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Abstract  

Fault prognostics aims at predicting the degradation of equipment for estimating the Remaining Useful Life 

(RUL). Traditional data-driven fault prognostic approaches face the challenge of dealing with incomplete and 

noisy data collected at irregular time steps, e.g. in correspondence of the occurrence of triggering events in the 

system. Since the values of all the signals are missing at the same time and the number of missing data largely 

exceeds the number of triggering events, missing data reconstruction approaches are difficult to apply. In this 

context, the objective of the present work is to develop a one-step method, which directly receives in input the 

event-based measurement and produces in output the system RUL with the associated uncertainty. Two strate-

gies based on the use of ensembles of Echo State Networks (ESNs), properly adapted to deal with data collected 

at irregular time steps, have been proposed to this aim. A synthetic and a real-world case study are used to show 

their effectiveness and their superior performance with respect to state-of-the-art prognostic methods. 

Keywords: Prognostics; Missing data; Sliding bearing; Echo State Network; Ensemble; Differential evolution 

optimization. 
 
 
Nomenclature 

RUL Remaining Useful Life MC Memory Capacity 
RNNs Recurrent Neural Network 𝑾"# Weight of the connections from the 

input neurons to the internal neu-
rons 

RC Reservoir Computing 𝑾 Weights of the connections among 
the internal neurons 

ESNs Echo State Networks 𝑾$%& Weights of the connections from 
the output back to the reservoir in-
ternal neurons 

FANNs Feedforward Artificial Neural Net-
works 

𝑾$'( Weights of the connections from 
the input and the reservoir internal 
neurons to the output 

MODE Multi-Objective Differential Evolu-
tion 

𝑾$'(
(%  Teacher forcing weights of the con-

nections from the reservoir internal 
neurons to the output 

SaNSDE Self-adaptive Differential Evolution 
with Neighborhood Search 

𝒙(𝑡) Vector of the activations of the res-
ervoir neurons at generic time 𝑡 

TOPSIS Technique for Order of Preference 
by Similarity to Ideal Solution 

𝒖(𝑡) ESN input vector 



CRA Cumulative Relative Accuracy 𝑦(𝑡) ESN output vector 
𝛼 − 𝜆 Alpha-Lambda metrics 𝑎 Leaky rate 
𝑃 Number of measured signal 𝑓$'((⋅) Activation function of the output 

neuron 
𝑅 Number of available run-to-failure 

trajectories 
|𝜆89:| Magnitude of the largest eigenvalue 

of 𝑾 
𝑟 Index of a generic run-to-failure 

trajectory 
𝜌 Spectral radius 

𝑛> Number of events collected during 
the r-th run-to-failure trajectory 

𝑐 Connectivity 

𝜏A> Time of occurrence of the 𝑗-th 
event of the 𝑟-th run-to-failure tra-
jectory 

𝑰𝑺 Scaling factor of 𝑾"# 

𝒛>(𝜏A>) Vector of measurements collected 
at time 𝜏A> from the r-th run-to-
failure trajectory 

𝑂𝐹𝐵 Scaling factor of 𝑾$%& 

𝑅𝑈𝐿(KL((𝑡) Ground-truth RUL of a test system 
at time t 

𝐿 System load 

𝑡%(KL( Ground-truth failure time of the test 
system 

𝑛% Number of failed components in 
the system 

𝒛(KL((𝜏A) Vector of measurements collected 
from the test system at time 𝜏A 

𝐿𝑆( Load sharing factor of the compo-
nents at time 𝑡 

𝑛(KL( Number of events collected during 
the life of the test system 

𝑑("  i-th component degradation level at 
time 𝑡 

𝑅𝑈O𝐿(𝑡) RUL predicted by the model at time 
𝑡 

𝑇( Temperature experienced by the 
components at time 𝑡 

𝑁: Number of reservoir internal neu-
rons  

𝑇(K#R Environment temperature at time 𝑡 

 
 
1. Introduction 

Prognostics aims at predicting the degradation of equipment for estimating the Remaining Useful Life (RUL) 

(Zio and Di Maio, 2010; Zio, 2012; Liao and Köttig, 2014; Palacios et al., 2015; Prytz et al., 2015; Lei et al., 

2018). Prognostic methods are classified into model-based and data-driven (Schwabacher and Goebel, 2007; 

Zio and Di Maio, 2010). Model-based approaches, which are based on the use of physics-based models of the 

degradation processes, are typically applied to safety-critical and slow-degrading equipment whose degradation 

mechanisms have been extensively studied (Cai, Huang and Xie, 2017, Peng et al., 2018). By contrast, data-

driven approaches are typically used when accurate physics-based models of the, possibly competing, degrada-

tion processes which the components of industrial systems are subjected to are not available (Hu, Youn and 

Kim, 2012; Medjaher, Tobon-Mejia and Zerhouni, 2012; Rigamonti et al., 2017; Sardá-Espinosa, Subbiah and 

Bartz-Beielstein, 2017; Huang, Huang and Li, 2019). Since they require a large amount of run-to-failure deg-

radation trajectories for model training (Hu et al., 2012), data-driven approaches are typically applied to non-

safety critical systems characterized by relatively short mean times to failure. They are distinguished into two 

approaches (i) degradation-based, which indirectly predict the system RUL by estimating the future evolution 

of the component degradation until a failure threshold is reached (Rigamonti, Baraldi, Zio, Astigarraga, et al., 

2016; Lim et al., 2017) and (ii) direct RUL prediction-based, which predict the system RUL by developing a 

direct mapping from the condition monitoring signals to the system RUL (Khelif et al., 2017). Although 



degradation-based approaches are closer to physics-based reasoning, they are more difficult to develop than 

direct RUL prediction-based approaches when the quantification of the component degradation and the identi-

fication of a failure threshold are not straightforward (Medjaher, Tobon-Mejia and Zerhouni, 2012). 

Since prognostics requires to catch the dynamic behavior of the degradation process, static approaches based 

on the prediction of the equipment RUL at a given time as a function of the signal measurements at the same 

time typically provide unsatisfactory performances. An attempt to catch the system dynamics is to provide in 

input to the prognostic model the current and past signal values collected in a sliding time window. The main 

limitation of this approach is the difficulty in identifying a proper length of the time window, which allows 

representing the degradation dynamics without dramatically increasing the computational cost of the models, 

particularly if there are many input variables (Geraci and Gnabo, 2018). An alternative solution to the problem 

of learning the system dynamic for RUL prediction is the use of Recurrent Neural Networks (RNNs) (Zio, 

Broggi and Pedroni, 2009; Malhi, Yan and Gao, 2011; Guo et al., 2017). The recurrent nature of RNNs, obtained 

by using feedback connections between the neurons of a layer and those of the preceding layers, allows pro-

cessing dynamic information and makes them different from Feedforward Artificial Neural Networks (FANNs), 

which provide only a direct functional mapping between input and output data (Samanta and Al-Balushi, 2003; 

Moustapha and Selmic, 2008). Among the various types of recurrent networks that have been proposed in the 

last years, Echo State Networks (ESNs) are emerging due to their intrinsic dynamic properties, generalization 

capability, ability to handle noisy data and easiness of training (Jaeger, 2004). An extensive literature review 

on the use of RNNs in fault prognostics is reported in Section 2. 

The objectives of the present work are (i) to predict the RUL of a system made by non-repairable interacting 

components, in which the measurements are collected only when triggering events, such as component faults 

or extreme operational conditions occur, and (ii) to estimate the uncertainty affecting the RUL prediction. These 

“snapshot” datasets are often encountered in industrial applications, dominated by the necessity of cost saving 

in storing and managing the databases (Weijters and van der Aalst, 2003; Liu, Li and Zio, 2017), and of reducing 

energy consumption and bandwidth sources (Tsividis, 2010). Since failure events rarely occur during the life-

time of a system, event-based datasets are dominated by the presence of a large number of missing measure-

ments (Fink, Zio and Weidmann, 2015). Furthermore, the values of all the signals are missing at the same time. 

Given these characteristics, traditional methods for missing data management, e.g. case deletion (Schafer and 

Graham, 2002), imputation (Eekhout et al., 2012; Ranjbar et al., 2015; CH Cheng, CP Chan, 2019; Razavi-Far 

et al., 2019) and maximum likelihood estimation (Baraldi and Enders, 2010), are difficult to apply. For instance, 

since Case Deletion methods discard patterns whose information is incomplete, they are not useful in case of 

event-based datasets where a pattern is either present or absent for all signals (Baraldi and Enders, 2010). Im-

putation techniques, which are based on the idea that a missing value can be replaced by a statistical indicator 

of the probability distribution generating the data, such as the signal mean (Donders et al., 2006) or a value 

predicted by a multivariable regression model (Schafer and Graham, 2002), have been shown to be inaccurate 

in case of large fractions of missing values (Schafer, 1999; Vergouw et al., 2010). Maximum Likelihood meth-

ods use the available data to identify the values of the probability distribution parameters with the largest 



probability of producing the sample data (Schafer, 1999). They typically require the Missing At Random (MAR) 

assumption, i.e. the probability of having a missing value is not dependent on the missing values (Little and 

Rubin, 2002; Donders et al., 2006; Honaker and King, 2010), which is not met in event-based datasets.  

To the best of our knowledge, few research works have considered fault prognostics in presence of missing 

data. A model based on Auto-Regressive Moving Average (ARMA) and an auto-associative neural networks, is 

developed for fault diagnostics and prognostics of water processes with incomplete data (Xiao et al., 2017) and 

an hybrid architecture including physics-based and data-driven approaches are proposed to deal with missing 

data in case of rotating machinery (Leturiondo et al., 2017). In the medical field, a Bayesian simulator is used 

to generate missing data for developing prognostic models (Marshall et al., 2010) and a Multiple Imputation 

approach is used within a prognostic model for assessing overall survival of ovarian cancer in presence of 

missing covariate data (Clark and Altman, 2003). Notice that all these methods are based on the two successive 

steps of missing data reconstruction and prediction. 

In this work, we consider the possibility of developing a method which is able to directly predict the equip-

ment RUL without requiring a missing data reconstruction step. To this aim, the use of ESNs is considered due 

to their ability of maintaining information about the input history inside the reservoir state. The main difficulty 

to be addressed is that, contrarily to the typical applications of ESNs, the time intervals at which the data become 

available are irregular. Two different strategies are considered to cope with the event-based data collection. In 

strategy 1, the ESN receives an input pattern only when an event occurs. The pattern is formed by the measured 

signals and the time at which the event has occurred. In strategy 2, the reservoir states are excited at each time 

step. If an event has occurred, the reservoir states are excited both by the previous reservoir states and the 

measured signals, whereas, if an event has not occurred, they are excited only by the previous reservoir states. 

Therefore, it is expected that the connection loops in the reservoir allow reconstructing the dynamic degradation 

behavior of the system at those time steps in which events do not occur. 

In both proposed strategies, a Multi-Objective Differential Evolution (MODE) algorithm based on a Self-

adaptive Differential Evolution with Neighborhood Search (SaNSDE) (Yang, Tang and Yao, 2008) is used to 

optimize the ESN hyper-parameters. The Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS) (Yoon and Hwang, 1995) is, then, used to select the optimal solution from the obtained Pareto solu-

tions. Furthermore, a bootstrap aggregating (Bagging) ensemble method is applied to improve the RUL predic-

tion accuracy and estimate the RUL prediction uncertainty. Given that ESNs cannot be fed by random sequences 

of patterns, the traditional Bagging sampling mechanism used to create the bootstrap training sets has been 

modified. In the proposed solution, the bootstrap training sets are obtained by concatenating entire run-to-failure 

trajectories, randomly sampled with replacement, 

The two proposed strategies are applied to a synthetic case study, properly designed to mimic run-to-failure 

trajectories of a system of non-repairable interacting components in which the measurements are collected when 

events occur. The benefits of the proposed approaches are further shown by their application to a real-world 

case study concerning the prediction of the RUL of a sliding bearing of a turbine unit. The accuracy of the two 

strategies is evaluated considering the Cumulative Relative Accuracy (CRA) and Alpha-Lambda (α-λ) metrics 



(Saxena et al., 2010), and compared to that of a traditional feedforward neural network and a state-of-the-art 

ensemble of ESNs. 

The original contributions of this work are:  

1) the development of a novel method for fault prognostics in case of event-based data which does not 

require missing data reconstruction; 

2) The adaptation of ESNs to deal with data collected at irregular time steps; 

3) The modification of the sampling mechanism used by the Bagging method for creating the bootstrap 

training sets. 

The remaining of this paper is organized as follows: Section 2 reports an extensive literature review on the 

use of RNNs in fault prognostics; Section 3 illustrates the work objectives and problem setting; Section 4 de-

scribes the proposed method for fault prognostics; Section 5 and 6 introduces the synthetic case study and the 

real-world case study and discusses the obtained results; finally, some conclusions and remarks are drawn in 

Section 7. 
 
2 Recurrent Neural Networks in Fault Prognostics 

Various types of RNNs, such as Long Short-Term Memory network (LSTM), Gated Recurrent Unit (GRU) 

RNN, have been used with success in prognostic applications (Zhang et al., 2018; Chen et al., 2019). A RNN-

based model has been developed for predicting machine deterioration evolution using vibration data (Tse and 

Atherton, 1999). A Long Short-Term Memory (LSTM) RNN has been used to predict the remaining useful life 

of lithium-ion batteries (Zhang et al., 2018). A RNN Encoder-Decoder network, which transforms multivariate 

time series subsequences into fixed-dimensional vectors, has been used to define health indicators and to predict 

the RUL of turbofan engines (Gugulothu et al., 2017). A health indicator defined by using a RNN has been used 

for the prediction of bearing RUL (Guo et al., 2017). Infinite impulse response locally recurrent neural networks 

has been employed for forecasting failures and predicting the reliability of components and systems (Zio et al., 

2012). Also, RNNs have been used in the domain of physical security information management (Rosenberg et 

al., 2017; Tuor et al., 2017; Azzouni and Pujolle, 2018; Rekik, Gransart and Berbineau, 2018; KP, 2019). RNNs 

have been used to build intrusion detection models for protecting from cyber-security threats (Kim et al., 2016; 

Vinayakumar, Soman and Poornachandrany, 2017) and have been applied to cyber-security for decreasing mal-

ware attack losses (Tobiyama et al., 2016; Rosenberg et al., 2017; Teoh et al., 2018; KP, 2019). A framework 

based on LSTM RNNs has been developed for traffic prediction in railway and used for information management 

and network security (De Bruin, Verbert and Babuska, 2017; Azzouni and Pujolle, 2018). 

The main challenges for practical prognostic applications of RNNs are: i) the slow and computationally in-

tensive training procedure, which cannot guarantee the final convergence of the algorithm towards an accurate 

and robust model (Jaeger et al., 2007; Lukoševičius and Jaeger, 2009), and ii) the lack of guidelines for defining 

the RNN architecture, e.g. number of hidden layers and number of neurons. 

To overcome these challenges, the Reservoir Computing (RC) paradigm has been proposed (Lukoševičius 

and Jaeger, 2009). RC involves randomly creating a RNN, called Reservoir, which remains unchanged during 



the training and is passively excited by the input signals. Among RC approaches, Echo State Networks (ESNs) 

have shown intrinsic dynamic properties, generalization capability and ability to handle noisy data (Jaeger, 

2004). Considering PHM applications, ESNs have been mainly used for assessing component current health 

state and predicting health state evolution. An ESN-based echo state kernel recursive least squares algorithm is 

developed for tracking the health state of a turbofan engine (Zhou et al., 2018). A genetic algorithm optimized 

double-reservoir echo state network has been developed for multi-regime time series prediction on turbofan 

engine (Zhong et al., 2017). Echo State Networks have been used for the health monitoring of a test footbridge 

(Wootton, Day and Haycock, 2015). Fuel cell aging has been predicted using a method which combines ESNs 

and ANalysis Of VAriance (ANOVA) for the estimation of the importance of the model parameters (Morando 

et al., 2015). With respect to RUL prediction, there are few applications of ESNs. An ensemble of ESNs has 

been developed for RUL prediction with uncertainty estimation, and applied to turbofan engines (Rigamonti, 

Baraldi, Zio, Roychoudhury, et al., 2016). Also, ESNs have been used for predicting the RUL of industrial Fuel 

Cells (FC) (Morando et al., 2017). It has been clarified that all these approaches focus on a single component 

and on signals measured at regular time steps. This has motivated the methodological development of the work. 
 
3. Problem setting 

This work assumes the availability of the measurements of P signals collected in correspondence of the oc-

currence of events during R run-to-failure degradation trajectories. The generic r-th trajectory is formed by the 

measurements collected at the occurrence of nr events before the failure of the system. The time of occurrence 

of the j-th event of the r-th trajectory, j = 1,…,nr, will be referred to as τjr and the corresponding measurement 

vector 𝒛>(𝜏A>)	. The objective of this work is to develop a direct data-driven prognostic method for the predic-

tion of the ground-truth RUL of a test system at time t, RULtest(t) = tftest - t, with tftest indicating the ground-truth 

failure time of the system, on the basis of the signal measurements ztest(τj) collected in correspondence of the 

occurred events j =1,2,…,ntest, with τntest < t indicating the last time at which signal measurements have been 

acquired. The RUL prediction at time t is indicated as 𝑅𝑈O𝐿(𝑡). 

 

 
 
Figure 1. Example of data collected during a generic r-th run-to-failure trajectory. The vectors 𝒛> = U𝑧W>, … , 𝑧Z>, … , 𝑧[>\

]
 contain the 

measurements collected at the times 𝜏W>, 𝜏^>, … , 𝜏#_
>  of occurrence of events triggering the activation of the measurement system. 

 
 
 
 



4. Methodology 

The ESN is a RNN characterized by recurrent loops in its synaptic connection pathways (Jaeger, 2004). Dif-

ferently from traditional RNNs, the internal neurons, which form the ESN reservoir, are sparsely connected 

(Lukoševičius and Jaeger, 2009). This architecture, which mimics the biological neural networks, allows main-

taining an ongoing activation of the neurons even in absence of input to the ESN and, thus, it provides dynamic 

memory (Inubushi and Yoshimura, 2017). 

The ESN architecture considered in this work is characterized by P input neurons, a reservoir with 𝑁: >>

1 internal neurons and one output neuron representing the system RUL (Figure 2). Matrix 𝑾"# of size 𝑁: × 𝑃 

contains the weights of the connections from the input neurons to the internal neurons, matrix 𝑾 of size 

𝑁: × 𝑁: contains the weights of the connections among the internal neurons, matrix 𝑾$%& of size 𝑁: × 1 

contains the weights of the connections from the output back to the reservoir internal neurons and matrix 𝑾$'( 

of size 1 × (𝑃 + 𝑁:) contains the weights of the connections from the input and the reservoir internal neurons 

to the output. This work considers a reservoir with leaky-integrator neurons, whose state is updated according 

to: 

𝒙(𝑡) = (1 − 𝑎)𝒙(𝑡 − 1) + 𝑓(𝑾"#	𝒖(𝑡) +𝑾𝒙(𝑡 − 1) +𝑾$%&𝑦(𝑡 − 1))     (1) 

where 𝒙(𝑡) is the activation vector of the reservoir neurons at the generic time t, 𝑓(⋅) is the internal neurons 

activation function, which is typically 𝑡𝑎𝑛ℎ(⋅), 𝒖(𝑡) is the P dimensional input vector 𝒖(𝑡) = 𝒛(KL((𝑡),  

and 𝑦(𝑡) = 𝑅𝑈O𝐿(𝑡) is the output vector. The leaky rate 𝑎 ∈ [0,1] is a hyper-parameter controlling the de-

caying potential of neurons (Jaeger, 2005).  

The output provided by the ESN at time t is:  

𝑦(𝑡) = 𝑓$'((𝑾$'( ⋅ [𝒖(𝑡)|𝒙(𝑡)])           (2) 

where 𝑓$'((⋅) is the output neuron activation function, which is typically the identity function, 𝑓(𝑥) = 𝑥 and 

the symbol ⋅ | ⋅ represents the vertical concatenation operation. 

 

 
 

Figure 2. Echo State Network architecture: 𝒖(𝑡) indicates the input vector, 𝒙(𝑡) the reservoir state, 𝑦(𝑡) the output, at time 𝑡, 
𝑾"# is the matrix of the weight connections from the 𝑃 input units to the 𝑁: internal units, 𝑾 is the matrix of the weight con-

nections among the 𝑁: internal units, 𝑾$'( is the matrix of the weight connections from the 𝑃 input units and 𝑁: internal units 
to the one-dimensional output unit, 𝑾$%& is the matrix of the weight connections from the output unit to the 𝑁: internal units. 
 
The elements of 𝑾"#, 𝑾 and 𝑾$%& are randomly sampled from uniform distributions according to the 

RC principles. To ensure the Echo State Property (Jaeger, 2004; Yildiz, Jaeger and Kiebel, 2012; Barancok and 

Farkas, 2014) which implies that the effect of the current states of the reservoir internal neurons and of the input 
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on a future state vanishes gradually as time passes and does not amplify or persist, the reservoir connection 

matrix is typically scaled as ( j
|klmn|

) ⋅ 𝑾, where |𝜆89:| is the magnitude of the largest eigenvalue of 𝑾 and 

𝜌 ∈ (0,1) is a model hyper-parameter indicating the spectral radius. According to Jaeger (2010), the spectral 

radius is set to a value in the range (0,1), for ensuring the echo state property.  

The ESN training aims at finding optimal values for 𝑾$'( and is performed by minimizing the quadratic 

error between the target output and the ESN output. To do that, the reservoir state 𝒙(𝑡), the input 𝒖(𝑡) and 

the output 𝑦(𝑡) are stacked into the matrixes 𝑿, 𝑼 and 𝒀, whose generic t-th column	represents the reservoir 

state and the input and output acquired at time 𝑡. Then, 𝑾$'( is obtained by solving the linear regression 

problem [𝑼, 𝑿] → 𝒀 (Lukoševičius and Jaeger, 2009). 

 

4.1. ESN hyper-parameter setting 

ESN main hyper-parameters are spectral radius 𝜌 (Lukoševičius and Jaeger, 2009), leaky rate 𝑎 (Jaeger et 

al., 2007), connectivity 𝑐 (Büsing, Schrauwen and Legenstein, 2010), reservoir size 𝑁:, scaling factors of 

𝑾"#, 𝑰𝑺, and 𝑾$%&, 𝑂𝐹𝐵, (Jaeger et al., 2007). The spectral radius determines how fast the influence of an 

input in a reservoir dies out with time (Jaeger et al., 2007). The leaky rate controls the decaying potential of 

neurons: small values allow long retainment of past states (Jaeger et al., 2007). Connectivity is defined by the 

ratio between the number of connections in the ESN reservoir and the number 𝑁:^ of all the possible connec-

tions. Small connectivity values characterize reservoirs with few connections among internal neurons, and, 

therefore, with a reduced capacity of representing the dynamic temporal behavior of the signals (Büsing, 

Schrauwen and Legenstein, 2010). On the other hand, the use of large connectivity values is limited by the 

associated large computational burdens. A proper setting of 𝑁: is fundamental for obtaining accurate ESN 

predictions. According to Büsing, Schrauwen and Legenstein (2010), a critical ESN hyper-parameter is the 

reservoir size 𝑁:: larger the reservoir size 𝑁:, larger the reservoir Memory Capacity (MC) which quantifies 

the memory span of the ESN, i.e. its capability of encapsulating a certain input span within its internal states, 

being able to “remember” and recall it. If the connectivity satisfies 𝑐 ⋅ 𝑁: = 𝑀 with 𝑀 ∈ ℝu, i.e. the ESN 

connectivity is inversely proportional to the reservoir size, the echo state property is maintained and large res-

ervoir 𝑁: >> 1 can be used to guarantee proper memory capacity without extensively increasing the compu-

tational burden (Qiao et al., 2016). The scaling factors 𝑰𝑺 depends on the degree of nonlinearity of the input-

output relationship (Jaeger, 2010). If the neuron inputs are close to zero, the reservoir neurons, which have a 

tanh(⋅) activation function, tend to provide outputs linearly dependent to the inputs, whereas when the neuron 

inputs are far from 0, the neurons tend to operate in a saturation zone of the activation function, where they 

exhibit more nonlinear behaviors with output values close to +1 or -1. The scaling of 𝑾$%& is limited by an 

upper threshold at which the ESN starts exhibiting an unstable behavior, i.e. the output feedback loop starts to 

amplify the output creating a diverging generative mode (Jaeger, 2005).  

Given the lack of guidelines for setting the ESN hyper-parameters and the importance of this task for obtain-

ing stable and accurate ESN predictions, this work resorts to a Multi-Objective Differential Evolution (MODE)-



based approach. MODE is a parallel, direct, genetic algorithm-based search method which perturbs the current 

members of the population using the scaled differences of other two randomly selected members (Das and 

Suganthan, 2011). In particular, A Self-adaptive Differential Evolution with Neighborhood Search (SaNSDE) 

algorithm (Yang, Tang and Yao, 2008) is used, given its capabilities of automatically and adaptively setting the 

MODE control parameters, 𝐹 and 𝐶𝑅, and of escaping from local optima. Figure 3 shows the main steps of 

the SaNSDE search. A fixed random seed is set to initialize matrices 𝑾, 𝑾"# and 𝑾$%&, whose values are 

kept fixed during ESN training. Thus, ESN hyper-parameters 𝜌, 𝑎, 𝑐, 𝑁:, 𝑰𝑺, 𝑂𝐹𝐵 univocally determine 

𝑾, 𝑾"# and 𝑾$%&. The initial population is obtained by randomly sampling the hyper-parameters values 

from uniform distributions on the ranges reported in Table 1. The spectral radius 𝜌 is set in the range [0,1] to 

satisfy the echo state property. Leaky rate 𝑎 is set in the range [0,1] according to the principle of reservoir 

computing (Jaeger et al., 2007; Goudarzi, Shabani and Stefanovic, 2015; Inubushi and Yoshimura, 2017). The 

reservoir size 𝑁: is set in the range [50,600], since larger reservoir sizes would lead to unfeasible computa-

tional burden (Barancok and Farkas, 2014). The input scaling factors 𝑰𝑺 and the Output Feedback (OFB) val-

ues are set in large ranges considering the typical values of the signals and the response of the activation func-

tion. Given the values of the signals and the use of a 𝑡𝑎𝑛ℎ activation function, the ranges of the input scaling 

factors 𝑰𝑺 are taken equal to [10{|, 10|], and the range of 𝑂𝐹𝐵 is taken equal to [10{}, 10^], being the 

output values larger than the input ones. More details of the SaNSDE algorithm can be found in (Yang, Tang 

and Yao, 2008).  

The objectives of the search are the maximization of the accuracy metrics typically employed in prognostics, 

such as Cumulative Relative Accuracy (CRA) and Alpha-Lambda (𝛼 − 𝜆) (Saxena et al., 2010). The CRA pro-

vides an estimation of the average relative RUL prediction error and, being a relative measure, tends to overes-

timate errors made at the end of the system life. The 𝛼 − 𝜆 accuracy indicates how many times, on average, 

the RUL prediction falls within two relative confidence bounds. Notice that the computation of the MODE 

objective functions requires the division of the available run-to-failure trajectories into a training set used to 

optimize the ESN output weights 𝑾$'( and a validation set used to estimate the 𝐶𝑅𝐴 and 𝛼 − 𝜆 metrics. 

Once the Pareto front solutions have been identified by the SaNSDE algorithm, the Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) is used to select among them a compromise solution, to be 

used for setting the ESN architecture (Behzadian et al., 2012). 



 
Figure 3. Scheme of the overall procedure of optimization of the ESN hyper-parameters. 

 
            Table 1. Lower and upper values from which the parameters are sampled. ____________________________________________________ 

ESN hyper-parameters       [Lower  Upper] values  ____________________________________________________ 
Spectral radius (𝜌)          0 ~ 1 
Leaky rate (𝑎)           0 ~ 1 
Connectivity (𝑐)           (2 ~ 10)/𝑁: 
Reservoir Size (𝑁:)          50 ~ 600 
Input Scaling factors (𝑰𝑺)       10{|~10| 
Output feedback scaling (OFB)     10{}~10^ ___________________________________________________ 

 
4.2. Strategies to deal with event-based measurements 

Subsections 4.2.1 and 4.2.2 describe the two proposed strategies to deal with event-based measurements.  

4.2.1. Strategy 1 

The ESN is fed by a pattern only when an event occurs, i.e. at time 𝜏A, 𝑗 = 1,2, … , 𝑛>. The 𝑃 + 1 dimensional 

input vector is made by the P signal measurements, 𝒛(𝜏A), and the time 𝜏A of the j-th event. The ESN output 

is the system RUL prediction, 𝑅𝑈O𝐿�𝜏A�. The training set is obtained by concatenating the input-output data 

extracted from the R training run-to-failure trajectories, as shown in Figure 4. This strategy is similar to the one 

employed in the work of Choi et al., (2015) who models event-based data characterized by temporal irregularity 

in the clinical event prediction research. Since no measurements are acquired at a generic time 𝑡 ∈ (𝑡A, 𝑡AuW), 

i.e. between the 𝑗-th and 𝑗 + 1-th events, the corresponding RUL prediction is: 

𝑅𝑈O𝐿(𝑡) = 𝑅𝑈O𝐿�𝜏A� − �𝑡 − 𝑡A�								∀	𝑡 ∈ (𝑡A, 𝑡AuW)              (3) 

The MODE objectives considered for searching the optimal ESN hyper-parameter setting are mean CRA and 

mean 𝛼 − 𝜆 computed over a set of validation trajectories.  



 
 

Figure 4. Input-Output training set used in strategy 1. 𝑡%W indicates the ground-truth failure time of trajectory 1.  
4.2.2. Strategy 2 

The reservoir neurons are excited at each time step 𝑡 = 1,2, … , 𝜏#����, independently from the occurrence of 

events in the monitored system. In particular, if at time 𝑡 the event has not occurred and, therefore, the signal 

values 𝒛>(𝑡) are not measured, Equation 1 becomes (Figure 5): 

𝒙(𝑡) = (1 − 𝑎)𝒙(𝑡 − 1) + 𝑓(𝑾𝒙(𝑡 − 1) +𝑾$%&𝑦(𝑡 − 1)),	 	 	 	 	 	 	 	 	 	 	 	 (4)	

whereas, if at time 𝑡 an event has occurred, i.e. 𝑡 = 𝜏A>, 𝑗 = 1,… , 𝑛>, Equation 1 is applied. Notice that Equa-

tion 4 is used in the different context of RNN training by the teacher forcing method (Williams and Zipser, 

1989; Lamb et al., 2016) to speed up the convergence by forcing the reservoir to stay close to the ground-truth 

sequence. The pseudocode of the proposed algorithm is reported in the Algorithm (Figure 6). The training set 

is obtained by concatenating the input-output data according to the scheme shown in Figure 7. In this case, the 

RUL prediction, 𝑅𝑈O𝐿(𝑡), is directly set equal to the ESN output 𝑦(𝑡). The considered MODE objectives are 

the mean CRA computed over a set of validation trajectories and the CRA measuring the prognostic accuracy 

of the ESN when it is used without input vectors: 

𝑅𝑈O𝐿(%(𝑡) = 𝑓$'((𝑾$'(
(% ⋅ 𝒙(𝑡))              (5) 

where 𝑾$'(
(% ∈ ℝW×�n is obtained according to the principle of the teacher forcing method, by applying a linear 

regression of the target RUL sequence 𝑅𝑈𝐿(𝑡), 𝑡 = 1,2, … , 𝑡%> and the corresponding reservoir state sequence 

𝒙(𝑡), 𝑡 = 1,2, … , 𝑡%> obtained by Equation 4. 

  
 

Figure 5. Reservoir operation in case of no event at time t. 
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Algorithm:  
Input matrix 𝑼> ∈ ℝ[×(�

_
, Reservoir state matrix 𝑿> ∈

ℝ�n×(�
_
, Output matrix 𝒀> ∈ ℝW×(�

_
. 

Training Phase: 
1: for 𝑟 = 1,2, … , 𝑅 do: 
2: for 𝑗 = 1,2, … , 𝑛> do: 
3: 𝑼:,��_

> = 𝒛>(𝜏A>) 
4: end for 
5: for 𝑡 = 1,2, … , 𝑡%> do: 
6: if event occurs at time 𝑡 then: 
7: Use Equation 1 to update reservoir state 𝒙(𝑡) 
8: else 
9: Use Equation 4 to update reservoir state 𝒙(𝑡) 
10: end if 
11: end for  
12: Horizontally append 𝑼> to 𝑼(>9"#, append 𝑿> to 

𝑿(>9"# and append 𝒀> to 𝒀(>9"# 
13: end for 
14: Do regression of [𝑼(>9"#|𝑿(>9"#] onto 𝒀(>9"# to get 

𝑾$'( 
Testing Phase: 
15: for 𝑡 = 1,2, … , 𝑡%(KL( do: 
16: if event occurs at time 𝑡 then: 
17: use Equation 1-2 to obtain 𝑅𝑈O𝐿(𝑡) 
18: else 
19: use Equation 4 to obtain 𝒙(𝑡)  
20: use 𝑦(𝑡) = 𝑓$'((𝑾$'([𝟎|𝒙(𝑡)]) to obtain 

𝑅𝑈O𝐿(𝑡), where vector 0 has the same dimen-
sionality of 𝒖(𝑡). 

21: end if 
22: end for 

 
Figure 6. Pseudocode of strategy 2.  

 
Lines 2-4 generate the input matrix 𝑼> using the data in the generic r-th trajectory, whose 𝜏A>-th column 

contains the measurement at event time 𝜏A>. Lines 5-11 conditionally update the reservoir state 𝒙(𝑡) by apply-

ing Equation 1 if an event occurs at time 𝑡, or Equation 4 otherwise. Once the reservoir state has been updated 

using all the data of the 𝑟-th run-to-failure trajectory, in Line 12, the input matrix 𝑼> ∈ ℝ[×(�
_
 is horizontally 

concatenated into the training matrix 𝑼(>9"#, the matrix 𝑿> to 𝑿(>9"# and the output matrix 𝒀> to 𝒀(>9"#. 

Once all the training run-to-failure trajectories have been processed, the sizes of matrixes 𝑼(>9"# , 𝑿(>9"# , 

𝒀(>9"#  are 𝑃 × (𝑡%W + 𝑡%^ + ⋯+ 𝑡%�), 𝑁: × (𝑡%W + 𝑡%^ + ⋯+ 𝑡%�), 1 × (𝑡%W + 𝑡%^ + ⋯+ 𝑡%�) respectively. Line 

14 vertically concatenates 𝑼(>9"#  and 𝑿(>9"#  into the assembled matrix [𝑼(>9"#|𝑿(>9"#]  with size (𝑃 +

𝑁:) × (𝑡%W + 𝑡%^ + ⋯+ 𝑡%�) and find the matrix of weights 𝑾$'(  by solving the linear regression problem 

[𝑼(>9"#|𝑿(>9"#] → 𝒀(>9"#. Lines 16-22 report the algorithm used for estimating the RUL of a test trajectory. If 

an event occurs at time 𝑡, Equation 1 is used (Lines 16-18), otherwise Equation 4 is used (Lines 18-20). 
 



 
Figure 7. Input-Output training set used in strategy 2. 

4.3. Ensemble of ESNs 

An ensemble of ESNs is used in both strategies 1 and 2 to improve model accuracy and estimate the uncer-

tainty of the RUL predictions. Ensemble methods combine multiple models suited for a particular problem to 

generate an aggregated model, which can provide results more accurate than those provided by the individual 

models of the ensemble (Mendes-Moreira et al., 2012). Bootstrap aggregating (Bagging) (Hauskrecht, 2004) 

and Boosting (Friedman, 2002) are two of the most commonly used approaches to build ensemble methods 

(Xing and Liu, 2019). This work considers Bagging, due to its capability of estimating the uncertainty of the 

prediction in the form of Prediction Intervals (PI) (Khosravi et al., 2011a, 2011b). A prediction interval is an 

interval defined by a lower bound and an upper bound [𝐿�(𝑡), 𝑈�(𝑡)], in which the unknown value of the 

ground-truth RUL at time 𝑡, 𝑅𝑈𝐿�](𝑡), is expected to lie with a predetermined probability (1 − 𝛼): 

𝑃�𝐿�(𝑡) < 𝑅𝑈𝐿�](𝑡) < 𝑈�(𝑡)� = 1 − 𝛼             (6) 

Bagging is preferred to other methods for prediction interval estimation, such as Delta (Hwang and Ding, 

1997; De Veaux et al., 1998) and Bayesian Networks (Cai et al., 2014, 2017; Cai, Huang and Xie, 2017), due 

to its simplicity, ease of implementation and reduced computational complexity (Khosravi et al., 2011a, 2011b). 

Bagging is based on the bootstrap generation of 𝐵 new training sets 𝐷&, obtained by uniformly sampling with 

replacement the input-output patterns from the original training set 𝐷. 

Since the use of recursive models does not allow providing in input to the models random sequences of 

patterns originated from different trajectories, the sampling mechanism has been modified. Each bootstrap 

training set 𝐷&, 𝑏 = 1,… , 𝐵, is obtained by randomly sampling entire run-to-failure trajectories, with replace-

ment. The final RUL prediction of the ensemble is: 

 

𝑅𝑈O𝐿�(𝑡) = W
�
∑ 𝑅𝑈O𝐿&(𝑡)�
&�W                (7) 

where 𝑅𝑈O𝐿&(𝑡) is the RUL predicted at time 𝑡 by the b-th bootstrap model.  

The Bagging approach reported in the Appendix has been used to estimate the RUL prediction interval.  

To assess the performance of the Bagging approach in estimating effective prediction intervals, this work 

considers the PI coverage probability (PICP) and Normalized Mean PI Width (NMPIW) metrics. The former 



has a value in the range [0 1] and is the relative number of ground-truth RUL values lying in the PI 

[𝐿�(𝑡), 𝑈�(𝑡)] (Khosravi et al., 2011a, 2011b): 

𝑃𝐼𝐶𝑃 = 1/𝑡% ∑ 𝐶(𝑡)(�
(�W  with 𝐶(𝑡) = �1, 𝑅𝑈𝐿

�](𝑡) ∈ [𝐿�(𝑡), 𝑈�(𝑡)]
0, 𝑅𝑈𝐿�](𝑡) ∉ [𝐿�(𝑡), 𝑈�(𝑡)]

       (8) 

NMPIW quantifies the average PI width normalized with respect to the target RUL (Khosravi et al., 2011a, 

2011b): 

𝑁𝑀𝑃𝐼𝑊 = 1/𝑡% ∑ 	��((){��(()
��� ¡(()

(�
(�W            (9) 

A satisfied PI estimation should simultaneously have a large PICP value [0,1] and a small NMPIW value 

[0, +∞]. 

5. Synthetic case study 

5.1. Simulation step and data description 

This case study, which is inspired from by the case study in (Al-Dahidi et al., 2016), considers a system made 

by four non-repairable electrolytic capacitors working in parallel (Figure 8). The system load, 𝐿, is equally 

shared by the healthy components, i.e. the load on a healthy component is: 

 𝐿𝑆 = 𝐿 (4 − 𝑛%)⁄                   (10) 

where 𝑛% ∈ {0,1,2,3} is the number of failed components. The system fails when the last operating component 

fails. 

 
 

Figure 8. Structure of the system.  
 

The degradation of the i-th component of the system is simulated by using (Rigamonti, Baraldi, Zio, 

Astigarraga, et al., 2016): 

𝑑(" = 𝑑({W" . 𝑒�ª�«¬	∗	®(]�«¬) + 𝑤({W             (11) 

where 𝑑("  represents the i-th component degradation level at time 𝑡, 𝐿𝑆( the load of the i-th component at 

time 𝑡, 𝑤( the process noise describing the degradation process stochasticity, and 𝐶(𝑇() is a function of the 

temperature experienced by the component at time 𝑡. Equation 11 is used by F. Perisse, et al., (2006) to de-

scribe the degradation process of an electrolytic capacitor. Function 𝐶(𝑇() represents the degradation depend-

ence from temperature, which is typically based on the Arrhenius law (Perisse et al., 2006): 

𝐶(𝑇() = 	 °#	(^)

�"%K±²_l⋅³´µ	¶
·m
¸ ⋅

¹º»«¡�
¹º»⋅¡�

¼	
             (12) 



where 𝐸9 is the activation energy of the component, k is the Boltzmann constant, and 𝐿𝑖𝑓𝑒#$>8 is the nomi-

nal life of the component aged at the constant nominal temperature 273 𝐾. 

The simulation of a system run-to-failure trajectory starts assuming at 𝑡 = 1 a degradation level 𝑑" = 1 (in 

arbitrary units) for all the system components, 𝑖 = 1,… ,4, and proceeds by randomly sampling the noise 𝑤({W 

from a zero-mean Gaussian distribution with standard deviation 𝜎Á	and applying Equation 11. The temperature 

𝑇( experienced by the components at time 𝑡 is influenced by the environment temperature 𝑇(K#R and the ef-

fect of the operational condition, which is represented by an additive temperature term 𝛤(: 

𝑇( = 𝑇(K#R + 𝛤(                (13) 

The environmental temperature is assumed to have a periodic triangular wave behavior, which reproduces its 

seasonality: 

𝑇(K#R = 2(𝑇89:K#R − 𝑇8"#K#R) Ã(
Z
− 𝑓𝑙𝑜𝑜𝑟 Æ(

Z
+ W

^
ÇÃ + 𝑇8"#K#R          (14) 

where 𝑇89:K#R  and 𝑇8"#K#R are the maximum and minimum annual environment temperatures, respectively, and 

𝑝 is the period of the environment temperature cycle. The term 𝛤( is sampled from a uniform distribution in 

the range (1,9]. Figure 9 (top) shows a simulated evolution of the temperature experienced by the system during 

a run-to-failure trajectory. 

A component fails when its degradation level 𝑑( reaches the failure threshold, here set to 1.25, 1.50, 1.75 

and 1.77 for components 1, 2, 3 and 4, respectively. The failure threshold values have been taken from (Venet, 

Darnand and Grellet, 1993; Al-Dahidi et al., 2016; Rigamonti, Baraldi, Zio, Astigarraga, et al., 2016), where 

values in the range [1.3 3] are reported for different types of electrolytic capacitors. Notice that the threshold 

values are independent on the operating mode 𝛤(, which, on the other side, influences the evolution of the 

degradation process. 

The events in correspondence of which the measurements are taken are: 

1) when the temperature 𝑇(K#R experienced by the system exceeds either a lower or an upper temperature 

bound, set to 320𝐾	𝑎𝑛𝑑	380𝐾 respectively; 

2) when the degradation level of any one of the components exceeds their thresholds of 1.25, 1.50, 1.75, 1.77, 

respectively. 

The following 6 measurements are assumed to be available in correspondence of events:  

𝒛"�𝜏A� = 	𝑑8,��
" = 𝑑��

" ⋅ É𝛼 + 𝛽𝑒{
Ë¡Ì�«¹º»Í

Î Ï + 𝜂��, 𝑖 = 1,… ,4, 𝑗 = 1,… , 𝑛>  (15) 

𝒛}�𝜏A� = 𝑇��, 𝒛Ñ�𝜏A� = 𝛤��            (16) 

where 𝜂�� represents the measurement noise which is sampled from a zero-mean Gaussian distribution with 

standard deviation 𝜎Ò, and 𝛼, 𝛽 and 𝛾 are parameters characteristics of the component. Table 3 reports the 

values of the parameters in Equations 10-14 used for the system run-to-failure trajectory simulations, which are 

taken from (Rigamonti, Baraldi, Zio, Astigarraga, et al., 2016). The activation energy 𝐸9  and parameters 

𝛼, 𝛽, 𝛾 are set with reference to experimental laboratory tests on an electrolytic capacitor using a FLUKE 



PM6306 RLC meter (Rigamonti, Baraldi, Zio, Astigarraga, et al., 2016). The parameter 𝐿𝑖𝑓𝑒#$>8 is set equal 

to the expected life of the component at the nominal temperature, as in (Rigamonti, Baraldi, Zio, Astigarraga, 

et al., 2016). The period of the environment temperature cycle 𝑝 is set equal to one year (8760 hours), to 

simulate the seasonal temperature modifications. 

Figure 9 shows the evolution of the measured quantities during one of the simulated system run-to-failure 

trajectories and the events at which measurements are collected (vertical lines). 

 

 
Figure 9. Simulation of a system run-to-failure trajectory: component degradation level 𝑑", i=1,…4 (center); degradation measure-

ments 𝑑8,��
" (bottom); temperature (𝑇��) (top), The vertical lines indicate the time at which the measurements are taken. 

 
150 run-to-failure simulation trajectories, partitioned into a training (50 trajectories), a validation (50 trajec-

tories) and a test (50 trajectories) sets have been generated. On average, an event generates the measurements 

of the 6 quantities every 55 time units. Thus, the dataset is characterized by a fraction of missing data equal to 



nearly 98%. The simulated trajectories are characterized by large variability, with a minimum lifetime of 

1.45 × 10Õ hours, a maximum lifetime of 3.5 × 10Õ hours and a obtained deviation of 1.0258 × 10Õ hours 

(Table 2). 
Table 2. Statistical indicator of the system lifetimes. _________________________________________ 
Statistical indicator       Value [hours] _________________________________________      
Average           2.36 × 10Õ 
Standard deviation       1.0258 × 10Õ 
Minimum          1.45 × 10Õ 
Maximum          3.5 × 10Õ _________________________________________ 

 
Table 3. Parameters for the system run-to-failure trajectory simulations. _________________________________________ 

Parameters           Value  _________________________________________      
Standard deviation of 𝑤 (𝜎Á)    0.002 
Activation energy (𝐸9)      6.48 × 10{^ØJ 
Boltzmann constant (k)      1.38 × 10{^|J/K 
Component nominal life (𝐿𝑖𝑓𝑒#$>8)  87600 
Period of the  
environment temperature cycle (𝑝)  8760 
Standard deviation of 𝜂 (𝜎Ò)     0.002 
Component characteristics (𝛼)    0.0817 
Component characteristics (𝛽)    0.037 
Component characteristics (𝛾)    30.682 _________________________________________ 

 

5.2. Results and Discussion 

The simulated measurements are linearly normalized in the range [0,1]. The hyper-parameters of the ESNs 

developed for strategies 1 and 2 have been set by performing the MODE search described in Section 4.1 with 

a population of 500 chromosomes and considering 300 generations. The objective functions have been com-

puted using the 50 run-to-failure trajectories of the validation set. A reservoir washing out procedure (Jaeger, 

2005) is applied each time a new degradation trajectory is processed to avoid the influence of data collected 

from different systems on the neuron states (Lukoševičius and Jaeger, 2009). 

 
Table 4. Optimal ESN hyper-parameters obtained for strategies 1 and 2. ________________________________________________________ 

ESN hyper-parameters      Strategy 1 ESN Strategy 2 ESN ________________________________________________________ 
Spectral radius (𝜌)         0.9276   0.4127 
Leaky rate (𝑎)          0.5073   0.5919 
Connectivity (𝑐)×Rerservoir Size (𝑁:)  7.5225   7.9843 
Reservoir Size (𝑁:)         128    486 
Input Scaling for Temperature (𝐼𝑆])   1.9030   6.4544 
Input Scaling for Operation Mode (𝐼𝑆Ù)  0.0543   18.5619  
Input Scaling for Degradation level  
of component 1,2,3 and 4 (𝐼𝑆Ú)    0.9070   13.3993  
Output feedback scaling (OFB)    2.7970   1.3640 _______________________________________________________ 

 

Table 4 reports the optimal hyper-parameters of Strategy 1 ESN and Strategy 2 ESN. Being the reservoir size 

of strategy 2 ESN (hereafter referred to a ESN2) larger than strategy 1 ESN (hereafter referred to a ESN1), ESN2 

is characterized by a larger memory capacity (15 time units) than ESN1 (11 events). Since there is on average 

one event every 55 time units, the memory capacity of ESN1 is of about 11 × 55 = 605 time units which is 

much larger than that of ESN2. All input scaling factors of ESN2 are larger than those of ESN1. This is due to 

the fact that the input stream of ESN1 is continuous, which requires smaller input scaling factors to avoid internal 



neuron saturation. The spectral radius of ESN2 is smaller than that of ESN1, to decrease the risk of instability in 

presence of large input scaling factors. Figure 10 shows the RUL predictions obtained by ESN1 and ESN2 on 

two run-to-failure trajectories. According to Equation 3, the RUL predictions of ESN1 linearly decreases with 

time in the time span between two consecutive events, tj and tj+1, whereas ESN2 provides a RUL prediction at 

each time step by using the Algorithm proposed in Figure 6 (Lines 16-21). Notice that despite the variability of 

the trajectory lengths (Table 2), the two strategies are able to accurately predict the RUL. 

Table 5 compares the accuracy metrics 𝐶𝑅𝐴 and 𝛼 − 𝜆 of the developed ESN1, ESN2, strategy 1 Ensemble 

(hereafter referred to as Ens1), and strategy 2 Ensemble (hereafter referred to as Ens2), with that of a Feedfor-

ward Artificial Neural Network (FANN) and of an ensemble of traditional ESNs (hereafter referred to as Ens). 

The FANN architecture, which is characterized by two hidden layers with ten neurons each, has been set by trial 

and error using the random search algorithm (Bergstra, James and Bengio, Yoshua, 2012). The hyper-parame-

ters of the ESNs of the literature approach have been set using the procedure described in Section 4.1. The 

ensembles Ens Ens1 and Ens2 have been created by generating 𝐵 = 50 ESN bootstrap models. The 𝐶𝑅𝐴 and 

𝛼 − 𝜆 metrics have been computed on the 50 run-to-failure trajectories of the test set. The FANN predicts the 

RUL at time 𝜏A, using the signal measurements 𝒛�𝜏A�.  

Notice that ESN1, ESN2, Ens1 and Ens2 provide more accurate predictions than FANN and Ens. Figure 10 

shows that the RUL predictions of FANN are less satisfactory at the end of the system life, when the use of the 

historical degradation information becomes more relevant. Ens1 provides more accurate and stable RUL pre-

dictions than Ens2, given the different performances of the ensemble individual models. Ens1 and Ens2 tend to 

provide more accurate predictions than Ens at the end of the run-to-failure trajectories, when the presence of 

event-based measurements makes the latter ensemble unstable. Furthermore, strategy 1 outperforms strategy 2 

in all cases, i.e. when it is applied to both a single ESN and to an ensemble of ESNs. This is due to the fact that 

the reservoir of ESN2 tends to gradually forget during the time span between two consecutive events, tj and tj+1, 

when no measurements are acquired. In practice, since ESN2 reservoir has a MC equal to 15 time units and the 

measurements are acquired on average every 55 time units, the ESN is not able to retain the collected infor-

mation for enough time. The reservoir forgetting phenomenon is shown in Figure 11: the occurrence of an event 

modifies the neuron state for a short interval of time after which they return to a stable value. 

A possible solution to increase the memory capacity of ESN2 reservoir is to further increase the number of 

internal neurons, 𝑁:. Since the reservoir memory capacity, MC, tends to increase with the logarithm of the 

number of internal neurons, 𝑁:, (Büsing, Schrauwen and Legenstein, 2010), the use of large reservoirs is in 

practice unfeasible for the computational efforts necessary for their construction. 

Table 6 reports the metrics PICP and NMPIW used to assess the performance of the proposed methods for 

the identification of prediction intervals of Ens1 and Ens2. Figure 12 shows the 95% PI of Ens1 and Ens2. Notice 

that the coverage of both methods is satisfactory, being larger than the target value 0.95, although ESN2 tends 

to provide better coverage probability, ESN1 has narrower PI. 

 



Table 5. Comparison of the performances of the proposed approaches (ESN1, ESN2, Ens1, Ens2) and the state-of-the-art approaches 
(FANN, Ens). CRA ranges from -∞ to 1, large CRA values indicating superior performances. α − λ ranges from 0 to 1, large α −

λ values indicating superior performance. _____________________________________________________ 
RUL  
prognostic metric    𝐶𝑅𝐴      𝛼 − 𝜆 _____________________________________________________ 
Proposed approaches: 
ESN1         0.7114±0.1408  0.6350±0.2765 
ESN2         0.4920±0.2094  0.4982±0.1696 
Ens1         0.7156±0.1395  0.6362±0.2715 
Ens2         0.4997±0.2101  0.4997±0.1680 
State-of-the-art approaches: 
FANN        0.0191±0.2255  0.4634±0.1995 
Ens         0.4261±0.3340  0.5963±0.1544 _____________________________________________________ 

 
Table 6. Prediction intervals metrics of the two proposed ESN strategies. _____________________________________________________ 

Prediction interval 
95% confidence      PICP    NMPIW _____________________________________________________ 
Ens1          0.95    1.1222 
Ens2          0.97    1.6838 _____________________________________________________ 

 

   
 

Figure 10. Remaining Useful Life (RUL) predictions on two run-to-failure test trajectories. The vertical lines indicate the time at 

which the measurements are taken.  

 
Figure 11. Time evolution of the internal states of three reservoir neurons of ESN2. 



 
Figure 12. Remaining Useful Life (RUL) predictions intervals of. Ens1 (left) and Ens2 (right) on a run-to-failure test trajectory. The 

vertical lines indicate the time at which the measurements are taken.  

 
6. Case study II: real industrial case 

6.1. Data Description 

This case study considers the degradation and failure process of bearings used in large turbine units. The dataset, 

which can be download from (Dataset 2019), contains signal measurements collected from five turbine units, 

U1, U2, U3, U4 and U5. Vibration signals are measured by a set of seven sensors. which include four eddy 

current displacement sensors measuring the radial vibration of the rotor at both ends, two eddy current displace-

ment sensors measuring axial vibration of the rotor and one sensor measuring the unit rotating speed. Measure-

ments are triggered by abnormal behaviors of the units, such as large environmental noise and anomalous vi-

bration behavior. A number between 200 and 300 waves is collected for a time interval of around 10 minutes 

by each sensor with a sampling frequency of 3.2 kHz. Each wave is composed by 1024 samples. The acquisition 

time of all sensors is synchronized. Figure 13 shows an example of signal measurements performed during a 

run-to-failure trajectory. Notice that the anomalies occur at irregular time period, whereas after each anomaly 

measurements package are acquired at regular frequency. 

 
Figure 13. Measurement collection scheme. 

6.2. Data preprocessing 

To reduce the dimension of the 1024 values collected in the time domain during a single wave and the effects 

of phase shifts in different acquisitions, two features, i.e. the energy and the Shannon entropy, are extracted 

from each wavelet to characterize the bearing degradation, according to Heidari Bafroui and Ohadi (2014). 
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6.3. Results and Discussion 

The hyper-parameters of ESN1 and ESN2 have been set by performing the SaNSDE search described in Figure 

3 (Section 4.1) with a population of 100 chromosomes, 50 generations and the hyper-parameter ranges reported 

in Table 1. The objective function has been computed using a leave-one-out cross validation procedure. The 

reservoir washing out procedure described in Section 5.2 is applied each time a new degradation trajectory is 

processed. Table 7 reports the obtained optimal ESN hyper-parameters. Similar to the synthetic case study of 

Section 5, ESN1 is characterized by smaller reservoir size than that of 𝐸𝑆𝑁^. Differently, the leaky rate of ESN2 

is smaller than that of ESN1 and the spectral radius of ESN2 larger than that of ESN1. These differences among 

the two case studies are due to the very different average number of consecutive missing values, which is nearly 

55 in the synthetic case study and nearly 1000 in the present case study. The very large number of consecutive 

missing measurements causes an increase of the memory capacity and a decrease of the leaky rate. 

 
Table 7. Optimal ESN hyper-parameters of ESN1 and ESN2 for real industrial case study. ________________________________________________________ 

ESN hyper-parameters        ESN1    ESN2 ________________________________________________________ 
Spectral radius (𝜌)         0.0866   0.9999 
Leaky rate (𝑎)          0.7825   0.072 
Connectivity (𝑐)×Rerservoir Size (𝑁:)  9.9044   6.8276 
Reservoir Size (𝑁:)         156    228 
Input Scaling for radial &  
vibration sensors signal (𝐼𝑆Þ)     9.2652   1.7027 
Input Scaling for speed (𝐼𝑆ª)     8.4118   1.4733  
Output feedback scaling (OFB)    7.8798   3.3929 _______________________________________________________ 

Table 8 compares the accuracy metrics 𝐶𝑅𝐴 and 𝛼 − 𝜆 of ESN1, ESN2, Ens1, Ens2, FANN an Ens. The 

metrics are evaluated resorting to a twice nested leave-one-out cross validation approach, in which the outer 

loop has been used to compute the metrics and the inner loop to optimize the ESN hyper-parameters. Figure 14 

shows the obtained RUL predictions. Table 8 shows that ESN1, ESN2, Ens1, Ens2 provide a more accurate RUL 

prediction than FANN. The Ens overperforms ESN2 and Ens2, given the large memory required by strategy 2 to 

learn the RUL evolution pattern during the period of missing measurements. Given the very large average num-

ber of consecutive missing values, a very large reservoir size is needed, which is, in practice, unfeasible due to 

the computational efforts necessary for its construction. 

Table 9 reports the metrics PICP and NMPIW of Ens1 and Ens2. Ens2 shows a more satisfactory PICP but a 

less satisfactory NMPIW than Ens1. Figure 15 shows the 95% PI confidence intervals. It is worth noting that the 

PI of Ens2 become narrower as time passes because the teacher forcing method of ESN2 can learn the evolution 

of RUL when the measurement is not available. 

 
Table 8. Comparison of the performances of the proposed approaches (ESN1, ESN2, Ens1, Ens2) and the state-of-the-art approaches 

(FANN, Ens). _____________________________________________________ 
RUL  
prognostic metric    𝐶𝑅𝐴      𝛼 − 𝜆 _____________________________________________________ 
Proposed approaches: 
ESN1         0.2452±0.4773  0.6446±0.1906 
ESN2         0.0523±0.5650  0.5173±0.2816 
Ens1         0.2796±0.5416  0.6547±0.2114 
Ens2         0.0998±0.2720  0.4718±0.1151 
State-of-the-art approaches: 



FANN        -0.3155±0.6762  0.2001±0.2462 
Ens         0.1462±0.5289  0.6417±0.2085 _____________________________________________________ 

 
 
 

Table 9. Prediction intervals metrics of the two proposed ESN strategies. __________________________________________________ 
Prediction interval 
95% confidence       PICP    NMPIW __________________________________________________ 
Ens1           0.8606   2.6940 
Ens2           0.8655   2.9715 __________________________________________________ 

 

 
Figure 14. Remaining Useful Life (RUL) predictions on a run-to-failure test trajectory. The vertical lines indicate the time at which 

the measurements collection begins or ends.  

 

 
Figure 15. Remaining Useful Life (RUL) predictions intervals of. Ens1 (left) and Ens2 (right) on a run-to-failure test trajectory. The 

vertical lines indicate the time at which the measurements are taken. 

 
 
 
 



7. Conclusion 

Two strategies for predicting the remaining useful life of a system of non-repairable interacting components in 

case of data collected at irregular time step have been proposed. They are based on the use of a Bagging en-

semble of ESNs, which have been adapted to deal with data collected at irregular time steps. In Strategy 1, the 

ESNs use the time of the measurement as additional input, whereas in Strategy 2 the ESN reservoir neurons 

internal states at the time in which the measurements are not collected are excited only by the previous time 

internal states. A Self-adaptive Differential Evolution with Neighborhood Search (SaNSDE) algorithm is em-

ployed to set the ESN hyper-parameters. The two ESN strategies have been verified using a synthetic case study 

which mimics the behavior of a system in which measurements are collected only when events at the system 

components or extreme operational conditions occur and a real-world case study concerning the prediction of 

the RUL of a sliding bearing of a turbine unit. The obtained results have shown that both the proposed ESN 

strategies overperform a FANN and a state-of-the-art ensemble of ESNs and that strategy 1 provides more 

satisfactory performances than strategy 2. The main drawback of strategy 2 is that the memory capacity of the 

obtained ESN is not enough large and, therefore, the reservoir tends to forget the system state in the time span 

between two events. 
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Appendix. RUL uncertainty estimation by Ensemble of ESNs 

 With respect to the estimation of the RUL prediction interval, Bagging assumes that the prediction error, 

𝜖( = 𝑅𝑈𝐿�](𝑡) − 𝑅𝑈O𝐿�(𝑡), is a random variable with zero-mean distribution, whose variance 𝜎àá�
^  need to be 

estimated. As in Baraldi, Mangili and Zio, (2013), 𝜎àá�
^  can be decomposed into three terms: 𝜎â�

^ , the variance 

related to the uncertainty in the degradation process, 𝜎8�
^ , the variance related to the measurement noise and 

𝜎��O�·(()
^ , the variance related to the imprecision of the model: 

𝜎àá�
^ = 𝐸 ¶Æ𝑅𝑈𝐿�](𝑡) − 𝑅𝑈O𝐿�(𝑡)Ç

^
¼                               

= 𝐸 ã�𝑅𝑈𝐿�](𝑡) − 𝜇���(()|â��
^å + 𝐸 ã�𝜇���(()|â� − 𝜇���(()|𝒛(()�

^å + 𝐸 ¶Æ𝜇���(()|𝒛(() − 𝑅𝑈O𝐿�(𝑡)Ç
^
¼   

= 𝜎â�
^ + 𝜎8�

^ + 𝜎��O�·(()
^                               (A.1) 

where the quantity 𝜇���(()|â� is introduced to represent the expected value of the RUL of equipment with deg-

radation d at time t and 𝜇���(()|𝒛(() represents the expected value of the RUL of equipment from which the 

observation	𝒛(𝑡) at time 𝑡 has been obtained. Notice that it is assumed that the different components of the 

prediction error are independent. Then, the variance 𝜎��O�·(()
^  can be estimated by (Khosravi et al. 2011a): 

𝜎��O�·(()
^ = W

�{W
∑ Æ𝑅𝑈O𝐿&(𝑡) − 𝑅𝑈O𝐿�(𝑡)Ç

^
�
&�W              (A.2) 

and the variance 𝜎â^ + 𝜎8^  can be approximated by: 



𝜎â^ + 𝜎8^ ≈ 𝐸 ã�𝑅𝑈𝐿�] − 𝑅𝑈O𝐿��^å − 𝜎��O�·
^               (A.3) 

Since 𝑅𝑈𝐿�] is not directly measurable, in order to estimate the unknow value of 𝜎â^ + 𝜎8^ , a set of variance-

squared residuals is constituted by (Khosravi et al. 2011a): 

𝜃(^ = 𝑚𝑎𝑥 ËÆ𝑅𝑈𝐿�](𝑡) − 𝑅𝑈O𝐿�(𝑡)Ç
^
− 𝜎��O�·(()

^ , 0Í           (A.4) 

to form a new dataset {(𝒛>(𝑡), (𝜃(>)^)}(�W,…,(�_,>�W,…,�, which is used to train a dedicated Feedforward ANN. The 

cost function for training the dedicated ANN is (Khosravi et al. 2011a): 

𝑐𝑜𝑠𝑡 = W
^
∑ ¶ln�𝜎ëì�

^ � + í�
¹

îïì�
¹ ¼

(�
(�W               (A.5) 

where 𝜃(^ is the target variance-squared residual for the ANN training and 𝜎ëì�
^ = 𝜎â�

^ + 𝜎8�
^  is the variance 

estimated by ANN. Note that the ANN output node activation function is selected to be an exponential function 

in order to enforce a positive value of 𝜎ëì�
^  and the ANN input is the reservoir state. The minimization of the 

cost function can be done using stochastic gradient descent methods.  

 Finally, the PI with confidence interval equal to (1 − 𝛼) is (Baraldi, Mangili and Zio, 2013): 

[𝐿�(𝑡), 𝑈�(𝑡)] = [𝑅𝑈O𝐿�(𝑡) − 𝑧�𝜎à�, 𝑅𝑈O𝐿
�(𝑡) + 𝑧�𝜎à�]        (A.6) 

where 𝑧� is the parameter representing the 𝛼/2 quantile of a Student’s t-distribution with number of degrees 

of freedom equal to the number 𝐵 of bootstrap models.  
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