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LOW-THRUST TRAJECTORY OPTIMIZATION IN DROMO
VARIABLES

Juan L. Gonzalo∗, and Claudio Bombardelli†

The Dromo orbital propagator was recently introduced by Peláez et al., and has
been under active development. It has proven to be an excellent propagation tool,
both in terms of accuracy and computational cost. In this article, we explore its
applicability to the solution of optimal control problem in low-thrust missions. To
this end, an optimal control formulation based in Dromo and a direct transcription
method is used to solve several LEO-GEO and escape from Earth problems; the
obtained results clearly show the suitability of this orbital propagator for such
purposes.

INTRODUCTION

The Dromo orbital propagator was initially introduced by Peláez et al.1 and has been under active
development since then.2, 3 Other than showing excellent performance in terms of propagation speed
and accuracy the regularized formulation of Dromo has proven to be particularly advantageous to
find approximate solutions of basic astrodynamics problems.4, 5, 6 Recently, the Dromo formulation
has been employed as a basis for the solution of multi-revolution low-thrust optimization problems
in Earth orbit7 showing a dramatic improvement when compared to a cartesian based formulation.
The reason for the improvement comes form three important characteristics of the method. First of
all, its good performance in both precision and computational cost. Secondly, the state of the object
is described by a set of redundant generalized orbital parameters, whose variations are related in
magnitude and time scale with that of the control; this greatly improves the numerical behavior
compared to a Cowell formulation, were the variations of the state due to the acceleration exerted
by the low-thrust engine are normally very small compared with the characteristic variations along
one orbit. Finally, the same formulation is valid for elliptic, hyperbolic and parabolic orbits, making
it applicable to many different scenarios and easily allowing for optimal trajectories that combine
several types of orbit. Other non-singular element methods have been successfully used by other
authors8 with positive results.

In this article, a formulation of the Optimal Control Problem based on a direct transcription
method and the Dromo orbital propagator is used to solve two types of Earth-bound problems: LEO
to GEO transfers and escapes from Earth orbit. The proposed formulation has a strong focus on
efficiency, taking advantage of the sparsity of the discretized dynamic problem and using analytic
expressions for the gradients of the equations. Approximated analytic results for the case of very
low tangential thrust are used4 to construct an initial guess as close to the true optimum as possible.

∗PhD candidate, Space Dynamics Group, School of Aerospace Engineering, Technical University of Madrid (UPM).
†Research associate, Space Dynamics Group, School of Aerospace Engineering. Technical University of Madrid (UPM).
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Figure 1. Schematic representation of the problem.

The structure of the article is the following. First we introduce the model employed for the op-
timization problem with all simplifying assumptions. The equations of motion in Dromo variables
are then introduced and employed to formulate the planar, constant thrust control problem. Next, the
optimal control problem solution strategy using a non-linear programming approach is described.
Finally, results for the optimization of a number of LEO to GEO and LEO to escape trajectories are
discussed.

DESCRIPTION OF THE PROBLEM

Let us consider a spacecraft S of mass m orbiting around a primary E of gravitational parameter
µ. Its initial radial position is R0, measured from the center of the primary, and its initial angular
position is ν0, measured from the initial eccentricity vector (i.e. ν0 is the initial true anomaly). The
only forces acting on the spacecraft are the attraction of the primary, which from now on is assumed
to be the Earth, and the constant, in-plane thrust produced by its propulsion system Ft. The mass
of the propellant is considered to be negligible compared to the initial mass of the spacecraft, so the
later can be taken as constant as a first approximation. Under these conditions, the Optimal Control
Problem (OCP) of determining the thrust orientation profile α to perform a series of Earth-bound,
planar, optimum orbital maneuvers is studied.

All equations and variables considered hereafter are expressed in non-dimensional form: to this
end, three characteristic magnitudes are introduced for length (R0), mass (m) and time (n−10 ), where
n0 is the angular frequency of the circular orbit of radius R0 around the primary, n0 =

√
µ/R3

0.
The remaining magnitudes are derived from them, as shown in table 1.

Table 1. Characteristic values used to introduce non-dimensional variables.

Length Time Mass Velocity Acceleration Force

R0 n−10 =
√
R3

0/µ m R0n0 R0n
2
0 mR0n

2
0
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EQUATIONS OF MOTION. DROMO ORBITAL FORMULATION

In the Dromo orbital formulation, initially proposed by Peláez et al.1 and further developed by
multiple authors,2, 9 a fictitious time θ is introduced through a change of independent variable given
by a Sundman transformation. The variation of parameters technique is then used to obtain expres-
sions for the derivatives of seven generalized orbital elements, which along the non-dimensional
physical time τ describe the state of the particle. These elements are constant for the unperturbed
problem, but evolve in the presence of perturbing forces (that is, any force expect the gravitational
attraction of the primary). Furthermore, it is possible to separate these orbital elements into two
groups: the first three describe the geometry of the orbit in its plane, while the other four give the
orientation of said plane. Consequently, the later are constant for the planar problem (when there
is no out-of-plane component of the perturbation), and the motion of the particle is described by a
4-dimensional state vector:

(τ, q1, q2, q3) (1)

whose evolution is given by the following system of four differential equations:

dτ

dθ
=

1

q3s2
(2)

d

dθ

q1q2
q3

 =
1

q3s3

 s sin θ (s+ q3) cos θ
−s cos θ (s+ q3) sin θ

0 −q3

[fp · i
fp · j

]
= F (3)

with
s = q3 + q1 cos θ + q2 sin θ (4)

r =
1

q3s
(5)

u =
dr

dτ
= q1 sin θ − q2 cos θ (6)

where fp is the total perturbing force, r is the orbital radius, u is the radial velocity and s is the
transversal velocity, all of them in non-dimensional form. Versors i and j are oriented in the radial
and transversal directions respectively, and they define a Local Vertical - Local Horizontal (LVLH)
reference frame. A careful examination of these equations reveals three issues worth noting. First
of all, Equation (2) is uncoupled from Equations (3), so the problem can be solved for (q1, q2, q3)
without calculating the dimensionless time. Secondly, θ coincides with the true anomaly of the
Keplerian orbit for the unperturbed problem. As a consequence, the initial condition for θ in both
perturbed and unperturbed problems is θ0 = ν0. Finally, the method presents only two singular
cases: one when the trajectory reaches a point at the infinite (r = ∞), and other when the angular
momentum vanishes (h = 0). Nevertheless, these are uncommon situations.

It is convenient to define relations between Dromo parameters and the classical orbital elements.
The following formulas have been compiled from several authors,1, 9, 2 and particularized for the
planar case

q1 =
e

h
cos ∆γ, q2 =

e

h
sin ∆γ, q3 =

1

h
(7)

e =

√
q21 + q22
q3

, ∆γ = tan−1
(
q2
q1

)
, h =

1

q3
, (8)
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ν = tan−1
(
q1 sin θ − q2 cos θ

q1 cos θ + q2 sin θ

)
, E =

q21 + q22 − q23
2

, a =
1

q23 − q21 − q22
(9)

where e is the eccentricity, h is the angular momentum, E is the total energy, a is the semimajor
axis and ∆γ is the angular drift between the variations of the fictitious time and the true anomaly2

∆θ = ∆ν + ∆γ.

In the particular case of planar orbit, ∆γ coincides with the angle between the initial and osculating
eccentricity vectors,2 and θ becomes the inertial angular position of the particle measured from the
initial eccentricity vector. Finally, note that Equations (7) can also be used to calculate the initial
values for the Dromo orbital elements, knowing that ∆γ(θ0) = 0 and h0 =

√
1 + e0 cos ν0.

To close this introduction to Dromo, it is interesting to point out some interesting properties
regarding its application for studying Optimal Control Problems using the Direct Method:

• The same formulation is valid for any kind of orbit, allowing to solve a large variety of
optimization problems.

• Speed and precision. This is capital, since a large number of orbits have to be computed while
solving the NLP subproblem obtained from the discretization of the continuous OCP.

• Good behavior when integrated with fixed-step routines, which are normally used when solv-
ing OCPs using the Direct Method.

• The state varies in the same time scale as the perturbation. The main perturbation term is the
thrust of the engine, whose orientation is the control law to be optimized; therefore, state and
control vary in the same time scale.

Planar, Constant Thrust Problem

The motion of the particle in the planar case is governed by the ODE system formed by Equa-
tions (2) and (3), where (τ, q1, q2, q3) is the state vector. To close the problem, it only remains to
define the perturbing force, fp. The only perturbation considered in this work is the thrust produced
by the propulsion system, whose orientation along the orbit will be the control function in the family
of OCPs studied in the following section. The magnitude of the thrust is assumed to be constant,
and it is defined in its non-dimensional form as

ε =
Ft

mµ/R2
0

=
At
µ/R2

0

(10)

where Ft is the thrust exerted by the propulsion system, and At = Ft/m is the corresponding
acceleration. The study is centered in propulsion systems of high specific impulse Isp, such as
ionic, plasma or nuclear thermal engines, so ε and the specific fuel consumption take very small
values. Taking the later into account, for a first approximation the mass of the vehicle is assumed to
be constant.

Projecting fp into the LVLH frame yields[
fp · i
fp · j

]
=

[
ar
aθ

]
= ε

[
sinα
cosα

]
, ε =

√
a2r + a2θ (11)
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where ar is the radial component of the perturbing acceleration, aθ is the transversal component of
the perturbing acceleration, and α is the angle formed by the acceleration vector and the transversal
direction. While expressing the perturbing forces in terms of α is convenient, normally the angle β
formed by the acceleration and the instantaneous velocity vector is of greater interest. The relation
between α and β is given by:

α = β + arctan

(
e sin ν

1 + e cos ν

)
(12)

Therefore, the problem can be posed in terms of α, which yields simpler equations than using β,
and then the later can be recovered by applying Equation (12).

DIRECT METHOD FOR OPTIMAL CONTROL PROBLEMS

OCPs can be solved using either Direct or Indirect Methods; for this study, only the former are
considered. In Direct Methods, the original, continuous OCP must be transcribed into a discrete
Non-Linear Programming (NLP) problem, which can then be solved using a suitable algorithm.
This implies approximating the continuous functions and equations involved by a set of discrete
parameters and constraints, as well as defining an adequate objective function to minimize. To
this end, a grid of M uniformly spaced nodes is defined for the independent variable. To ease
the construction of the grid for free-final-time problems, a new change of independent variable is
introduced

θ = θ0 + (θf − θ0)t , t ∈ [0, 1] (13)

so the position of the grid nodes in t is constant regardless of the values of θ0 and θf . Then, the
discrete values for Dromo fictitious time, state and control at the k-th node can be written as:

tk =
k − 1

M − 1
, θk = θ0 + (θf − θ0)tk, τk = τ(θk), qk = q(θk), αk = α(θk).

The equations of motion are enforced by transcribing them into a set of defect constraints, using
a suitable method from the Implicit Runge-Kutta family of algorithms for the integration of initial
value problems. Implicit methods are usually preferred for the direct transcription of dynamics be-
cause they have better stability and greater order for the same number of steps, while their normally
higher computational cost is compensated by the fact that they are going to be solved iteratively
inside the NLP algorithm. Additionally, the Runge-Kutta family of methods is chosen because they
respond better to fast variations in the problem, and behave better with relative large steps. The
equations corresponding to the Trapezoidal and Hermite-Simpson Separated methods are given in
Appendix B, particularized for the chosen orbital formulation and the problem at hand. Note that,
since the equations for the physical time and the generalized orbital elements are uncoupled, only
the former are considered for the definition of the defect constraints. In those cases where physical
time plays a role, be it as part of the objective function or as a constraint of the OCP, the correspond-
ing equations will added.

The OCP may introduce additional constraints apart from those associated with dynamics. For the
purposes of this study, it is important to consider the fixed final energy constraint, whose equation
is:

gE(x) ≡ 1

2

[
(yM1 )2 + (yM2 )2 − (yM3 )2

]
− E∗f = 0 (14)
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where E∗f is the desired final energy; note that the particular case of escape can be obtained by
setting E∗f = 0. It is also interesting to considered the fixed final time constraint

gτ (x) ≡ τ∗f − τf = 0 (15)

where τ∗f is the desired final time, and τf can be determined using the equations presented in the
next paragraph for the minimum-time objective function.

To close the transcription of the OCP, a suitable expression must be given for the objective func-
tion. Multiple objective functions can be defined depending on the OCP; for this study, only the
cases of maximum final energy and minimum total time are considered. The maximum energy case
is a problem of Mayer, since the objective function only contains terms depending on the final value
of the state:

J(x) = −E = −1

2

(
q21 + q22 − q23

)∣∣
θ=θf

= −1

2

[
(qM1 )2 + (qM2 )2 − (qM3 )2

]
(16)

On the other hand, the minimum transfer time is a problem of Lagrange, since it is expressed as a
quadrature. This is due to the physical time being a dependent variable in Dromo formulation. The
quadrature for the final non-dimensional time τF can be obtained from Equation (2), yielding:

J = τF =

∫ θF

θ0

1

q3s2
dθ =

∫ θF

θ0

m(q1, q2, q3, θ)dθ (17)

To transcribe (17), a numerical scheme consistent with the one used for the dynamics is recom-
mended. Therefore, a trapezoidal quadrature is used for the Trapezoidal transcription

J(x) =
M−1∑
k=1

hk
2

(mk +mk+1) =
h1
2
m1 +

1

2

M−1∑
k=2

(hk + hk−1)m
k +

hM−1
2

mM

while a Simpson scheme is preferred for the HSS transcription

J(x) =
M−1∑
k=1

hk
6

(mk + 4mk+1 +mk+1)

where mk is the value of the integrand at the k-th node, mk is the value of the integrand at the
middlepoint between the k-th and the (k + 1)-th nodes, and hk = θk+1 − θk.

To finalize this section on the direct transcription of the OCP, there are some issues regarding
computational efficiency and memory usage worth noting. NLP algorithms normally require to
compute the Jacobian and Hessian of the constraints and the objective function (or a suitable ap-
proximation). Since the size of the grid needed to adequately transcribe most real life problems is
large, so will be the resulting Jacobian. However, constraints associated with dynamics normally
depend on a small number of adjacent nodes (two for the Trapezoidal and HSS methods previously
considered), so their gradient matrix is sparse: taking advantage of this can dramatically reduce the
computational effort required for both calculating the gradients and solving each NLP step. Fur-
thermore, the gradient matrix of the defect constraints can be constructed analytically, using the
expressions given in Appendix A (for brevity sake, the resulting matricial expressions are omitted;
they can be found in Reference 7). Analogously, the contribution of the defect constraints to the
Hessian matrix shows a strong sparsity. And since the analytical expressions for the gradients of the
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constraints are known, the Hessian can be computed numerically using the method of finite differ-
ences of the gradients. By following the procedure proposed by Coleman, Garbow and Moré10 for
sparse problems, only 6 evaluations of the gradients of the defect constraints are needed to compute
a forward differences estimate of the Hessian (10 for a centered differences estimate).

NUMERICAL EXPERIMENTS

The problem of finding the optimum thrust orientation control law in the two-body planar, con-
stant thrust scenario previously presented is formulated, using Dromo to propagate the orbit and the
Direct Method to transcribe the OCP as a NLP problem. A third party software package is used
to numerically solve this NLP problem, particularly MATLAB’s global optimization toolbox and
its interior point algorithm. The algorithm selection is based on its support for sparse, large scale
problems, a highly desirable property when dealing with problems coming from the discretization
of dynamical systems, as already discussed.

One key aspect not yet considered is the construction of a good enough initial guess for the
iterative NLP solver. The quality of said initial guess not only affects the number of iterations needed
to reach the solution, but it is also a deciding factor for the convergence of the NLP algorithm. For
the purposes of this study, a simple yet good enough initial guess can be constructed knowing
that, for the two-body problem with constant thrust, the maximum instantaneous energy raise is
achieved using tangential thrust.4 Furthermore, this is also the asymptotic solution when ε → 0
for maximizing the orbital energy increase during a fixed period of time. Taking these results into
account, an initial guess is constructed propagating the orbit for the tangential thrust case until a
certain stopping criterion is reached. Said stopping criterion will depend on the characteristics of
the OCP: for escape problems, it is good enough to propagate the tangential thrust orbit until escape
is reached; while for orbit transfers various criterion involving q3 (which is linked to the angular
momentum) or the orbital energy can be considered.

All the numerical experiments were run in a computer with an Intel c© CoreTM i5-3450 processor
with 4 physical cores at 3.10 GHz, and 8 GB of DDR3 RAM at 1600 MHz. Parallel computation
was not enabled. The function and constraints tolerances for the Interior-point algorithm were set
to 10−10.

The escape from an equatorial LEO is now considered, for different values of the initial eccentric-
ity e0 and the non-dimensional thrust parameter ε. In all cases, the maneuver starts at the perigee of
the orbit (ν0 = 0), which is placed at an altitude of rp0 = 300 km. The numerical results have been
computed using the Trapezoidal discretization, with a number of grid nodes depending on the value
of ε (the lower the thrust the larger the number of revolutions needed to escape, thus requiring more
nodes to get a fine enough grid). The first example, Figures 2, corresponds to an initially circular
orbit and a thrust parameter of ε = 10−3 (a = 8.1346 10−3 m/s2), and is calculated using a grid of
M = 700 nodes. The NLP algorithm only took 5 iterations to converge, for a total computational
time of 1.1126 s. The thrust orientation remains close to the tangential direction during most of
the maneuver, oscillating around it. This supports the already introduced notion that the tangential
control law is the low-thrust asymptotic solution for maximizing the orbital energy increase in a
given time. The orbit shows the typical spiraling shape of low-thrust maneuvers, while the figures
for the eccentricity and the semimajor axis confirm the similarities between the optimum and tan-
gential control laws. A closer look at the eccentricity curves reveals that escaping using tangential
thrust requires less orbits but more time than the optimum solution: this implies that the vehicle
move faster in the optimum case. Also noteworthy is that, while both the eccentricity and the am-
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Figure 2. LEO-escape maneuver, for e0 = 0 and ε = 10−3.
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Figure 3. LEO-escape maneuver, for e0 = 0.72, ε = 10−4.
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Figure 4. LEO to GEO transfer, for e0 = 0 and ε = 10−1.
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Figure 5. LEO to GEO transfer, for e0 = 0.2 and ε = 10−3.
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Figure 6. LEO to GEO transfer, for e0 = 0.5 and ε = 10−4.
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Figure 7. Maximum energy increase from a GTO in 1 day, for ε = 10−3
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plitude of β increase with time, said variations tend to concentrate at the end of the maneuver. A
much more eccentric initial orbit is considered in Figures 3, calculated for e0 = 0.72, ε = 10−4

(a = 8.1346 10−4 m/s2) and M = 5000. In this case the convergence of the NLP algorithm was
slower, with 42 iterations and 417.8463 s of computational time. A specially low value for thrust
has been selected to obtain more interesting results, since the high initial eccentricity reduces the
number of revolutions needed to escape. Thrust orientation angle β still oscillates around the tan-
gential direction, but it no longer resembles a sinusoidal. It presents rapid variations near the apogee
of the orbit, while the evolution in the vicinity of the perigee becomes smoother. There is also a
qualitative change in the evolution with time of the eccentricity and the amplitude of β. A tendency
to circularize the orbit reducing both magnitudes appears during most of the maneuver, followed by
a strong increase near the end. The differences between the optimum and tangential thrust control
laws grow bigger towards the end of the trajectory, still verifying that the optimum escape takes
place in less time but with more orbits than the tangential thrust escape.

The next set of OCPs corresponds to three LEO to GEO transfers. Same as before, the ma-
neuver starts at the perigee (ν0 = 0), which takes place at an altitude of rp0 = 300 km, and the
discretization is performed using the Trapezoidal method. The results for the first case, calculated
with e0 = 0, ε = 10−1 (a = 8.1346 10−1 m/s2) and M = 300, are represented in Figures 4. The
convergence of the NLP algorithm was reached in 18 iterations and 3.2362 s. The value chosen for
ε is rather large, not having a low-thrust application, but it serves to illustrate one of the benefits
of the Dromo formulation. The curves for the eccentricity reveal that the orbit, which is elliptic
during most of the maneuver, briefly becomes hyperbolic towards the end. Such a solution is pos-
sible because a formulation valid for all kind of orbits is used, offering a higher flexibility for the
optimization process. Aside from this, the figures for e and a also include the curves corresponding
to the tangential thrust control law: both cases are similar during the first part of the maneuver,
but they separate as the optimum control law circularizes the orbit to fulfill the constraints. The
next test problem, corresponding to e0 = 0.2, ε = 10−3 (a = 8.1346 10−3 m/s2) and M = 700, is
shown in Figures 5. This trajectory also showed a good behavior of the NLP algorithm, which
required 18 iterations and 8.065 s to converge. The lower thrust leads to a typical spiraling orbit,
with β oscillating around a mean value slightly separated from the tangential direction. This mean
value is negative, indicating that thrust shows a small bias towards the inner part of the orbit. It is
also worth noting that the amplitude of β decreases with time, while the oscillations in the eccen-
tricity grow larger. The last LEO to GEO transfer, Figures 6, is calculated for e0 = 0.5, ε = 10−4

(a = 8.1346 10−3 m/s2) and M = 5000. Unlike the previous cases, the convergence of this test
problem presented some issues, requiring 200 iterations and 401.7085 s. The most notable char-
acteristic of this transfer is that thrust actually points in the direction opposite to velocity during
some parts of the orbit, near the end of the maneuver. This decelerating regions take place around
the perigee, and are associated to the need of circularizing the orbit to meet the final constraints.
A closer inspection of the curves for the eccentricity and the thrust orientation angle reveals that,
instead of gradually reducing the eccentricity along the maneuver, it is more efficient to follow a
nearly tangential thrust profile during most of it, and circularize the orbit at the end.

Finally, the problem of determining the thrust orientation control law that maximizes the final
energy Ef reached in a given time departing from a GTO (e0 = 0.72) is considered. The ma-
neuver starts at the perigee, at an altitude of rp0 = 300 km, lasts one day and is performed with
ε = 10−3 (a = 8.1346 10−3 m/s2). The OCP is discretized using the HSS method and a 300 points
grid; under these conditions, the NLP algorithm took 14 iterations and 5.8399 s to converge. The
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results, represented in Figures 7, show that the thrust orientation angle remains close to the tan-
gential direction, but with a bias towards the inner part of the orbit due to its high eccentricity. It is
checked that β becomes zero at the perigee, and experiments the greatest variations near the apogee.
Furthermore, its value is negative for the first half of the orbit, when moving from the perigee to
the apogee, and positive during the other half. Regarding the eccentricity and the semimajor axis,
both combine a secular and an oscillatory term, the later having the same period of the orbit. The
secular component for the eccentricity is decreasing, indicating that the orbit is circularized as the
energy increases, while for the semimajor axis it is increasing. The improvement with respect to the
tangential thrust case is small, as depicted in the curve for the energy.

CONCLUSION

A new formulation for solving optimal control problems of space trajectories, restricted to the
planar, two bodies, low constant thrust case, has been defined using Dromo orbital propagator and
a Direct transcription method. The formulation has been developed with computational efficiency
as a key aspect, obtaining analytical expressions for the gradients of the constraints coming from
dynamics and exploiting the sparsity of the involved Jacobian and Hessian matrices. The availabil-
ity of a good initial guess based on the tangential thrust problem has allowed for fast and stable
solutions.

The results obtained have confirmed Dromo as a great orbital propagator for this type of problems.
This is due to several interesting properties. First of all, the same formulation is valid for all kinds
of orbits. Secondly, it shows very good speed and precision, and behaves well when integrated with
fixed-step routines (used in the transcription process). Finally, the state varies in the same time scale
as the perturbation, which in this case is also the control.

The numerical experiments studied with the new formulation have yielded some interesting con-
clusions. In escape and energy increase problems, the optimum thrust profile approaches the tangen-
tial thrust case for small values of the non-dimensional thrust, and separates as it grows. Depending
on the mission, the eccentricity of the initial orbit and the thrust, the differences between both
control laws can be quite important or negligible. Regarding LEO to GEO transfers, it has been
observed than the eccentricity reduction needed to reach the final circular orbit tends to concentrate
at the final part of the maneuver.
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APPENDIX A: ANALYTICAL GRADIENTS OF DROMO EQUATIONS

The Jacobian matrix for the defect constraints can be analytically constructed from the gradient
of the Right Hand Side of Equations (3). This is highly desirable, since the usage of analytical
expressions for the gradients yields lower computational times and better precision. Consider

F = R ·
[
ar
aθ

]
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where F is the RHS of Equations (3). Then, the gradient with respect to the reduced state vector
qT = (q1, q2, q3) is

∇qF
T =

(
∂

∂q1
F

∂

∂q2
F

∂

∂q3
F

)
where

∂

∂qi
F =

∂

∂qi
R ·

[
ar
aθ

]
since the thrust acceleration vector does not depend on the state vector in the formulation used.
Performing the partial derivatives and grouping terms:

∂

∂q1
R =

cos θ

q3s4

−2 sin θs − cos θ(2s+ 3q3)
2 cos θs − sin θ(2s+ 3q3)

0 3q3


∂

∂q2
R =

sin θ

q3s4

−2 sin θs − cos θ(2s+ 3q3)
2 cos θs − sin θ(2s+ 3q3)

0 3q3


∂

∂q3
R =

1

q23s
4

− sin θs(s+ 2q3) − cos θ(2q23 + (s+ q3)
2)

cos θs(s+ 2q3) − sin θ(2q23 + (s+ q3)
2)

0 3q23


The gradient with respect to the control u = α is:

∇uF =
∂

∂α
F = R · ∂

∂α

[
ar
aθ

]
= R · ε

[
cosα
− sinα

]
Finally, the derivative with respect to the independent variable θ is given by

∂

∂θ
F =

∂

∂θ
R ·

[
ar
aθ

]
=

1

q3s4

D11 D12

D21 D22

D31 D32

 · [ar
aθ

]

where:

D11 = s [2q1 − (−s+ 2q1 cos θ + 2q2 sin θ) cos θ]

D12 = cos θ(2s+ 3q3)(q1 sin θ − q2 cos θ)− s sin θ(s+ q3)

D21 = −2 cos θs(q1 sin θ − q2 cos θ) + s2 sin θ

D22 = sin θ(q1 sin θ − q2 cos θ)(2s+ 3q3) + s cos θ(s+ q3)

D31 = 0

D32 = −3q3(q1 sin θ − q2 cos θ)

The gradient of the RHS of Equation (2) is also needed to analytically construct the Jacobian for
certain objective functions (particularly, minimum-time problems). Let us define

m =
1

q3s2
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where m is the RHS of Equation (2). Then

∇qm = − 1

q3s3

 2 cos θ
2 sin θ

2 + s/q3


∇um = 0

∂

∂θ
m =

2

q3s3
(q1 sin θ − q2 cos θ).

APPENDIX B: DEFINITION OF THE DEFECT CONSTRAINTS

The process of transcribing the problem dynamics into a discrete set of non-linear defect con-
straints is briefly outlined in this Appendix, using the Trapezoidal and Hermite-Simpson Separated
methods.

The Trapezoidal method is a 2-stages, 3rd order, IRK scheme, given by equation:

qk+1 = qk +
hk
2

(Fk+1 + Fk)

with
Fk = F(qk,uk, θk) , hk = (θf − θ0)(tk+1 − tk),

where F is the right hand side of Equations (3), qk =
(
qk1 , q

k
2 , q

k
3

)T is the state at the k-th node and
uk = αk is the control at the k-th node. Expressing it as a defect constraint yields

ξk(x) ≡ qk+1 − qk − hk
2

(Fk+1 + Fk) = 0

where x is the (4M + 1)-th dimensional optimization variable:

xT =
(
θf ,q

1, α1, . . . ,qk, αk, . . .qM , αM
)

Then, applying these defect constraints to all nodes of the grid except the last one, a 3(M − 1)-th
dimensional column vector of non-linear defect constraints is reached

c(x)T =
[
ξ1(x) ξ2(x) . . . ξM−1(x)

]
The Hermite-Simpson method is a 3-stages, 4th order IRK scheme. Its main equations are:

0 = qk+1 − 1

2
(qk+1 + qk)− hk

8
(Fk+1 − Fk) Hermite interpolant

0 = qk+1 − qk − hk
6

(
Fk+1 + 4F

k+1
+ Fk

)
Simpson quadrature

with F
k+1

= F(qk+1,uk+1, θ
k + hk/2)

where qk+1 and uk+1 are, respectively, the state and the control at the middle point between nodes
k and k + 1. Two different formulation arise, depending on whether the state at the middle points
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is included in the optimization variable or not: said formulations are called Hermite-Simpson Sepa-
rated (HSS) and Hermite-Simpson Compressed (HSC) respectively. Only the former is considered
here, which leads to a (8M − 3)-th dimensional optimization variable:

xT =
(
θF ,q

1, α1,q2, α2,q2, α2, . . . ,qM , αM ,qM , αM
)

and the following set of 6 defect constraints per node (except for the last one):

ξk(x) =

[
qk+1 − 1

2(qk+1 + qk)− hk
8 (Fk+1 − Fk)

qk+1 − qk − hk
6

(
Fk+1 + 4F

k+1
+ Fk

)]

Consequently, the 6(M − 1)-th dimensional column vector of non-linear constraints derived from
dynamics is:

c(x)T =
[

ξ1(x) ξ1(x) . . . ξM−1(x)
]
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jectories,” Master’s thesis, ETSI Aeronáuticos, Technical University of Madrid (UPM), 2012.

[8] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
Second Edition. SIAM, 2010.
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