) register scrambling.
A high-level representation of the DETON flow for software

obfuscation is depicted in Figure 1. DETON takes the assembly
code of the program to be protected and produces the assembly
code of the obfuscated version of the program that is the one
actually meant to be executed over the untrusted HW platform.
Of course, the original program and generated obfuscated one
are functionally identical, i.e., the two programs produce identi-
cal outputs when fed with identical inputs. Moreover, DETON
takes a description of the architecture on which the program
will be executed and a configuration file to drive the obfusca-
tion process (more details about the configuration parameters
will be provided in the following subsections). The architec-
tural description file specifies the instruction set of the target
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Figure 1: The DETON flow

main :
a d d i sp , sp ,�32
sd s0 , 24( sp )
a d d i s0 , sp , 32
l i a5 , 10
sw a5 , �20( s0 )
l i a5 , 4
sw a5 , �24( s0 )
lw a5 , �20( s0 )
addiw a5 , a5 , 1
sw a5 , �20( s0 )
lw a4 , �24( s0 )
lw a5 , �20( s0 )
addw a5 , a4 , a5
sw a5 , �24( s0 )
l i a5 , 0
mv a0 , a5
l d s0 , 24( sp )
a d d i sp , sp , 32
j r r a

Figure 2: The assembly code of an example program

microprocessor in terms of instructions’ format and operands
and the registers’ names and size.

The first step performed by DETON is parsing the input as-
sembly code to build an internal Control-Flow Graph (CFG)
representation of the program. Then the designed software ob-
fuscation techniques are applied in the following order: i) in-
sertion of garbage code, ii) obfuscation of the constants, and
iii) scrambling of registers. As a final step, based on the CFG
resulting from the applied manipulation techniques, the output
obfuscated program is generated. In the remainder of this sec-
tion we provide more details about the functioning of DETON.
As a final note, keep in mind that all the software obfuscation
examples reported in the following will be referred to the inten-
tionally simple original program shown in Figure 2 where two
variables are allocated and their sum is calculated.

4.1. Control-flow graph generation
A control-flow graph (CFG) is a graph representation of all

execution paths that might be traversed by a program during its
processing. Nodes in a CFG represent program’s basic blocks,
i.e. a sequence of instructions without any jump while directed
edges between nodes are used in the CFG to represent jumps in
the control flow. Moreover, there are two specially designated
blocks: the entry block, through which the control enters into

s l l i a6 , t5 , 30
s l t u a4 , s3 , s11
mv t4 , a7
mulh t4 , s5 , a1
s l t i u t0 , ra , �1657
s r a s11 , t6 , s5

Figure 3: An example of garbage code insertion between lines 4 and 5 of the
program in Figure 2

the flow graph, and the exit block, through which all control
flow leaves. Given this premises, it is possible to build a CFG
univocally describing the structure of the program under anal-
ysis. Then, based on the previously built CFG, the Execution
Graph (EG) of the program is built. An EG is a compact graph
representation of all the possible executions of a program. Such
EG allows DETON to trace the status of the underlying mi-
croprocessor in terms of unused and busy registers. Moreover,
based on the EG, for every register DETON keeps track of the
time at which the content of the register changed. All these sta-
tus information are then exploited by the subsequent modules
of DETON to drive the obfuscation process.

4.2. Garbage code insertion
The first software manipulation performed by DETON is

the insertion of garbage code within the program to be obfus-
cated. More in details, each time it is invoked, the module in
charge of inserting garbage code randomly selects the block
of the program, i.e., the node of the CFG, where to insert the
garbage code, the code line within the block after which in-
serting and the length of the garbage code sequence to be in-
serted. The garbage instructions are randomly selected among
the move, shift, arithmetic and logic ones. The operands of
the inserted garbage instructions are also randomly generated.
Because of the randomness of the operands, to prevent anoma-
lous working conditions no division instructions are inserted
(to avoid possible divisions by zero) as well as no jump instruc-
tions are inserted (to avoid jumping into unauthorized memory
areas).

The registers from which garbage instructions read and in
which they write are chosen among the registers that are un-
used in the block in which the garbage code is inserted. More
in details, for each inserted garbage instruction the unused reg-
ister whose content has not been modified since more time is
identified as the destination register of the inserted garbage in-
struction itself. In this way DETON allows to increase the usage
of all the registers in the microprocessor as well as it reduce the
time between two consecutive modifications of the content of
a register. Moreover, garbage code insertion allows DETON to
break specific instructions patterns whose identification during
program execution could be of interest for the attacker. As an
example of garbage code insertion, Figure 3 reports six instruc-
tions inserted between lines 4 and 5 of the program reported in
Figure 2.

4.3. Constants obfuscation
The second software manipulation performed by DETON is

the obfuscation of the constant values within the program. Each
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l i t5 , 463
s l l i s6 , t5 , 3
s r l i s9 , s6 , 3
o r i t2 , s9 , �976
s l l i t3 , t2 , 0
a n d i a7 , t3 , 1019
a n d i t6 , a7 , �450
o r i t0 , t6 , 1668
a n d i a2 , t0 , �1727
o r i t1 , a2 , 1
s l l i t4 , t1 , 11
s r l i s11 , t4 , 6
add s0 , sp , s11

Figure 4: An example of constant obfuscation referred to the original constant
at line 4 of the program in Figure 2

time it is invoked, the module in charge of obfuscating the con-
stants randomly selects a block of the program and, within the
selected block, it randomly selects a code line where an imme-
diate value, i.e., a constant, is used by the instruction. It is worth
mentioning that any constant value in the program may be ob-
fuscated, i.e., both the operands used by arithmetic and logic in-
structions and the o↵sets used by memory access instructions.
Let us refer to the instruction whose constant operand is go-
ing to be obfuscated as the target instruction of the obfuscation
process; moreover, let us refer to the destination register of the
target instruction, i.e., the register in which the result of the tar-
get instruction is going to be stored, as the target register of the
obfuscation process and to the constant value used by the target
instruction as the target value. The overall goal of the constant
obfuscation module is substituting the target instruction with a
randomly long sequence of instructions (dubbed the obfusca-
tion sequence). The obfuscation sequence is built such that at
the end of its execution the target register holds the target value
(the functionality of the program is not going to be a↵ected by
such constant obfuscation).

The obfuscation sequence is made of load, move, logical
and arithmetic instructions. In particular, the obfuscation se-
quence is generated such that the target value is built step by
step by all the instructions in the sequence and it will be avail-
able in the target register after the last instruction of the obfus-
cation sequence has been executed. The first step performed
by the constant obfuscation module is substituting the target
instruction with a randomly selected instruction having the tar-
get register as destination register. Then, being k the randomly
chosen length of the obfuscation sequence, a sequence of k ran-
domly selected instructions and associated operands is back-
ward generated such that the result of each instruction is the
value required by the subsequent instruction. It is worth men-
tioning that all the registers employed in the obfuscation se-
quence are chosen among the registers that are unused in the
randomly chosen code block. As an example of constant obfus-
cation, Figure 4 reports a sequence of 13 instructions inserted
in the program reported in Figure 2 to obfuscate the constant 32
used by the addi instruction at line 3.

A special case for the constant obfuscation procedure is rep-
resented by the li (load immediate) instructions. Indeed, the
operand of an li instruction is a 32bit data, which would re-

l u i a5 , 0
l i a6 , �1379
l i a6 , 737
s l l i a3 , a6 , 1
a n d i s2 , a3 , �1475
o r i t5 , s2 , 0
o r i s3 , t5 , 660
o r i s11 , s3 , �693
s l l i s5 , s11 , 0
s l l i s6 , s5 , 0
s l l i s1 , s6 , 0
s l l i s10 , s1 , 0
a n d i s4 , s10 , �131
a n d i t1 , s4 , �1886
s r l i s7 , t1 , 8
o r i s9 , s7 , 512
o r i t6 , s9 , 165
x o r i t2 , t6 , 685
s l l i t0 , t2 , 12
s l l a3 , a6 , t 0
x o r i s2 , a3 , �1387
o r i t5 , s2 , 2
or a5 , a5 , t 5

Figure 5: An example of obfuscation of an li instruction referred to the original
constant in line 5 of the program in Figure 2

a d d i sp , sp ,�32
mv t1 , sp
sd s0 , 24( t 1 )
a d d i s0 , t1 , 32

Figure 6: An example of register scrambling referred to the code in lines 2 to 4
of the program in Figure 2 where sp is substituted with t1

quire a two long sequence to be e↵ectively obfuscated. Thus,
we split the li into an lui (load upper immediate) instruction,
that loads the upper 16bit part of the operand, and an obfus-
cation sequence that calculates the remaining 16bit part of the
operand. As an example of obfuscation of the operand of an
li instruction, Figure 5 reports a sequence of 23 instructions
inserted in the program reported in Figure 2 to obfuscate the
constant 10 used by the li instruction at line 5.

The constant obfuscation module allows DETON to reduce
the time for which a constant value is exposed in the micro-
processor’s registers, thus reducing sensitive data exposition.
Moreover, since additional registers are used by the instructions
in the obfuscation sequence, constant obfuscation allows to in-
crease the usage of all the registers. Finally, as for garbage
code insertion, also constant obfuscation adds instructions in
the program, thus breaking specific instructions patterns whose
identification could be of interest for the attacker.

4.4. Register scrambling
The last software manipulation performed by DETON is the

scrambling of the registers within the program to be obfuscated.
Each time it is invoked, this module randomly selects a pro-
gram block and a target register ri actually used in the selected
block. Then, the validity block of ri, i.e., all the code lines of the
selected block where ri is employed, is identified and a scram-
bling point, i.e., the specific instruction in the validity block af-
ter which introducing register scrambling, is randomly selected.
Finally, a register r j that is not used within the selected block

6



Table 1: The main parameters of the DETON framework

Name Description
Ngi # times the garbage code insertion module is invoked
Lgi Max. length of the inserted garbage code sequence
Nco # times the constant obfuscation module is invoked
Lco Max. length of the inserted obfuscation sequence
Nrs # times the register scrambling module is invoked

is identified (let refer to this register as the scrambled register),
the scrambling instruction:

mv r j, ri

is added at the scrambling point and r j is then substituted to ri
in all the remaining instructions of the validity block of ri. As
it has been previously mentioned, the scrambled register is cho-
sen among the registers that are unused in the selected block.
More in details, the unused register whose content has not been
modified since more time is identified as the scrambled register;
this allows to increase the usage of all the registers in the mi-
croprocessor as well as to reduce the time between two consec-
utive modifications of each register’s content. As an example of
register scrambling, Figure 6 reports the substitution of register
sp with register t1 in lines 2 to 4 of the example program in
Figure 2.

4.5. Code generation
The output of the application of all the previously discussed

obfuscation techniques (applied for the desired number of times)
is a new CFG corresponding to the obfuscated version of the
program. The very last step performed by DETON is the au-
tomatic generation of the assembly of the obfuscated program
based on such obtained CFG.

4.6. DETON parameters
The functioning of DETON may be configured through the

set of parameters reported and explained in Table 1. Of course,
the larger Ngi, Lgi, Nco and Lco, the more obfuscated the ob-
tained program. On the other hand, these parameters highly
a↵ect the overhead introduced in the final program. As it may
appear straightforward, Nrs does not introduce overhead. Find-
ing the best setting of such configuration parameters in order to
maximize the obfuscation metrics while minimizing the intro-
duced overhead would require a thorough design space explo-
ration that falls outside the scope of this work.

5. Experimental analysis

We carried out a set of experiments to first validate the
functionality of the obtained obfuscated programs, i.e., check
whether the original and obfuscated programs are functionally
equivalent, and to then assess the e↵ectiveness and the e�-
ciency of the proposed obfuscation framework based on the
previously presented metrics.

Table 2: The considered benchmark programs

Program #lines (Plain) #lines (Protected) Overhead
Bubble 109 189 73%
CRC 26 130 400%
Dijkstra 42 143 240%
MatrMul 99 255 158%
QuickS 115 224 95%
SHA 228 481 110%

Figure 7: Aggregated average Hr values

5.1. Experimental setup
We implemented DETON as a set of Python scripts and C

tools that read the assembly code of the original program, build
the CFG, apply the considered obfuscation techniques and gen-
erate the assembly code of the obfuscated program. We tar-
geted the 64bit Ariane RISC-V [31] microprocessor that counts
32 user registers, its ISA and toolchain and we considered a set
of benchmark programs belonging to the well known MiBench
suite [30]. In particular we considered: Bubblesort (Bubble),
CRC, Dijkstra, Matrix multiplication (MatrMul), Quick sort
(QuickS) and SHA. The first two columns of Table 2 report the
program names and corresponding number of assembly lines
of the original, unprotected version. Finally, we set the follow-
ing configuration for the working parameters of DETON: Ngi 5,
Lgi 10, Nco 5, Lco 20 and Nrs 50. Again, we point out that this
was just an example configuration of DETON meant to assess
it correctness, e↵eciency and e↵ectiveness. An in depth ex-
ploration of the impact of such parameters on the introduced
overhead falls outside the scope of this work.

5.2. Results
As a first validation note, after the generation of the obfus-

cated versions of the considered programs we ran a set of ran-
dom simulations where the plain program and the correspond-
ing obfuscated one have been fed with the same input. We high-
light that the obfuscated programs demonstrated to be function-
ally equivalent to the corresponding plain ones, i.e., plain and
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Figure 8: Register per register average Hr for SHA

Figure 9: Register per register average Hr for CRC

obfuscated programs always produced the same output when
fed with the same input.

When considering the e↵ectiveness of DETON, if we look
at Figure 7 we can see that the average aggregated registers’
heat (calculated over the entire program execution and consid-
ering all the registers) is always much higher in the obfuscated
program than in the plain one, with an average increase of about
225%. This actually demonstrates that all the registers are more
(and more frequently) used in the obfuscated versions of the
programs. More in details, the di↵erence between the average
Hr for the plain and obfuscated programs ranges between 177%
for Bubble and 298% for SHA.

If we deepen the analysis for a specific program and we look
at a register per register average Hr (calculated over the entire
program execution) we have the confirmation that in the plain
program only few registers are employed (and thus hot) while
most registers are almost or totally cold. Conversely, in the
obfuscated program, almost all registers are always used (and
hot). Figures 8, 9 and 10 report this analysis for SHA, CRC and
Bubble, respectively3.

To even better visualize the modifications introduced by
DETON, Figures 11, 12 and 13 report the heatmap representing
the cycle-per-cycle heat of all registers during the executions of
the plain and obfuscated SHA, CRC and CRC benchmarks, re-
spectively. By analysing the proposed graphs, it appears evi-
dent how DETON allows to increase registers’ use during the
entire program execution. Moreover, we marked in blue the

3For the sake of space we show in the paper graphs regarding this analysis
and the subsequent one only for SHA, CRC and Bubble.

Figure 10: Register per register average Hr for Bubble

register write operation that are kept unaltered between the two
versions of the program and in green those that are scrambled:
again it is possible to see how e↵ective DETON is in spreading
the original data among registers.

Finally, if we look at the last two columns of Table 2 we
can see the number of assembly instructions in the obfuscated
program and the introduced program enlargement. The aver-
age overhead is about 180%4, which is of course high, but,
we believe, reasonable if we take into account that i) the pro-
posed solution would highly alleviate the susceptibility of the
system to information stealing HTHs, ii) the proposed solu-
tion is purely software and it does not require any modifica-
tion/hardening to the hardware (thus allowing to deploy com-
mercial legacy processing platforms instead of ad-hoc designed
expensive and power-consuming ones), iii) no similar solutions
working at the system level exist, and iv) no design space ex-
ploration for parameters optimization has been performed.

5.3. Security analysis
As it has been demonstrated by the presented experimental

campaign, DETON is actually able to enlarge the set of regis-
ters employed during a program execution as well as to spread
the sensitive information through several registers and instruc-
tion cycles. To carry out an information stealing attack, the
attacker should be able to monitor a large set of registers and
to monitor them for a long time. To do so, the attacker would
be required to implant a large HTH, which would likely make
the attack more expensive hard to be deployed. Moreover, even
in the case the attacker is able to actually implant such HTH
in the target CPU, the identification of the information of in-
terest among all the received raw data would be much more
di�cult for the attacker given the introduction of garbage in-
structions and register scrambling. Therefore, we believe that
DETON makes the implantation of information stealing HTHs
and their exploitation harder thus moving in the direction of
making software execution trusted also on possibly untrusted
hardware platforms.

4The introduced program enlargement would of course bring also a energy
consumption increase. Such additional energy consumption would not be pro-
portional to the number of added instructions and its measurements would re-
quire an in depth analysis which falls outside the scope of this work.
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(a) Plain (b) Obfuscated

Figure 11: Application of DETON to SHA

(a) Plain (b) Obfuscated

Figure 12: Application of DETON to CRC

On the other hand, as we previously discussed, no protec-
tion against change-functionality and denial-of-service HTHs is
provided by DETON.

6. Related Work

In the last two decades a very large number of techniques
for protecting digital systems against HTHs has been proposed.
More specifically, both detection and prevention techniques have
been proposed, considering several attack scenarios, threat mod-
els and design stages where a HTH can be inserted [16]. We
here classify these techniques into two main classes: Design
time and Runtime detection techniques.

6.1. Design time techniques
Design time HTHs detection techniques may be further clas-

sified into: optical inspection, logic testing, side-channel anal-
ysis, proof-carrying hardware and formal property verification

and static (behavioral and structural) analysis. In the following
we give a brief overview of such techniques.

Optical inspection (also known as visual inspection) relies
on the reverse engineering of the circuit to detect HTHs [20].
Accurate techniques for image acquisition and analysis are ap-
plied to obtain high resolution photos of the chip under analysis.
The photos collected are then used to reconstruct the layout of
the chip which is then compared with the layout of the original
design. Optical inspection is suitable to detect HTHs inserted
during fabrication by the foundry, but it cannot detect HTHs
inserted during the design of the system. Moreover, optical in-
spection implies a very high cost and a long time to be applied.
Finally, optical inspection requires the availability of a golden
reference of the layout to be used for comparison against the
layout obtained through reverse engineering.

Logic testing is the process that us usually applied to de-
tect bugs/faults into chips after fabrication and before shipping.
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(a) Plain (b) Obfuscated

Figure 13: Application of DETON to Bubble

Since HTHs may be considered as a special class of fault, logic
testing may also be used to detect the presence of HTHs into
digital systems. Like for bug/fault detection, the main prob-
lem is generating e�cient test patterns that are able to activate
the HTH and then to make its e↵ect visible [17]. Indeed, HTHs
have usually an extremely low activation probability which makes
them hard to trigger with standard test patterns. Several propos-
als have been made to improve the e�ciency of logic testing for
HTH detection [37]. The advantage of applying logic testing is
that it is not invasive/destructive. Moreover, these techniques
may be applied to detect testing inserted at any level of the de-
sign flow. On the other hand, there is no guarantee to generate
test patterns able to activate and detect HTHs.

A promising perspective for HTHs detection has been for-
mal verification. Two main families of silutions have been pro-
posed in the last years: proof-carrying hardware and property
verification. Proof-carrying hardware techniques, e.g., the ones
presented in [21], rely on a set of security requirements de-
fined by customer and system designer. After fabrication, the
customer performs a verification of the previously agreed re-
quirements before accepting the shipped chips. On the other
hand, property verification techniques, as the ones presented
in [18, 38], rely on a set of HTHs behavioral models defined by
the customer. Once the netlist/system has been defined, a for-
mal description of the system itself is generated and the pres-
ence/absence of the HTHs models within the system is formally
proved. These techniques are not invasive/destructive and can
be applied at any level of abstraction. The major drawback of
proof-carrying hardware and formal verification is the need of
an extremely accurate definition of the security requirements
and a precise modeling of the functional behavior of the HTH
which may be a very hard task. As a consequence, several
strong assumptions on the HTH behavior are generally done
on order to make such techniques feasible.

Side-channel analysis aims at detecting HTHs by analysing
physical characteristics, e.g., power consumption, electro-magnetic

emission, timing, of the device under analysis and by compar-
ing them against a reference circuit [19]. The basic idea of
such techniques is that the activation of a HTH in the circuit
may alter the leakage current [39], the dynamic current [40] or
some internal delays [41]. Like logic testing, also side-channel
analysis is not invasive/destructive and it is theoretically able to
detect HTHs inserted in any stage of the design process. On
the other hand, side-channel analysis su↵ers from three main
limitation: i) like for optical analysis, a golden reference of
the circuit under analysis is required; ii) the monitored phys-
ical characteristics may be modified also by other factors, e.g.,
process variation, and not only by the HTH; and iii) the selected
physical characteristic might be hard to measure precisely .

All the available design time HTH detection techniques suf-
fer from several applicability or e↵ectiveness limitations which
make the deployed system still vulnerable. As discussed in [22],
there is a lack of techniques able to prevent, detect and tolerate
the activation of a HTH at runtime, without requiring the avail-
ability of a circuit golden copy, without needing strong assump-
tions on the considered HTH model and without destroying the
circuit.

6.2. Runtime techniques
More recently both hardware- and software-based runtime

solutions for HTHs prevention and detection have been pro-
posed [25, 26, 29]. In [24, 25], multiple functionally equiva-
lent copies of the same 3PIP belonging to di↵erent vendors (and
thus structurally di↵erent) are employed to compose a trustwor-
thy system from untrusted components. In [42] Bloom filter-
based checking modules are included in the HW architecture
between the microprocessor and the memories to detect the
activation of HTHs within the memory elements. Similirly,
in [43] security checking modules are introduced between the
fetching unit and the instruction but to detect the activation
of change-functionality HTHs that aim at interfering with the
fetching activity of the microprocessor. In [26, 27, 28], tasks are
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scheduled in such a way that those that directly exchange data
are not executed by cores belonging to the same vendor, mak-
ing collusion between 3PIPs impossible, and thus preventing
the activation of HTHs. The problem of this approaches is that
their applicability is limited to those scenarios where the hard-
ware platform is still to be developed and the designer has the
freedom to add redundancy and diversity. A genetic algorithm-
based software obfuscation techniques aimed at preventing the
activation of triggered HTHs has been proposed in[29]. Finally,
a set of checks specifically designed to detect HTHs have been
included in the operating system in [44].

7. Conclusions and future work

We presented DETON, an automatic methodology for soft-
ware obfuscation aimed at protecting program execution over
possibly untrusted microprocessor-based systems against infor-
mation stealing HTHs. The correctness, e↵ectiveness and ef-
ficiency of DETON have been assessed on the Ariane 64bit
RISC-V microprocessor running a set of MiBench programs.

As future work we plan to define a larger set of metrics to
assess the strength of software obfuscation against HTHs and
to exploit design space exploration to identify the best configu-
rations of DETON to guarantee security while not introducing
excessive overhead.
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