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A B S T R A C T   

We characterize key features of subsurface flow paths relying on an energetic and probabilistic perspective. We 
consider subsurface flow in a free aquifer system as mainly ruled by gravity, the latter acting as the key driving 
force. Therefore, we study groundwater circulation relying upon stochastic simulations of aquifer bottom 
topography inferred from stratigraphic observations. Upon resting on the concept of optimal channel networks, 
we identify Preferential Groundwater Networks (PGNs) as spatially organized structures carved by locally 
following the steepest gradient associated with the aquifer bottom topography. A probabilistic description of 
PGNs is obtained by reconstructing the aquifer bottom topography as a spatial random field conditional on the 
available information, and using diverse area threshold values for PGNs delineation. We find that PGNs inferred 
from the (ensemble) averaged bottom topography with the highest area threshold considered are strikingly 
consistent with main flow directions and key subsurface flow patterns inferred from available piezometric data. 
The probabilistic distribution of PGNs is also consistent with geological and hydrogeological information at our 
disposal, such as geological data (and ensuing hydrogeological sections), and is coherent with the nature of the 
aquifers investigated.   

1. Introduction 

Delineation of main subsurface flow directions within complex 
hydrogeological systems is relevant to a variety of engineering and 
environmental scenarios. We address this challenging issue through a 
slope-driven phenomenological interpretation of subsurface flow. We do 
so upon leveraging on some of the key concepts developed for surface 
hydrology and ground our analysis on energy extremal principles (e.g., 
Banavar et al., 2000; Rodriguez-Iturbe et al., 1992; Rinaldo et al., 2006; 
Hergarten et al., 2014) to set-up a stochastic framework for the 
demarcation of preferential pathways across a subsurface aquifer system 
in the presence of scarce hydrogeological information. 

One of the earliest thermodynamic perspectives on landscape evo-
lution was proposed by Leopold and Langbein (1962). These authors 
illustrated the concept of entropy as a driver to landscape evolution. 
They relied on the depiction of a river system through a thermodynamic 
engine model and considered the principle of least work (or, equiva-
lently, constant entropy production per flow volume) to show that the 

most likely profile of (potential) energy distribution along the entire 
channel extent can be represented through an exponential functional 
format. Yang (1976) extended this concept and termed it minimum 
stream power. Howard (1971) proposed that river junctions form angles 
that are arranged in such a way that they minimize stream power. 
Howard (1990) expanded this idea by considering that the topology of 
river networks reflects an energy optimum, a concept that is formulated 
through a minimization of the total energy dissipation in the network. 
Rinaldo et al. (1996) and Rodriguez-Iturbe et al. (1992) further 
contributed to these elements upon postulating that optimal drainage 
networks minimize overall energy dissipation. These authors relied on 
the assumption of uniform work per unit flow volume, which in turn 
implies that the least-demanding energy paths are always identified by 
the collection of points where local topographic gradients are largest. 

In line with these ideas, river networks have been broadly analyzed 
to extract their tree-like topologies from terrain elevation and energy 
extremal principles (e.g., Tarboton et al., 1989; Howard, 1990; Tarboton 
et al., 1991; Tarboton, 1997; Orlandini and Moretti, 2009) and connect 
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these to a statistical description as well as scaling law of synthetic river 
networks mimicking natural scenarios (Rodriguez-Iturbe et al., 1992; 
D’Odorico and Rigon, 2003; Reis, 2006). Minimum energy expenditure 
across a river network implies, in turn, that power (i.e., kinetic energy 
flux through the network) is maximized. In this context, Kleidon et al. 
(2013) showed that structural growth in the topology of connected river 
networks can be characterized through maximization of kinetic energy 
transfer to transported suspended sediments. Along these lines, Schroers 
et al. (2021) found evidence that steady state runoff at irrigated hill-
slopes developed to a maximum power state, where power is equally 
distributed into sheet and rill flow. 

Hergarten et al. (2014) transferred minimum energy dissipation 
concepts to groundwater systems. They analyzed preferential flow paths 
that minimize the total energy dissipation associated with a given 
recharge, under the constraint of an assigned total porosity. Comparing 
their findings against observations of spring discharge in the Austrian 
Alps, these authors highlighted some limitations affecting their pro-
posed energy-minimization strategy. The role of bedrock topography in 
subsurface flow description and quantification was analyzed by Cam-
porese et al. (2019). Berkowitz and Zehe (2020) underlined the need for 
additional studies to develop a unified theoretical framework 
comprising surface and subsurface water networks starting from a 
comprehensive analysis of fractal behaviors and (power-law based) 
statistical descriptions that are documented for these systems in diverse 
contexts. Leveraging on energy concepts, Zehe et al. (2021) analyzed 
fluid flow and solute transport in (synthetically generated) randomly 
heterogeneous hydraulic conductivity fields and found that high solute 
concentrations associated with preferential pathways can be correlated 
with an elevated power in fluid flow therein. 

Here, we rely on the concepts illustrated above and mainly devel-
oped in the context of surface hydrology and on the idea that seemingly 
diverse natural phenomena may share similar features. In this context, 
we identify the probability distribution of preferential subsurface water 
pathways across an aquifer system (i) on the basis of a stochastic 
reconstruction of aquifer bottom topography conditional on available 
data, and (ii) by making use of energy-minimization concepts. Relying 
on a stochastic description of the topography of an aquifer bottom is 
fully consistent with the scarce availability of (geological, sedimento-
logical, and hydrogeological) information. These are typically confined 
to a limited number of observation boreholes across the subsurface 
system and are typically tackled in a stochastic context, their associated 
uncertainty being then propagated onto target quantities of interest 
(e.g., Bianchi Janetti et al., 2019 and references therein). As a recent 
example, MacKie et al. (2020) relied on stochastic co-simulations of 
bedrock elevation and ice-penetrating radar data to assess the way un-
certainty in the description of subglacial topography propagates onto a 
probabilistic description of the routing of water at the glacier bed. 

In this framework, we describe the aquifer bottom topography as a 
random spatial field and model it through a geostatistical framework, 
which enables us to obtain multiple realizations conditional on available 
information. These are then embedded in a Monte Carlo framework 
within which we rely on energy minimization concepts to quantify the 
spatial distribution (i) of subsurface preferential pathways within each 
system realization and ultimately (ii) of the probability that a given 
location in the domain is associated with a preferential pathway. We 
recall that, upon assuming that the amount work per unit flow volume 
along the preferential flow network be uniform, we consider the most 
probable subsurface paths to be those where local potential energy 
gradients are maximized, while subsurface flow is spatially self- 
organized above the aquifer bottom. 

Our conceptual framework and operational methodology is then 
applied in a large-scale subsurface water system located in Italy, upon 
relying on a set of available geologic-stratigraphic information, to yield 
a probabilistic description of Preferential Groundwater flow Networks 
(PGNs). The study is organized as follows. Section 2 describes the field 
setting and the available data as well as the key elements underpinning 

the theoretical framework of analysis. Section 3 illustrates the results of 
the stochastic simulations of PGNs, key conclusions being then drawn in 
Section 4. 

2. Materials and methods 

2.1. Field setting and available data 

Our study considers a large-scale subsurface water system located in 
the province of Lecco (Northern Italy) and encompassing a planar extent 
of approximately 31 × 25 km2 (see Fig. 1 for a schematic depiction of the 
area). It is located in the region delimited at the Eastern and Western 
boundaries by the two major rivers in the area (i.e., Adda and Lambro, 
respectively). The current morphology of the area is mainly due to 
glacial actions which, through deposition and deep excavation of the 
prequaternary structures, have driven the deposition of moraines, 
mainly characterizing the northern and central portion of the study area. 
Subsequently, the action of surface waters remodeled the local relief 
allowing the formation of river terraces. Limestone formations with 
some karst patterns, which then degrade toward South into sand and/or 
gravel formations, can be observed in the northern portion of the system. 
Major alluvial deposits with clay lenses are a key trait of the southern 
segment of the region. The main phreatic aquifer is hosted within these 
sediments. The most productive area is located in the southern region, 
where the phreatic surface aquifer is characterized by an average 
thickness of about 35 m (with the largest depth of approximately 95 m 
below ground level). This aquifer is mainly composed by sand and gravel 
alluvial geomaterials, with the presence of moraine deposits and rests on 
a clayey horizon which is mostly continuous in space (Beretta et al., 
1984). Groundwater circulation in this free surface alluvial aquifer is 
characterized by several paleochannels, these being more evident within 
the Adda river area (Cavallin et al., 1983). 

We rely on geologic-stratigraphic information from N = 222 bore-
holes (depicted in Fig. 1). These are employed to identify the elevation zn 
(x, y) (n = 1, 2, …, N; x and y representing planar coordinates) of the top 
of the low permeability layer underlying the phreatic aquifer, within 
which we apply our approach to the identification of PGNs (see Section 
2.3). The value of zn(x, y) assigned at a given borehole location is 
selected upon assessing that it corresponds to the top of a layer of a 
clayey or rock geomaterial with a local thickness larger than (or equal 
to) 1 m. These data are then embedded in a geostatistical analysis 
framework (see Section 2.2) to yield a collection of (conditional) Monte 
Carlo (MC) realizations characterizing the level of uncertainty associ-
ated with the elevation of the bottom of the free surface aquifer system 
and hence of the spatial distribution of the PGNs in the region. A total of 
8 geologic cross-sections (whose traces are included in Fig. 1) are 
delineated on the basis of the available stratigraphic information. These 
are employed to assess the overall consistency of the results obtained 
with our approach and the general geological setting of the region. 

Additional available data used in our study include precipitation 
records collected between the years 2008 and 2018 at 15 rain gauges (8 
of these are comprised in the study area; Fig. 1), land cover information, 
as well as water levels monitored at surface water bodies (for a total of 5 
hydrometric monitoring stations for the Adda and Lambro rivers and the 
lakes of Como and Pusiano; see their location in Fig. 1). With reference to 
available historical piezometric reconstructions, we consider the infor-
mation that is available (and that is currently employed by local regu-
lators and regional agencies; see Data Source Section) as a basis against 
which we assess the overall consistency of our main results. Average 
groundwater flow is from North to South (Beretta et al., 1984), the Adda 
river generally draining water from the aquifer while the Lambro River 
recharges the aquifer in the northern sector (close to the Pusiano Lake; 
see Fig. 1) and drains it at locations in the southern sector (see also 
Section 3). Data sources are listed in detail in the Data Source Section. 
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2.2. Conditional simulations of aquifer bottom topography 

We start from available borehole data identifying local elevations of 
the bottom of the free surface aquifer, zn (x, y), and discretize the domain 
onto a lattice comprising m = 77,500 square pixels. Each of the latter is 
characterized by a side L = 100 m and is identified by the coordinate of 
the centroid, xc = (xc, yc) (c = 1, 2, …, m). We treat the aquifer bottom 
elevation as a spatial random field and consider an isotropic variogram 
model to describe its geospatial structure. Variogram parameters are 
estimated through a Maximum Likelihood (ML) approach (details not 
shown). 

We obtain a collection of NMC conditional random realizations of the 
aquifer bottom topography through the widely known and tested soft-
ware SGSIM (Deutsch and Journel, 1997). Subsurface gravity-driven 
flow is then characterized within the context of an energy minimiza-
tion framework (see Section 2.3) across each of these realizations to 
include the way an imperfect knowledge of aquifer bottom topography 
propagates onto the spatial distribution of preferential groundwater 
flow networks in a field setting. 

2.3. Free energy and dissipation in Preferential Groundwater Networks 
(PGNs) 

An energetic perspective on dissipation associated with groundwater 
flow can be considered upon recalling that due to the first law of ther-
modynamics the variation in internal energy of a system equals a vari-

ation of work and a variation of heat, Qh [J], the overall energy being 
conserved. Note that the potential of a system to perform work is 
equivalent to free energy, while a variation in heat corresponds to the 
product of a variation in entropy S [J K− 1] and absolute temperature T 
[K], i.e., δQh = T δS, as introduced by Clausius (1857). The second law of 
thermodynamics states that entropy is produced during irreversible 
processes, while it cannot be consumed. This implies that isolated sys-
tems, which neither exchange mass, nor energy, nor entropy with their 
environment, reach a dead state of maximum entropy called thermo-
dynamic equilibrium in which all potential gradients have been 
depleted. Kleidon (2016) distinguishes three types of physical entropy, i. 
e., thermal entropy produced by friction and depletion of temperature 
gradients, molar entropy produced by mixing and depletion of chemical 
potential/concentration gradients, and radiation entropy produced by 
radiative cooling and depletion of radiation temperature differences. 
From the first and second law of thermodynamics one can conclude that 
free energy is not conserved, as it corresponds to the variation in internal 
energy minus the variation in heat within a given time frame during 
which entropy is produced. Free energy dissipation and entropy pro-
duction are thus inseparable, and maximization of the entropy of an 
isolated system occurs due to conservation of energy at the expense of 
minimizing its free energy. An open system may nevertheless persist in 
steady states of lower entropy if it is exposed to a sufficient influx of free 
energy to sustain the necessary physical work that needs to be performed 
to act against the natural depletion of the internal potential gradients, or 
even to steepen them and further reduce the entropy. Order in an open 

Fig. 1. Sketch of the investigated domain. Locations of available borehole data, rain and river/lake gauges, and traces of geologic sections are also included.  
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system thus manifests through persistent gradients and an entropy lower 
than the maximum. Steps to higher order and lower entropies imply a 
steepening of internal gradients. This is exactly what occurs when 
preferential flow in groundwater emerges, as the fluid tends to 
concentrate in localized preferential pathways. 

The free energy balance associated with groundwater fluxes can be 
formulated considering the free energy fluxes per unit area, JE

free [J s− 1 m− 2], 
and the amount of dissipated energy per volume, d [J s− 1 m− 3], in the 
form: 

∂efree

∂t
= − ∇⋅JE

free − d, (1) 

efree[J m− 3] being free energy per unit volume. Advective fluxes of 
free energy forms associated with fluid flow in an aquifer are formed by 
three components: mechanical, JE

H, potential, JE
pot, and kinetic, JE

kin, en-
ergy fluxes, evaluated as: 

JE
H = qρgH; JE

pot = qρgz; JE
kin = qρ v2

2
, (2) 

where q [m s− 1] is the groundwater flux vector, ρ[kg m− 3] is density 
of water; g [m s− 2] is gravitational acceleration; v [m s− 1] is the 
magnitude of fluid velocity; and H and z [m] are pressure head and 
geodetic elevation, respectively. Note that while kinetic energy is pro-
portional to v2, the kinetic energy flux corresponds to the product of the 
volumetric water flux q and its kinetic energy density, ρ v2/2. Thus, the 
kinetic energy flux is proportional to v3 and is very small in common 
groundwater flow conditions characterized by low values of the Rey-
nolds’ number. By inserting Eq. (2) into Eq. (1) and assuming a constant 
fluid density, we obtain: 

∂efree

∂t
= − ρg ∇⋅[q(H + z) ] −

1
2

ρ∇⋅
[
qv2] − d. (3) 

Here, we consider a free surface aquifer, where flow is a gravity- 
driven process taking place over an impervious topographic surface, 
mechanical energy being neglected with respect to the other terms. In 
contrast to a setting associated with a river network, kinetic energy in a 
groundwater flow network can also be neglected (e.g., Loritz et al., 
2019). Hence, considering Eq. (3), the energy dissipated per unit volume 
(i.e., per unit cross-section and per unit length of the preferential flow 
path) at steady-state conditions can be evaluated as: 

d = − ρg q⋅∇z. (4) 

Energy dissipation within a segment of length li along the network is 
given by: 

Di = ρgQi|∇zi| li, (5) 

where Qi and |∇zi| are the groundwater discharge and the local slope 
associated with segment li, respectively. The total dissipation of free 
energy within the network upstream of a given point (or section) cor-
responds to the sum of Di over all segments conveying to such a point (or 
section). 

The trivial solution that minimizes dissipation is the case of a zero 
discharge in the network. A non-trivial solution requires an assumption 
about the way the Qi is growing along the network. Considering a 
spatially uniform and steady-state recharge, r, leads to Qi = rAi, Ai being 
the upstream catchment area (see also Rodriguez-Iturbe et al., 1992 for 
additional details), expressed hereafter as pixels accumulation Ai = A(xi)

[-] (in cell units), i.e., as the sum of upstream pixels k conveying flow to 
pixel i (Balister et al., 2018): 

Ai = A(xi) =
∑Np− 1

k=1
Wki A(xk)+ 1, (6) 

where (Np − 1) is the number of pixels conveying groundwater flow 
to pixel i, and Wki is the connectivity matrix for a given realization of the 
topographic surface. Non-zero entries of Wki correspond to all subsets of 

connected pixels evaluated for each topography realization. Note that 
quantity Ai = A(xi) corresponds to the number of pixels connected to a 
given reference pixel i in the domain. 

We recall that the theory of optimal channel networks (OCNs) is 
based on an empirical power-law formulation relating Ai and the local 
slope of the topographic surface, i.e.: 

Aγ
i |∇zi| = const → |∇zi|∝Q− γ

i . (7) 

where the value of γ is comprised in the unit interval. Studies based 
on the analysis of river networks (e.g., Hack, 1957; Tarboton et al., 
1989; Banavar et al., 2000) suggest a value of γ approximately equal to 
0.5. With reference to a groundwater system, Hergarten et al. (2014) 
assume a power law relationship between conductivity (K) and porosity 
(ϕ), i.e., K∝ ϕn, and show that an optimal distribution of porosities and 
conductivities (Eqs. (29)-(30) of Hergarten et al., 2014) can be obtained 
when γ = (n − 1)/(n + 1). The value of the exponent n (≥2) is site- 
specific. As an example, Riva et al. (2008), on the basis of K and ϕ 
laboratory data obtained from drilled core samples collected within an 
alluvial system in the Neckar river valley (Germany), estimate n =
2.857, thus leading to γ = 0.481. Thus, while the topic deserves addi-
tional detailed studies and we do not pursue it further in this study, 
considering γ ≈ 0.5 appears as a plausible interpretive choice also for 
PGNs. 

Substituting Eq. (7) into Eq. (5), yields 

Di∝ρg|∇zi|
1− 1/γ li. (8) 

Therefore, according to Eq. (8), a PGN (in a way similar to what has 
been shown for the identification of OCNs in the context of river net-
works, see, e.g., Balister et al., 2018) can be constructed by driving 
subsurface flow along directions associated with the steepest gradients 
of the aquifer bottom topography. 

In Section 3 we rely on each topography realization of the aquifer 
bottom (see Section 2.2) to delineate a collection of networks described 
as connected subsets of pixels to form an oriented tree-like topology. A 
given pixel i of a network associated with a topography realization, i.e., 
xi(xi, yi), is surrounded by up to eight j neighboring pixels through a 
corresponding number of links, each denoted as ℓi, and forming a Si 
neighborhood of j links. The Euclidean distance li associated with the 
link ℓi between adjacent pixels xj and xi is taken as li = aL, where L is the 
characteristic pixel size, a being equal to 1 or 

̅̅̅
2

√
when moving along 

directions parallel to the sides or to the diagonal of a given square pixel, 
respectively. Delineation of the PGN for each realization of the aquifer 
bottom requires treating isolated pixels (typically termed pits or no- 
escape flow cells) on the topographic surface through the application 
of a correction term, the latter being embedded in a Pit Removal algorithm 
(Tarboton et al., 1989; Tarboton, 2013). The direction of groundwater 
flow from a cell j to an adjacent cell i is then evaluated upon ensuring the 
largest elevation drop, i.e.: 

Δz
(
xj, i

)
= max

i, j ∈ Si

{
z
(
xj
)
− z(xi)

}
. (9) 

Consistent with the analyses of Rodriguez-Iturbe et al. (1992), 
Rodriguez-Iturbe and Rinaldo (2001) and Balister et al. (2018) in the 
context of surface flow in OCNs, we term PGN the collection of j pixels 
connected with a given pixel i and satisfying Eq. (9). While Eq. (9) does 
not necessarily minimize dissipation, it is a necessary condition to 
maximize power in the groundwater flow setting considered. It can then 
be noted that, even when the Optimal Channel Network (OCN) observed 
at the current time is indeed a network that minimizes dissipation (and 
thus power in groundwater flow along the network is maximized), it is 
also the fingerprint of the work the fluid has performed in the past 
(during generally unsteady flow conditions). Hence, in line with Kleidon 
et al. (2013) or Zehe et al. (2021), we would argue that PGNs have 
developed along pathways that locally maximize power in groundwater 
flow. 

Amongst existing cell-based grid models developed to determined 
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drainage networks (e.g., Tarboton et al., 1997; Orlandini et al., 2003), 
here we apply the commonly used D8 method (O’Callaghan and Mark, 
1984). Identification of a PGN for a given topography realization re-
quires introducing an area-based threshold (see, e.g., Dietrich et al., 
1992; Dietrich et al., 1993). From an operational standpoint, this cor-
responds to setting the minimum number of connected pixels conveying 
fluid to a target one, according to the criterion embedded in Eq. (9). The 
collection of pixels for which the imposed threshold value is exceeded 
are then elected as part of the PGN in the considered Monte Carlo 
realization of the topography. We delineate a PGN for each topography 
realization across the considered Monte Carlo collection and evaluate 
the probability χ(xi) that pixel xi is located on a connected path. This 
enables us to obtain a stochastic description of the spatial distribution of 
preferential groundwater flow pathways that embeds minimization of 
energy principles and is constrained by the amount of available infor-
mation about the topography of the bottom of a target aquifer. 

3. Results 

3.1. Stochastic simulations of Preferential Groundwater Networks 
(PGNs) 

Stochastic (conditional) realizations of the topography of the free 
surface aquifer bottom are based on the dataset described in Section 2.1. 
The elevation of the aquifer bottom is modeled as a spatial random field, 
characterized in terms of a given structure of the associated variogram. 
The latter is assessed through the available elevation data and is 
described through an isotropic gaussian model: 

Γ(h) = σ2
nexp

(
1 − 3h2/a2), (10)  

where h = ‖x − x′

‖ is separation distance between vector locations  x 
and x′; σ2

n and a are model parameters, corresponding to the variogram 
sill and range, respectively. Here, we estimate the former as the variance 
of the available data, the ML estimate of the latter being a = 7.80 km 
(lower and upper bounds of the associated 95% ML-based confidence 
interval being 7.35 and 8.25 km, respectively). 

Fig. 2. Exemplary PGNs for the whole study area obtained from four selected topography realizations and corresponding to 3 diverse area-based threshold values, i. 
e., thr = 2, 20, and 100 pixels. 
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We (a) generate a collection of NMC = 2000 MC realizations of 
aquifer bottom topography through the approach described in Section 
2.2 and (b) apply Eq. (9) and the methodology described in Section 2.3 
to construct a PGN for each topography realization. In our exemplary 
application, we consider the effect of three diverse values of area-based 
thresholds, corresponding to thr = 2, 20, and 100 pixels, respectively, 
and obtain three MC-based collections of PGNs for the area of study. 
Fig. 2 depicts four exemplary PGNs extracted from the corresponding 
topography realizations upon considering the selected area-based 
threshold values. The morphology of the network is affected by the 
selected threshold value, higher values of the latter enabling one to 
clearly delineate the main connected branches of the subsurface path-
ways, consistent with the definition of threshold. 

We recall that an increased level of detail in the description of a 
network, corresponding to lowest threshold values, yields a high prob-
ability that a randomly selected pixel in the domain belongs to a PGN. 
Otherwise, coarser networks (such as those resulting from a high 
threshold and corresponding to identifying the major pathways across 
the domain) lead to a lower probability that a randomly selected pixel 
belongs to a PGN. As an example of the type of results that can be ob-
tained, Fig. 3 juxtaposes the PGN associated with thr = 100 pixels and 
resulting from the average topography obtained across the MC topog-
raphy realizations, hereafter termed PGNthr, and a color map depiction 
of the spatial distribution of the probability, χ(xi), that a given pixel xi 
belongs to the PGN associated with the same threshold value. Fig. 4 
includes corresponding depictions obtained upon setting thr = 2 or 20 
pixels. High values of χ(xi) correspond to a high probability that a pixel 
be carved by a PGN. We note that relying on NMC = 2000 MC re-
alizations yield stable results for all of the threshold values considered 
(details not shown). 

Similar to standard practice in surface hydrology, a PGN closure 
section can be defined as a pixel or a segment comprising several pixels 
where a PGN conveys subsurface flow according to the steepest gradi-
ents of bottom topography, as discussed in Section 2.3. We recall that 

higher threshold values favor the sharp delineation of the main branches 
of a PGN in a given realization as opposed to what could be observed in 
the presence of a low threshold value. Furthermore, pixels which are 
connected along a PGN delineated with a higher threshold are charac-
terized by values of bottom elevation that are closer to the global energy 
minimum of the PGN, i.e., the bottom elevation of the closure section. 
Thus, higher values of the imposed threshold lead to fewer pixels which 
are likely to belong to a PGN and are all characterized by elevations 
which are closer to the one of the network outlet. This behavior is re-
flected by the probability maps depicted in Figs. 3 and 4, where one can 
note that values of χ(xi) tend to span across an increased range with 
decreasing threshold. Additionally, one can note that the juxtaposed 
PGN100 evidences that the main branches of the network across which 
subsurface flow is conveyed are associated with pixels where probability 
values across MC realizations, i.e., χ(xi), are the highest. 

Fig. 5 juxtaposes PGN100 to the available piezometric contour map. 
The reconstruction of the piezometric surface is mainly available in the 
southern region (i.e., the most productive area in the region, see also 
Section 2.1), which is mainly composed by sand and gravel alluvial 
geomaterials. Fig. 5 enables us to assess the correspondence between the 
subsurface flow pattern resulting from an analysis grounded on the 
energy-based approach we consider and what can be inferred from the 
analysis of typically available piezometric data. Results encapsulated in 
Fig. 5 suggest the subsurface network carved from energy-based con-
cepts closely corresponds to the main flow directions (represented as 
blue arrows) associated with the available piezometric reconstruction. 
On the basis of Fig. 3, a similar conclusion can be drawn upon consid-
ering the MC-based probabilistic results quantifying the spatial distri-
bution of the probability associated with preferential pathways across 
the domain. Examples of local scenarios are offered in the insets of 
Fig. 5, where one can clearly see that the approach can (i) capture the 
main subsurface flow patterns (insets A and C green arrows) as inferred 
by available piezometric data (insets A and C, blue arrows) and (ii) offer 
an assessment of subsurface flow directions when piezometric data are 
not available (insets B and C, green arrows). In the latter case, Fig. 5 
suggests the presence of subsurface recharge from the aquifer to surface 
water bodies (the lakes and the Adda river) close to the city of Lecco 
(inset B), as well as the emergence of a subsurface connection between 
two lakes (Pusiano and Annone lakes; inset C). 

Our probabilistic results enabling the delineation of the main sub-
surface flow networks under uncertainty are also consistent with the 
available geological information. We analyze these aspects upon 
comparing the spatial location of PGNs obtained on the basis of the 
average MC-based topography of the aquifer bottom and the three 
threshold values analyzed (i.e., PGN2, PGN20, PGN100) against the 
geological scenarios emerging from the reconstructed geological cross- 
sections (located as in Fig. 1). As an example, Fig. 6 juxtaposes the 
geological Section Y.Y (see Fig. 1) and the spatial location of PGN2, 
PGN20, PGN100. For completeness, the probability χ(xi) evaluated upon 
the complete collection of MC-based topography realizations is also 
included. 

These results suggest that the identified PGNs are generally 
comprised within alluvial sedimentary subsurface basins where hydro- 
facies are mainly composed by highly permeable geomaterials, as 
highlighted here by dashed boxes. We further note that the highest 
values of χ(xi) correspond, in general, to areas where the aquifer is 
mainly composed by alluvial and fluvioglacial geomaterials, which are 
typically highly conductive. Results of similar quality are obtained for 
all of the remaining cross-sections (not shown), thus imbuing us with 
confidence about the reliability of our approach and its consistency with 
available geological information. 

Fig. 7a depicts empirical probability density functions (pdfs) of χ 
evaluated across the whole domain for thr = 2, 10, 20, 50, and 100 
pixels. The pdf of χ exhibits two peaks: (i) a first peak is located at χ = 0, 
corresponding to pixels which are not located on a connected path in any 
of the realizations; and (ii) a second peak corresponds to values of χ that 

Fig. 3. PGN resulting from threshold thr = 100 pixel evaluated for the whole 
study area and considering the average topography computed across the MC 
realizations (PGN100, black curves), juxtaposed to the spatial distribution of the 
probability, χ(xi), that a given pixel xi belongs to the PGN. 
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decrease with increasing threshold (i.e., the most frequent value of χ 
decreases as thr increases, shifting from about 50% to 5% for thr = 2 or 
100, respectively). The probability that χ > 0 is almost constant with thr 
and is equal to about 97%. In other words, only 3% of the domain is 
characterized by pixels that do not belong to a connected path in at least 
one realization. Fig. 7b depicts the empirical pdf of χ conditional to the 
observation that a given pixel of the ensemble belongs to a connected 
path in at least in one realization (i.e., χ > 0) in terms of the rescaled 
variable (χ − μχ)/σχ , μχ and σχ being mean and standard deviation of 
χ > 0, respectively. The dependence of first four statistical moments of 
the pdf of χ and of χ > 0 on thr is depicted in Fig. 8a (μχ , σχ , and kurtosis, 
κχ) and 8b (skewness, sχ). One can observed that the conditional sta-
tistical moments are not dramatically different from their unconditional 
counterparts. In particular, the unconditional and conditional means 
almost coincide. Values of μχ , σχ , and κχ tend to decrease as the threshold 
value increases according to a power law expression, i.e., they are pro-
portional to thr–b (estimated values of b are also listed in Fig. 8a). These 
findings are qualitatively consistent with the previously documented 
decrease of the probability that a pixel is carved by a PGN for increased 
threshold values, as well as with the observation that the delineated 
subsurface network is spatially coarser (as only the major branches are 
delineated) for increasing threshold (see also Figs. 3 and 4). PGNs 
delineated upon considering a low threshold value are typically asso-
ciated with a wider range of values of χ than those stemming from higher 
thresholds, this being consistent with the increased values of σχ and κχ 

(the latter reflecting the occurrence of heavier tails) related to low 
thresholds. On the other hand, the skewness of χ increases with thr, i.e., 
sample distributions of χ are seen to transition from negatively (left 
tailed) to positively (right tailed) skewed with increasing threshold, 
attaining a zero skewness (symmetric distribution) for thr ≈ 50 pixels in 

our case. In general, we note that all moments appear to stabilize at thr ≈
40, with an exception for skewness that does not reach a near-constant 
value as thr increases. 

Finally, we recall (see Section 3.1) that pixels on a PGN stemming 
from a large threshold value are associated with elevation values which 
are lowest and closest to the global minimum elevation in the system. 
Due to the nature of the network, pixels close to a closure section are 
typically characterized by a lower bottom gradient value than those far 
from it, as supported by Eq. (7). These elements can be grasped, for 
example, when analyzing PGN2 and PGN100 (Figs. 3 and 4) and noting 
that pixels belonging to the former network are characterized by low 
values of the accumulation function (Eq. (6)) and are related to eleva-
tions which can be markedly diverse from the one of the closure section. 
As stated above, one can then see that the average value of χ decreases 
with increasing thr because of its dependence on the local values of the 
accumulation function and, in turn, on pixel elevations (see Section 2). 
Thus, pixels characterized by lower elevation and higher value of the 
accumulation function tend to be related to an increased probability of 
residing on a PGN. This behavior is related to the slope-driven nature 
considered for the subsurface flow, which is fully consistent with energy 
minimization concepts (Rodriguez-Iturbe and Rinaldo, 2001) of the kind 
that are observed in river network studies. We further note that the 
estimated value of b (=0.566) associated with μχ is slightly larger than 
the typical values observed in dendritic networks (i.e., ≈ 0.43–0.5; 
Hergarten et al., 2016). This behavior can be due to (i) the finite size of 
the sample and/or (ii) a certain degree of spatial correlation embedded 
in the elevation of the aquifer bottom, the latter being correlated in 
space, and/or (iii) a combination of these two effects. 

The analysis of the way statistical moments of χ vary with thr can 
then complement the appraisal of the degree of spatial coverage of the 

Fig. 4. PGNs resulting from threshold thr = (a) 2 (PGN2) and (c) 20 (PGN20) pixels evaluated for the whole study area and considering the average topography 
computed cross the MC realizations. Spatial distribution of the probability, χ(xi), that a given pixel xi belongs to the PGN for thr = (b) 2 and (d) 20 pixels. 
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Fig. 5. PGN100 and available piezometric contour map (light blue curves). Insets correspond to enlargements of local scenarios. Arrows correspond to the main 
subsurface flow directions inferred from the piezometric map (in blue) and from the PGNs (in green). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. Hydrogeological Section Y.Y (see Fig. 1) and spatial location of PGN2, PGN20, and PGN100. Values of probability χ(xi) evaluated across the complete collection 
of MC-based topography realizations is also included, the largest values of χ(xi) being highlighted by red dashed boxes. Note that each subplot depicting χ(xi) is 
characterized by a different scale, for clarity of illustration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 
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preferential network. The decrease of the variance of χ with thr clearly 
documented in Fig. 8a is consistent with the observation that a PGN 
carved by a large value of thr connects a reduced number of pixels which 
are in turn associated with elevations which are closer to the one of the 
closure, as opposed to what can be expected upon considering a low thr. 
As such, PGNs resulting from low thresholds are also seen to comprise 
pixels within a broad range of bottom elevations, thus giving rise to an 
increased energy consumption along the network. At the same time, the 
low values of kurtosis of χ documented for the largest threshold 
considered (i.e., thr = 50 and 100) are also consistent with the energy- 
related nature of an extracted PGN. Large values of thr tend to exclude 
branches conveying low flow rates through the network and tend to 
include solely the main branches of the network, this, in turn, being 
reflected onto a decrease of the tails of the pdf of χ. 

4. Discussion and conclusions 

In this study we characterize key features of subsurface flow paths 
from an energetic and probabilistic perspective. We provide evidence 
that subsurface flow in a free aquifer system is mainly governed by 
spatial gradients of the aquifer bottom topography, the latter being 
inferred through (Monte Carlo based) stochastic simulations relying on 
stratigraphic observations. Our approach enables one to identify Pref-
erential Groundwater Networks (PGNs), which correspond to the major 

pathways along which subsurface flow is conveyed. PGNs are extracted 
by locally (a) following the steepest gradient associated with the aquifer 
bottom topography related to random realizations conditional on the 
available information and (b) considering the influence of diverse values 
of area threshold employed for their delineation. We find that PGNs 
inferred from the averaged bottom topography with the highest area 
threshold considered are strikingly consistent with main flow directions 
inferred from available piezometric data and key subsurface flow pat-
terns (such as subsurface connectivity between surface water bodies) 
resembling the overall behavior that can be inferred from visual in-
spection of the system. Location of PGNs is furthermore consistent with 
geological and hydrogeological information at our disposal, such as 
geological data (and ensuing hydrogeological sections) and is coherent 
with the nature of the aquifers investigated. 

The idea that that preferential flow implies a reduced dissipation in 
fluid flow and that the fluid moves along an optimized river network 
(Howard, 1990) or rill network topologies (Rieke-Zapp and Nearing, 
2005) has been broadly discussed in the context of surface hydrology 
scenarios. Preferential flow leads to faster fluid flows because they 
reduce dissipative losses due to an increased hydraulic radius in the rill 
or river network as compared to sheet flow (Berkowitz and Zehe, 2020). 
Subsurface preferential flow of water reduces dissipative losses as well 
(Zehe et al., 2010; Zehe et al., 2013), as friction occurs mainly at mac-
ropore or fracture walls, while frictional interactions in the matrix take 

Fig. 7. Sample pdf of (a) χ and (b) χ > 0 across the whole domain for thr = 2, 10, 20, 50, and 100 pixels.  

Fig. 8. First four statistical moments of χ (blue symbols) and of χ > 0 (red symbols) versus thr. The power law trend thr–b (blue curves for χ and red curves for χ > 0) is 
depicted in (a) together with estimated values for b. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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place along the entire inner surface across the system. Reduced dissi-
pation and faster fluid flow imply a more energy efficient throughput of 
water, mass, and chemical species through the entire system (in case of 
flow paths spanning the entire system). 

The positive feedback that might lead to a growth of PGN minimizing 
total energy dissipation is not obvious. In this context, it is then striking 
that the PGNs identified in this study display a qualitatively good con-
sistency with macroscale flow paths and characteristics of the free 
aquifer systems inferred from standard piezometric maps available in 
the area. 

We thus conclude that the approach we consider to infer PGNs in 
subsurface flow interpretation is methodologically sound as well as 
operationally robust. Our study illustrates the breadth and the potential 
of the approach, which is seen as a potentially powerful and flexible tool 
to assist interpretation of the main traits of large-scale subsurface flows. 
These findings will serve as basis for further research, oriented towards 
enhanced understanding of subsurface hydrology through the frame-
work of energy-optimal networks. 

5. Data source 

All source data, cartographic information and piezometric map we 
used can be found from Regione Lombardia Geoportale within Data 
Download Section (https://www.geoportale.regione.lombardia.it/down 
load-dati). 

6. Software packages 

Subsurface topography realizations have been performed through 
SGEMS software (GSLIB library), freely available at https://sgems.sour 
ceforge.net/?q = node/77. 

Topography-based networks have been obtained through the soft-
ware TauDEM, freely available at https://hydrology.usu.edu/taudem/ 
taudem5/downloads.html. 

All computations and Figures have been realized in MATLAB R2019a 
environment (https://www.mathworks.com/products/new_products/ 
release2019a.html) through an institutional license, while data spatial 
representation has been organized within QGIS 2.18 environment 
(https://qgis.org/en/site/forusers/download.html). 
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