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A B S T R A C T

Pedestrian mobility networks have a primary role on historical urban areas, hence knowledge of navigable
space for pedestrians becomes crucial. Collection and inventory of those areas can be conducted by exploiting
several techniques, including the analysis of point clouds. Existing point cloud processing techniques are
typically developed for modern urban areas, which have standard layouts, and may fail when dealing with
historical sites. We present a complete and automated novel method to tackle the analysis of pedestrian
mobility in historic urban areas. Starting from a mobile lasers canning point cloud, the method exploits artificial
intelligence to identify sidewalks and to characterize them in terms of paving material and geometric attributes.
Output data are vectorized and stored in a very accurate high-definition shapefile representing the sidewalk
network. It is used to automatically generate pedestrian routes. The method is tested in Sabbioneta, an Italian
historic city. Paving material segmentation showed accuracy of 99.08%; urban element segmentation showed
an accuracy of 88.2%; automatic data vectorization required only 1.3% of manual refinement on the generated
data. Future advancements of this research will focus on testing the method on similar historical cities, using
different survey techniques, and exploiting other possible uses of the generated shapefile.
1. Introduction

European Commission defines smart cities as places where traditional
networks and services are made more efficient with the use of digital
solutions for the benefit of its inhabitants and business (European Commis-
sion, 2023). Furthermore, the importance of digital solutions for better
management of the city and its mobility network is enhanced. In recent
years there has been a strong push towards development and imple-
mentation of smart city concept (Kim, 2022), both at decision-making
and scientific levels. Within the various scientific fields concerned with
the topic, it is remarkable the synergy between Geomatics, Information
and Communication Technologies, and city planning (Mortaheb and
Jankowski, 2022; Heidari et al., 2022).

Mobility management, intended as the ability to move freely and
easily between two points of the city, can be identified as one of the
most interesting aspects of this emerging paradigm. In this context, the
term smart mobility is often used to highlight its importance for the
development of a smart city (Šurdonja et al., 2020). To foster smart
mobility in urban areas, it becomes essential to ensure an efficient
transportation network, which must comprehend private vehicular traf-
fic, public transportation and pedestrian mobility. Focusing then on

∗ Corresponding author.
E-mail addresses: daniele.treccani@polimi.it (D. Treccani), antfdez@uvigo.gal (A. Fernández), lucia@uvigo.gal (L. Díaz-Vilariño), andrea.adami@polimi.it

(A. Adami).

pedestrians, the proper management and maintenance of sidewalks,
pedestrian areas, arcades, squares and their connections have great
importance. Plus, in order to ensure physical accessibility to places,
specific actions that take into consideration several issues of the public
space (Marconcini, 2018) should be considered. One of them is to
grasp the knowledge of the characteristics of the connection ways
(e.g., sidewalks), and their correspondence with national standards
concerning physical accessibility.

Within this context, it becomes essential to develop solutions that
enable rapid and effective data collection. In particular, an up-to-
date inventory of relevant information on the networks that enable
urban pedestrian mobility is of essential importance for all future
planning, maintenance, and broader management actions on the urban
structure. An excellent example of data collection is crowdsourcing,
which is used in the case of project sidewalk (Saha et al., 2019) and
wheelmap (Mobasheri et al., 2017). Both rely on data provided by users
who voluntarily contribute to replenishing project databases. Another
data collection method is the performance of manual in-situ measure-
ments by specialized technicians. Other methods, instead, involve the
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use of artificial intelligence techniques aimed at analysing geospatial
data (Hou and Ai, 2020). The data collected are then generally used to
create maps for decision-making and as support for route design and
scheduling of maintenance and interventions. This article is focused
on the analysis of geospatial data exploiting artificial intelligence and
automatized techniques focusing on pedestrian mobility networks and
city’s sidewalks.

In scientific literature, there are various articles dealing with auto-
matic sidewalk recognition and assessment through point cloud analy-
sis (Ai and Tsai, 2016; Hou and Ai, 2020; Halabya and El-Rayes, 2020).
In those cases, the methods are based on modern and standardized
urban infrastructure patterns. For example, a curb separating the street
from the sidewalk and a different elevation of the two elements are
often considered prerequisites.

This paper presents a complete and automated method for the
characterization of urban navigable areas for pedestrians on historic
sites, analysing and processing a point cloud. A historic urban area has
elements of peculiarity in which it is not always possible to identify
standard layouts. Existing methods to locate and assess sidewalks are
based on standard urban areas and are prone to fail when used in
historic cities.

Historic urban layouts rarely follow standardized logic but are often
a set of ad hoc solutions that actually make the historic urban envi-
ronment unique. Such solutions are commonly the result of successive
interventions over time, that attempt to blend well with the historic
urban tissue of which they are part. By carefully observing various
historic cities and historic districts of various towns, we noticed one
frequent peculiarity: roadways and sidewalks are at the same elevation
and are not separated by curbs. Instead, they can be identified because
they are paved with different materials.

Therefore, the procedures of this paper exploit differences in urban
pavings. The difference in pavings is exploited by Machine Learning
(ML) and Deep Learning (DL) approaches to segment sidewalks on the
point cloud and identify their paving material.

The novel method we propose here is improved and extended
with respect to some preliminary results previously communicated and
focused only on some steps. Here we describe a complete workflow
that from a given raw data input (point cloud) allows obtaining a
very accurate vector file containing a correctly spatially referenced
network of the navigable space for pedestrians in historical sites. Based
on that network, routing analyses are then carried out. The method is
developed entirely with Python, using specific libraries for point cloud
management, ML, and DL workflows. The resulting vector file is then
published on GitHub, and used for updating OpenStreetMap (OSM)
ataset of the city selected as case study: Sabbioneta, a historic city
nd UNESCO site located in northern Italy.

The article is organized as follows. Section 2 presents articles related
o point cloud processing for urban accessibility management and
idewalk inventory. Section 3 widely describes the method, focusing
n and describing in detail each step. Section 4 presents the case study
dentified for the test phase, results and discussion. Section 5 is devoted
o conclusions and future works.

. Related work

The use of point cloud processing methods for the management
f pedestrian mobility in urban areas is a well-investigated topic in
cientific literature. The role of point clouds is manyfold: they could
e segmented and analysed in order to search and inventory specific
lements of the urban scene; they could be used as support for the
eneration of navigable routes within the city; and they could be a way
o assist the physical accessibility assessment of the city.

Regarding the detection of urban objects, there is a great interest
n curb identification, because they are the element of separation
etween roadway and sidewalk. For example, Serna and Marcotegui
2013) focused on the detection of curbs on Mobile Laser Scanning
2

b

(MLS) point cloud. They segmented urban objects using range images
as well as height and geodesic features. They performed accessibility
analysis using geometrical features and accessibility standards. Then,
they built an obstacle map for the generation of adaptive itineraries
considering wheelchair users. curb detection and classification were
also performed by Ishikawa et al. (2018), who extracted curbs from
MLS and then classified them into two categories: those that allow
access to off-road facilities and those that do not. By categorizing the
curb types they assessed also the accessibility. The method was based
on analysis of the angles of adjacent points on a scan line, then a voting
process was implemented using surrounding classification results. A
method to automatically classify urban ground elements from MLS data
was also proposed by Balado et al. (2018). Their method was based
on a combination of topological and geometrical analysis. Element
classification was based on adjacency analysis and graph comparison.
Road, tread, riser, curb and sidewalk were detected to provide valuable
data from an accessibility point of view.

Regarding sidewalk inventory and assessment, Ai and Tsai (2016)
extracted sidewalks and curb ramps from a combination of images and
mobile LiDAR, based on some specific dimensional characteristics of
curbs. The sidewalk features (width and slope) were measured and
compared with the American with Disabilities Act (ADA), and the
resulting data were stored in a GIS layer. Similarly, Hou and Ai (2020)
proposed a deep neural network approach to extract and characterize
sidewalks from LiDAR data. The stripe-based sidewalk extraction was
also able to detect sidewalks’ geometry features like width, grade, and
cross slope, and compare them with ADA requirements. To support
administrations in assessing existing conditions of sidewalk networks
and their compliance with accessibility requirements, Halabya and El-
Rayes (2020) used ML, photogrammetry and point cloud processing
to extract sidewalk dimensions and conditions. Further approaches to
sidewalk detection refer first to road boundaries detection and then to
curb detection methods to separate road pavement from roadside (Ma
et al., 2018). Regarding sidewalk materials, Hosseini et al. (2022a)
proposed a method to classify sidewalk materials on photos, based on
a DL technique and capable of recognizing several urban fabrics.

The topic of computation of navigable routes in outdoor envi-
ronments typically includes a first part concerning the classification
of urban elements and their accessibility evaluation, followed by the
calculation of routes through a pathfinding algorithm. An example
of this approach has been presented by López-Pazos et al. (2017)
and Balado et al. (2019), who proposed a method for the direct use
of MLS point clouds for the generation of paths for pedestrians with
different motor skills and also considering possible barriers for people
with reduced mobility. The method involved using an already classified
point cloud, obstacle refinement, graph modelling and the creation of
paths. Similarly, the project presented by Arenas et al. (2016) and
by Corso Sarmiento and Casals Fernández (2017), had the main goal of
developing a tool to assess the accessibility of public space and compute
optimal routes. The tool was developed both on web and mobile phone
platforms. The starting point of the work was TLS point clouds analysed
through specific algorithms. The results were stored in specific GIS
raster layers and applied for further accessibility studies. Another ex-
ample, proposed by Luaces et al. (2021), aimed at computing accessible
routes integrating data from multiple sources. In this work, the starting
dataset was OSM, which was improved with information extracted
from MLS point clouds (ramps, steps, pedestrian crossings). Obstacles
nd accessibility problems were detected by analysing social network
nteractions. The computed routes were generated by considering all
he needs and limited mobility of each individual and were provided
o final users employing a specifically developed mobile application.
nother comprehensive work was proposed by Ning et al. (2022),
hich converted street view images into land cover maps, identified

idewalks, computed their widths and generated a sidewalk network.
imilarly, Hosseini et al. (2022b) developed a sidewalk network dataset

ased on ML and computer vision techniques applied to aerial images.
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Fig. 1. Conceptual scheme of the workflow presented in this paper. The method takes as input data a point cloud of an urban environment, it performs automatic computations
focusing on the sidewalks of the city. The workflow includes data preparation, data processing through ML and DL, sidewalks’ attribute computation, and vectorization of the
extracted information. The output data is a representation of pedestrian navigable space which contains also sidewalks specific information.
In contrast to previously described works, in this paper, the urban
area investigated is a historic city. Urban object segmentation cannot
be based on curb detection, and the peculiarity of urban element
organization should be taken into consideration. In light of that, a
novel automatic procedure is presented that allows the generation of
an accurate and realistic vector network representing the sidewalks of
the historic city including some of their geometric attributes and their
pavings information.

The topic of accessibility management in historic urban environ-
ments through the use of point clouds has been covered by a doctoral
thesis (Treccani, 2022), from which the idea of the method presented
in this paper is derived. Compared with the aforementioned thesis, the
method discussed here is more comprehensive and sophisticated.

Concretely, the improvement over the previous work is threefold:

• This paper presents the refined and strengthened version of the
general workflow, which was never published as a whole, and
where each step is carefully developed and commented on. Pre-
viously published results described only some steps of the general
workflow and were tested on smaller areas.

• Here, the semantic segmentation of the point cloud into sidewalk
and road exploits ML approach, through a Random Forest (RF)
classifier, showing higher performances with respect to previous
work.

• Here, paving material segmentation is based on a DL approach
applied on the rasterized point cloud, performing a reprojection
of predicted values onto the points of the point cloud.

3. Materials and method

The methodology (Fig. 1) is composed of three main steps: prepa-
ration of the raw data, data processing, and representation of the data
for pedestrian mobility purposes.

The pre-processing step consists of the subdivision into Regions of
Interest (ROIs), and the computation of several features on the point
clouds. The processing phase includes a DL segmentation, applied on
raster images generated from the ROIs point clouds. The predicted
values, related to paving materials composing the ground surfaces, are
re-projected back onto the points. Then, following a ML approach, the
ROIs are segmented into road and sidewalk. The cluster of points la-
belled as sidewalk are then used to compute some sidewalk’s geometric
attributes. The representation of the data involves the vectorization of
the sidewalks network and the computed attributes. The output data are
used for the generation of accurate pedestrian mobility paths, taking
into account physical accessibility needs and National regulations.
3

Table 1
Point features computed and used in the workflow. Global features are computed on
the whole point cloud, local features and geometric features are computed after the
subdivision of the point cloud into ROIs.

Features Values

Global features Intensity, RGB, HSV
Geometric features Roughness, Omnivariance, Sphericity, Anisotropy,

Normal change rate, Verticality, Normal vector
Local features Relative elevation, Relative distance

3.1. Data preparation

The input data is a MLS point cloud of a historic urban environment,
correctly georeferenced and provided with trajectory data. The point
cloud is here subdivided in ROIs and point features are computed,
recalled by Table 1.

3.1.1. Global features
Some point attributes, acquired by the survey instrument, are au-

tomatically stored within the MLS point cloud. The ones used in this
work are the Intensity and the Red Green Blue (RGB) colour data for
each point. The Intensity is a function of several variables, including
the distance from the laser, the angle of incidence of the laser beam on
the surface and the specific material reflectance (Yuan et al., 2020), and
can be intended as the amount of energy of the backscattering signal
of the instrument. RGB data are acquired using cameras equipped on
the MLS system. The colour space is then changed from RGB to Hue
Saturation Value (HSV). By doing so, brightness data are stored within
the V channel and the influence of shadows and sunny areas can be
controlled (Pierdicca et al., 2020).

3.1.2. Selection of the region of interest
The point cloud is subdivided into several ROIs along the MLS

trajectory. The purpose is twofold: the reduction of memory consump-
tion during computation, and the focus of the analysis by discretizing
the road environment into portions of fixed extension along the road
trajectory. By doing so, we can control the resolution of the output data.
In fact, since the final output data is a sidewalk network whose edges
and attributes are computed on the basis of the ROIs, its resolution is
proportional to the dimension of the ROI itself.

ROIs are generated by cropping the point cloud following the survey
trajectory (i.e., along the road route), using a set of oriented Bounding
Boxes (BBs). The BB orientation is based on two consecutive points at
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Fig. 2. Regions of Interest (ROI) generation detailed schemes. (a) Diagram of the subdivision of the initial point cloud into several ROIs using the trajectory data and a set of
Bounding Boxes of dimensions d, b, h. (b) Example of ROI selection in a corner; it is noticeable how some portions of the point cloud can be not selected, in particular in the
corner position. (c) Increase of ROI length for corner areas, from length 𝑑 to 𝑑′. (d) Example of Bounding Boxes width d for straight portions of road and d’ for bends, to ensure
that all points are selected also in bends.
a fixed 𝑑 distance extracted along the trajectory line (Fig. 2a). The Z
coordinate of trajectory points corresponds to the instrument position
(on top of the car). For the purpose of the BB creation, those points are
projected on the ground surface of the road by moving their Z value.
The main BB dimension is the 𝑑 distance, the other two dimensions are
a width 𝑏 selected bigger than the average road width, and a height
ℎ centred on the road level and selected bigger enough to ensure the
selection of points on the ground surface (Fig. 2a).

Typically in historical cities, straight portions of roads are not
so long, while sharp bends and crossings with other roads are very
common. In those areas, the oriented BB could not be able to include
all the necessary points, as in the example provided by Fig. 2b. To cope
with that, BBs in those areas are enlarged and their length is increased
to 𝑑′ (Fig. 2c and d). Plus, an overlap between neighbouring BBs is
implemented in those specific areas. The value of 𝑑′ is selected after
several empirical tests, looking at the coverage of the ROIs on the point
cloud in road bend areas. The value of 𝑑′ is defined such that 𝑑′ = 1.5𝑑
and so it is directly related to the chosen value of 𝑑.

Following this iterative process, starting from the first point of the
trajectory and moving, two by two, to the last point, the point cloud is
subdivided into ROIs. Then, on each ROI a refinement of the selection
is implemented to remove points not pertaining to ground surfaces.
Firstly, the exclusion of points inside buildings, exploiting the OSM
building footprint dataset. Secondly, the removal of points aligned on
vertical surfaces, exploiting the 𝑁𝑧 component of the Normal vector of
each point.

During the survey of the city, it may happen that the LiDAR
mounted on the instrument acquires also some points of objects inside
the houses, passing through windows. To remove those points and other
possible noisy points the OSM dataset can be used. OSM dataset can be
downloaded for free from the website or using specific plugins existing
for commercial or open-source GIS software. All the layers containing
building as Key value are downloaded and used to define polygons
representing the buildings’ footprint of the city. All points of the ROI
within these polygons are then removed from the ROI (Fig. 3).

Lastly, all the points aligned on the façades of the buildings or on
other vertical surfaces are selected by relying on the Z component (𝑁 )
4
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of the normal vector of each point and are removed. In order to do that,
all points with a value of 𝑁𝑧 lower than a specific threshold 𝑁𝑧,𝑙𝑖𝑚 are
considered points aligned on vertical surfaces, and removed. The value
of 𝑁𝑧,𝑙𝑖𝑚 is established after empirical investigation.

3.1.3. Geometric features
Geometric features are derived from the covariance matrix of the

3D structure tensor computed on the point neighbourhood (Wein-
mann et al., 2017, 2015). They describe the arrangement in space of
points within the considered neighbourhood. Geometric features are
here computed using the open-source software CloudCompare (www.
cloudcompare.org). The software allows to compute several geometric
features; within the workflow, only some features are selected and
effectively used (reported by Table 1). Additionally, also the Normal
vectors of points are computed.

3.1.4. Local features
These features, which we define as local features, are computed

on each ROI, rely on the relation of each point to the surrounding
environment, and are specifically focused on the road and sidewalk
areas. These features are the relative elevation 𝑍𝑟𝑒𝑙 and the relative
distance 𝑑𝑟𝑒𝑙, calculated as a function of the centre line of the road
derived from the trajectory. The two features are computed as relative
and not absolute values so that they determine the relative position
of each point in a generic cross-section of the road. In that way,
points on different road widths maintain the same proportion and are
comparable.

The relative elevation 𝑍𝑟𝑒𝑙,𝑃2 of the generic point 𝑃2 is computed as
the difference between the elevation 𝑍𝑃2 of the point 𝑃2 (Fig. 4b), and
the average elevation 𝑍𝑐𝑒𝑛𝑡𝑟𝑒𝑙𝑖𝑛𝑒 of the centreline of the road, as in the
following:

𝑍𝑟𝑒𝑙,𝑃2 = |

|

|

𝑍𝑃2 −𝑍𝑐𝑒𝑛𝑡𝑟𝑒𝑙𝑖𝑛𝑒
|

|

|

(1)

where the elevation of the centreline (𝑍𝑐𝑒𝑛𝑡𝑟𝑒𝑙𝑖𝑛𝑒) is computed as the
average value of 𝑍 coordinate of points on the trajectory falling within
the ROI. This feature is helpful for the exceptional areas where side-
walks have higher elevations with respect to the roadway.

http://www.cloudcompare.org
http://www.cloudcompare.org
http://www.cloudcompare.org
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Fig. 3. OpenStreetMap dataset is used to remove noisy points not related to the road environment. (a) building dataset downloaded from OSM for the case study presented in this
paper, all visible polygons represent the building footprint. (b) example of a road point cloud with noisy points inside buildings (e.g., scanned elements by laser passing through
windows or open doors). In the method, the noisy points are selected when they are inside the building footprint and then removed.
Fig. 4. Scheme of local features calculation. (a) The relative distance 𝑑𝑟𝑒𝑙 of a generic point 𝑃1 is defined as the euclidean shorter distance 𝑑𝑃1 ,𝑙 from point 𝑃1 to the line 𝑙, divided
by the maximum distance 𝑑𝑚𝑎𝑥. (b) The relative elevation 𝑍𝑟𝑒𝑙,𝑃2

of the generic point 𝑃2 is computed as the difference between the elevation 𝑍𝑃2
of the point 𝑃2 and the average

elevation 𝑍𝑐𝑒𝑛𝑡𝑟𝑒𝑙𝑖𝑛𝑒 of the road’s centreline.
The relative distance 𝑑𝑟𝑒𝑙,𝑃1 of a generic point 𝑃1 is computed
by relying on the trajectory from the instrument, which is assumed
to correspond to the road centreline. For each ROI the trajectory is
considered as a single straight line of equation 𝑙 ∶ 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0,
where 𝑎, 𝑏, 𝑐 are the coefficient of the straight line general equation.
Then, the relative distance 𝑑𝑟𝑒𝑙,𝑃1 of the generic point 𝑃1 ∶ (𝑥𝑃1 , 𝑦𝑃1 )
(Fig. 4a) is computed by the euclidean shorter distance 𝑑𝑃1 ,𝑙 from point
𝑃1 to the line 𝑙, divided by the maximum distance 𝑑𝑚𝑎𝑥 identified within
the same ROI. The relative distance can be computed as:

𝑑𝑟𝑒𝑙,𝑃1 =
𝑑𝑃1 ,𝑙
𝑑𝑚𝑎𝑥

(2)

where:

𝑑𝑃1 ,𝑙 =
|

|

|

𝑎𝑥𝑃1 + 𝑏𝑦𝑃1 + 𝑐||
|

√

𝑎2 + 𝑏2
(3)

An exception is defined for relative distance computation in ROI
including road crossings. In those cases, unlike in straight road portions,
the trajectory line might be inclined and not parallel to sidewalks,
and it could not be useful to compute the road proportions. To cope
with that, OSM dataset is exploited. In OSM roads are represented
by polylines, and can be downloaded using the key roadway. These
polylines are used as alternative trajectory lines for the representation
of the road centreline. Plus, for those ROIs, the relative distance feature
is computed differently. The modified relative distance 𝑑′𝑟𝑒𝑙,𝑃 of the
generic point 𝑃 (Fig. 5) in a ROI containing a crossing is computed as
the geometric mean of the relative distances 𝑑𝑟𝑒𝑙,𝑃𝑙𝑖 between that point
𝑃 and all the OSM lines 𝑙𝑖 involved in the crossing, as follows:

𝑑′𝑟𝑒𝑙,𝑃 = 𝑛

√

√

√

√

𝑛
∏

𝑑𝑟𝑒𝑙,𝑃𝑙𝑖 (4)
5

𝑖=1
where 𝑑𝑟𝑒𝑙,𝑃𝑙𝑖 are computed according to Eq. (2), and 𝑛 is the maximum
number of lines involved in the crossing (generally 2).

Fig. 5 shows two examples of crossings, where each point was
coloured depending on the computed distance value in a colour scale
that goes from blue for the lower values, passing to green and yellow,
and with red for the higher values. It is clearly visible how 𝑑𝑟𝑒𝑙 mimics
the proportion of the road.

3.2. Data processing

3.2.1. Paving materials segmentation
The goal of this phase is to identify the different paving materials

on each ROI. The approach proposed here (Fig. 6) is based on Treccani
et al. (2022a), which after rasterizing the point cloud, performed image
segmentation using a Convolutional Neural Network (CNN). In this
paper, a different neural network is used and the process is entirely
developed in Python. Furthermore, the process is applied to the raster
images generated from the ROIs, which after the segmentation, are
reprojected back onto the ROIs, and stored as a point attribute. The
reprojection method implemented is based on the one presented by Paz
Mouriño et al. (2021), where the correspondence between ROI points
and raster image pixel indexes is leveraged.

The ROI is rasterized by subdividing the XY plane into several cells,
whose size is defined according to the raster resolution chosen. Each
cell corresponds to a pixel in the rasterized image. The R, G, and B
channels assigned to each pixel are here used to store not the point
colour information, but three different point features. In fact, for the
DL approach, R, G and B identify the input data that the network is
fed with, so it is actually possible to convey within them other data
than colour. The three selected features are Intensity, Roughness and
Omnivariance. To complete the rasterization process, the RGB value
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Fig. 5. Two examples of road crossings, where the relative distance is computed with a different approach (Eq. (4)). (a) A X-shaped crossing. (b) A T-shaped crossing. In both
cases the image on the right shows several ROIs; each ROI is coloured depending on the computed relative distance 𝑑′

𝑟𝑒𝑙 value in a colour scale that goes from blue for the lower
values, passing to green and yellow, and with red for the higher values. It is clear how 𝑑′

𝑟𝑒𝑙,𝑃 better describes the road shape. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. 6. Scheme of the DL classification. Each ROI is rasterized, the image is segmented using a DL approach (exploiting the model Resnet 50) into classes related to the paving
materials present in the case study (cobblestone, stone, brick, sampietrini, asphalt), and the predicted attributes are projected back onto the points of the ROI.
of each pixel is then set as the average of the values of each specific
feature of points falling inside the cell.

Since RGB channels have a strict range of values: [0; 255], the
features are normalized before applying the rasterization. The general
formula used here for the normalization is 𝐹𝑛𝑜𝑟𝑚 = (𝐹 − 𝐹𝑛𝑜𝑟𝑚)∕(𝐹𝑚𝑎𝑥 −
𝐹𝑚𝑖𝑛) ∗ 255, where 𝐹 stands for a general feature. To define 𝐹𝑚𝑖𝑛
and 𝐹𝑚𝑎𝑥 different strategies are used, according to each feature’s
characteristics. Since the Intensity, in the case study dataset, is saved
by the instrument processing software (from Leica) in a format with
a defined range: [−2048; 2048], this range limit is used to define the
maximum and the minimum for the normalization. Specifically 𝐼𝑚𝑎𝑥 =
2048 and 𝐼𝑚𝑖𝑛 = −2048. Then, since the other two features do not
have an absolute minimum or maximum value, 𝐹𝑚𝑎𝑥 is defined as the
maximum value of feature 𝐹 over the considered dataset, and 𝐹𝑚𝑖𝑛 the
minimum value of feature 𝐹 over the considered dataset.

The DL image segmentation is achieved by training a semantic
segmentation neural net from PyTorch library, using the architecture
DeepLabv3. The pre-trained model Resnet50 is exploited, and Adam
optimization algorithm is used. The training loop is developed using
batches of 10 images in each iteration. The training dataset is selected
from the areas of the city most representative of the paving materials.
The reference values for the segmentation mask are taken from the
Ground Truth (GT). The GT is manually created by expert architects,
based on the paving materials actually present in the city. Classes
for DL segmentation are identified depending on paving materials
effectively present in the case study: cobblestone, stone, brick, sampietrini,
asphalt. An additional class is used for the background pixels, named
background. The resulting trained model is then applied to segment all
the ROIs.

The process of reprojecting the classified images back to the point
cloud take place by recalling the indexes of points falling within the
XY cells (i.e. the image pixels). The classes predicted for each pixel are
then conveyed to the corresponding points. As a result, points within
the ROI have a new feature related to the paving material of the ground
surface, this feature is used later within the methodology.
6

3.2.2. Ground elements segmentation
The purpose of this step is the segmentation of the urban ground

surfaces of the city into sidewalk and road, and it is performed for
each ROI. The segmentation is carried out using a ML approach, and
a RF classifier is implemented from scikit-learn library. The RF
classifier constructor provided by the library has several parameters,
all of which are set to their default value. The classifier requires also to
specify the Features to be used for the classification. They are selected
by analysing the Feature Importance plot, which allows evaluation of
the importance of each feature on the classification task. This plot is
generated by using the scikit-learn library, and each bar of the
plot shows the feature’s importance. Fig. 7 shows a scheme of the ML
approach.

The features included in the Feature Importance plot are the pre-
viously mentioned Local, Global, and Geometric features. Geometric
features are computed with various neighbourhood radii, and among
them the selected features are the ones with a higher rating in the
Feature Importance plot, preferring those computed with a higher
radius.

The RF classifier is trained and validated on a portion of the dataset.
The training is based on the manually created GT. The two classes iden-
tified are sidewalk and road. The training dataset is selected including
portions of the most representative road environments, considering all
the possible scenarios that appear within the city. The trained model is
then used to classify all the ROIs of the dataset. As a result, each point
within each ROI is labelled according to the urban ground element.

3.2.3. Sidewalks’ attributes computation
Focusing on the sidewalk class points of each ROI, some geometric

attributes are computed and assigned to those points. The computed
attributes are those deemed useful for technicians and professionals
involved in the management, maintenance and design of the city’s
urban environment. For each sidewalk within the ROI, the computed
attributes are width, transverse and longitudinal slopes, elevation with
respect to the road surface, and main paving material. Some of them
are estimated on the basis of some point attributes, and by applying
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Fig. 7. Scheme of the ML segmentation. The points of each ROI are classified by a Random Forest classifier and two classes are predicted: sidewalk and road.
Fig. 8. Schemes showing the calculation of sidewalk attributes. (a) Average width 𝑊 is computed as the difference between the distances of the closest (𝐷𝑚𝑖𝑛) and the farthest
(𝐷𝑚𝑎𝑥)points of the sidewalk cluster of points with respect to the road centreline. (b) The sidewalk relative elevation (𝛥𝑍) is referred to the jump in elevation (if present) between
the sidewalk (𝑍𝑚𝑒𝑎𝑛,𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘) and the part of the road in close proximity to it (𝑍𝑚𝑒𝑎𝑛,𝑟𝑜𝑎𝑑 ). (c) Slope in the longitudinal and transverse directions (𝑆𝑙𝑜𝑝𝑒𝐿𝑜𝑛𝑔 𝑆𝑙𝑜𝑝𝑒𝑇 𝑟𝑎𝑛𝑠𝑣), computed by
leveraging on the Principal Component Analysis, and exploiting the principal components C1 and C2.
specific formulas; others are derived simply by retrieving the value of
features previously computed.

The methods used to calculate the attributes are listed below:

• The average width (𝑊 ) is computed as the difference between
the distances of the closest and the farthest points of the sidewalk
cluster of points with respect to the road centreline. Dmin is
defined as the 5th percentile of all the distances in the ROI, and
Dmax is identified as the 95th percentile of all the distances. The
approach is schematized by Fig. 8a, and the average width is
computed as follows:

𝑊 = 𝐷𝑚𝑎𝑥 −𝐷𝑚𝑖𝑛 (5)

• The sidewalk relative elevation (𝛥𝑍) is referred to the jump in
elevation (if present) between the sidewalk and the part of the
road in close proximity to it. Exploiting the distance feature, it is
possible to select the band of points on the road that are on the
boundary with the sidewalk and extract the mean value of their Z-
coordinate. Similarly, a limited band of sidewalk points, adjacent
to the boundary with the road points, is selected and the mean
value of 𝑍 is extracted. Having defined the two reference height
value (Zmean,road and Zmean,sidewalk) (Fig. 8b), it is then possible to
compute the height difference between the two urban elements
as:

𝛥𝑍 = |

|

𝑍𝑚𝑒𝑎𝑛,𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘 −𝑍𝑚𝑒𝑎𝑛,𝑟𝑜𝑎𝑑
|

|

(6)

• The transverse and longitudinal slopes (𝑆𝑙𝑜𝑝𝑒𝐿𝑜𝑛𝑔 𝑆𝑙𝑜𝑝𝑒𝑇 𝑟𝑎𝑛𝑠𝑣)
are computed by leveraging on the Principal Component Analysis
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(PCA). Computing the PCA of XYZ attributes of a point cloud, the
resulting eigenvectors can be used to describe the point cloud ori-
entation. The three principal components are oriented in the three
major directions that best fit and describe the point distribution
in space. In the case of the sidewalk cluster of points, the three
eigenvectors represent respectively the three main directions 𝐶1,
𝐶2, 𝐶3 (Fig. 8c) on which points are distributed. The higher eigen-
vector is aligned longitudinally (𝐶1) on the cluster, the middle
one is aligned transversely (𝐶2), and the smaller one is aligned in
the normal direction (𝐶3). Considering then the vector oriented
according to the longitudinal direction (𝐶1), by decomposing it on
the three planes xyz, obtaining its three components, it is possible
to compute the slope as referred to the angle between the vertical
projection 𝐶1𝑍 and its xy projection 𝐶1,𝑋𝑌 :

𝑆𝑙𝑜𝑝𝑒𝐿𝑜𝑛𝑔 [%] =
𝐶1,𝑍

𝐶1,𝑋𝑌
=

𝐶1,𝑍
√

𝐶2
1,𝑋 + 𝐶2

1,𝑌

∗ 100 (7)

The same reasoning is then applied to eigenvector 𝐶2 to compute
the transversal slope. The equation is as follows:

𝑆𝑙𝑜𝑝𝑒𝑇 𝑟𝑎𝑛𝑠𝑣 [%] =
𝐶2,𝑍

𝐶2,𝑋𝑌
=

𝐶2,𝑍
√

𝐶2
2,𝑋 + 𝐶2

2,𝑌

∗ 100 (8)

• The paving material of the sidewalk is identified by defining the
most frequent paving material attribute of the analysed cluster of
points, as computed on Section 3.2.1.
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Fig. 9. Simplified diagram of the three crossing types identified and used within the workflow. OSM’s dataset and reasoning about the multiplicity of points are exploited to
identify the crossing type. (a) T-shaped crossing, when a point is in common to three lines. (b) X-shaped crossing, when the point is in common to two lines. (c) L-shaped crossing
when a point is in common to two lines; in those cases, a check on the angle between lines is implemented; if the angle is in the range [80;100] degrees, the point is representative
of an L-shaped crossing.
3.3. Representation

Several methods can be used for representing sidewalks and pedes-
trian mobility information collected from the point cloud. In scientific
literature, some authors used directly the point cloud as a represen-
tation type for conveying and disseminating the data to final users,
especially regarding 3D city modelling (Wegen et al., 2022; Nys et al.,
2021). On the other hand, other authors performed path findings
directly on the point cloud in urban environments (Balado et al., 2019).

In this paper, the representation type selected is a very accurate
vector file for pedestrian mobility management. We believe that this
type of representation is easier to be understood and used by a wider
range of final users independently of their experience. This file is
then used to compute pedestrian paths within the city, considering
various sidewalks attributes and physical accessibility regulations as
constraints.

3.3.1. Crossing identification
In order to correctly perform the vectorization of the sidewalk

network, the knowledge of crossings position is fundamental. Three
typologies of crossings between roads can be defined: we call it T-
shaped crossing when one road enters another road making a 𝑇 shape;
we call it X-shaped crossing when two roads cross; and we define it
as L-shaped crossing when two roads meet, creating an approximately
90-degree bend.

OSM dataset is used to identify road crossing position and type. In
OSM roads are represented by polylines, and as different roads come
together and create a crossroads in the city, in a similar way different
polylines met at a single point on the dataset. Crossroads areas can be
identified by exploiting points where polylines met. Then, to identify
also the type of crossing, a simple reasoning is implemented (Fig. 9).
The multiplicity of a point is used to identify the type of crossroads:
if the point is in common with 3 lines it is a T-shaped crossing, if it
is in common with 4 segments it is an X-shaped crossing, and if the
multiplicity is 2, it could possibly be a L-shaped crossing, but in this
last case a further check should be applied. In fact, a point in common
to 2 lines could be every point of a polyline, made by several segments.
To define if it is a L-shaped crossing the angle between the associated
segments is checked. Since we define the L-shaped crossing as a bend of
approximately 90 degrees, we choose that if the angle between the lines
is in the range [80;100] degrees the point defines an L-shaped crossing,
otherwise the point is not considered representative of a crossing.

3.3.2. Vectorization
The development of a Sidewalk network, composed of nodes and

edges, follows a method previously presented (Treccani et al., 2022b).
For each ROI, the centre of each sidewalk cluster of points is computed
by averaging X and Y coordinates. The resulting point is converted into
a node of the network. Then the nodes are joined by edges. Consecutive
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and neighbouring nodes are connected together, always comparing
the location of the edges with the city’s road network (derived from
OSM), in order to avoid redundant edges or incorrect connections. This
workflow is recalled by Fig. 10.

The topology of the Sidewalk network is ensured by the fact that
the pattern and organization of urban elements (sidewalk and road,
de facto) within the ROIs are uniform and consistent, and because
consecutive ROIs were considered following the road path (i.e. the
trajectory) and in continuity one with the other. The only discontinuity
element are the crossings. Edges generation near crossings areas is done
differently: a constraint is added that does not allow the creation of
edges that cross the road (i.e., that intersect the polylines representing
the centre of the road).

Crossings within the city are already identified and named as L-,
T-, or X- shaped. Before performing the edges generation in crossing
areas as previously described, node regularization in those areas is
necessary. The correct identification of the type of intersections allows
the computation of best-fitting lines and the regularization of the nodes’
position by slightly adjusting their XY coordinates (Fig. 11). Lastly, a
manual check is done to identify and correct any possible errors and
to complete the network in any areas of the city that are not surveyed
and of which data are missing.

During the development of the network, the attributes of the various
portions of sidewalks are linked to the respective edge representing
them. The output file of the workflow is a shapefile containing the
sidewalk network filled with the attributes of the sidewalks themselves.

3.3.3. Routing analysis
The vector file is used to compute pedestrian paths within the city,

taking into consideration accessibility regulations. There are a variety
of software solutions, both commercial and open-source, that allow the
calculation of pedestrian flow or that calculate routes. These analyses
are here carried out using open-source software: QGIS (www.qgis.org).

Exploiting the network analysis tool on the processing toolbox of
QGIS, the path between two points can be computed. This tool is
capable of computing the shortest path between two selected points
using as guidelines the edges of the previously computed sidewalk
network.

Furthermore, instead of the shorter path, also the fastest path can be
computed. This path is computed relying on a speed value given to each
edge. By giving a fictitious speed value to the edges, proportional to the
sidewalk accessibility attribute, it is possible to generate the most ac-
cessible path. A new attribute for the edges is created, representing the
fictitious speed. This new attribute is based on the sidewalk geometric
attribute and its comparison with National regulations about physical
accessibility; a high speed is set for accessible edges and a low speed is
set for non-accessible edges. The resulting path uses mostly the edges
that are considered more accessible (i.e., the ones with higher speed).

http://www.qgis.org
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Fig. 10. Scheme of the process of data vectorization. The segmented ROIs (into sidewalk and road) and the sidewalks attributes (average width, relative elevation, longitudinal and
transverse slopes, paving material) are used to generate the sidewalk network. The centre of each sidewalk points on the ROIs are transformed into nodes, which are regularized
according to the road framework, and then connected by edges.
Fig. 11. Regularization of the network nodes for three types of crossing, named L-shaped (a), T-shaped (b), X-shaped (c). The process is the same for all crossings: first, nodes
are vectorized, then lines are interpolated through nodes, taking into consideration the type of crossing and the road shape, and lastly, nodes are slightly moved to be on the
best-fitted lines.
4. Results and discussion

4.1. Case study description

The case study selected is Sabbioneta, a historic city located in
northern Italy. Sabbioneta was re-founded in the second half of the
16th century, based on a pre-existing medieval village. The city was
built following the ideal city principles of the Italian Renaissance.

In 2008 Sabbioneta, together with the near city of Mantova, was
inserted into the UNESCO World Heritage List. The two cities have
been included in the list because they offer an exceptional testimony to
the urban, architectural and artistic achievements of the Renaissance,
linked together through the ideas and ambitions of the ruling family,
the Gonzaga.

The historic city has a small areal extent, about 0.4 square kilome-
tres. The street structure is organized into cardi and decumani, and it
has a chessboard layout. The city consists of 34 blocks, fairly regular,
rectangular or square in shape, but vary in size, with a predominantly
east–west orientation (Lorenzi, 2020). The streets do not have a fixed
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width, varying from 5 m to 14 m wide stretches. Sometimes it happens
that the change in width occurs within the same stretch of road,
either slightly or more markedly. Remarking on this change in width,
sometimes also the paving of the street roadway is different.

In Sabbioneta urban pavings assume the role of highlighting the
destination of use of urban ground (Fig. 12). Roadways and sidewalks
are often at the same elevation, but they can be identified because
they are paved with different materials. Specifically, within the city,
cobblestone, sampietrini and asphalt are typically used for the roadway
surfaces, while bricks and stone (mainly porphyry) are used for the
sidewalk surfaces. Table 2 describes the physical aspects of Sabbioneta
pavings. The peculiar organization of the urban structure, and the
stratification of various pavings within the city, make Sabbioneta a
proper case study for testing the presented methodology.

Sabbioneta was surveyed with a MLS system: Leica Pegasus:Two,
which mounted, as a laser scanner, a Z+F profile 9012. The pro-
filer’s main characteristics are recalled by Table 3. The instrument was
mounted on top of a car, and almost the entire historic city was sur-
veyed. The resulting point cloud covered almost 7 km of road and was
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Fig. 12. Photos of the city of Sabbioneta, a case study for this paper. (a) Views of some streets in the city. (b) Layering of different pavements used for different elements of the
urban area in the city, sidewalks and roads are highlighted by the use of different paving materials.
Table 2
Description of the 5 classes of paving materials identified in the case study, the city of Sabbioneta.

Paving material name Description

Sampietrini Squared stone blocks, aligned in consecutive radial grids (they can also be aligned on rectangular grids, but
not in Sabbioneta). In Sabbioneta they are typically used for the road surface.

Bricks Rectangular bricks arranged in a stretcher bond pattern. Typically in Sabbioneta, they are used for
sidewalks, the largest dimension of the rectangle is orthogonal to the main direction of sidewalks.

Cobblestone River stones lined up next to each other without any apparent regular arrangement. The individual elements
are rounded and protrude from the surface. In Sabbioneta are typically used for roadway surface

Stone Rectangular stone blocks, aligned on a regular grid similar to the English cross bond pattern. Typically used
for sidewalks in Sabbioneta.

Asphalt Homogeneous, mostly flat surface.
Table 3

Description of Z+F profile 9012 features, from technical data sheet. The profiler was
mounted on the instrument used for data acquisition, Leica Pegasus:Two.

Feature Value

Rotation speed 200 Hz
Coverage one profile every 5 cm at a speed of 36 km/h
Acquisition range from 0.3 to 119 m
Field of view 360◦

Scan rate 1.016 million points per second
Accuracy 0.020 m RMS in horizontal and 0.015 m RMS in vertical

composed of a total of 1.2 billion points. The instrument mounted 360-
degree cameras, so the points attribute included the RGB colour. The
dataset of Sabbioneta was organized by conducting several missions of
acquisition while moving within the roads of the city (Fig. 13). The
full-density point clouds (no subsampling of the data was done) of each
mission together with the trajectory data are used.

For both the ML and DL approaches, one acquisition mission is
identified as most representative of the city: Track C. This acquisition
mission includes areas from outside the fortified walls, roads of various
widths, and areas closer to squares and porticoes. This track also
includes all paving materials identified within the city.

4.2. Results

4.2.1. Data preparation
For the definition of the BB size, after some empirical tests, the

parameter 𝑑 is set to 2 m, while 𝑑′ for curved portions is set to 3 m.
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Table 4
Values of the pre-processing
parameters used in the method.
Parameter Value

𝑑 2 m
𝑑′ 3 m
𝑁𝑧,𝑙𝑖𝑚 0.8

Then, for the refinement of the selection, the value of the limit param-
eter 𝑁𝑧,𝑙𝑖𝑚, is defined after empirical investigation. The 𝑁𝑧,𝑙𝑖𝑚 value is
defined by making some tests setting it at different values and visually
inspecting the point cloud to see which points were selected. For the
point cloud of the case study a value of 0.8 was considered enough
for the purposes. In fact, by setting it to 0.8, and then removing the
points with 𝑁𝑧 < 0.8, the resulting points belonged only to non-vertical
surfaces, as desired. Table 4 recalls the pre-processing parameters.

The subdivision into ROI generates 1530 ROIs. Each ROI contains
on average 80,000 points, representing the ground surfaces. Geometric
and Local features are then computed for each ROI. Geometric features
to be used in the following steps are computed with CloudCompare on
the whole point cloud. Three radii for the neighbourhood selection used
are, respectively 0.05, 0.08, and 0.10 m. From the geometric feature
Point density it is possible to identify that the average point density on
the ground is 5000 points for each square metre.
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Fig. 13. Map of the city of Sabbioneta. The survey is conducted with a MLS system: Leica Pegasus:Two. The city is surveyed by 10 acquisition missions, reported on the legend
on the right. Near each scan mission name, its length is reported in kilometres, the total length is almost 7 km. Acquisition track ‘‘C’’ (in black) is used as training dataset in both
ML and DL approaches.
Table 5
Values of the paving material segmentation parameters used in the method.

Parameter Value

Cell size 0.02 m
R-channel feature Intensity
G-channel feature Omnivariance (radius = 0.05 m)
B-channel feature Roughness (radius = 0.05 m)
image re-size 500 × 500 pixels
DL classes sampietrini, bricks, cobblestones, stones, asphalt, background

4.2.2. Paving materials segmentation
For the DL classification, ROIs are rasterized, and cell size is set to

0.02 m. Pixel values for channels RGB are set as the average of three
specific point features. After a visual inspection of the point cloud,
the features selected are the ones considered the most representative
of differences in pavings. The features are Intensity, stored in the R
channel, Omnivariance, stored within the G channel, and Roughness,
stored within the B channel. Features used were calculated with a
neighbourhood radius of 0.05 m. For the purpose of DL classification,
the image size is transformed to 500 × 500 pixels, and then after the
classification, they are transformed back to the original size. Parameters
are reported in Table 5.

DL classes are defined after an on-site inspection of pavings, made
by experienced technicians. For Sabbioneta, the most representative
and diffuse pavings, and so the classes, are sampietrini, bricks, cob-
blestones, stones, aspalth. These classes are depicted by Fig. 14. An
extra class, background, is set for the pixels of the image which do
not represent any point, required by the rasterization process. For
the training dataset ROIs from Track C are selected, from the most
representative road of the city, including all pavings.
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Table 6
Performance metrics for the DL classification of Sabbioneta dataset.
They are computed on the point cloud after the classified images are
reprojected back onto the ROI points.
Class Precision Recall F1-score

background 0.99 0.98 0.99
sampietrini 0.92 0.97 0.94
bricks 0.93 0.82 0.87
cobblestones 0.93 0.98 0.95
stone 0.84 0.93 0.89
asphalt 0.86 0.94 0.90

The trained model is applied to all other ROIs to classify pavings;
classified images are reprojected back onto points. Focusing on the
point cloud and on the predicted paving material of each point, it is pos-
sible to compute the confusion matrix (Fig. 15), and the performance
metrics (Table 6). The average accuracy of the prediction, computed
as the ratio between the correctly classified points over the total, is
99.08%. Fig. 16 shows some rasterized ROIs and the predicted paving
material by the DL workflow.

4.2.3. Ground elements segmentation
Parameters for the RF classifier are selected as follows. All the

parameters for the scikit-learn library RF constructor were left
to the default value. The feature selection is conducted by exploiting
the Feature Importances plot (Fig. 17). All features, global and local,
are included in the graph; geometric features computed using three
radii for the neighbourhood selection are included. From this graph
and after reasoning on the meaning of features, some of them are
selected for the ML classification. For the geometric features, only the
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Fig. 14. Classes of materials used for DL classification for Sabbioneta.

Fig. 15. Normalized by rows confusion matrix for paving material segmentation, classes are background, sampietrini, bricks, cobblestone, stone, asphalt.

Fig. 16. Some of the rasterized ROIs from the case study. The correspondent Ground Truth, and the DL prediction are reported below each ROI. A legend is reported at the
bottom of the image.
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Fig. 17. Feature Importances plot computed for the ML classification. This plot is used to determine which features to use for the Random Forest classification and shows
the importance of each feature for the ML process. On the 𝑥-axis the Features, and on the 𝑦-axis their importance value. In order to make the values on the 𝑥-axis more
readable, numerical indices have been inserted in the graph, and the names of the corresponding features are given below. The geometric features are calculated with 3 different
neighbourhood search radii (0.05, 0.08, 0.10 m).
Table 7
Values of the ground elements segmentation parameters used in the method.

Parameter Value

Classes road, sidewalk
RF classification features Intensity, d-rel, Zrel, Roughness (0.1),

Omnivariance (0.1), H, S, Z, Normal change rate
(0.1), Anisotropy (0.1), Sphericity (0.1)

Table 8
Precision metrics for the ML classification of the Sabbioneta dataset.
Class Precision Recall F1-score

sidewalk 0.89 0.81 0.85
road 0.82 0.90 0.86

ones computed by a higher radius are selected. Selected features are
presented by Table 7. Among the features chosen, there are global
(geometric, radiometric) and local ones.

The training dataset is selected among the most representative ROIs
from track C, the same used for DL segmentation. The trained model is
then applied to segment all the other ROIs. Confusion matrix (Fig. 18)
and precision metrics are computed (Table 8). The average accuracy,
computed as the ratio between the correctly classified points over the
total, is 88.2%. A top view of the classified Sabbioneta point cloud is
shown in Fig. 19.
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Fig. 18. Normalized by rows confusion matrix for ground elements segmentation,
classes are road and sidewalk.

4.2.4. Sidewalks’ attributes computation
The calculation of sidewalk attributes is done by following the

equations shown in previous sections. Table 9 summarizes the average
values of attributes. The resulting values are also compared with the
legal minimums related to physical accessibility with reference to
Italian laws (Ministerial Decree n. 236/89 and Decree of the President
of the Republic n. 503/96).
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Fig. 19. Top view of the point cloud of Sabbioneta, superimposed to buildings polygons from OSM. The point cloud is coloured according to sidewalk and road segmentation.
Misclassified points are depicted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 9
Results of the Attributes computed for each sidewalk segment. For each attribute, the range of values is presented and compared with the
Italian laws reference value (Ministerial Decree n. 236/89 and Decree of the President of the Republic n. 503/96). Also, the percentage of
accessible segments out of the total is reported.

Attribute Ranges Most frequent Reference value Accessible segments

Width 0.45 m ÷ 2.20 m 0.95 m ≥ 0.90 m 72.3%
Transverse slope 0.05% ÷ 9.75% 1.25% ≤ 1% 8.6%
Longitudinal slope 0.10% ÷ 9.77% 2.1% ≤ 5% 79.3%
Relative Z difference 0 m ÷ 0.12 m 0 m ≤ 0.025 m 66.5%
4.2.5. Representation
In order to generate the vector file, it is necessary to first proceed

with the identification of crossings. Specifically, 34 L-shaped crossings,
52 T-shaped crossings, and 10 X-shaped crossings are identified in the
city of Sabbioneta.

The automatically generated vector file is composed of 1780 nodes
and 1720 edges. Manual refinement is done for a few missing or erro-
neously generated edges. A total of 23 edges are refined, corresponding
to 1.3% of the total.

In Sabbioneta there are only two zebra crosswalks; according to
Italian regulation (Article 190 of the Highway Code), in urban or
suburban roads, if there are no crosswalks or the closer zebra crossing is
farther than 100 m, it is possible to cross the street without passing on
the zebra crossing. In trying to mimic this scenario, additional edges are
inserted into the network, so that in the route calculation the crossing
of the street, at any point, can be provided. This second-level network
is composed of 1357 extra edges (for a total of 3077 edges). Fig. 20
shows the vectorization process applied on Sabbioneta and a portion
of the network with the two types of edges: regular ones (in blue), and
the ones considering the possibility of crossing the street without using
zebra crossing (in fuchsia). These last edges type connects edges on
14
opposite sides of the road. They could be used for navigation purposes
allowing the computed path to cross the street in every position.

The shapefile with sidewalk network is published on GitHub (github.
com/HeSuTech), in order to make it easily available to all possible
interested users. Furthermore, the shapefile is submitted to the Italian
OSM community, which approved the file as suitable for the upload-
ing on OSM database. The process has begun, carried out by the
community itself, and can be followed on the special web page cre-
ated on the OSM-wiki website (wiki.openstreetmap.org/wiki/Import/
Catalogue/Sabbioneta_Sidewalk_Import).

The vector file is then used to compute paths within the city. Here
we present one example, derived from Treccani et al. (2022b). The
QGIS tool allows the computation of the shortest path between two
points, but acting on the speed value of each edge it is possible to
compute the fastest path. In order to compute an accessible path, for
example selecting only sidewalks with accessible width (at least 0.9 m
according to Italian law), a very low speed (0.001 km/h) is assigned to
inaccessible edges, while a relatively higher speed is set to accessible
edges (4 km/h). The result is a path that tends to be on accessible
sidewalks (Fig. 21).

http://www.github.com/HeSuTech
http://www.github.com/HeSuTech
http://www.github.com/HeSuTech
http://www.wiki.openstreetmap.org/wiki/Import/Catalogue/Sabbioneta_Sidewalk_Import
http://www.wiki.openstreetmap.org/wiki/Import/Catalogue/Sabbioneta_Sidewalk_Import
http://www.wiki.openstreetmap.org/wiki/Import/Catalogue/Sabbioneta_Sidewalk_Import
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Fig. 20. Vectorization process in Sabbioneta. (a) Scheme of the vectorization for ROIs of Sabbioneta, where for each ROI the centre of the cluster of points segmented as sidewalk
are transformed into nodes for the sidewalk vector network. (b) a portion of the sidewalk network, with two types of edges, the regular ones (in blu) connecting consecutive
edges, and the cross-edges (in fuchsia) used to mimic the possibility of crossing the road everywhere in the absence of zebra crossing in the vicinity.
Source: Images modified from Treccani et al. (2022b).
Fig. 21. Path computed on the basis of the generated shapefile. Two different paths are computed using the generated vector network and QGIS. (a) the generated sidewalk
network of Sabbioneta, sidewalks edges are coloured according to their width, according to Italian law, the width is accessible if > 90 cm (coloured in green), otherwise the
sidewalk is not accessible (in red). (b) Computed path to move from A to B considering the shortest path. (c) Computed path considering the width value as a weight, the result
is the most accessible path according to Italian law for sidewalk widths. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Source: Images modified from Treccani et al. (2022b).
4.3. Discussion

The method presented and tested on Sabbioneta proves to be ca-
pable of analysing pedestrian mobility in historic urban environments.
Although quite limited in size, the city has elements of interest and
distinctive features, such as the use of different materials for paving,
streets with different widths, and a large number of crossings and
one-way streets. The use of this method on Sabbioneta proves its effec-
tiveness in historical cities, and thus could be imagined its possibility
of use in historical settings with similar scenarios.

During the preprocessing of the data, several features are computed,
which proved to be crucial for subsequent stages. Although geometric
15
features were calculated with different radii, those actually used by the
ML and DL procedure are only a few and with specific radii (0.005 m
for DL and 0.1 for ML). The choice of these features is the result
of reasoning based on empirical tests and on the basis of statistical
graphs made during the workflow. Among these features, the local ones
(i.e., 𝑍𝑟𝑒𝑙 and 𝑑𝑟𝑒𝑙) proved to be of fundamental importance for the
proper execution of the method.

ROIs were selected with a fixed width, of 2 m. This value allowed
not only to reduce the memory consumption by the computer but
mainly to obtain an output shapefile with sidewalk information with
high resolution: data every 2 m along the sidewalk route. To properly
select ROIs, the trajectory data is necessary. In case such data is
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missing, it should be fictitiously generated, for example using road lines
from OSM or using other specific methods suited to the purpose.

DL image segmentation approach is capable of correctly identifying
the city’s pavements. Analysing the performance metrics it is possible
to note that improvements could be done for bricks and stone classes.
t should also be noticed that asphalt paving is only in few areas of
he city. In some areas of the city, the paving is so damaged that its
oughness can lead to errors in segmentation. In such cases, damaged
tone or damaged sampietrini are very similar to cobblestone paving.
nyway, it is important to note that in the method, the paving attribute

s assigned as the most present on the sidewalk cluster of points
nalysed, so local segmentation errors can be avoided.

Important is the choice of cell size and the resolution during ras-
erization phase. This value should also be chosen accordingly to the
ensity of points on the ground. Rasterized images should be such that
hey have uniformly distributed pixels, so there should be no missing
ata (background pixels) between other pixels.

Segmentation of the point cloud through RF classification is able to
orrectly segment ROIs into sidewalk and road. An important assump-
ion is the presence of sidewalks; in fact, for the vast majority of the
ity, sidewalks are present on both sides of the street, so in cases where
hey are present only on one side, it happens that there are some false
ositives in the prediction. From the test made developing the method,
he 𝑑𝑟𝑒𝑙 feature proved to be crucial for the ML segmentation.

Given the good results obtained with ML for sidewalk and road
egmentation, we tested a similar ML-based approach to perform the
ask of paving materials segmentations. Since the results obtained with
his approach showed very poor accuracy, we decided to perform
he paving material segmentation task with a different approach. We
ecided to apply DL segmentation methods to the rasterized point
louds, which showed very high accuracy results. The choice of these
wo separated approaches was crucial for reaching higher accuracy
esults for both tasks, which are fundamental for the subsequent phases
f the presented workflow.

Concerning attribute calculation, the information extracted from the
idewalks provides a large amount of data for analysing the sidewalks
f the city. These attributes are very useful because they allow rapid
dentification of portions where to focus the attention for planned main-
enance or to make improvements, allowing more thoughtful decisions.

The choice of the shapefile format is the result of balancing the
esire to reach the largest number of end users with maintaining a
igorousness of the final data. In fact, even if point cloud representation
echniques exist, it was considered that a vector file is easier to be
nderstood and used by a wider range of final users independently of
heir experience in Geomatics.

Although not presented in this article, the vector file can be easily
sed to generate thematic maps, by showing different themes on the
dges of the shapefile. In addition, by comparing attribute values
ith National regulations, edges can be coloured according to their

ompliance or noncompliance.
Lastly, the very accurate vector file generated allows the analysis

nd management of pedestrian mobility within the city. As an example,
ath calculation proved to be very easy to perform based on the vector
ile made. Although a specific open-source tool was used in this article,
he great interoperability of the shapefile format makes the generated
ile usable by other software and in other procedures. In addition, the
ositive feedback from the Italian OSM community on the possibility
f uploading the vector file to the OSM database makes it clear how
ffective and readily usable the output of the presented method is.

. Conclusions

In this paper, a method for the automatic characterization of the
avigable space for pedestrians in historic urban areas from point
louds is presented. The input point cloud dataset is analysed through
16
L and DL approaches, identifying paving materials and ground el-
ments. Geometric attributes of sidewalks are then computed and
onveyed into a network made available in vector format. The method
s successfully tested on an Italian historic city: Sabbioneta.

The method aims to propose a complete strategy that, from an initial
atum (point cloud), and through a series of automatic procedures,
llows obtaining an output datum (a shapefile) that can be easily
xploited for an accurate calculation of routes. Apart from the initial
eometric features computation, which is done with CloudCompare,
nd the path computation, which is done with QGIS, the workflow
or the production of the output shapefile is completely implemented
hrough Python scripting.

The resulting sidewalk network data certainly provides a basis for
arious future developments, depending on the end user. For example,
t can be used by technical experts, as a basis for making maintenance
nd urban design plans; it can be used by public administrations to
ake informed decisions and guide their policies; and it can be made

vailable in a variety of ways to citizens and tourists, who can use its
otential for planning their daily movements in the city.

The promising results obtained from this research allow foreseeing
arious future developments. The method will be tested on a larger
cale, on cities of greater extents, and with source data obtained
rom a different instrument than the presented one, for example using
errestrial laser scanners (TLS), aerial laser scanners (ALS), or portable
obile mapping systems (PMMS). It is also planned to make more use

f the output shapefile. Concretely, The possibility of making it usable
n a web platform will be explored and a more refined method of
alculating routes will be studied. Besides, the output shapefile will be
ombined with a city model to perform improved mobility analyses.
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