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Abstract—In literature, Extended Object Tracking (EOT)
algorithms developed for autonomous driving predomi-
nantly provide obstacles state estimation in cartesian coordi-
nates in the Vehicle Reference Frame. However, in many
scenarios, state representation in road-aligned curvilinear
coordinates is preferred when implementing autonomous
driving subsystems like cruise control, lane-keeping assist,
platooning, etc. This paper proposes a Gaussian Mixture
Probability Hypothesis Density (GM-PHD) filter with an Un-
scented Kalman Filter (UKF) estimator that provides obstacle
state estimates in curvilinear road coordinates. We employ a
hybrid sensor fusion architecture between Lidar and Radar
sensors to obtain rich measurement point representations
for EOT. The measurement model for the UKF estimator is
developed with the integration of coordinate conversion from
curvilinear road coordinates to cartesian coordinates by using
cubic hermit spline road model. The proposed algorithm is
validated through Matlab Driving Scenario Designer simu-
lation and experimental data collected at Monza Eni Circuit.
The Experimental Dataset will be made publicly available
upon the paper acceptance

Index Terms—Extended Object Tracking, Curvilinear Road
Coordinates, Sensor Fusion, Lidar, Radar, GM-PHD

I. INTRODUCTION

Correct perception of the ego vehicle’s surrounding
environment is central in implementing autonomous
driving. However, the dynamic and uncertain nature of
the environment makes this task very challenging. As the
ego vehicle perceives the environment through sensors
like Camera, Lidar, and Radar, the data collected from

Supported by project TEINVEIN: TEcnologie INnovative per i VE-
icoli Intelligenti, CUP (Codice Unico Progetto - Unique Project Code):
E96D17000110009 - Call “Accordi per la Ricerca e l’Innovazione”,
cofunded by POR FESR 2014-2020 (Programma Operativo Regionale,
Fondo Europeo di Sviluppo Regionale – Regional Operational Pro-
gramme, European Regional Development Fund).

Fig. 1: Inage of the experimental vehicle (Ego Vehicle)
instrumented with Lidar, Radar and Camera employed
for the dataset acquisition and algorithm validation

these sensors need to be processed to an understandable
format to make driving decisions. The driving software’s
detection and tracking blocks consistently provide the
state of various objects of interest (e.g., vulnerable road
users, road traffic participants, etc.) to the decision stack.
Our work focus on obstacle tracking with two of the
most used sensors in autonomous driving, Lidar, and
Radar.

Research on object tracking has led to multi-object
tracking algorithms with point object representation,
called point object tracking (POT). Early research with
this representation merely provided information about
the obstacle’s kinematic state while disregarding its ex-
tent. Recent algorithms,( [1], [2] [3]) with detect and
then track approaches can also be categorized into this
segment. The POT representation assumes that an object
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could generate at most one measurement at one time
instance. One substantial drawback with this approach
is the propagation of detection error to the tracking al-
gorithm. While learning-based detectors, [4] do provide
sufficiently accurate detections for driving tasks, they
require the use of high-resolution lidar sensors which
can provide distinguishable object features. However,
working with low-resolution lidar, the detections from
the learning-based algorithms are not accurate due to
the lack of these features. One alternative to the learning-
based detections is occupancy grids-based detections [5].
The obstacles detected with this approach do not have
exact object shape information and are noisy in yaw
angle estimation due to the grid discretization. Another
promising alternative is developing a tracking algorithm
that eliminates the detection step or employs minimal
pre-processing. Extended object tracking algorithms are
developed with an assumption that an object can gener-
ate multiple measurements at a single time instance [6].
This allows for the development of tracking recursions
where minimally pre-processed sensor data can be used.
These measurements provide tentative information on
the spatial occupancy of the object, therefore enabling the
state of the obstacle to be modeled with the kinematic
and extent information.

Most of the works in extended object tracking are
focused on providing the state of the obstacles in carte-
sian coordinates in the Vehicle Reference Frame(VRF)
of the ego vehicle [6]. While obstacle state information
in cartesian coordinates is sufficient for some tasks, for
applications that require information sharing, such as
V2V and V2X, integration of the road model into the
estimation process and state representation in curvilinear
coordinates is advantageous. In particular, for informa-
tion sharing, which enables easier lane level localization
for participating agents [7]. In addition to this, road
model integration and curvilinear state representation
expedite the process of dynamic path planning for the
ego vehicle motion as well [8]. In literature, EOT algo-
rithms are developed using measurements coming from
standalone sensors. In [9], authors use a high-resolution
Radar sensor to develop a measurement model for a
Bayesian estimation process. An extent rich and highly
accurate 2D PointCloud obtained from a Lidar sensor is
also employed to perform this task in [10]. Radar mea-
surements, which provide information on object velocity,
are observed to be extremely noisy. In contrast, lidar
points with highly accurate positions do not provide
information on the object’s speed. Fusion between these
two sensors opens the door to extract a highly enriched
representation of the surrounding obtained by combin-
ing complementary information. The common fusion
approaches in literature can be categorized into either
model based, [11] or data driven [12].

This work proposes an EOT algorithm that provides
the obstacle state in curvilinear road coordinates by

integrating a Cubic Hermite spline road model into the
estimation routine. We use a fused representation of the
measurement points obtained from Lidar and object de-
tections obtained from Radar sensors using model based
fusion. The proposed algorithm is validated through
simulation and experimental data while also comparing
with other state of the art algorithms.

The remainder of the paper is structured in the fol-
lowing fashion. Related works on EOT and road model
integration into tracking routine are discussed in Section
II. In the Section III, the hybrid sensor fusion architecture
employed in this work is presented. Section IV presents
the tracking problem. We present the pipeline for the
EOT procedure in detail in Section VI. Algorithm vali-
dation through simulation data and experimental data
recorded by vehicle shown in Fig. 1 is presented in
Section VII. Section VIII concludes the paper.

II. RELATED WORKS

A. Extended Object Tracking

An extensive overview on EOT is presented in [6].
Authors have grouped EOT into three broad categories
based on the different approaches used to develop mea-
surement models. The first modeling approach assumes
that measurements primarily originate from reflection
points rigidly fixed to the extended objects. Authors in
[13] develop such EOT algorithm for rectangular objects
using radar resolution model. This work is centered
around the assumption that Radar detections from a
vehicle originate from particular reflection points, for
example, wheel housings, headlamps, etc. In the second
approach, the measurement model is based on an inho-
mogeneous Poisson Point Process (PPP). The detections
are assumed to be spread spatially around the target, and
the PPP is used to model their probability. Random Ma-
trix models are the predominant variant of this approach;
in [14], authors develop a Gamma Gaussian Inverse
Wishart Poisson Multi Bernoulli (GGIW PMB) EOT filter
using this model. They assume that the measurements
are Gaussian distributed around the target center while
the number of measures is Poisson distributed. Based
on this assumption regarding the measurement model,
a Gamma-Gaussian-Inverse Wishart conjugate prior is
used to develop the Bayesian recursion for filtering. In
[15], a Random Hyper Surface Model, another variant
of the spatial model, is proposed for estimating kine-
matic and shape estimates of ellipses and star convex
shaped objects. The measurement model is developed
by assuming that the measurement points are generated
from sources located on the scaled boundary of the
predefined shape. This scaling factor is assumed to be a
random variable. Filtering recursion is performed with-
out actually estimating the location of these assumed
measurement sources. Finally, The third approach in-
cludes techniques that model the physics behind the
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sensor operation into measurement models; [16] use
direct scattering technique to perform EOT.

While some works have been developed with the
predefined assumption of the object shapes, like ellipses
in [17], rectangles in [10], a parametric approach that
defines the boundary of an object with star convex
modeling is also gaining momentum. Authors in [15]
use Fourier Coefficients to parametrize the shape of
the radial function of the contour while authors in
[18] use Gaussian Processes (GP). In [18], authors de-
velop an Extended Kalman Filter (EKF) based estimator
by approximating Gaussian Process into a state-space
model, which in turn is augmented with the kinematic
state of the track. Similarly, EKF based tracker for de-
tections obtained from Radar sensors is developed in
[9]. Doppler rate information obtained from the high-
resolution Radar sensor is exploited to better estimate
the translational and rotational velocities of the track.

In recent developments, machine learning-based ap-
proaches are also proposed in the literature to develop
measurement models. In [19], Variational Gaussian Mix-
ture modeling is used to form a Bayesian Framework
for EOT for detections obtained from Radar sensors.
[20] proposes a hierarchical truncated Gaussian model
learned through raw data collected from a Radar sensor.

B. Road Model Integration into Tracking Recursion

A model of the geometric representation of the road
can be computed online using images acquired by cam-
era sensors [21], [22]. Deep learning techniques are im-
plemented to perform image segmentation and provide
road identification. However, results obtained by such
online frameworks are not always robust enough to be
integrated into tasks further down the pipeline due to
information blackout created by occlusions or in cases of
extreme weather scenarios. When the algorithm cannot
rely on the information acquired through image data,
localization and obstacle tracking are performed by in-
tegrating predefined HD map of the road into these
routines [23], [24], [25].

Integration of the road model into the tracking rou-
tine firstly provides the possibility of filtering out sen-
sor measurements obtained from objects outside road
bounds. This also enables to restrict the tracking re-
gion to be constrained within the road bounds, which
is sufficient for autonomous highway applications like
platooning, lane-keeping, etc. [25]. For the development
of connected architectures, authors in [24] demonstrate
that the integration of the road model expedites the lane
level localization of the participating vehicles. Further-
more, in [22], authors develop a framework for lane
situation assessment by integrating the road model in the
point object-based estimation routine. In their work, a
track-level decentralized fusion of object detections from
Radar sensors is performed using the nearest neighbor

approach. Track estimates provided in cartesian coordi-
nates are later converted into road-aligned curvilinear
coordinates to perform lane situation assessment using
a constant curvature conversion model based on oscu-
lating circle assumption. The authors generate a cubic
hermit spline road model from lane detections obtained
from the camera sensor to perform this conversion.
In [26] the previous work is extended by performing
fusion between Lidar, Radar, and Camera detections
to generate a consistent point object measurement list.
These measurements are converted into road curvilinear
coordinates used to develop a tracking and behavior rea-
soning framework for the obstacles. This enables authors
to integrate road geometry constraints into a unified
interactive multi-model (IMM) tracking and behavior
reasoning module.

Authors in [8] demonstrate the efficiency introduced
in trajectory planning for ego vehicle motion when the
road model is integrated into the planning process.
Ego vehicle and road participants are localized in the
road curvilinear coordinates, which makes it possible to
remove the curvature effects of the road in the trajectory
planning problem and hence generate requested maneu-
vers in the straight-road like scenarios.

Finally, in [27], authors integrate road model and road
constraints with learning-based techniques to perform
trajectory prediction of the surrounding road vehicles.
The past and present motion of the road vehicles repre-
sented as a bounding box is obtained by using Global
Navigation Satellite Systems (GNSS) and Lidar sensors.
However, in a real-world driving scenario, where we
assume no exchange of information between the ego
vehicle and road participants, the kinematic state and
extent of the obstacles can only be obtained by track-
ing them using exteroceptive sensors. Model Predictive
Controller developed in [28] assumes elliptical-shaped
obstacles whose states are expressed in the curvilinear
coordinates and derive the constraints for the optimiza-
tion problem. The algorithm is developed assuming that
the obstacle state is deterministic in the curvilinear coor-
dinate, which does not represent the real-world driving
scenario, where obstacles are generally perceived using
various exteroceptive sensors. Integration of an extended
object tracking algorithm in curvilinear coordinates into
the pipeline provides the obstacle state for the algorithm
with reasonable closeness to attainable accuracy.

These works demonstrate the benefits of road model
integration in the ego vehicle state estimation and obsta-
cle tracking. However, sufficient attention has not been
given to the accurate representation of the obstacles in
the curvilinear coordinates, which is a crucial step in
tasks such as road situation assessment [22], behavior
prediction [26], obstacle trajectory prediction [27], ego
vehicle trajectory generation, and controller implemen-
tation [8], [28]. Similarly, the literature addresses the EOT
problem for a single sensor only, either for Lidar or
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Radar, while no attempt has been made to exploit the
fused representation for EOT.

In this work, we propose an EOT algorithm that
provides an extent rich representation of the obstacles
by implementing a curvilinear coordinate-based rect-
angular measurement model in tracking recursion and
using fused measurement points from Lidar and Radar
sensors. This work presents the first approach to perform
EOT in curvilinear coordinates while using fused mea-
surements from Lidar and Radar sensors for the purpose.
The core contributions of the paper are:
• Extends the POT algorithm developed in [25] to

EOT in curvilinear road coordinates
• Implements the integration of road model in EOT

recursion for measurement filtering and birth inten-
sity definition

• Analyzes sensor fusion between lidar points and
radar detections for EOT.

• Demonstrates that the obstacle state representation
in curvilinear coordinates increases accuracy of state
estimation, especially for yaw angle estimation.

III. SENSOR DATA ACQUISITION AND PREPROCESSING

The experimental vehicle used to validate the pro-
posed algorithm is equipped with a Velodyne VLP-16
Lidar installed at the vehicle’s roof, which provides
PointCloud at 10Hz. In addition, two Continental ARS
408-21 Radars are installed at the front and rear of the
car, and a camera is facing forward [29]. The detections
obtained from the Radar sensors are expressed in Vehicle
Reference Frame (VRF) centered at the vehicle and are
obtained at 14Hz . Radars already provide a cluster
of detection supposedly generated from an obstacle.
Hence, very limited preprocessing is required to express
them in the cartesian coordinate VRF. Interested readers
are referred to our previous work, [25] for a detailed
explanation of the Radar preprocessing routine.

Raw Lidar measurements are obtained as 3D Point-
Cloud referenced to the Lidar sensor. Then, a series of
preprocessing operations are performed to this 3D Point-
Cloud data to move it to the desired 2D representation
to perform EOT. Indeed, in [10], the EOT algorithm is
developed for the measurements obtained from a 2D
Lidar sensor. Measurement in our work is also illustrated
in a similar fashion, i.e, projected into ground plane, to
perform rectangle fitting for developing the measure-
ment model in the filtering recursion. The preprocessing
pipeline for the Lidar data is illustrated in the Fig. 2.
In the first step of the pipeline, the Lidar PointCloud
is transformed to VRF from the Sensor Reference Frame
(SRF). Then, a plane fitting algorithm based on RANdom
SAmple Consensus (RANSAC) is used to remove the
points corresponding to the ground plane, as shown
in [30]. Consecutively, a preliminary filtering step is
implemented by exploiting the knowledge of the road
bounds to remove all points outside of it. At this stage

Fig. 2: Preprocessing of the Lidar PointCloud for the
Experimental Scenario:
a. Snapshot of the experimantal environment
b. 3D PointCloud data obtained from the scenario, ego
vehicle represented by the red bounding box
c. filtered 3D PointCloud as points corresponding to the
ground plane are removed
d. Pointcloud from object projected to the ground plane

of the PointCloud preprocessing, only the points suppos-
edly originated from the dynamic obstacles within the
road bounds are left. Any obstacle within the road bound
is assumed to be dynamic and is under consideration
for tracking in our application. The next step involves
projecting the PointCloud into the road plane using
the normal direction obtained in the previous RANSAC
implementation step. The output of this step is a set of
observed 2D points in VRF as illustrated by Fig. 2.d .

As assumed by the Poisson Point Process(PPP) spatial
measurement model p(Zk|Xk) [10], only measurements
generated from the surface of the object are required.
However, the output of the last preprocessing step can
possibly contain measurement points corresponding to
the inside of the obstacle as well. Although not visible
for our experimental setup due to our tracked vehicle’s
nearly perfect rectangular nature, this scenario was fairly
common in our simulation setup. Hence, in this step,
measurements supposedly generated from the sources
inside the vehicles are removed using a bearing cluster-
ing approach. In this approach, the bearing angles for
all the measurement points are computed with reference
to the VRF origin, and those points which fall under
the threshold of some angle are clustered together. From
each cluster, the closest point to the ego vehicle is chosen
while all others are discarded.

A. Sensor Fusion and Measurement Clustering

EOT algorithms are developed assuming that multiple
measurement points can generate from a single object.
Hence, correct clustering of these points based on their
source is crucial in developing these filters. However,
considering all possible clusters or partitions of these
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points in the update step of the filter can be computation-
ally intractable [31]. Therefore, a clustering approach is
used to compute measurement clusters that are believed
to stem from a single object with high confidence. Lidar
is used as the primary sensor, meaning the sensor fusion
module provides output only when Lidar measurements
are available. This fusion architecture aims to exploit
the precise object shape information obtained from the
Lidar sensor and complement it with velocity informa-
tion obtained from the radar sensor. Position values
obtained from radar detections were observed to be
extremely noisy and are hence disregarded. Meaning
measurements clusters are generated only when Lidar
measurements are obtained. Based on the availability of
the measurement, multiple scenarios can be anticipated:

1) Only Lidar Measurements are available: If only Lidar
measurements are available at given time instance k,
state estimates from last time instance, k − 1 are used
to perform measurement clustering. Since the state es-
timates are in curvilinear coordinates (s, n) and mea-
surements are in cartesian coordinates in VRF (E), a
conversion is required here. First, the state positional
values of the tracked objects are converted to VRF (E).
Measurement points within the object’s extent with some
defined threshold are put together into a single cluster.
Those points which are not selected into any cluster
corresponding to the object state are further clustered
using distance-based technique implemented in [31]. The
measurement RFS, Zk is represented as union of the Mk

c
cluster RFSs as expressed in Equation (1)

Zk =

Mc
k⋃

c=1

Cc
k, IDk =

{
Idc
}Mc

k
c=1 (1)

where, Mk
c is the number of measurement clusters. In

addition to this, each cluster set is assigned with an ID
,Idc to identify the nature of its origin and type of sensors
used to generate it. The measurement points in cluster
Cc

k only have positional values and are expressed as:

zE
k,j =

[
xE

j , yE
j

]
k

(2)

where, xE
j and yE

j are the relative position between the
ego vehicle and an obstacle.

2) Lidar and Radar Measurements are available: When
Radar measurements are also available in addition to
Lidar measurements, multi-stage clustering is employed,
and the Radar velocity components are integrated into
the measurement points. First, the clustering discussed
in the earlier section is performed, generating cluster sets
from Lidar measurement. Then cluster to Radar detec-
tion association is performed to assign velocity values
to measurement points inside the clusters. A greedy
association based on the nearest-neighbor approach is
done between Radar detections and cluster centroid.
However, only those Lidar clusters that come within a

certain distance of radar detections are assigned velocity
values; the remaining ones are left unchanged. This
clustering approach can provide two kinds of measure-
ment clusters, those with measurement points having
positional values only, zE

k,j =
[

xE
j , yE

j

]
k

and those with
positional and velocity values represented in Equation
(3).

zE
k,j =

[
xE

j , yE
j , VE

x,j, VE
y,j

]
k

(3)

Relevant Id are also assigned to these clusters based
on the fusion performed. Velocities, VE

x,j and VE
y,j are

computed as components of absolute velocity in X and
Y coordinates of VRF (E).

IV. PROBLEM FORMULATION

A. Measurement and Track State Representation

The proposed algorithm aims at providing a state
estimate of the obstacles around the ego vehicle in curvi-
linear road coordinates given the set of measurements,
expressed as Random Finite Sets (RFS), Zk. The measure-
ment points are divided into clusters by implementing
the clustering algorithm discussed in Section III and rep-
resented by Equation (1). Hence, the input to the filtering
algorithm would be Mc

k number of measurement clusters
at any given time instance. If Nk is the random unknown
number of the objects of interest in the FoV of the ego
vehicle at time instance k, the Random Finite Set (RFS)
representing the object states is:

Xk =
{

x1,k, x2,k...xNk ,k
}

(4)

where, xi,k is the state of the ith object and is made up of
kinematic and shape values corresponding to the object:

xi,k =
[
si, ni, vi, ξi, ξ̇i, Li, Wi

]T
k (5)

where, si is the relative distance between the ego vehicle
and the track i in curvilinear axis, while ni is the min-
imum lateral distance between the road centerline and
the track. vi is the track absolute velocity. ξi and ξ̇i are
the track relative yaw and yaw rate respectively to the
Road Reference Frame (Ro). Li and Wi are the length and
width of the track. In Fig. 3, #»se and #»ne are abscissa and
ordinate of the Road Reference Frame (Re) centered at
the nearest point corresponding to ego vehicle in road
centerline. Similarly, #»so and #»no are abscissa and ordinate
of the Road Reference Frame (Ro) centered at the nearest
point at the road centerline corresponding to the tracked
object under consideration.

B. Multi-Object Bayesian Filtering Recursion

A multi object Bayesian Filtering framework is devel-
oped to infer the tracked object state recursively through
the posterior probability distribution function (pdf)

p(Xk|Z1:k) given the set of measurements till time
instance k. The filtering recursion is developed with two
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Fig. 3: Representation of the Ego Vehicle and Obstacle
reference frames for the localization task on the road
with the curvilinear road coordinates

different steps, namely: Chapman Kolmogorov Predic-
tion and Bayes Update. Given the prior multi-object
distribution p(Xk−1|Z1:k−1) and motion model of the
system p(Xk|Xk−1), predicted distribution p(Xk|Z1:k−1)
is computed using Chapman Kolmogorov Prediction
formulation. To infer Xk, at time instance k, we employ
a Gaussian Mean Probability Hypothesis Density (GM-
PHD) filter with unscented transformations to deal with
the models nonlinearities. The detailed development of
the filtering recursion is discussed in the Section VI.

V. ROAD MODEL AND COORDINATE CONVERSION

The proposed tracking algorithm is developed assum-
ing that the road model is accurately known. A cubic
hermit spline mathematical model is used to describe
the road; readers are referred to [28] for details on
this model. For every point in the road, polynomial
parameters describing the road center-line position, its
heading, and curvature 30m ahead are provided. The
heading angle (θ) and road curvature (κ) are described
using polynomial and are expressed as:

θ(s) = aθs3 + bθs2 + cθs + dθ ,

κ(s) = aκs3 + bκs2 + cκs + dκ

(6)

where, s is a distance between the ego vehicle and object
along the road centerline, both localized in the road
reference frame. The parameters of these polynomials
can be accessed by localizing the ego vehicle in the
global road curvilinear coordinates. The origin of this
coordinate system aligns with the origin of the Global
Reference Frame, which is fixed at the starting point of
the experiment in the Monza Circuit.

Coordinate conversion from curvilinear (s, n) to carte-
sian (x, y) coordinates, which is the first step of the
proposed measurement model, can be found in our pre-
vious work, [25]. Pseudocode for this conversion is given
in Algorithm 1. This conversion model is based on a

Fig. 4: Schema of the obstacle detection and tracking
framework presented in this work. The input of the
system are lidar and radar data, plus the Ego Vehicle
localization. The output is a list of estimated obstacle
states in curvilinear coordinates.

piece-wise Euler Integration method, which significantly
differs from the model implemented in [22] and [26].
Authors in [22] implement a constant curvature-based
conversion model, which assumes the road curvature
to be constant in the conversion region. However, the
proposed model depends only on the road heading
angle, hence eliminating the errors propagated through
the constant curvature assumption.

VI. GM-PHD FILTER FOR EXTENDED OBJECT
TRACKING

In a Probability Hypothesis Density (PHD) filter,
the recursive algorithm is developed assuming the
prior, p(Xk−1|Zk−1), predicted p(Xk|Zk−1) and poste-
rior p(Xk|Zk) distributions to be a Poisson multi-object
distribution. The filtering recursion is developed by
propagating the first order statistical moment of the
distribution, i.e. PHD. A PHD D(x) when represented as
weighted Gaussian Mixture leads to Gaussian Mixture
Probability Hypothesis Density (GMPHD) filter and can
be parameterized as:

D(x) =
N

∑
i=1

wiN (x : µi, Pi) (7)

Hence, PHD at different steps of filtering recursion is
parametrized with a weight (wi) assigned to a Gaussian

6



Distribution, which in turn is parametrized with its mean
(µi) and covariance (Pi). The GMPHD filter discussed in
[31] is used for performing the EOT. Readers are referred
to this work for various assumptions and derivations of
the filtering algorithm. In [10] and [31], authors use EKF
as a Bayesian Estimator for performing object tracking;
however, due to the highly non-linear measurement
model involving multiple steps of conversion in our
work, we implement UKF as our estimator. The general
framework for filtering recursion in presented in the Fig.
4.

A. Filter Prediction
The predicted RFS, Xk|Zk−1 is computed as an union

of the surviving RFS from time instance k− 1 ,XS
k−1|Zk−1

and the new birth set at time instance k, Bk. The pre-
dicted distribution in the filtering recursion remains
Poisson multi-object distribution. Its PHD, Dk|k−1(x) can
be expressed as:

Dk|k−1(x) = DS
k|k−1(x) + λb,k(x) (8)

where, λb,k(x) is intensity of birth corresponding to birth
model and DS

k|k−1 is the intensity function correspond-
ing to the surviving objects. The birth intensity is also
approximated as Gaussian Mixture. Calculation of the
parameters of DS

k|k−1 : wi
k|k−1, µi

k|k−1 and Pi
k|k−1 is based

on UKF transformation through a constant turn rate
motion model.

1) Prediction of Surviving Objects: To predict the mo-
tion of the surviving objects through time instances,
we implement a constant turn rate motion model in
curvilinear road coordinates. Tests were carried out with
constant velocity motion model as well, but we validate
the algorithm with constant turn rate model to integrate
possible lane change scenarios. The center of rotation of
the obstacle is assumed to be in the rectangle centroid
of the tracked object. The motion model is represented
as:

s
n
v
ξ
ξ̇


k

=


sk−1 +

2
ξ̇k−1

vk sin( ξ̇k−1δt
2 ) cos(ξk−1 +

ξ̇k−1δt
2 )

nk−1 +
2

ξ̇k−1
vk sin( ξ̇k−1δt

2 ) sin(ξk−1 +
ξ̇k−1δt

2 )

vt−1
ξk−1 + ξ̇k−1δt

ξ̇k−1


(9)

The length(Lk−1) and Width(Wk−1) are kept constant
through prediction step. The process noise (ωk), assumed
to be Gaussian and additive, is also incorporated in
the motion model. The motion model can hence be
represented by the Equation (10).

xk = f (xk−1) + g(ωk) (10)

where, f (xk−1) represents the motion model given by
Equation (9) and g(ωk) process noise. µi

k|k−1 and Pi
k|k−1,

which are the mean and covariance of the weighted

Fig. 5: Birth Components based on sensor FoV and Road
Geometry and measurements of previous time instance.

Gaussian components are computed using the unscented
transformation. Furthermore, the weight of each Gaus-
sian component, wi

k|k−1 is scaled by the Probability of
Survival PS, which is assumed to be constant and state
independent value in our work.

2) Addition of Birth Components: We exploit informa-
tion of road network and bounds to define the birth
intensity, λb,k(x). In addition to this, those measurement
points which are very far from the preexisting tracks in
terms of Mahalanobis Distance are also used to initialize
new births components. Fig. 5 illustrates the Gaussian
components used to define these birth process.

λb,k(x) = λR,k(xe,k) + λk(Zk−1) (11)

Ego vehicle localization in the road, xe,k, the road geom-
etry and the FoV definition of sensors are used to define
the road based Gaussian components, λR,k(xe,k). Dis-
regarded measurement clusters from last time instance
Zk−1 are used to define intensity corresponding to mea-
surements, λk(Zk−1). State representation in curvilinear
road coordinates further facilitates this definition of the
birth components, for example, when the road bifurcates
in the scenario illustrated in Fig. 5.

B. Filter Update

Prediction step outputs p(Xk|Zk−1), which is multi-
object Poisson distribution of Poisson RFS Xk|Zk−1. The
PHD of this distribution, calculated by using equation
(8) is also approximated as a Gaussian mixture. A mea-
surement model is developed to update these inten-
sity parameters, which outputs predicted measurement
points in cartesian coordinates of VRF from the state in
curvilinear road coordinate.

1) Measurement Model: A single object measurement
model is discussed in this section, which is later in-
tegrated into the tracking iteration for the multi-object
tracking process. Let Ck =

{
zl
}|Ck |

l=1 be the set of measure-
ments generated from an object xi,k clustered together. A
measurement likelihood p(Ck|xi,k) needs to be calculated
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to define the measurement update step. Measurement
points within this cluster are assumed to be independent
of each other, hence the measurement likelihood can be
computed as:

p(Ck|xi,k) =
|Ck |

∏
l=1

p(zl |xi,k) (12)

A measurement point zl can be assumed to be generated
from a measurement generating point yl with some noise
e, i.e. zl = yl + e. Removing the point indices for clearer
representation, the likelihood of point z is expressed as:

p(z|x) =
∫

p(z|y)p(y|x)dy (13)

and approximated by Gaussian mixture as:

p(z|x) =
N

∑
i=1

wiN (z : yi(x), Ri),
N

∑
i=1

wi = 1 (14)

where, N is the number of Gaussian components used
to approximate the likelihood. This value is equal to
the numbers of measurement points in the given cluster,
Mc

k under consideration for track state update. It is also
assumed that each measurement generating point, y gen-
erates a single measurement point only. Development
of this measurement model requires the computation of
the measurement generating points Yk from the known
object state xi,k and obtained measurement cluster Ck.
Since the object state is in curvilinear coordinate(s, n),
the first step of this process would be to compute the
state in cartesian coordinate (x, y) in VRF (E).

Coordinate Conversion: This conversion process is
illustrated in the Fig. 6 and pseudocode in Table 1. The
pseudocode algorithm provides the conversion for the
positional values of the state( s, n to x, y), the velocity
value remains the same while the yaw and yaw rate
conversions are given by equations (15).

ψ = ξ + θo − ψe

ψ̇ = ξ̇ + κo.v.cos(ξ)− ψ̇e
(15)

where, κo is the curvature of the road component cor-
responding to the obstacle position. ψe and ψ̇e are
yaw and yaw rate of ego vehicle. The output of this
conversion step is the object state in VRF (E), xi,k =[
x, y, v, ψ, ψ̇, L, W

]T
i,k. It is important to notice that the

yaw and yaw rate are relative values in VRF.
Computing Measurement Generating Points: In the

second stage, the measurement generating points are
computed from the object state by closely following the
model developed by [10] with modifications to include
velocity components. The process is discussed here for
completeness. In [10], authors only use measurements
obtained from the Lidar sensor to develop the mea-
surement model, however, this work further extends it
by using the measurement points obtained from sensor
fusion module from Lidar and Radar sensors. To develop

Fig. 6: Representation of the curvilinear and cartesian
coordinate system in Vehicle Reference Frame

Algorithm 1 Curvilinear To Cartesian :Euler Model

Input: (x, θr, xe ,EgoPosition)
Computations:
θ̄ = θr(EgoPosition)
Discritize sa ←− 0 : δs : s
N ←− length(sa)
θa ←− θ̄(1)s3

a + θ̄(2)s2
a + θ̄(3)sa + θ̄(4)

θo ←− θa(end)
Position Coordinate Conversion
for n=2 to N do

xn ←− xn−1 + δs cos(θa(n))
yn ←− yn−1 + δs sin(θa(n))

end for
xc ←− xN

yc ←− yN

xg ←− xc + n cos(π
2 − θ0)

yg ←− yc + n sin(π
2 − θ0)

ξ ←− xe(2)
ψ←− xe(3) ←− Ego Vehicle Yaw Angle
x ←− cos(ψ)xs − sin(ψ)ys
y←− sin(ψ)xs + cos(ψ)ys + xe(1) cos(ξ)
Output: (x,y)

this model, the Lidar sensor is taken as a primary sensor,
i.e., measurement points are used to update the object
state only when measurements from Lidar are available.
The measurement points in the cluster Ck are sorted
in counter-clockwise direction based on their bearing
angle, and predicted measurement generating points are
similarly arranged, eliminating the need to perform the
association between these points. The likelihood then
becomes,

p(C|x) =
|C|

∏
l=1
N (zl ; yl(x), σ2

r I2) = N (zC; yC(x), SC) (16)
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where, zC is measurement points vertically concatenated
and yC(x) is predicted measurement generating points
vertically concatenated as well. SC is the measurement
innovation matrix. The model is developed with an
assumption that the sensor can see a maximum of two
sides of the rectangular object at a time instance. Based
on this assumption, two models are developed.

Single Sided Measurements: For the state xi, let α1,α2,α3
and α4 be the angles made by normal of the sides of
the rectangle. Let β represent the angle made by the
vector from the first to last measurement point in the
cluster. The measurements are associated to ith side of
the rectangle, which satisfy the condition:

imin = argmini|αi − β + π/2| (17)

The measurement generating points are computed to be
spread along the associated side based on the extent of
the spread of the measurement points in Ck.

Double Sided Measurements: If the measurements in Ck
are deemed to be two sided measurements, a corner
index is computed to separate the measurements into
two single sided measurements. The corner index, n
is computed by least squares fitting lines. By doing
so, Ck is split into two sub sets, Ck,1 =

{
zl
}n

l=1 and

Ck,2 =
{

zl
}|Ck |

l=n+1. Now, the single sided model is applied
to each sub set to obtain the predicted measurement
generating points.

2) State Update: The posterior PHD is computed as:

Dk|k(x) = DND
k|k (x) + ∑

Ck∈Zk

DD
k|k(x, Ck) (18)

where, the PHD, DND
k|k (x) is computed for the unde-

tected objects, while DD
k|k(x, Ck) is computed for detected

objects using the measurement clusters which are the
output of the sensor fusion module. The PHD corre-
sponding to the detected objects is given by:

DD
k|k(x, Ck) =

Nk|k−1

∑
i=1

wi,Ck
k|k N (x : µ

i,Ck
k|k , Pi,Ck

k|k ) (19)

To compute the posterior parameters, wi
k|k, µi

k|k and Pi
k|k

for the cluster Ck, update recursion of UKF is used. What
follows is the update of the Gaussian components of the
predicted density with the a measurement cluster Ck; it
should be noted that the measurement points at time
instance k, Zk would be divided into multiple cluster
as an output of the clustering algorithm discussed in
Section III.

The predicted measurement mean (yi,C
k|k−1) and Innova-

tion covarience matrix (Si,C
k|k−1) for Gaussian component i

and cluster Ck can be calculated by using the Equations
(20) and (21).

yi,C
k|k−1 =

2n+1

∑
α=1

wαζ i,C
α,k|k−1 (20)

Si,C
k|k−1 =

2n+1

∑
α=1

wα[ζ
i,C
α,k|k−1− yi,C

k|k−1][ζ
i,C
α,k|k−1− yi,C

k|k−1]
T + RC

(21)
where, RC is the measurement noise covarience matrix
obtained as RC = blkdiag(Rk, Rk......Rk). Definition of
Rk depends on the type of the measurement cluster
Ck, whether it has standalone Lidar points or the fused
points form Lidar and Radar sensors. The noise for Lidar
only points consider the noise between the measure-
ment generating points and the measurement in spatial
space while fused ones also consider the radar noise
for the velocity components. ζ i,C

α,k|k−1 are the predicted
measurement sigma points computed by passing state
sigma points,χi

α,k|k−1 through the measurement model
discussed earlier. Finally, the cross correlation matrix
between the predicted state and predicted measurement
is calculated in Equation (22).

Ti,C
k|k−1 =

2n+1

∑
α=1

wα[χ
i
α,k|k−1 − µi

k|k−1][ζ
i,C
α,k|k−1 − zi,C

k|k−1]
T

(22)
Next, the Kalman gain can be calculated using this cross
correlation matrix as:

Ki,C
k|k−1 = Ti,C

k|k−1(S
i,C
k|k−1)

−1 (23)

and the predicted mean of Gaussian component i is
updated by measurement cluster Ck as:

µi,C
k|k = µi

k|k−1 + Ki,C
k|k−1(z

C
k − yi,C

k|k−1) (24)

while, the covarience matrix is updated as:

Pi,C
k|k = Pi

k|k−1 − (Ki,C
k|k−1)S

i,C
k|k−1(K

i,C
k|k−1)

T (25)

the weight of the each Gaussian component is also
updated as:

wi,C
k|k =

PDwi
k|k−1ΓiLi,C

δ|C|,1 + ∑
Nk|k−1
i=1 ΓiPDwi

k|k−1Li,C
(26)

where,Li,C is computed using Equation (27):

Li,C = N (zC
k : yi,C

k|k−1, Si,C
k|k−1) ∏

zk∈Ck

1
λkck(zk)

(27)

and Γi is computed as:

Γi = e−γi
(γi)|C| (28)

Standard mixture reduction techniques like: pruning,
merging and capping are employed to ensure the
tractability of the algorithm.
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Fig. 7: Cardinality and GOSPA values computed for
estimated states for multi-object tracking scenario

VII. ALGORITHM VALIDATION

The proposed EOT algorithm provides estimates of the
kinematic and extent state of objects within road bounds
in curvilinear road coordinates. The state estimates are
computed from the measurements obtained from Lidar
and Radar sensors. Precomputed HD road map is inte-
grated into the EOT GM-PHD filtering routine. The algo-
rithm is validated through simulation and experimental
data.

A. Simulation Validation

A multi-object scenario is developed in Matlab Driving
Scenario Designer application to validate the algorithm.
Here, we present one of the scenarios with high road cur-
vature and obstacles performing various maneuvers. The
simulated scenario is made available in GIF format here.
This visualization contains all the sensor data along with
the obtained state estimate in curvilinear coordinate.

Fig. 7 illustrates how the algorithm can consistently
provide obstacle state estimates with reasonable accu-
racy. The scenario is simulated with two different setups,
one using both Lidar and Radar sensor while another
with Lidar data only. Results in Fig. 7 show that EOT
employing sensor fusion between lidar and radar sen-
sor performs better in relation to the localization error
component of the Generalized Optimal sub-pattern as-
signment (GOSPA) metric, [32]. The peaks in the GOSPA
values are observed due to occlusion in the driving
scenario and error in ground truth cardinality estimation
for defined FoV in the simulation environment.

Furthermore, we observed that the obstacle state rep-
resentation in curvilinear coordinates enables for bet-
ter accuracy in obstacle state estimation. In Fig. 8,
the GOSPA values are computed for two different ap-
proaches for single object tracking scenario, in first ap-
proach, the obstacles states are represented in cartesian
coordinates while in second approach states are repre-
sented in the curvilinear coordinates. For comparison
with the ground truth, the states computed in curvilinear

Fig. 8: Top: GOSPA values computed with state represen-
tation in cartesian and curvilinear coordinates Bottom:
Yaw angles estimates obtained with state representation
in cartesian and curvilinear coordinates.

Fig. 9: Experimental Test site, Monza Circuit

coordinates are converted to cartesian coordinates. It
can be observed that the state estimation in curvilinear
coordinates allows for better accuracy in terms of ob-
ject localization and especially computation of the yaw
angle. (GIF for the scenario available here. ).

B. Experimantal Validation

For safety reasons and to acquire an accurate ground
truth, the algorithm is validated using data collected
during experimental campaigns at Monza Eni Circuit, as
shown in Fig. 9. The experiment consists of the ego pro-
totype and another tracked vehicle installed with RTK
corrected GPS (Real Time Kinematic Global Positional
System). The tracked vehicle used in the experiments
is FIAT Talento, with size 4.8m × 2m × 2m. The algo-
rithm is analyzed by dividing a single lap run at the
Monza circuit into various segments based on mutual
maneuvers between the ego vehicle and the obstacle and
the degree of the road curvature. Given that the output
of the Lidar preprocessing is at 10Hz, the object state
estimation routine runs at 10Hz on a soft real-time-based
Robot Operating System (ROS) system [33].

The scenario under investigation here is taken from
the “Variante Del Roggia” segment of the track. We
choose this scenario because of its significantly varying
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(a) Comparison of longitudinal state estimates (b) Comparison of lateral state estimates

Fig. 10: Positional state estimates obtained from different tracking approaches with ground truth for Scenario 1

(a) Comparison of yaw angle estimates (b) Comparison of shape parameters estimates

Fig. 11: Yaw angle and shape parameters estimates obtained from different tracking approaches with ground truth
for Scenario 1

road curvature, as can be observed in Fig. 9. The results
of the experimental scenario are made available in GIF
format here for further clarity. Additionally, results cor-
responding to the scenario at ” Variante Del Rettifilo ”
are attached here as well. In this scenario under analysis,
an object-following maneuver is developed while the
ego vehicle sees single and double sides of the object,
necessitating the switch between single side and double
sides measurement models. The velocities of the vehicles
are around 18m/s during this experiment.

We performed a comparative study with various re-
cent algorithms to validate our proposed approach. In
our previous work, [25], a Point Object Tracking (POT)
implementation of Global Nearest Neighbour (GNN)
filter with UKF estimator, object states are computed in
curvilinear coordinates. However, with POT assumption,
no object’s shape and yaw angle estimates are per-
formed. The algorithm is able to provide object estimates
at 20Hz. State estimates using Occupancy Grid (OG)
based tracking technique, [5] provides object shape as
well as yaw angle estimate and operates at 10Hz. A

GMPHD filtering recursion with UKF estimator using
spline measurement model proposed by [34] is also de-
veloped for validation of the proposed approach. States
estimates are obtained at a frequency of 6Hz. Further-
more, the results obtained with two different setups of
the proposed algorithm, first using Lidar data only as
input and second with fused data from both Lidar and
Radar sensors are compared.

In Fig. 10, the results of this scenario are illustrated.
These comparisons are made in VRF (E) based on carte-
sian coordinates because of the unavailability of ground
truth in curvilinear coordinates. Estimated object states
obtained from our proposed algorithm and [25] are
converted to cartesian coordinates for comparing with
the ground truth. The ground truth values in the carte-
sian coordinates are obtained from an RTK-GPS sensor
installed in the tracked vehicle. The proposed algorithm
outperforms the other algorithms in terms of positional
accuracy of the estimated state. A root mean square error
of 0.401m and 0.51m were observed respectively for the
setup with and without sensor fusion for the proposed
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Fig. 12: Comparision of GOSPA metric for different
algorithms

algorithm.
Fig. 11a illustrates the results obtained from different

algorithms for yaw angle estimates. Due to the unavail-
ability of the ground truth values for the yaw angle,
results from different algorithms are compared among
themselves. Visual assessment of the scene showed that
the proposed algorithm can estimate the yaw angle with
reasonable accuracy. The fluctuation of the yaw estimate
from the OG-based technique is due to the nature of
the detection obtained from the OG-based detector. As
illustrated here, the algorithm cannot differentiate be-
tween the leading side of the bounding box and can
provide wrong estimates. For the Spline measurement
model-based EOT tracker, yaw angle estimates were
observed to be erroneous due to the rapidly changing
curvature of the road and only a single side of the
tracked object being observed during this maneuver. Due
to the integration of the road model and object state rep-
resentation in curvilinear coordinates, estimation from
the proposed algorithm is significantly better than the
presented alternatives. Fig. 11b validates the extent esti-
mates obtained from the proposed algorithm. The width
estimated from the proposed EOT algorithm is con-
firmed with the outcome of the OG-based approach and
the ground truth (approximately 2m). Spline measure-
ment model-based EOT tracker over estimates width at
multiple instances. The length estimates from the OG-
based approach, which can compute the length observed
by the Lidar sensor only, strongly underestimates the
length at multiple time instances. The proposed EOT
algorithm’s length estimates closely match the ground
truth (approximately 4.8m) and outperform the spline
measurement model-based EOT algorithm estimates.

The proposed approach is presented as a filtering
algorithm and hence is validated using the GOSPA
metric. The GOSPA values obtained for the various
algorithms are illustrated in the Fig. 12. We observe
that the use of sensor fusion for EOT provides better
state estimates, and state representation in curvilinear
coordinates reduces the localization error of the tracked

object. The algorithm can also provide state estimates
with reasonable GOSPA values except for the instances
in between 7s to 9s. The GOSPA performs poorly due to
sudden drift in ground truth values obtained from the
track GPS sensor. This drift can also be observed in the
Fig. 10a.

VIII. CONCLUSIONS AND FUTURE WORKS

The key contribution of this work is to provide state
estimation of dynamic objects within road bounds in
curvilinear road coordinates. Extended object representa-
tion of these objects enables estimation of the kinematic
and extent state. A GM-PHD Filter for EOT with a
UKF estimator is used for this estimation process. A
hybrid sensor fusion architecture consisting of Lidar
and Radar is employed to obtain information regarding
these objects. The algorithm is validated through simula-
tion, and experimental data collected from the test runs
at the Monza Eni. Circuit. A comparative study with
the Occupancy-Grid-based tracking technique, Point Ob-
ject Tracking in curvilinear coordinates, and EOT with
spline-based measurement model is explored to validate
the object state estimates obtained using the EOT algo-
rithm. We also demonstrate that the state representation
in curvilinear coordinates increases the accuracy in yaw
angle estimate in high road curvature scenarios.

Future work will focus on generalizing the proposed
approach, removing constraints on the object’s shape.
Tracking objects other than vehicles requires a differ-
ent approach than predefined rectangular shapes to
compute measurement generating points. Gaussian Pro-
cesses, Splines models, etc., can be explored to develop
star convex-shaped object models that provide free-form
object shape.
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