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ABSTRACT 
 
A lot of methods were created in last decade for the 
spatio-temporal analysis of multi-electrode array 
(MEA) neuronal data sets. All these methods were 
implemented starting from a channel to channel 
analysis, with a great computational effort and  
onerous spatial pattern recognition task.  
Our idea is to approach the MEA data collection from 
a different point of view, i.e. considering all channels 
simultaneously. We transform the 2D plus time MEA 
signal in a mono-dimensional plus time signal and 
elaborate it as a normal 1D signal, using the Space-
Amplitude Transform method.  
This geometrical transformation is completely 
invertible and allows to employ very fast processing 
algorithms.  
 
Key-words: MEA technology, spike, Burst, spatio-
temporal clustering, ACF, CCF. 
 
 
 
INTRODUCTION 
 
In last years a lot of efforts were spent in facing the 
problem of the analysis of the enormous amount of 
data coming from neuronal population electric 
recordings from Multi-electrode array (MEA) devices 
[1, 2]. In fact, for a standard recording, made with 60 
electrodes for 6 hours at tens of kHz, we face with 
orders of 1010 samples. Starting from the assumption of 
the repetitiveness of the neuronal spike shape, the data 
set is simplified as a set of point process (one for each 
electrode) allowing the reduction of samples of about 
one magnitude order (or more, depending from the 
desired resolution) [3, 4].  
This simplification, although very important, doesn’t 
allow however a direct facing with the problem. We 
recall that, from the physical point of view, the 
problem is (2+1) dimensional, i.e. is a 2D (recording 
MEA) plus time dimensional situation. A direct 
approach would be performed using image processing 
techniques, excessively heavy from the computation 
point of view facing this data amount. The actual 
standard approach is performed analyzing separately 
each channel (or signal component if a PCA analysis is  
 

previously done, in order to separate different neuron 
components) and looking for statistical or 
morphological similarities among channels [5-7].  
The use of these techniques allowed to investigate a 
multitude of fundamental statistical properties of 
neuronal networks but made very difficult and onerous 
the inter-channel comparison.  
A partial inter-channel analysis was proposed in last 
years by means of pattern recognition algorithms [8-
13]. These techniques look for repetitive inter-channel 
spike sequences with complex pattern recognition 
algorithm, using, for example, neural networks [14] 
and/or Independent Component analysis [15]. They 
produced important results, in particular causing 
interesting discussion on the analysis jitter time, but at 
cost of a huge computational charge.  
The purpose of our work was to produce an analysis 
method optimized for the inter-channel analysis, i.e. 
able to highlight the spatio-temporal relationships 
between MEA channels, with a very low computational 
cost.                          
 
 
MATERIALS AND METHODS 
 
Our new approach to the data analysis is based on the 
concept of Space-Amplitude Transform. The method 
allows to approach an intrinsically 2D plus time data, 
i.e. time recordings from a 2D electrode array, as 1D 
plus time signals in order to speed up and make simpler 
the data analysis.  
The Space-Amplitude Transform, A(s,R), is a 
geometric transform that projects from a 2D domain set 
s(x,y,t), e.g. the usual Raster plot, to a 1D image set 
I(r,t) = A(s,R), exploiting an Arrangement algorithm R.  
In the domain set s(x,y,t), i.e. in the Raster plot, a 
specific spike is coded in terms of 0-1 event (as said in 
the INTRODUCTION) that is located in a space-
temporal coordinate (x,y,t), i.e. in a specific MEA 
channel (or trace if a PCA analysis is implemented) at 
a specific temporal instant (function of the system 
resolution).  
The A(s,R) transform arranges the MEA channels in a 
1D list r, according to a chosen arrangement algorithm 
R (with r = R(x,y)), and associates each element of the 
list r to an ordinate numeric value (Fig.1). This 
operation allows building up a new signal I(r,t) that 
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associate to a domain space coordinate ( )yx,  a 

specific numeric value ( )r , i.e. an image amplitude.  

So, in the image set I(r,t), a spike s( tyx ,, ) of the 

raster plot is the point ( tr, ) of a new 1D function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1: Graphical example of the role of the arrangement algorithm R 
and the Space-Amplitude Transform A(s,R) with a 3x3 domain matrix. 
In this case the transformation leads to a traditional channel 
arrangement (see text). 

 
In a graphic representation, the output of the Space-
Amplitude Transform can be imaged as the 
interpolating function of the Raster plot that locally 
assumes a value assigned on the basis of the 
Arrangement algorithm (Fig.2).        
 
The shape of the resulting signal, as the Raster plot, 
depends from the arrangement algorithm and from the 
resolution used in the transformation but represents the 
spatial and temporal activity of the network in its 
entirety.  The possibility to completely reconstruct the 
physic meaning of the further elaboration of this signal 
is granted by the biunivocality of the Space-Amplitude 
transform.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: Graphic representation of the Space-Amplitude transform. In 
this way it can be thought as the interpolation of a wave(bottom) 
from the raster plot (top). This is obviously true for a linear 
traditional channel arrangement. 
 
Starting from the obtained signal, for example, the 
repetitive pattern recognition task (as described in the 
INTRODUCTION) is reduced to a trivial 1D 
Autocorrelation computation on the data set or to a 
Cross correlation between a desired data sub-sequence, 
for example a Burst, and the data set.    
 
Moreover, the chose of different arrangement 
algorithms, R, allows to evaluate different aspects of 
the network behavior. For example, after the 
calculation of the Auto or Cross correlation function of 
a Burst, as described above, the influence of the 
channel spatial arrangement can be investigated. In this 
perspective, the comparison can be done using a 
standard arrangement algorithm and a “Hilbert wave” 
like arrangement, that strongly respects the original 
topologic proximity, as shown in Fig.3:     
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Fig.3: Two different kind of arrangement algorithms. The traditional one on the left and the Hilbert-like one on the right. 
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RESULTS 
 
The method, as said, produces a 1D track, or a series of 
short 1D tracks. These tracks can be processed as an 
usual one-dim signal with consolidate signal 
processing methods. As an example, we show here 
same yet unpublished example of the proposed analysis.  
Fig.4 shows the standard linear processing analysis 
methods, i.e. Autocorrelation function (ACF) and 
Crosscorrelation function (CCF), of a single Burst (or a 
pair of Bursts in CCF) in Space-Amplitude 
representation (resolution 0.1ms).   
 
Starting from CCF we can, for example, compare burst 
populations [16], i.e. series of bursts in a continuous 
track. It allows easily individuate groups of Bursts with 
similarities in their spike sequences (Fig.5).  

 
Fig.5: Plot of the correlation among 350 subsequent bursts of a MEA 
recording. In this plot is very easy to highlight groups of Bursts that 

have a similar spatio-temporal spike sequence. 
  
We finally underline that the computational effort of 
these analysis is negligible, approximately in the order 
of 1 or 2 seconds of elaboration with a standard 
personal computer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DISCUSSION 
 
The method proposed allows to approach a very 
complex signal, as the raster plot point process, as a 
one-dimensional signal and to perform in a simplest 
way a simultaneous time-and-space analysis of a 
neuronal network. Because of the method involves a 
temporal sampling, an excessively low resolution can 
lead to computational problems. In fact too big 
temporal windowing could code some spikes as 
simultaneous. For this reason the best use of this 
algorithm is in high resolution analysis, e.g. with a 
resolution < 1 ms. This high resolution approach is, for 
example, ideal for the intra and inter Burst analysis [17, 
18].    
Starting from a 1D signal, the Burst detection task 
becomes a trivial frequency analysis with an 
appropriate threshold value.  
 
 
CONCLUSIONS 
 
In conclusion we can summarize that the method 
presented here is a valuable tool for the high frequency 
neuronal network data analysis. It is characterized by a 
low computational effort. It allows to use consolidate 
analysis methods and multi-scale analysis and it is 
ideal for simple Burst detection algorithms. 
Furthermore it is completely invertible allowing a 
simple amplitude-space back-transformation.  
Results obtained applying the proposed method on 
different kind of neuronal MEA datasets are 
encouraging. They’ll be presented in following papers.        
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Fig.4: on the left: example of the Auto-correlation function (ACF) of a Burst Space-Amplitude representation. On the right: example of Cross-
correlation analysis of two distinct Bursts. The resolution is 0.1ms. 
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