

Permanent link to this version

http://hdl.handle.net/11311/1220505

RE.PUBLIC@POLIMI
Research Publications at Politecnico di Milano

Post-Print

This is the accepted version of:

N. Faraco, M. Maestrini, P. Di Lizia
Instance Segmentation for Feature Recognition on Noncooperative Resident Space Objects
Journal of Spacecraft and Rockets, Published online 16/08/2022
doi:10.2514/1.A35260

The final publication is available at https://doi.org/10.2514/1.A35260

Access to the published version may require subscription.

When citing this work, cite the original published paper.

Instance Segmentation for Feature Recognition on
non-cooperative Resident Space Objects

Niccolò Faraco ∗, Michele Maestrini †, and Pierluigi Di Lizia ‡

Politecnico di Milano, Department of Aerospace Science and Technology, Via La Masa 34, 20156 Milan, Italy

Active debris removal and unmanned on-orbit servicing missions have gained interest in the

last few years, along with the possibility to perform them through the use of an autonomous

chasing spacecraft. In this work, new resources are proposed to aid the implementation

of guidance, navigation and control algorithms for satellites devoted to the inspection of

non-cooperative targets before any proximity operation is initiated. In particular, the use of

Convolutional Neural Networks (CNNs) performing object detection and instance segmentation

is proposed and its effectiveness in recognizing components and parts of the target satellite

is evaluated. Yet no reliable training images dataset of this kind exists to date. A tailored

and publicly available software has been developed to overcome this limitation by generating

synthetic images. Computer Aided Design models of existing satellites are loaded on a 3-D

animation software and used to programmatically render images of the objects from different

point of views and in different lighting conditions, together with the necessary ground truth

labels and masks for each image. The results show how a relatively low number of iterations

is sufficient for a CNN trained on such datasets to reach a mean average precision value in

line with state-of-the-art-performances achieved by CNNs in common datasets. An assessment

of the performance of the neural network when trained on different conditions is provided.

To conclude, the method is tested on real images from the MEV-1 on-orbit servicing mission,

showing that using only artificially generated images to train the model does not compromise

the learning process.

I. Introduction

The incipient overcrowding of the most exploited orbits due to the presence of man-made Resident Space Objects

(RSO) is a non-trivial challenge for the design of new space missions. Among the various practices to mitigate the

problem, the adoption of end-of-life measures, such as the injection into graveyard orbits or a controlled atmospheric

reentry, are recommended internationally when the RSO preserves some control capabilities [1]. For non-cooperative
∗Ph.D. student, corresponding author, niccolo.faraco@polimi.it
†Research fellow, michele.maestrini@polimi.it
‡Assistant Professor, AIAA Member, pierluigi.dilizia@polimi.it

niccolo.faraco@polimi.it
michele.maestrini@polimi.it
pierluigi.dilizia@polimi.it

objects, besides their continuous and accurate tracking with advanced ground-based sensors [2], the implementation of

active removal missions appears to be a crucial service to be developed in the upcoming future [3].

Active debris removal (ADR) has increasingly gained the attention of the community and has been drawing big efforts

since it is the only long-term solution to the problem when atmospheric reentry disposal is not feasible. However, a

very precise knowledge of the conditions of the satellite to be removed is needed to enable ADR. To this aim, missions

specifically targeted to the inspection of the objective spacecraft come into play, such as the e.Inspector mission currently

developed by ESA [4] or NASA’s OSAM-1 mission [5]. The inspection is carried out through a secondary satellite, the

chaser, whose orbit is defined based on the target RSO. Within a standard approach to operations, the satellite would

rely on a constant flow of information, back and forth from the spacecraft to the ground, in order to determine the

current dynamics of the target body. Usually, the data transmitted from the space segment is elaborated on ground, and

relevant commands are transmitted back on orbit to be executed. This approach is well suited for typical monitoring

trajectories around known objects, e.g. the ones exploiting the concept of safety ellipses [6], which can be designed to

ensure the possibility to realize a wide range of different observation conditions, especially if the target is tumbling.

However, it has been demonstrated that such investigation techniques could suffer from considerable shortcomings when

dealing with unknown objects [7], whose tumbling attitude can’t be assessed in advance. Indeed, should the target be

controlled (i.e., not tumbling) this would impair the visibility of certain regions of its surface if the relative trajectory is

kept constant. In this context, classical mission control routines may suffer from the need to continuously adapt the

relative orbits to ensure a complete inspection of the RSO. This increases, in turn, the effort spent by mission analysts

and limits the applicability of standard approaches.

Promoting autonomy in satellite operations may be a solution to the above issues. Since the main objective of

inspection missions is the visual probing of the target satellite, the chaser is generally equipped with one or more cameras

that are used to shoot pictures that are downlinked for subsequent analysis. These images could directly be exploited

to untie the Guidance, Navigation, and Control (GNC) tasks from the ground segment: in fact, they could be fed to

state-of-the-art image processing algorithms running on the on-board computer to detect the prominent components of

the target satellite. Among the many possible techniques, the recent advances in machine learning approaches have been

shown to grant adequate accuracy and applicability on low-resource systems, such as the ones typically adopted for

space applications [8]. This kind of computer vision processes provides also a measure of the reliability of the results,

which can be used to suggest the portions of the target to be further examined. This information can serve another

piece of the GNC pipeline, namely an autonomous guidance algorithm (e.g., see [9]), to define a new flight profile for

the chaser around the target to get more beneficial views on the most uncertain components of the inspected RSO. By

performing the suggested course adjustments iteratively, full coverage of the target spacecraft could be obtained with

a prescribed accuracy. Moreover, if properly tailored, also autonomous navigation could be achieved with a similar

approach, as demonstrated in [8].

2

At this point, it is clear that the implementation of recognition algorithms and the assessment of their performances

is of uttermost importance to enable the use of autonomous guidance and navigation algorithms for future inspection and

proximity missions [10] and the thorough assessment of the target spacecraft configuration and degradation conditions.

While many different solutions have already been proposed to perform pose estimation of the RSO, such as [11–13],

little effort has been done, to date, to validate new techniques for the visual inspection of unknown target objects. In this

work, a specific declination of Region-based Convolutional Neural Networks (R-CNN) has been chosen as the tool

to tackle the problem [14]. These algorithms, just like any other image recognition algorithm, have to be trained on

sets of pictures for which the category of the objects depicted and their position in the image are provided. Among

its key innovations, this work introduces an approach to obtain training data for such neural networks. Up to date, in

fact, something similar has only been done by training neural networks for the specific task of recognizing solar panels.

The dataset for this application consisted of manually annotated images taken from the internet [15]. This approach

has several disadvantages. The first one deals with the scalability of the method, which is a relevant drawback since it

is well known that Neural Networks performances dramatically improve when trained on larger datasets. In fact, the

images have to be manually labeled and there is no way to automate the process, which makes it labor-intensive for a

human operator to provide a large enough dataset. Secondly, it is not possible to tailor the recognition for a specific

target, should a mission aim to inspect a specific and a priori known RSO. Finally, this approach is strongly limiting

in the kind of identified components (i.e. only solar panels), which makes the range of applicability of the approach

narrower and less interesting. To overcome these limitations, the use of 3-D Computer Aided Design (CAD) models of

various satellites is explored in this work to programmatically generate images with different points of view and lighting

conditions. This has been achieved through the open-source computer graphic software Blender®∗, accurately scripted

in order to generate, together with the images, the necessary information on the objects depicted and their position

in the picture, which hereafter will be referred to as ground truth. To the best of our knowledge, no other annotated

dataset providing such variability of models and components of RSOs has been made publicly available to date to aid

research efforts on the tasks of object detection and instance segmentation in the aerospace field (while well-known

alternatives exist for pose estimation [11, 16]). This approach proved to be an effective method for the training of the

neural networks, also solving the problems outlined for the approaches previously used in the literature. Moreover, it

granted adequate results not only on simulated images, but also on images from a real mission, namely the Intelsat 901

operative life extension mission†‡.

The next section illustrates the reasoning behind the choice of the kind of NN to be employed as well as the specific

implementation used. The working principles of the training and testing datasets generation tool are then highlighted in
∗https://www.blender.org/
†Company webpage: https://www.northropgrumman.com/space/space-logistics-services/
‡Press release: https://news.northropgrumman.com/news/releases/intelsat-901-satellite-returns-to-service-using-

northrop-grummans-mission-extension-vehicle

3

https://www.blender.org/
https://www.northropgrumman.com/space/space-logistics-services/
https://news.northropgrumman.com/news/releases/intelsat-901-satellite-returns-to-service-using-northrop-grummans-mission-extension-vehicle
https://news.northropgrumman.com/news/releases/intelsat-901-satellite-returns-to-service-using-northrop-grummans-mission-extension-vehicle

Section III and the results obtained on an extensive testing campaign are discussed in Section IV.

II. Convolutional Neural Networks for image recognition
In the last few decades, Machine Learning has gained increasing popularity due to the exponential improvement of

the computing capabilities of microprocessors and, above-all, to the exploitation of graphic cards architecture [17].

Among the various approaches used in Machine Learning (ML), Artificial Neural Networks (ANNs) and, in particular,

Convolutional Neural Networks (CNN) have proved to be very effective in the field of computer vision, which is the

ability of the machine to gain high-level understanding of their surrounding environment from digital images. Among

the various kinds of tasks that such algorithms can perform, the most interesting ones for the problem at hand are object

detection and instance segmentation. Object detection refers to the capacity to identify various objects in each image,

drawing for each of them a bounding box. Instance segmentation instead, rather than finding the envelope of each object

as in the previous case, focuses on telling exactly which pixels belong to the object.

The approaches applied in the dedicated literature belong to two main categories: dual stage approaches like Faster

R-CNN [14, 18–20] and single stage approaches [21, 22]. During the first step of a typical dual stage algorithm the

image undergoes a first level of processing where an object proposal algorithm extracts patches from the original

image which may contain an object. These object proposal techniques can be standard image processing algorithms

[14], as well as other layers of a CNN [18]. In the second step, the proposed patches are fed to a classical CNN

which assigns them a category. On the other hand, single stage approaches only apply a single CNN to the full image

directly. The CNN divides the input into regions and predicts bounding boxes and probabilities for each region. It

is clear that the underlying architectures cause the dual stage approaches to be slower then single stage ones, while

retaining higher accuracy. In this work, the problem specific situation of satellite inspection is considered, where natural

observation trajectories in LEO would last several tens of minutes [9]. Therefore, we select Mask RCNN [20], which

is the state-of-the-art algorithm for semantic segmentation using a dual stage approach. This approach adds a mask

prediction branch to Faster RCNN [18] with almost no additional computational time. While the use of segmentation

maps for navigation about known small irregular bodies has been recently investigated [23], this technology has never

been applied before for the inspection of unknown RSO, but could prove useful in different ways, since it provides useful

information not only on the generic bounding box containing a certain part of the satellite in the image, but also on where

the material is located inside that box. This information may turn out to be paramount for the determination of attitude,

geometrical properties, and mass distribution of the observed RSO, should it be in an off-nominal configuration. Think,

for example, of promising inspection techniques as the one explained in [7] or other based on the concept of safety

ellipses. Since the center of mass of the object is assumed to coincide with the center of the ellipsoid, these techniques

would fail in the case of highly asymmetric or elongated objects. Knowing the typical materials which constitute the

elements of a spacecraft, the present work could provide a more reliable estimation of the mass distribution of the object

4

and the related properties. Due to these reasons, the present work is thought as an instrument to provide additional

information to make other strategies more robust, rather than offering a self-contained alternative solution by itself.

III. JINS: a synthetic images generator for the training of machine learning algorithms
The idea to overcome the issue of providing accurate automated labeling to images relies on the use of Python™

programming language and the scripting capabilities of the 3-D graphic software Blender®. The software that has been

implemented to this purpose is called JINS, which stands for JINS Is Not a Simulator. JINS’s pipeline relies on three

main steps: a manual pre-processing phase, the generation of the images, and the generation of the annotation file

containing the ground truth.

A. Model pre-processing

First, the provided spacecraft CAD model is adjusted to comply with the code requisites. This step is a one-time-only

procedure, which must be applied for every new model that the user desires to add to the dataset. Blender gives the user

the ability to load several of the most used output formats from CAD programs, which is an advantage since this kind of

files are always produced during the design process of the satellite and could therefore be used for the study of a tailored

on-orbit servicing or disposal mission.

The necessary preprocessing of the model starts with its subdivision into parts corresponding to the components of

interest. Each occurrence of these components included in the list of classes to be identified must be interpreted by the

software as a distinct standalone object. Then, a custom property has to be specified for each of the parts of interest: this

has to be identified by the ‘label’ keyword and its value has to be set to a string corresponding to the class.

Secondly, an empty entity§ for the camera to point to must be provided. In this case, a simple set of Cartesian

axes has been used. The origin of these axes is positioned in a random point close to the satellite but not necessarily

coincident with any notable physical or geometrical point (e.g. the center of mass). The aim of this entity is to supply

an off-nominal target for the camera, with the aim of introducing a small offset from the center of the image (e.g. to

simulate a non-ideal pointing of the RSO). Indeed, this is a desirable feature since it adds diversity to the dataset and

forces the algorithm to learn to recognize the objects independently of their position in the image.

B. Image generation

Once the model has been adapted, it is fed to the part of the JINS software that is responsible for the images

generation. In short, it generates a user-defined number of light objects in the scene and activates them one at a time.

For each of these light sources, it generates a number of cameras and renders the image from each of these points of

view. At this step, also the ground truth pixel masks are generated for each object of each category. A conceptual
§In Blender, an Empty is an object which is not rendered, i.e. an object that can be used for modeling purposes but that does not appear in the

image when it is generated.

5

scheme of the procedure is provided in Fig. 1 and a sample of the results is provided in Fig. 2. As already said, variety is

a key feature for the dataset to have good performances, therefore some measures have been taken to ensure that the

obtained dataset is sufficiently representative of real conditions.

1. Light conditions

A user specified number of light sources are added to the scene. These mimics the lighting from the Sun, which

illuminates the scene with rays that are all parallel to a specified direction. The script generates a random unit 1 × 3

vector, spawns a Sun lighting object in the scene and then applies a quaternion rotation so that its direction matches the

one of the vector just created.

2. Camera generation

For each of the generated light sources, a number of cameras is randomly generated in a solid angle with maximum

aperture of 35°, centered around the lighting direction and pointed towards the offset target empty object. Thanks to this

random sampling, each light source will have its own random and unique set of cameras. This approach ensures that the

lighting conditions in the image are always reasonable. In fact, in a real application, there would be no reason to take

pictures of the target satellite when it is not properly lit. Since the used 3D spacecraft models are not characterized by a

uniform scale, the camera focal length is kept constant and the range of distances from the target in which the camera

can be generated is tailored to each model in order to guarantee that the satellite is clearly visible in the image, without

being too small for its parts to be distinguishable or so large that one of its components completely fills the camera field

of view.

3. Mask generation

Exploiting Blender® compositor nodes, binary masks like the ones shown in Fig. 2 can be obtained at almost no

additional computational effort at the same time that the full image is rendered. These masks specify the area in the

picture covered by each of the parts of the satellite and are used to encode the ground truth for the dataset.

Earth background The JINS software is also capable of including the Earth in the background of the image (if

needed), in order to increase the complexity, variety and verisimilitude of the training and testing datasets. Due to

limitations of the available computational resources, the planet model could not be directly added to the scene. Therefore

a workaround inspired by [8, 11] was implemented. First, a series of pictures of the Earth in different light conditions

and from different points of view are rendered. Secondly, JINS randomly selects one of these pictures and uses it as a

background when rendering the model of the spacecraft.

This is obviously a non-optimal solution as it could lead to images that are not physically accurate, but solving this issue

is considered to be beyond the purpose of this study.

6

To the annotations
generation

par amet er s. py

From the
pre-processing phase

Generate light
sources

Activate first
unused light

source

Select first
unused
camera

Build
compositor

nodes

light direction

spacecraft model

Generate
cameras

Render image

image & masks

Was it the
last camera?

Was it the
last light?

Yes

Yes

No

No

n° of lights

n° of cameras, focal length, etc.

image size, background presence, etc.

gener at e_cams. py

set up_nodes. py

gener at e_l i ght s. py

light direction

Fig. 1 Scheme of the image generation pipeline in JINS.

7

trisat_0066.png trisat_0066_1_antenna.png

trisat_0066_2_body.png trisat_0066_4_solarPanel.png

trisat_0066_5_solarPanel.png trisat_0066_6_solarPanel.png

Fig. 2 Example of a rendered image and the related masks identifying the different components. The object’s
class is specified in the filename under the images.

8

C. Annotation file generation

The network does not look at the mask images directly, but rather reads the information from the annotated file. Such

information is provided via a .json file and it is the only additional information that must be provided to the neural

network together with the training pictures. Therefore, another script takes care of the encoding of the such .json

file stating the class and the polygon that encloses each object. The selected data format for the database is the one of

COCO¶ (Common Objects in COntext), which is one of the most common benchmarking datasets for new algorithms in

the field of computer vision and has, therefore, become one of the standards for image annotation. The choice of this

particular data format is owed to the desire to make the JINS dataset and code publicly available for other users.

The annotating procedure starts by identifying, based on the name of the image, all of the masks that are related to it.

Then, using the API from COCO‖, it is able to identify the white polygon in each mask and, from that, to build the

bounding box. The class of the object is inferred from the filename of the mask image and it is determined by the label

assigned to the object in the model pre-processing phase. Through the API other properties can be inferred too, such as

the measure of the area of the mask, which is useful in order to neglect objects that are too small in the image.

IV. Results
Among the various available implementations of the image recognition algorithm, Detectron2 [24] has been

selected for this work as it is the latest iteration of the code from the original authors of the Mask R-CNN paper [20],

which has been developed by the Facebook AI Research (FAIR) group. Among the different base models provided by

Detectron2, the one that was chosen is the R50-FPN-3x, which uses a ResNet [25] backbone architecture with 50 layers

and a Feature Pyramid Network (FPN) [26] for the regions proposal. This particular architecture has been selected

because, despite being one of the least resources intensive options both in terms of training time and memory usage, it

still performs adequately well [27].

The number of classes the neural network was trained to recognize is four: antenna, main body, solar panels, and

engines. The ‘thruster’ class was initially taken into account too, however its instances were too small in the generated

dataset even for human recognition. Hence, they were always rejected when inferring the ground truth from the masks.

As a consequence, closer images would be needed to recognize them.

Six satellites’ models∗∗ have been used to generate the images of the RSOs to be recognized. Figure 3 shows them,

together with the names that will be used hereafter to refer to each of them. This is useful since some of the results find
¶http://cocodataset.org/#home (last accessed: 11 April 2021)
‖https://github.com/cocodataset/cocoapi (last accessed: 11 April 2021)

∗∗The resources used in the current work can be found at the following links (last accessed: 11 April 2021):
https://free3d.com/3d-model/small-satellite-308237.html
https://sketchfab.com/3d-models/satellite-f8bd72434281441db77e85ce830f89c1
https://nasa3d.arc.nasa.gov/models
and https://www.cgtrader.com/3d-models/space/spaceship/low-poly-satellite-parts

9

http://cocodataset.org/#home
https://github.com/cocodataset/cocoapi
https://free3d.com/3d-model/small-satellite-308237.html
https://sketchfab.com/3d-models/satellite-f8bd72434281441db77e85ce830f89c1
https://nasa3d.arc.nasa.gov/models
https://www.cgtrader.com/3d-models/space/spaceship/low-poly-satellite-parts

their reason to be in the geometry of the spacecraft itself.

Two different couples of training and testing datasets were produced for each satellite model: one with the Earth in

background and one without it. In either case, the number of images is 800 for the training set (80 different lighting

conditions and 10 different rendering points of view for each of them) and 200 for the testing set (20 lighting directions

and 10 cameras each). As explained in Section III.B.2, the sets of camera viewing directions are randomly selected and,

as a consequence, each set differs for each lightning condition. Being the number of classes quite small and the base

NN pre-trained on the COCO dataset, the number of images used is enough to provide acceptable results, as shown

hereinafter. Good results have actually been achieved in the literature with even smaller datasets using Faster R-CNN

[28], but leveraging an higher number of images was preferred both because of the novelty of the task to be performed

and the used datasets being fully synthetic.

Square images with a 700 px size have been used to build the datasets used for this work. It is common practice in the

field of computer vision to include real images in the dataset along with the synthetic ones, as it is already done for pose

estimation datasets in aerospace applications such as [11, 16, 28], in order to increase the robustness of the training

process. Nonetheless, contrarily to pose estimation data, generating segmentation maps automatically on real data is

something that requires much more study and effort. Since, at the moment, it is only possible to annotate segmentation

maps of real images by hand, using the small number of available real images as a test dataset was preferred (see

Sec. IV.D.3), as it was deemed more useful and insightful than exploiting them in the training dataset.

For the current study, each CNN model has been trained for 2, 500 iterations with a learning rate of 0.0025, which

showed to be a good compromise between training time and performances. The inference runs at around 10 FPS for

each of the evaluated datasets when using GPUs computing power on Google Colaboratory servers (the actual hardware

architecture changes). The inference process is much slower when run on CPU rather then GPU, requiring an average of

4-5 seconds per image (0.2-0.3 FPS). Nonetheless, given the relatively long duration of the observation legs, this is

deemed sufficient for a possible on-board implementation. In fact, even when not supported by proper hardware, the

method could still be employed to gather additional information on the geometry, configuration, and conditions of the

unknown target, e.g. during the observation phases scheduled in the mission paradigm envisioned by Maestrini et al. [7].

When post-processing the large amount of test data it seemed reasonable to search for a single metric, among the

ones usually used in the machine learning field, capable of summarizing the overall performance of the network and

the validity of the proposed method. Since the Average Precision (AP) and the mean Average Precision (mAP) also

convey information concerning the true and false positives identified instances, they were deemed sufficient to capture

the overall performance of the network on the newly proposed task. To understand them let us introduce some other

10

model A model B

model C model D

model E model F

Fig. 3 Spacecraft models used in the present work. The names that will be used to refer to them are here
reported under each image.

11

definitions first [29]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 : 𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 : 𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(1)

where 𝑇𝑃 stands for true positives and refers to the number of objects correctly identified, while 𝐹𝑃 are the false

positives, i.e. instances identified as something they are not, and 𝐹𝑁 are the false negatives, which is the number of

objects which are not identified. True/false positives and negatives are identified based on the IoU metric, which is the

ratio between the area of the mask as identified during inference and the one reported in the ground truth and the union

of the two masks. These quantities can be computed for each class of objects and lead to the definition of

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 : 𝐴𝑃 =

∫ 1

0
𝑝(𝑟) 𝑑𝑟 (2)

as the area under the precision-recall curve for each class. Such curve is usually computed by the 11-point interpolation

or similar techniques, so that the previous formula could, for example, assume the form

𝐴𝑃 =
1
11

∑︁
𝑟𝑖

𝑝(𝑟𝑖) (3)

where 𝑟𝑖 is the i-th recall sample in the interval [0, 1].

The mAP is then simply the average of the AP over the classes and it is therefore more robust to small defects in the

datasets, while providing a comprehensive and overall index on the quality of the detection. Although simplified, this

explanation shall suffice for the aim of this work, for additional details see [29].

Hereafter, the most significant results when performing instance segmentation with a true positive recognition

threshold of 0.7 on the described datasets are reported. The choice of this threshold value is justified by the fact that it

is commonly used in pre-trained network architectures and that the tool showed low sensitivity against its variation.

Detectron2, being based on Faster R-CNN, is also capable of performing the object detection task: since the results

show the same trends highlighted by the segmentation task, they will not be discussed in details, but are reported in

Appendix A for completeness.

A. Results on single model

As a first try, the algorithm was trained over a chosen spacecraft model and tested on different images generated

from the same one. While this may seem to be a trivial and useless test to be performed, it actually provides two

important insights: firstly, it validates the viability of the proposed approach on the simplest scenario; secondly, it may

still represent the realistic scenario of an inspection mission towards a specific target whose complete model is known a

12

priori. The results are shown in Tab. 1 and are in line with the ones in the literature [20]. Analogous results have been

obtained by performing the same test on the other spacecraft models, which will not be reported here for the sake of

brevity. Notice, in particular, how the highest score, even if by a small margin in this case, is obtained on the recognition

of the solar panels: this trend is confirmed also in the tests illustrated in the next sections, where the scoring on the

solar panel category is almost always the highest and the more robust to the increasing complexity of the datasets. The

reason for such behavior is to be found in the fact that the solar panels are a pretty standardized objects in the industry,

featuring very distinctive elements that undergo only minor changes from model to model. This obviously makes it

easier for the algorithm to recognize them, since it’s based on the identification of patterns that are common to most of

the objects belonging to a certain class.

Figure 4 illustrates the results obtained on two images: the masks overlap, up to visual accuracy, to the components to

be detected.

Table 1 Results on a dataset including a single model (model A).

AP-antenna AP-body AP-solarPanel mAP
mask prediction 88.53 89.10 90.22 86.39

Fig. 4 Results from the inference on the single satellite datasets.

B. Testing on unknown model

It is worth studying the performance of the CNN model when tested on a satellite whose images were not included

in the training set. To do so, the algorithm has been trained on two different datasets: the first one counting images

based on spacecrafts’ models B and C and the second one including also images of models D, E, and F (see Fig. 3).

Both have been tested on the same set, which includes model A images only. The differences in the results are, therefore,

13

Fig. 5 Results when running inference on a spacecraft model not included in the training dataset.

to be attributed to the variety of the training sets.

Looking at Fig. 5, which reports the results of the test in Sec. IV.A for comparison (continuous line), it is evident that

the accuracy of the model drops off sensibly when compared to the case case in which the CNN is trained and tested on

the same spacecraft model. The number and variety of the images of the two satellites chosen for the training dataset

are evidently not sufficient to grant a good accuracy in the testing phase. For example, the cylindrical body is easily

mistaken for the antenna, as highlighted in Fig. 6.

Nonetheless, increasing the number and variety of the spacecraft models included in the training set (dashed line

with respect to dotted one in the picture) yields a significant improvement of the results. This is particularly true for

those components whose characteristics may differ significantly depending on the satellite (e.g., Body), whereas the

segmentation tends to be more robust for components that show similar characteristics (e.g., Solar Panels). In fact, here

we can notice a good example of the peculiarity explained in the previous section.

C. Earth background influence

Up to now, the performance of the algorithm on images depicting the RSO on a black background (representing the

deep space) has been analyzed. However, how the presence of the Earth in the background of the image can affect the

results has been investigated too.

To do so, two training sets have been built, both counting the same five satellites models (A, B, C, E, and F). One of the

two, however, uses random images of the planet as the background (see paragraph III.B.3) rather than having a simple

14

Fig. 6 Inference on a satellite model not present in the training dataset.

black backdrop. Two testing datasets, using the spacecraft model D left out of the training sets, have been generated

accordingly.

Figure 7 shows how the algorithm behaves when dealing with different combinations of training and testing sets. The

results when training and testing without the planet in background (solid line) are reported as a baseline and we can see

how the reduction in performance when training and testing on an analogous dataset featuring the earth in background

(dotted line) is minimal.

The same, as expected, is not true when training on a dataset without the Earth in background and testing with the planet

in the images (dashed line). This is due to the fact that the clutter resulting from the planet in background makes the

borders between the objects less separable. In fact, in Fig. 8 it is possible to observe how some of the masks overlap

with other objects.

As a final remark, it is worth specifying that the worse results obtained on the engine class with respect to the other

categories is not due to the influence of the planet’s presence in the images but to the small number of engine instances

occurring in the pictures, making it difficult for the CNN to be properly trained on recognizing this kind of objects. This

is demonstrated by the baseline results, which show the same trend.

D. Real life scenarios

Finally, the approach has been tested in a series of conditions which may represent real operative situations, namely:

1) A simulated relative orbit around the target

2) Images in gray-scale encoding

15

Fig. 7 Influence of the Earth presence in the background (BG) of the image on the inference process.
"w/" stands for "with", while "w/o" means "without".

Fig. 8 Results worsening when training on a dataset without the Earth in background and testing on a dataset
featuring the planet behind the satellite.

3) Images from a real rendezvous mission

16

1. Lighting conditions dependence

An animation has been created in Blender in order to simulate the chaser relative orbit around the target spacecraft

and the resulting video, similar to what the on-board camera would actually sense on-orbit, has been fed to the

recognition algorithm to assess its performance. The orbit has been simulated by a simple motion of the camera around

the target, rather than an actual numerical propagation, to the sole aim of obtaining a realistic animation. A more

accurate simulation is out of the scope of the present work.

Although the relative orbit would last as long as the orbit around the main attractor and the lighting conditions on the

target object would therefore change in time, the lighting direction has been considered fixed in this case for the sake of

simplicity. The relative motion of the chasing spacecraft around the target, in fact, is enough to continuously challenge

the recognition algorithm with new conditions and to highlight some interesting insights.

Fig. 9 AP and mAP metrics and relative distance throughout a revolution of the chasing spacecraft around the
target, illustrating the dependence of the performance on the lighting conditions.

While the test scores overall values of 𝐴𝑃 = 77.070 and 𝑚𝐴𝑃 = 77.917, other interesting conclusions can be drawn

examining the graph in Fig. 9. The upper graph in the picture reports the frame-by-frame variation of the AP and mAP

metrics throughout the video, that means throughout a relative orbit of the chasing spacecraft around the RSO. The

background of the image visually represents the fraction of the revolution in which the target is well-lit (that means,

since the actual lighting conditions do not change, that the point of view of the chasing spacecraft is favorable) and the

one in which the target is shadowed. The variation of the distance between the camera and the target, normalized with

respect to the spacecraft characteristic dimension of 20 m, is also reported in the lower portion of the picture.

17

Fig. 10 Some frames extracted from the video simulating the relative orbit around the target object.

18

It can be easily seen how the mean performance of the algorithm is noticeably better when the target is properly

illuminated, while the distance of the camera from the RSO has a marginal effect. Furthermore, it is interesting to notice

how the results for the darkest images are all in all not bad and the worst results are obtained during the transition

instead. This is due to the fact that the image recognition algorithms are capable of recognizing patterns -even in dark

conditions- that are not the same the human eye is used to notice and such patterns are easier to be recognized when

the lighting conditions are uniform. Furthermore, the video is generated without adding any noise to the images: this

makes it easier for the neural network to distinguish the background from the object and borders of the different items.

Recreating a more realistic scene would probably decrease the performance, especially in bad lighting conditions, a

problem which is tackled in Sec. IV.D.3.

To a deeper analysis, the reasons causing the three major drops in performance can be individuated. The first one, just

before the beginning of the first change in light conditions, is probably due to the bad lighting of the foreground objects

as it can be seen in the first row of Fig. 10 and to the fact the camera starts to drift farther from the object, causing part of

the body to be confused with a non-existent body-mounted solar panel. The second one, around the half of the revolution

(second row of the same picture), is due to the incipient worsening of the lighting conditions and to the occlusion of the

body by part of a solar panel, causing a smaller portion of the body to be visible and one of its faces to be mistaken,

again, for a body-mounted solar panel. Notice how this second drop is slightly less intense, even though the spacecraft

is a little further from the camera. Finally, the pictures of the third row of Fig. 10, explains the reasons of the major drop

in performance on the right hand of Fig. 9: the target object is fully in shadow (only some details are visible), the chaser

is at the farthest point of its orbit around the target spacecraft and the rear solar panel is perfectly aligned to the body,

causing the latter to be mistaken for a part of it, since the bad lighting doesn’t allow the algorithm to distinguish the two

from the shape only. However, since the time evolution of the metrics does not reproduce the periodicity of the motion,

it is safe to assume that, although the higher distance between the chaser and the target may have had a synergical effect,

the biggest reason for the severe drop in performance is to be found in the extremely unfavorable lighting conditions.

These considerations, among the others, suggest that the overall performance could be improved by changing the R-CNN

algorithm in favor of a Recurrent Neural Network (RNN) [30], since these are able to look at the time sequence of the

images and base the prediction on the information received from the previous frames too, rather than looking at the

single frame as a standalone picture unconnected to the others (like an R-CNN does).

2. Results on gray-scale images

Most of the cameras on-board the chasing spacecraft shoot gray-scale images, so it is interesting to know how this

influences the results. To do so, a python script has been written to turn regular datasets into gray-scale ones. This test

case is reported for the sake of completeness, however it is not expected that using grayscale images will significantly

impact the performances. Indeed, the first processing step of the neural network always transforms RGB to grayscale by

19

Fig. 11 Results when dealing with images in gray scale encoding.

taking the average of RGB channels for each pixel. In a very similar manner, Blender produces grayscale outputs as a

weighted average of the RGB channels, therefore the results should be quite similar.

The dataset used for this test and whose results are reported in Fig. 11, is the one trained on spacecraft models A,

B, C, E, and F and tested on model D. Similar results where obtained also using other combinations of training and

testing models and with or without the Earth in background. When training and testing on gray-scale images (Fig. 11,

dotted line) the results show how the algorithm is quite robust to the change of color encoding with respect to the

colored dataset whose results are reported by the solid line for comparison. This further validates the possibility of using

the approach in a real scenario. Interestingly enough, the same results are obtained also when training the algorithm

on colored images and testing on gray-scale ones (Fig. 11, dashed line), demonstrating how the internal logic of the

recognition algorithm puts emphasis on more features than the simple coloring or shape of the objects.

While the comparison of the relative values scored by different datasets allows us to draw the aforementioned conclusions,

the considerations on the actual values made in the previous chapters still hold true, since the effects of the absence of

model D in the training set and the low occurrence of the engine object in the dataset are still appreciable, regardless of

the change in color encoding.

3. Results on Intelsat 901 rendezvous images

Finally, given that gray-scale images do not cause a significant performance drop, the feasibility of the synthetic

image generation approach was tested on images from a real mission, namely the rendezvous for the life extension

20

mission of the Intelsat 901 satellite. As explained in the introduction to this chapter, these images were not included in

the training dataset (differently from what is done in previous works, e.g. [11]), but only shown to the network at test

time to simulate a real inspection mission of an unknown object. Hence the novelty of this contribution.

Such real images are really noisy and present rings and halos which can worsen the results. In fact, Fig. 12 shows the

results obtained using the CNN weights trained on gray-scale images without the Earth in background, where it can be

seen how the halos around the objects are mistaken for part of the object itself.

Fig. 12 Inference results when using the model trained on gray-scale images without the Earth in background.

Performing a little image pre-processing, it was possible to obtain a big improvement in the results (see Fig. 13)

without having to change the training dataset. In particular, a threshold operation was carried out, which sets exactly to

0-value (that means pitch black) all of the pixels below a specified gray value, therefore getting rid of all the halos.

Notice, however, how the Earth is still not correctly rejected because the algorithm is not trained to recognize it. The

only solution to this would be to use a proper training set. In this regard, Fig. 14 shows how, using an algorithm trained

on colored images with the Earth in background, the planet is correctly rejected and the results are overall improved to

almost visual accuracy, except for an antenna which is not properly recognized.

V. Conclusions
In this work, it has been demonstrated how Convolutional Neural Networks can be used to perform instance

segmentation of satellite components in the framework of an inspection mission around a non-cooperative RSO. In

21

Fig. 13 Inference results when using the same gray-scale model after thresholding the images to get rid of halos.

Fig. 14 Inference results when using the model trained on colored images with the Earth in background.

22

particular, the possibility of generating artificial datasets to be used for the training of such algorithms has been evaluated

together with its performance in real life applications. To this aim, a new software, called JINS, has been developed,

which takes care of generating an arbitrary amount of suitable training and testing images with minimum intervention by

the user. Results have shown how performances are on par with those reported in the literature and, moreover, instance

segmentation algorithms trained on such synthetic datasets have also shown to be effective in recognizing objects in

images from the real mission Intelsat 901.

The convenience of the proposed approach lies in the ability to automate the dataset generation and the possibility to

tailor the learning process on a specific satellite in case the mission is targeted on it. The only limitations of the method

have shown to be those intrinsic to the machine learning algorithms used, and those linked to the necessity of choosing a

proper training dataset. To the authors’ knowledge, relying on an artificial dataset to such an extent has never been done

before in this kind of applications in the aerospace field, nor its effectiveness has been proved on real life inspection

missions before, hence the relevance of the results obtained in this study.

Other than improving the results by performing a better refinement of the training process, some changes and

extensions are planned for the project in order to enhance its performances and range of use. The training datasets

can be augmented with images with added noise to make the algorithm better at rejecting rings and halos without

any further image manipulation as shown in Sec. IV.D.3. JINS will be turned into a full fledged simulator, using a

better model for the Earth, implementing the ability to recreate the real dynamics of the spacecraft motion based on

initial conditions and ephemerides, giving the option to create an image based on an input date, etc. Contextually, the

software will be adapted to make use of Recurrent Neural Networks when applying the method to real missions, instead

of Convolutional Neural Networks, and the image generation tool will be extended to provide the ground truth to train

pose estimation algorithms too. Finally, the possibility of building a real simulator with hardware in the loop is being

considered too, as the ability to automatically generate segmentation maps on real images is a challenging but promising

line of investigation for the further development of the present work.

23

A. Object detection results
For completeness, the results on object detection corresponding to the ones already discussed on instance segmentation

are here reported.

Table 2 Dependence on training model numbers (ref. Fig. 5)

Training models:
Testing model:

A
A

B, C
A

B, C, D, E, F
A

AP Antenna 89.73 23.27 38.91
AP Body 88.37 6.65 15.92
AP Solar Panel 85.47 72.19 74.02
mAP 89.99 29.63 36.86

Table 3 Dependence on Earth presence in background (ref. Fig. 7)

Training models: A, B, C, E, F; Testing model: D
Training: without BG
Testing: without BG

Training: with BG
Testing: with BG

Training: without BG
Testing: with BG

AP Antenna 72.30 67.24 47.42
AP Body 62.61 65.40 37.21
AP Engine 42.06 32.55 37.21
AP Solar Panel 68.72 66.23 38.04
mAP 63.84 58.32 41.15

Table 4 Dependence on images color encoding (ref. Fig. 11)

Training models: A, B, C, E, F; Testing model: D
Training: color
Testing: color

Training: gray-scale
Testing: gray-scale

Training: color
Testing: gray-scale

AP Antenna 72.30 70.23 70.60
AP Body 62.61 57.22 56.92
AP Engine 42.06 34.97 41.53
AP Solar Panel 68.72 66.35 68.97
mAP 63.84 58.94 59.89

24

References
[1] Klinkrad, H., Beltrami, P., Hauptmann, S., Martin, C., Sdunnus, H., Stokes, H., Walker, R., and Wilkinson, J., “The ESA Space

Debris Mitigation Handbook 2002,” Advances in Space Research, Vol. 34, No. 5, 2004, pp. 1251 – 1259.

[2] Weeden, B., Cefola, P., and Sankaran, J., “Global space situational awareness sensors,” AMOS Conference, 2010.

[3] Wormnes, K., Le Letty, R., Summerer, L., Schonenborg, R., Dubois-Matra, O., Luraschi, E., Cropp, A., Krag, H., and Delaval,

J., “ESA technologies for space debris remediation,” 6th European Conference on Space Debris, Vol. 1, ESA Communications

ESTEC Noordwijk, The Netherlands, 2013, pp. 1–8.

[4] Silvestrini, S., Prinetto, J., Zanotti, G., and Lavagna, M., “Design of Robust Passively Safe Relative Trajectories for Uncooperative

Debris Imaging in Preparation to Removal,” 2020 AAS/AIAA Astrodynamics Specialist Conference, 2020, pp. 1–18.

[5] NASA’s Exploration & In-space Services, “OSAM-1 Successfully Passes Key Decision Point-C,” https://nexis.gsfc.

nasa.gov/05292020_osam1_update.html, 2020.

[6] Gaylor, D. E., and Barbee, B. W., “Algorithms for safe spacecraft proximity operations,” Advances in the Astronautical Sciences,

Vol. 127, 2007, pp. 133–152.

[7] Maestrini, M., and Di Lizia, P., “Guidance Strategy for Autonomous Inspection of Unknown Non-Cooperative Resident Space

Objects,” Journal of Guidance, Control, and Dynamics, Vol. 45, No. 6, 2022, pp. 1126–1136. https://doi.org/10.2514/1.G006126.

[8] Sharma, S., Pose estimation of uncooperative spacecraft using monocular vision and deep learning, Stanford University, 2019.

[9] Capolupo, F., and Labourdette, P., “Receding-horizon trajectory planning algorithm for passively safe on-orbit inspection

missions,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 5, 2019, pp. 1023–1032. https://doi.org/10.2514/1.

G003736.

[10] Starek, J. A., Açıkmeşe, B., Nesnas, I. A., and Pavone, M., “Spacecraft autonomy challenges for next-generation space missions,”

Advances in Control System Technology for Aerospace Applications, Springer, 2016, pp. 1–48. https://doi.org/10.1007/978-3-

662-47694-9_1.

[11] Sharma, S., and D’Amico, S., “Pose Estimation for Non-Cooperative Rendezvous Using Neural Networks,” CoRR, Vol.

abs/1906.09868, 2019. URL http://arxiv.org/abs/1906.09868.

[12] Pasqualetto Cassinis, L., Fonod, R., Gill, E., Ahrns, I., and Fernandez, J., “CNN-Based Pose Estimation System for

Close-Proximity Operations Around Uncooperative Spacecraft,” 2020. https://doi.org/10.2514/6.2020-1457.

[13] Huo, Y., Li, Z., and Zhang, F., “Fast and Accurate Spacecraft Pose Estimation From Single Shot Space Imagery Using Box

Reliability and Keypoints Existence Judgments,” IEEE Access, Vol. 8, 2020, pp. 216283–216297. https://doi.org/10.1109/

ACCESS.2020.3041415.

25

https://nexis.gsfc.nasa.gov/05292020_osam1_update.html
https://nexis.gsfc.nasa.gov/05292020_osam1_update.html
https://doi.org/10.2514/1.G006126
https://doi.org/10.2514/1.G003736
https://doi.org/10.2514/1.G003736
https://doi.org/10.1007/978-3-662-47694-9_1
https://doi.org/10.1007/978-3-662-47694-9_1
http://arxiv.org/abs/1906.09868
https://doi.org/10.2514/6.2020-1457
https://doi.org/10.1109/ACCESS.2020.3041415
https://doi.org/10.1109/ACCESS.2020.3041415

[14] Girshick, R. B., Donahue, J., Darrell, T., and Malik, J., “Rich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation,” 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, IEEE Computer Society,

2014, pp. 580–587. https://doi.org/10.1109/CVPR.2014.81.

[15] Xu, B., Wang, S., and Zhao, L., “Solar Panel Recognition of Non-cooperative Spacecraft Based on Deep Learnin,” 2019 3rd

International Conference on Robotics and Automation Sciences (ICRAS), 2019, pp. 206–210.

[16] Park, T. H., Märtens, M., Lecuyer, G., Izzo, D., and D’Amico, S., “SPEED+: Next Generation Dataset for Spacecraft Pose

Estimation across Domain Gap,” CoRR, Vol. abs/2110.03101, 2021. URL https://arxiv.org/abs/2110.03101.

[17] Alpaydin, E., Introduction to Machine Learning, 2nd ed., The MIT Press, 2010, Chap. 1.

[18] Ren, S., He, K., Girshick, R. B., and Sun, J., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, 2017, pp. 1137–1149.

https://doi.org/10.1109/TPAMI.2016.2577031.

[19] Girshick, R., “Fast R-CNN,” 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440–1448.

https://doi.org/10.1109/ICCV.2015.169.

[20] He, K., Gkioxari, G., Dollár, P., and Girshick, R. B., “Mask R-CNN,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 42, No. 2, 2020, pp. 386–397. https://doi.org/10.1109/TPAMI.2018.2844175.

[21] Redmon, J., and Farhadi, A., “YOLOv3: An Incremental Improvement,” arXiv, 2018.

[22] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., and Berg, A. C., “SSD: Single Shot MultiBox Detector,”

Computer Vision - ECCV 2016 - 14th European Conference, Proceedings, Part I, Lecture Notes in Computer Science, Vol.

9905, Springer, 2016, pp. 21–37. https://doi.org/10.1007/978-3-319-46448-0_2.

[23] Pugliatti, M., and Topputo, F., “Navigation about irregular bodies through segmentation maps,” 2021.

[24] Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R., “Detectron2,” https://github.com/facebookresearch/detectron2,

2019.

[25] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition,” 2016 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2016, IEEE Computer Society, 2016, pp. 770–778. https://doi.org/10.1109/CVPR.2016.

90.

[26] Lin, T., Dollár, P., Girshick, R. B., He, K., Hariharan, B., and Belongie, S. J., “Feature Pyramid Networks for Object Detection,”

2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, IEEE Computer Society, 2017, pp. 936–944.

https://doi.org/10.1109/CVPR.2017.106.

[27] Yuxin, W., Alexander, K., Francisco, M., Wan-Yen, L., and Ross, G., “Model Zoo results,” https://github.com/facebookresearch/

detectron2/blob/master/MODEL_ZOO.md, 2019.

26

https://doi.org/10.1109/CVPR.2014.81
https://arxiv.org/abs/2110.03101
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1007/978-3-319-46448-0_2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.106
https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md

[28] Shi, J.-F., Ulrich, S., and Ruel, S., “CubeSat Simulation and Detection using Monocular Camera Images and Convolutional

Neural Networks,” 2018 AIAA Guidance, Navigation, and Control Conference, 2018. https://doi.org/10.2514/6.2018-1604.

[29] Powers, D. M. W., “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,”

Computing Research Repository (CoRR), Vol. abs/2010.16061, 2020.

[30] Yu, Y., Si, X., Hu, C., and Zhang, J., “A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures,”

Neural Computation, Vol. 31, No. 7, 2019, pp. 1235–1270. https://doi.org/10.1162/neco_a_01199, pMID: 31113301.

27

https://doi.org/10.2514/6.2018-1604
https://doi.org/10.1162/neco_a_01199

	FronteRivista
	FARAN_OA_02-22sf_
	Introduction
	Convolutional Neural Networks for image recognition
	 JINS: a synthetic images generator for the training of machine learning algorithms
	Model pre-processing
	Image generation
	Light conditions
	Camera generation
	Mask generation

	Annotation file generation

	 Results
	Results on single model
	Testing on unknown model
	Earth background influence
	Real life scenarios
	Lighting conditions dependence
	Results on gray-scale images
	Results on Intelsat 901 rendezvous images

	Conclusions
	Object detection results

