Information and Software Technology 127 (2020) 106376

Information and Software Technology

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infsof

Cloud applications monitoring: An industrial study R

Damian A. Tamburri®*, Marco Miglierina®, Elisabetta Di Nitto®

Check for
updates

a Jheronimus Academy of Data Science and the Eindhoven University of Technology

b Contentwise
¢ Politecnico di Milano

ARTICLE INFO

Keywords:

Cloud monitoring

Applications monitoring

Incident handling

Rapid response organizational structures
Online survey

Industrial study

ABSTRACT

Context: Modern software systems employ large IT infrastructures hosted in on-premise clouds or using “rented”
cloud resources from specific vendors. The unifying force across any cloud strategy is incremental product and
application improvement against conservation of those resources. This is where monitoring of cloud applications
becomes a key asset

Objective: To shed light over the status of monitoring practices in industry, we study: (a) monitoring practices
and tools adoption in industry; (b) size and complexity of industrial monitoring problems; (c) the role of software
architecture and software process with respect to monitoring strategies.

Method: We conduct mixed-methods empirical research featuring interviews and a web survey featuring 140+
practitioners from over 70 different organizations.

Results: Even if the market makes available a significant set of monitoring tools, our results show a rather
unappealing picture of industrial monitoring: (a) industrial decision-makers do not perceive monitoring as a
key asset even though the downtime of their applications correlates heavily with the level of automation and
responsiveness enabled by monitoring; (b) monitoring is done with crude technology, mostly MySQL querying
or similar (e.g., Nagios); finally, (c) incidents are discovered by clients rather than application owners.

Conclusion: We conclude that the road toward the industrial adoption of cutting-edge monitoring technology is
still one of the less travelled, presumably in connection to the considerable investment required. Furthermore,
the lack of industrial cloud monitoring standards does not help in addressing the proliferation of multiple tool
combinations, with varying effectiveness. Further research should be invested in looking into and addressing

these major concerns.

1. Introduction

Cloud computing triggered huge technological advancements that
drastically reduced entry costs and time to market in the software de-
velopment scenario [1,2]. Hardware resources that were once manually
provisioned and acquired after huge upfront investments, have become
accessible via simple API calls, on-demand and paid per hour [3]. Mod-
ern software systems span across multiple services provided by different
vendors with heterogeneous platforms (i.e., IaaS, PaaS, and SaaS) [4].

In this scenario, effective cloud applications monitoring has become
more important to support fast automation release cycles and to allow
fast reaction to perceived issues or market opportunities. At the same
time, it has become more difficult to achieve [5,6], due to reliance
on multiple vendors with different pricing models and heterogeneous
stacks and SLAs, which make modern distributed applications hard to
be transparently observed [7] in an automated and tool-assisted fashion.

* Corresponding author.

With the term monitoring in this context we indicate the explicit ac-
tivity of gathering application front- or back-end measurement data to
diagnose, prevent, or recover from cloud applications errors (e.g., run-
time execution incidents which can include application performance
slowdowns, application hangs, etc.) or failure [8], referred either to
application-level (e.g., containers, production-code bundles, APIs, li-
braries, etc.) or infrastructure-level (e.g., virtual-machines, orchestra-
tion node-type scripts [9], network etc.) components.

While a considerable number of monitoring tools, both commercial
and open-source ones, proliferated in the last few years [10,11], no clear
established solution has yet arisen. Big corporations with high expertise
such as Google, Facebook or Netflix are able to develop the appropriate
solutions for their scales. Most of the other companies either do not
monitor, implement custom solutions or use some custom composition
of monitoring tools among the thousands of existing ones [10].

E-mail addresses: d.a.tamburri@tue.nl (D.A. Tamburri), marco.miglierina@contentwise.com (M. Miglierina), elisabetta.dinitto@polimi.it (E.D. Nitto).

https://doi.org/10.1016/j.infsof.2020.106376

Received 27 February 2019; Received in revised form 6 March 2020; Accepted 29 June 2020

Available online 3 July 2020

0950-5849/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.infsof.2020.106376
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106376&domain=pdf
mailto:d.a.tamburri@tue.nl
mailto:marco.miglierina@contentwise.com
mailto:elisabetta.dinitto@polimi.it
https://doi.org/10.1016/j.infsof.2020.106376
http://creativecommons.org/licenses/by-nc-nd/4.0/

D.A. Tamburri, M. Miglierina and E.D. Nitto

To identify the main challenges and open problems that practitioners
are facing while monitoring their cloud stacks, we conducted a mixed-
methods empirical study. First, using structured interviews, we enquired
12 practitioners from 7 different organizations. Then, using this initial
feedback we structured a multi-source, opt-in online survey.

The online questionnaire featured 38 closed questions prepared ac-
cording to cross-examination guidelines from Kvale [12] and Pettigrew
[13] so as to cover all topics, themes, and keywords emerged in our
pilot interview study and its analysis. We received responses from 141
practitioners in about half as many distinct organizations. Responses
were attained from 5 distinct sources used (i.e., Reddit, yCombinator,
StackOverflow, SourceForge News, and Paystack) over a total period of
10 months. The relatively strong participation to the survey is itself a
first result - the topic is perceived by practitioners as extremely timely
and highly relevant. Analysing our results further, we identified com-
mon tool-adoption patterns as well as incident discovery and handling
practices.

Three key findings emerge: (a) the most impactful challenge resulted
to be the lack of standards in an overpacked market of monitoring tools -
over 90% of our responders identified the lack of standardisation and the
over-proliferation of monitoring solutions as clear problems leading to
monitoring mishaps and misuse; (b) both SMEs and large organizations
are mostly largely unaware of the potential behind analysing monitoring
data for software evolution and modernisation - our data indicates that 1
out of 3 organizations do track historical data concerning their cloud ap-
plication incidents but does not use such data for re-architecting or simi-
lar refactoring activities; (c) even the biggest of industrial players in our
sample is unaware of its products’ *observability*, that is, the ability to
monitor and keep track of software functions via automated means, and
how observability evolves with architectural complexity [14] - while we
expected the observability to evolve jointly with architecture complex-
ity, we noticed that there is an erratic if no correlation at all between
these two key dimensions across our entire dataset.

The practical and academic implications of our research are many-
fold: (a) a better understanding of the challenges perceived by indus-
tries; (b) a better focus on future directions for common strategies
around monitoring, e.g., reducing entry-cost and learning-curves; (c) a
reference yardstick for current monitoring research and practice against
valuable industrial hard data; (d) an overview of the maturity of moni-
toring assets directly from their respective industries.

In conclusion, we argue that companies should carefully seek to pre-
pare for the upcoming monitoring boom. At the same time, researchers
should be prepared to address the technical and organisational chal-
lenges around the industrial issues we identified and highlighted in the
scope of this article. While the technology to be applied for monitor-
ing today exists, our evidence shows that the approaches, processes and
skills needed to apply monitoring technology in concrete and diverse
cases is still to be distilled from a large variety of industrial research
endeavours in the area.

Paper Structure. The next section outlines the background neces-
sary to properly grasp the contents of this article as well as related
work in our area of study. Section 3 defines the research design behind
our article. Section 4 outlines our results, Section 5 presents possible
threats to validity and Section 6 discusses the results and offers an anal-
ysis of the insights we procured from practitioners in industry. Finally,
Section 7 concludes the paper.

2. Background and related work
2.1. Monitoring: terms and definitions

Quoting from Netflix Inc., and in agreement with many other top-
players, cloud software should be: “API-driven, self-service, and au-

tomatable” [15]. In this context, monitoring becomes a necessary prereq-
uisite for self-service and automation and requires the adoption of ex-

Information and Software Technology 127 (2020) 106376

plicit technologies, driven using explicitly-trained organisational struc-
tures, and accounted using appropriate frameworks.

Restricting the domain to the software engineering field, the subject
being monitored is usually a system composed of components. Thus,
monitoring can be redefined as “the action of observing and checking
the behavior and outputs of a system and its components over time”’.

Several other definitions of monitoring can be found, among which:

1. Bertolino [16] defines monitoring as observing “the spontaneous be-
havior of a system” and, given a specification of desired properties,
checking “that such properties hold for the given execution”;

2. Fatema et al. [17] define monitoring as a “process that fully and pre-
cisely identifies the root cause of an event by capturing the correct
information at the right time and at the lowest cost in order to de-
termine the state of a system and to surface such state in a timely
and meaningful manner”;

3. According to Cockroft?, monitoring refers to both “problem detec-
tion and diagnosis” and “measuring business value”. Cockroft ul-
timately defines business value as “customer happiness, cost effi-
ciency, safety and security, and compliance”;

From a technical perspective, a monitoring activity acquires infor-
mation about some metrics, i.e., directly and atomically measurable
properties of a phenomenon that can be quantitatively determined. Ex-
ample: response time is a metric measuring the “elapsed time between
the end of an inquiry or demand on a computer system and the beginning
of a response” [18]. Each single measurement of a metric can be called
monitoring datum (Example: the authentication service took 100 ms
to respond). The subject of monitoring is a resource, for instance, a web
server, a database, a virtual machine, a software container, an applica-
tion component. The monitoring infrastructure can be generically seen
as composed of data collectors, in charge of acquiring data by observ-
ing resources, data analyzers, in charge of processing (e.g., filtering or
aggregating) monitoring data, and monitoring dashboards, in charge
of support visualization of monitoring data by end users.

2.2. Monitoring: dimensions of analysis

According to the classification introduced by Barrat®, a monitoring
tool can perform one or more of the following actions on monitoring
data: (i) collect, (ii) transport, (iii) process, (iv) store, (v) present. A
data collector is usually either a daemon running on the monitored host
or an agent scraping data from monitoring APIs exposed by the resource
being monitored (e.g., JMX). Monitoring data can also be collected via
code instrumentation, developers may use APIs to collect data. A tool
transporting monitoring data is able to move data from a tool to an-
other. Some tools may have transport capabilities implemented ad hoc,
others may use existing general purpose solutions such as message bro-
kers. Monitoring data per se is useless if it is only collected, it needs to
be used for a purpose. Data can be processed, for example, to extract
higher level knowledge from raw data or to verify conditions on it. Data
can also be stored, for example in a time series database, or it can be
presented to the user, for example via a dashboard, and let a human
understand problems and patterns and take actions. Processing can be
executed either in a distributed way or centrally on a single server. Dis-
tributed processing means analyzing data on several machines in paral-
lel and eventually aggregate results on a single host. This solution can
reduce network traffic and is more scalable, however it prevents more
sophisticated processing algorithms which cannot be parallelized. Cen-
tralized processing requires data to be transported to a server where it
is aggregated and analyzed.

1 https://blog.freshtracks.io/monitoring-is-dead-long-live-observability-
235b62f4d1d1.

2 https://www.slideshare.net/adriancockcroft/monitoring-challenges-
monitorama-2016-monitoringless.

3 http://serialized.net/2011/02/getting-more-signal-from-your-noise/.

https://blog.freshtracks.io/monitoring-is-dead-long-live-observability-235b62f4d1d1
https://www.slideshare.net/adriancockcroft/monitoring-challenges-monitorama-2016-monitoringless
http://serialized.net/2011/02/getting-more-signal-from-your-noise/

D.A. Tamburri, M. Miglierina and E.D. Nitto

Besides the above classification based on roles, other classifications
identified in literature [19] mainly focus on how data is collected from
resources. Collection can be either passive, also known as non-intrusive,
or active, also known as intrusive. It is passive when there is no need
to modify the resource to be monitored. Collecting data about the net-
work activity through packet sniffing, for example, is considered to be
passive. On the opposite, active monitoring is performed when the re-
source requires some modification for exposing data to the data collector
(e.g., API). Another dimension of classification in collection techniques
is push-mode versus pull-mode. Monitoring data can be either pushed
by a monitoring agent to a monitoring server, or pulled from monitor-
ing agents by a specific monitoring server or monitoring stack (e.g., the
well known Elastic-Search/Logstash/Kibana monitoring stack, known as
ELK").

Furthermore, another dimension typically considered in monitoring
approaches and systems is stateful vs. state-less log processing. On the
one side, a monitoring tool can maintain information about the state of
resources and model the inter-relationships among components. On the
opposite, if no information is maintained across subsequents events, the
tool is said to be stateless. Stateless tools are easier to scale.

A further classification concerning how monitoring data is processed
is the expressive power of the configuration language, which actually
tells what a user can do with monitoring data. A configuration language
may allow to (i) report time series with a configurable granularity, (ii)
offer statistical aggregation capabilities (e.g.: maximum, minimum, av-
erage), (iii) define thresholds, (iv) define alarms or actions to be taken
under given circumstances, (v) provide filtering capabilities.

Another important technological distinction is between Application
Performance Monitoring (APM) and server monitoring. The two type
of tools are orthogonal. APM is responsible of monitoring user experi-
ence and how user traces behave across distributed systems, while the
second is concerned with single nodes, their availability and behaviour,
unrelated to the user interaction with it.

Lastly, from the business perspective, a tool in general can be clas-
sified in terms of its licensing model, i.e., open-source vs commercial,
and its deployment model, i.e., self-hosted vs cloud.

2.3. Related surveys

While no rigorous industrial survey exists covering precisely the ex-
act same scope as ours, several surveys and literature reviews exist,
mainly in the grey literature, which are related to the target topic.

For instance, the SolarWinds survey® as well as the Netfort Study®
focus on a specific aspect of monitoring, that is, network monitoring.
Both surveys do not offer sufficient depth and methodological detail to
establish conclusion and construct validity [6]. On the contrary, the in-
tent of this paper is to develop a rigorous and systematic investigation
of industrial and academic perspectives over cloud applications mon-
itoring from a wider lens of analysis. Other works, such as [20] and
[21] focus on a systematic analysis of monitoring (in particular, net-
work monitoring) tools, but they do not provide hints on their adoption
in practice.

On another front, from a more general and research perspective
within the domain of DevOps software engineering, the work which is
most closely related to ours in terms of objectives is represented by the
effort of Aceto et al. [19] who perform a systematic study of cloud mon-
itoring technology from a research literature perspective. Aceto et al.,
however, focus on providing an overview of the state of the art as op-
posed to a glimpse over the state of practice — the latter is what we offer
in the scope of this manuscript; therefore, the two surveys can be seen
as compounding reference material for the practitioner or academician

4 https://www.elastic.co/elastic-stack.

5 https://techcloudlink.com/wp-content/uploads/2019,/09/A-Guide-to-
Enterprise-Network-Monitoring.pdf.

6 https://www.netfort.com/netfort-news/network-monitoring-survey/.

Information and Software Technology 127 (2020) 106376

who is entering the domain of cloud applications monitoring. From a
specular perspective, Fatema et al. [17] provide a general overview over
the existing tools and automated solutions currently used for monitoring
cloud applications.

From a broader perspective, Jabbari et al. [22] address the research
question of finding a distilled definition of DevOps as a framework
for organisational, social, and technical lifecycle management. Their
efforts are more poured into mapping the literature towards offering
a precise definition from the state of the art. Similarly, M. Kersten
regularly uses his column on IEEE Software to outline the evolution
of DevOps, e.g., in terms of tools proliferation [23]. Further back in
time, several surveys exist that address software continuous refactoring,
software version merging, dependency management, most prominently
by Mens [24,25] or even in the field of infrastructure management,
infrastructure-as-code [26] or the well-known survey of cloud service
providers by Prodan and Ostermann [27].

3. Research design
3.1. Research problem, goals, and questions

The major motivations behind this study stems from our industrial
collaborations in the scope of the MODAClouds EU FP7 project [28]. In
the context of the EU project, we observed that there is much disarray
across industries when it comes to their monitoring assets, their struc-
ture, characteristics and general quality. From this general observation,
in the scope of this article, we seek to assess the industrial awareness on
custom-made monitoring infrastructures, their shortcomings, and limi-
tations while, at the same time, assessing industrial understanding and
visibility over the current tooling and incident handling methodologies.

From the research problem and goals outlined above, the following
master research question emerges for the context of our study:

“What are the issues, tools, and procedures currently used for monitoring
cloud applications and incident-handling in industry?”

Stemming from the above research question, we derive a set of 8
sub-research questions (see Table 1), namely:

1. Is monitoring perceived as a fundamental asset?

Definitions and Rationale. Monitoring is, by definition, not an ac-
tivity which generates direct and immediate Return-On-Investment.
Therefore, it is itself a medium to long-term investment which can
procure competitive advantage, i.e., an asset as part of an asset man-
agement strategy [29]. Consequently, such a strategy may reflect a
clear and distinct organizational decision or an emerging tactic. We
aim at establishing the current status over this issue, to increase prac-
titioner awareness.

2. Do all companies in our sample monitor their software systems? How?
Definitions and Rationale. Monitoring is defined as the act of con-
tinuously measure the parametric features of a software system,
its visible and invisible qualities for the purpose of instrumenting
corrective, preemptive, and proactive maintenance or improvement
[30]. The literature identifies monitoring as a fundamental asset to
elaborate corrective or preemptive actions over a running software
system but the act of monitoring is considerable and, as systems scale
up, this gets even more expensive. Our research goals also encompass
establishing the current conditions of investment around monitoring
in industry.

3. What are the people/roles involved with monitoring?

Definitions and Rationale. Monitoring usually demands a more or
less complex organisational structure [31] designed for but not lim-
ited to: (a) preparedness — i.e., the series of organisational proto-
cols being enacted to avoid service discontinuity incidents; (b) fire-
fighting — i.e., the organisational protocols being enacted to address
and tentatively fix services after discontinuity incidents do manifest;
(c) recovery — i.e., the organisational protocols enacted to recover
from the discontinuity incidents. The above organisational scenarios

https://www.elastic.co/elastic-stack
https://techcloudlink.com/wp-content/uploads/2019/09/A-Guide-to-Enterprise-Network-Monitoring.pdf
https://www.netfort.com/netfort-news/network-monitoring-survey/

D.A. Tamburri, M. Miglierina and E.D. Nitto

Table 1
Research questions, an overview.

Information and Software Technology 127 (2020) 106376

=
b
z

Question

How are incidents discovered and handled?
What is the Pandemic Ratio for incidents?

OO UL WN =

Is monitoring perceived as a fundamental asset?
Do all companies in our sample monitor their software systems? How?
What are the people/roles involved with monitoring?

What are the most critical challenges perceived when trying to make a system observable?
Is there correlation between complexity of cloud architectures and the time of system unavailability?
Is there any relation between systems observability and architecture complexity?

usually require specific roles, that is, professionals whose organisa-
tional goal is to address each phase individually. Our research goal
also encompasses establishing the current conditions of investment
around such organisational structures, if any.

4. How are incidents discovered and handled?
Definitions and Rationale. As a sub-research question to the previ-
ous one, we aim to zoom into the practices that address fire-fighting
and incident recovery, since the practices involved in these two
phases are aimed at reducing as much as possible the service dis-
continuity times. Consequently, we are interested in reporting and
studying more deeply such practices and their consequences over
service discontinuity.

5. What is the Pandemic Ratio for incidents?
Definitions and Rationale. We define the Pandemic Ratio as the
sum of people who are involved on average for crysis resolution,
when incidents do in fact manifest. With the above five sub-research
questions we aim at understanding whether there exists a recurrent
organisational structure specifically designed to monitor systems and
address operational incidents; for example, a pattern for the pan-
demic ratio may reveal vital descriptive quantities and features to
be used as a best-practice for cloud monitoring.

6. What are the most critical challenges perceived when trying to make a
system observable?
Definitions and Rationale. As previously introduced, we define ob-
servability as the degree to which software architecture elements
and properties in a system can be monitored with available off-the-
shelf or ad-hoc technology and without specifically instrumenting
the code during operations. We seek to understand the amount of
work being invested in making software architectures monitored by-
design.

7. Is there correlation between complexity of cloud architectures and the
times of system unavailability?
Definitions and Rationale. We define a simplistic measure of soft-
ware architecture complexity SA. for cloud architectures as the num-
ber of components C in the architecture multiplied by the number
S of software architecture styles—as extracted from software archi-
tecture reference textbooks such as Bass et al. [32]—reported for
that architecture normalized by the maximum number of architec-
ture elements reported in the sample by our respondents. The reason
for this simplistic and approximate notion of architecture complex-
ity by multiplication, is grounded on the need of allowing the two
involved quantities—different style, and number of components re-
spectively—to account equally and linearly within the metric.
In the scope of the aforementioned definition, we seek to under-
stand whether more complex architectures reflect more incidents
and/or whether such increased complexity corresponds to specific
challenges, practices, fallacies, or pitfalls.

8. Is there any relation between systems observability and architecture com-
plexity?
Definitions and Rationale. We aim to understand whether there is
a software style extracted from literature [33,34] or recurrent level
of architecture complexity across our sample which is most consis-

*12 Domain-
Experts 5+/Y
Experience

Pilot Phase

* Data analysis
for Survey
Design

Theoretical
Synthesis

* Triangulations (source,
domain, process...)
e Statistical Content Analysis

Confirmatory
Survey

Fig. 1. Research design, an overview.

tent with a more observable and maintainable architecture in the
cloud.

3.2. Research methods

As previously introduced, our research design features a mixed-
methods approach whereby we aimed at having a complete and com-
prehensive overview of the industrial scenario regarding the practical
use of monitoring. With this goal in mind our intention was to form a
large-scale online survey using solely the insights that can be gathered
from highly-expert practitioners themselves.

In so doing, our study was designed to feature three phases, outlined
in Fig. 1:

1. Pilot phase. In the scope of a pilot study with domain experts, we
enquired experienced (5 + years of field experience) industrial prac-
titioners from our own networks using generic and open-ended in-
terviews to elicit the general understanding and concepts in cloud
monitoring;

2. Theoretical Synthesis. Using pilot data, we distilled the concepts,
definitions, and variables in the domain of cloud systems monitoring
and used the outcome theory to structure our online survey;

3. Confirmatory Survey. We finally employed an online survey in all
venues suggested by practitioners in phase (1);

The rest of this section outlines the 3 phases in detail, following the
exact phases in which the study was executed. In total, the process lasted
about 10 months, six of which have been dedicated to the pilot phase
and about two to the confirmatory survey.

3.2.1. Pilot phase

Pilot-study interviews Starting from our sub-research questions (see
Section 3.1), a set of 19 open questions were prepared to be used as start-
ing point for a structured discussion’. The structured discussion guided

7 Questions are available online for

https://tinyurl.com/yahtmmaj.

replication = purposes:

https://tinyurl.com/yahtmmaj

D.A. Tamburri, M. Miglierina and E.D. Nitto

by a questionnaire fulfils two research design objectives: (a) to guide the
discussion towards refining our understanding of the interviewees’ com-
pany characteristics, core business, the role of the interviewee within
that company and the general characteristics of their maintained soft-
ware products; (b) help the interviewer to elicit the practices, tools and
people involved in the operations, maintenance and incident handling
in the interviewee’s company. Finally, the questionnaire was structured
to include an implicit guide to have the interviewees expose problems,
limitations, and open points regarding their own and other available
monitoring tools and practices.

Pilot-study protocol The interview was conducted by one researcher
while materials and data-gathering was conducted with enfield notes
and observations by a direct observer during the interview itself. Rather
than selecting candidates, thus introducing a bias in our study, we de-
cided to share questions directly with our industrial contacts, together
with an opt-in open invitation to participate to the study. The invitation
featured an element of snowball sampling [35] whereby our contacts
were encouraged to better identify the most qualified person for the
interview and/or to gather such necessary information in advance, if
needed. Face-to-face interviews were scheduled weekly, over a period
of 3 months, and took about 1 h each. When face-to-face meetings were
not possible for time or spatial constraints, conference calls were organ-
ised instead using either Microsoft Skype, UberConference or the WebEx
video-conferencing systems.

Pilot-study sampling In the scope of Phase 1, we aimed at ensuring that
our results were attained considering an appropriately-sampled popula-
tion of companies developing and maintaining software systems cov-
ering most diverse architectural styles. Therefore, the following archi-
tectural styles were covered equally in our initial opt-in practitioner
invitations:

* Microservices architectures - microservices were considered since they
are an increasingly popular development approach and monitoring
is challenging because of their intrinsic distributed nature;
Multi-tenant hosting - companies offering multi-tenant solutions need
to take special care of monitoring in order to guarantee the SLA
agreed with the different users when resources are shared among
them;

Sensor networks - sensor-network companies have particular require-
ments such as energy efficiency constraints and unreliable infras-
tructures, requiring special monitoring attention;

Moreover, companies in our sample were chosen to cover for areas
orthogonal to the previous classification, as follows:

» Web applications - we are interested in accounting for applications
where monitoring is fundamental to provide required quality of ser-
vice to users, which can cope with often unpredictable traffic spikes;
Real-time services - we are looking for cloud software where timing
constraints need to be monitored and addressed since they procure
heavy impacts on returns and revenue (e.g., gaming or online trad-
ing);

Technology providers - these companies offer software solutions, in-
stalled on customers machines, and provide support for monitoring
on heterogeneous hosting solutions;

.

Sampling our network of industrial contacts with the above control
factors, we gathered a total of 20+ hours worth of interviews from 12
practitioners belonging to 7 different organizations over a 6-month pe-
riod. Table 2 summarises the population we were able to analyse with
in-person interviews. The resulting sample covers 80% of our expected
population (see above), with the exception of “sensor-network” and
“real-time” service architectures, which are only partially covered by
company ID = “I6” (see Table 2).

Interview analysis

Interviews were analysed by means of taxonomy analysis [36] and
thematic coding [37]. Our objective was to obtain: (a) confirmation over
the validity of the questions, concepts, notations, and issues selected to

Information and Software Technology 127 (2020) 106376

be addressed in the subsequent online survey phase; (b) answer-sets to
the online survey questions. This analysis allowed us to refine a set of
closed survey questions, responses as well as hypotheses to be verified
during phase (3).

The themes and taxonomy generated from the afore mentioned anal-
ysis are reported here below mapped to the research questions in this
study (in round brackets) and hence the subsequent online survey ques-
tionnaire preparation.

First, the interest in monitoring exceeded our expectation (Q1). All
interviewees considered monitoring a fundamental practice. It is per-
formed in different ways, but all of them are doing it (Q2) and, most
of all, no one asserted that monitoring is useless or that is not worth
investing on it.

Small companies usually prefer cloud hosting solutions and tend to
experiment with more recent technologies (e.g., Docker containers) and
patterns (e.g., microservices). There is usually one team taking care of
both development and operations (Q4). They do not invest much in mon-
itoring, rather they prefer to use solutions that are available at small cost
and with- out implying excessive effort (Q2). Incident handling is mainly
diagnosed by means of manual log analysis (Q3). The most important
metrics are availability and their product-specific business metrics.

In medium companies developers and operators are usually sepa-
rated teams which have different responsibilities. Usually only operators
receive alerts from the monitoring system (Q4). Operators are skilled
enough to setup a monitoring platform using one or more open source
monitoring tools for both system and application metrics and metrics
can be shown on dashboards, usually accessed by operators only. Logs
are collected and accessed using the ELK stack (Q2).

Large companies usually manage more complex systems and there-
fore tend to invest in more sophisticated monitoring solutions. Also,
companies where incidents can cause huge losses prefer to pay for mon-
itoring solutions and related support. These expensive solutions allow
them to use advanced machine learning and big data techniques for an-
alyzing monitoring data (Q2).

In all companies, alerts are mainly sent via email or via SMS in case of
critical issues (Q3). If there is any automatic remediation based on some
monitoring check, it involved only restarting a service or scaling up and
down hosts (Q3). Issue detection is mainly based on threshold, only
companies with strong IT departments or those investing a lot for third
party monitoring tools have more sophisticated machine learning tools
for detecting problems (Q2, Q3). In most of the cases custom code is used
and monitoring data is analyzed using tools that are not monitoring-
specific like relational databases or spreadsheets (Q2).

During the interview I3 a limitation of today’s monitoring tools is
identified, which is the lack of standards and integration. The company
use different data collecting tools on the same machines with different
scopes, with data flowing through different paths according to different
protocols. Some metrics even overlap between each other.

This is for example a challenge addressed by our own internal solu-
tion for monitoring, namely, the Tower4Clouds toolsuite® (Q6) since it
enforces the usage of the same protocol for sending data to one single
data analyzer which is then able to route processed data to different
destinations according to user-defined monitoring rules.

Another challenge that was identified during this first phase is the
high market demand and competitiveness. Startups (interview 17) or
emerging companies (interview I1) that are trying to address new mar-
ket opportunities, require a speed to implement new features that delays
the application of quality assurance techniques unless they require very
small setup efforts (interview I6).

3.2.2. Theoretical synthesis
The survey form featuring closed questions was perfected iteratively
with external reviewers from Academia, in order to improve clarity and

8 https://github.com/mmiglier/tower4clouds.

https://github.com/mmiglier/tower4clouds

D.A. Tamburri, M. Miglierina and E.D. Nitto

Table 2

Information and Software Technology 127 (2020) 106376

Interviewees population - when a company (ID in column 1) had multiple ongoing projects the interview was directed towards the major project, asset, or product;
IT headcount is the number of IT people working on that selected product (or product line) against the total across the company.

D Domain Role Total/IT headcount Product Architecture Software stack Monitoring stack
4 Travel CTO 100/15 B2B and B2C web Microservices Scala/Java, Amazon Cloud Watch,
services Akka, Docker custom availability checks
containers,
Amazon EC2
12 Software Research 100/25 Stream processing tool Event driven, Java, MongoDB Custom code
Software for news validation Microservices instrumentation
Engineer in (prototype)
Innovation Lab
I3 Software System 200/150 Saas services for 3-tier, Java, Tomcat, Focused on DB metrics,
Architect enterprises business multi-tenant C+, SQL Server, Graphite, Grafana, Nagios,
management DB HAProxy, Icinga, ELK stack
Linux/Windows,
third party
laaS
14 Software Chairman, CTO 5/3 SaaS recommending monolith with Java, Google Focused on DB and
system for business Multi-tenant App Engine, business metrics, Google
management DB Google SQL Analytics, Google App
Engine Dashboard
15 Software | Distinguished ~1.2M/400K Enterprise Mainframe Proprietary Proprietary monitoring
Hardware Engineer infrastructure system solution Embedded tools, analysis and alerting
Solutions tools for all laaS and PaaS
services they provide
16 Software | Solution ~1M/100K Full-Stack Product All All Services offered to
Hardware architect Presence financial corporations
include expensive and
sophisticate on-premise
monitoring tools, e.g.,
Dynatrace; others prefer
monitoring-as-a-service
with little setup efforts.
Most companies use our
custom solutions featuring
well-known tools
(relational DBs, and
spreadsheets for
data-analysis)
17 Finance CTO 40/10 e-payment platform Microservices Java, third Amazon Cloud Watch,
party services manual log checking (soon
(e.g., Google moving to ELK stack),
API), relational custom library pushing
database, metrics to Cloud Watch
Amazon S3, and/or to report table
Amazon EC2,
Amazon SNS

avoid ambiguities. First, the survey was shared among 3 colleagues of
our research group - these colleagues were expert on incident manage-
ment and were asked to review the survey form by trying to fill it and
provide feedback. Then, the form was shared with 3 colleagues outside
of our research group for an identical but external review process. Fi-
nally, the survey was sent to all practitioners who were initially involved
in our interview phase (1) - our goal was collecting a baseline set of an-
swers with which to check the proposed answer-set for closed questions
and process any provided comment or question. The agreement between
our expectations and the feedback received by the reviewers was evalu-
ated using the well-known Krippendorff « coefficient [38] according to
which the coded data was analysed by an independent third-party and a
confirmation rate (i.e., an agreement cipher, “1” in our case) was left if
the coding was agreed upon — at this point, K, is measured as the ratio
of agreement. The iterative review exercise was repeated until K, was
evaluated to > > 0.800, which is a standard reference value for K,-
based content Inter-Rater Reliability assessment [38]. Questions were
added if disagreement existed between our desired information content
and the interview data from either the reviewers or our industrial con-
tacts. The process of adding questions was iterated until an acceptable
agreement was achieved, as measured by the aforementioned K, pro-
cedure — in the scope of this process, a total set of four rounds were
invested in this endeavour until K, = 0.84.

The final form distilled through this process consisted of 38 ques-
tions and consisted of 3 Sections. Section 1 addressed questions about
the respondent role and the company. Section 2 focused on understand-
ing the software system architecture, its complexity, its development
and organisational history as well as its lifecycle and releasing process.
Finally, Section 3 focused on monitoring procedures and tools as well
as how software incidents are solved. The form was fed online using
Google Forms®.

3.2.3. Confirmatory survey

A total of 141 responses were collected employing random, stratified
sampling [39]. More in particular, our sample stratification strategy em-
ployed venues suggested by interviewees in Phase (1) of our study while
a randomised sampling strategy reflected sharing the submission link
openly with a brief introduction to topic and contents of the survey.
The following sources were considered:

» timed posts on three social media sites (Facebook, Twitter, and
LinkedIn);

9 The form is still available for reference: http://tinyurl.com/Ixegx6m.

http://tinyurl.com/lxegx6m

D.A. Tamburri, M. Miglierina and E.D. Nitto

Information and Software Technology 127 (2020) 106376

Survey responses per day

25

20

15

10

Fig. 2. Survey responses rate over time — the entire data-sampling phase lasted for 54 days.

« timed posts on all MeetUps'® focusing on IT monitoring and cloud in-
frastructures — we asked MeetUp leaders to share the survey among
MeetUp participants;

« timed posts on Reddit, under /r/sysadmin and /r/devops sub-
reddits;

The form was left open for answers for 54 days, following the princi-
ples of non-invasiveness [40]. During this period of data acquisition the
responses trend was monitored in order to understand the most impact-
ful communication techniques - the resulting trend is shown in Fig. 2.

The trend clearly highlights three spikes that are related to two dif-
ferent kinds of advertising actions. The first spike, in the beginning of
August, when the message was broadcast to around 250 industrial con-
tacts in our own network - we requested this network to share the re-
search survey to any acquaintance working in IT who may be able to
address the survey goals. The second spike appears a few days later
when the same message was broadcast to an additional set of 100 in-
dustrial contacts. The third and final spike is registered in the middle
of September when the research was advertised on Reddit under the
/r/sysadmin subreddit, which counted around 150.000 readers and
revealed to be the most impactful channel.

For data analysis we: (a) computed descriptive statistics that offer an
overview of our entire survey sources and resulting data - our goal was
to offer a precise overview of the status-facts distilled in our survey; (b)
queried the dataset using our research sub-questions (see Section 3.2.1)
as queries for the Google Answers query engine - our goal was to elicit
direct responses to address each question individually. Finally, with
respect to our SRQs, we evaluated Pearson or Spearman correlations
(when no assumption of linearity was possible) among the quantities
in our dataset, making sure to adopt standard p-value measurements of
p < <0.05, for confidence of correlations to instrument proper hypoth-
esis testing.

4. Analysis of the results from the confirmatory survey

This section analyses our survey results. More specifically,
Section 4.1 outlines descriptive statistics for our survey results while

10 https://www.meetup.com/.

Section 4.2 analyses the results in the light of the sub-research ques-
tions defined in Section 3.1.

4.1. Descriptive statistics

Our dataset appears quite heterogeneous in terms of market seg-
ments, as shown in Fig. 3: 43.7% of respondents belong to technological
industries; the rest of the dataset is distributed across several areas: fi-
nancial services, telecommunications, health care, consumer care and
others.

Fig. 4 shows that the sample is well distributed with reference to the
size of the companies. 25% are under 20 employees, 21% are between
21 and 100, 22% between 101 and 500, 22% between 501 and 10.000
and the remaining 10% over 10.000.

In terms of IT department size (Fig. 5) 30% of the companies has less
than 5 IT employees, 26% between 6 and 20, 18% between 21 and 100,
the remaining 26% has an IT bigger than 100 employees.

Respondents were usually covering multiple roles, however, 96% of
them were either developers, system administrators or DevOps engi-
neers. Among these, 39% covered exclusively a development role, 14%
exclusively a system administration role, 12% exclusively a DevOps role.

Software systems are distributed as depicted in Fig. 6, more than a
quarter of the companies develop, maintain, and commercialise enter-
prise software in several sectors and featuring several software applica-
tions and architecture types (see Fig. 6).

Furthermore, the distribution of architectural styles existing across
our dataset is depicted in Fig. 7. Not surprisingly, the figure shows a
clear predominance of client-server and service-oriented architectures
with similarity of occurrence between monolithic and microservice ar-
chitecture styles, which are opposite by definition. Most software sys-
tems are composed of a small number of deployable components: 72%
have less than 10 components, with 38% having less than 3 components.
20% have between 11 and 50 components, the remaining 8% over 50
components.

Fig. 8 depicts the hosting solutions adopted by the interviewees.
36.17% of them use the public cloud, 11.4% of which using it as the
only hosting solution for their entire system.

Regarding the type of deployment solution there is a considerable
percentage of companies that deploy on bare metal and on IaaS (Fig. 9).

https://www.meetup.com/

D.A. Tamburri, M. Miglierina and E.D. Nitto

Other
11.3%
Basic Materials
T%

11.3%

Industrials
2.8%

Information and Software Technology 127 (2020) 106376

Fig. 3. Industry types distribution.

Technology

Consumer Goods
4.3%
Health Care
5%

Telecommunications
TA%

42.5%

Financials

Consumer Services . 10.6%

24%
18%
12%
6%
0%
A~] = a0) ,\00 ‘300 1900 0900 n 960 0900
2" NN AN A0 N
9 o0 00‘\ 4
2 AQS
Fig. 4. Industry sizes distribution.
40%
30%
20%
10%
0% y
. 0 ® o A o o
A 6‘1 ,L'\’,\ O -° \,'Lwc \09 7\09
0 o
20
Fig. 5. IT sizes distribution.
Other

71%
Information worker
software

10.6%

100%

75%
62%

50%

25%

21% R

3%

0%

3 N < o
o® W = e i
oe® RN e oo

Fig. 7. Software architecture styles in our dataset.

@ Private hosting
@ Hybrid hosting
@ Public hosting

Fig. 8. Hosting solutions distribution.

However, a good part of our sample of companies are also using more
ephemeral solutions or higher abstraction layers.

We also collected a subjective score of the automation level of the
release cycle (Fig. 10), the release rate (Fig. 11) and, finally, the average
workload their systems endure (Fig. 12). Only 4 companies release more
than 10 times per day. These are large companies, 2 of them having more
than 100.000 employees. They all use SOA architectures with 100+

Fig. 6. Software systems distribution.

Enterprise Software

5%

Big data application
5.7%

Business intelligence
software

8.5%

Entertainment

5%

Content access
software

5.7%

27.7%

Product engineering

software

9.9%
Enterprise

Infrastructure Software

13.5%

D.A. Tamburri, M. Miglierina and E.D. Nitto

100%

75% 77%

50%

5% 27%

18%

Y
e? @ B o d@'«*"‘%

Fig. 9. Deploying model distribution.

40%
30%
20%

10%

0%
1 2 3 4 5

Fig. 10. Rates distribution for the level of automation in the release cycle. Av-
erage score is 2.83.

50%
38%
25%
13%
0%
] " @e\\é‘a r N . @e\\‘}ﬁei \?‘e\\ﬁ\o‘\\ " ?\e\Nee‘ L\ @e.\“em

Fig. 11. Release rates distribution.

(micro-)services, serving 1000/s requests. Only 1 company releases less
than once a year - it is a medium technological company with a small
IT following a relatively big system composed of 20 to 50 components,
privately hosted, serving hundreds of requests per second.

4.2. Analysis of results in the light of research sub-questions

Results are outlined addressing each of the research sub-questions
listed in Section 3.1.

Information and Software Technology 127 (2020) 106376

30%

23%

15%

8%

0%

Fig. 12. Workload distribution in terms of users requests per second.

4.2.1. RQ1I: Is monitoring perceived as a fundamental asset?

The large participation to the survey, even though the number of
questions was high, is a first indicator of the interest that monitoring has
across the industries. Nevertheless, when the respondents were asked
whether they had planned to improve their monitoring asset, 12.8%
of them answered “No, because investing time and money on monitoring
is not perceived as a profitable investment”. According to our data, this
perception can be found more concentrated in companies which are:

» managing a smaller number of components,

* hosted on private clouds,

» with smaller automation processes in action and
« releasing less often.

These companies, resulted to give the observability [7] of their sys-
tem a lower score (mean of 2.59) than the average of the entire sample
(3.1). From the answers they gave, these companies result to experience
longer unavailability time on average, when incidents occur:

» more than 20 min in 84% of such companies, against 63% of the
entire sample;

» more than 1 h in 39% of such companies, against 28% of the entire
sample.

Also, the average time to diagnose the cause of an incident is nega-
tively impacted in these set of companies which do not consider moni-
toring worth the investment: only 28% of them are able to diagnose a
problem in less than 20 min, against the 44% of the entire sample.

Finding 1. Monitoring is perceived as a fundamental asset only
for a specific profile of the industry that constitutes around 15%
of the total.

4.2.2. RQ2: Do all companies in our sample monitor their software
systems? How?

Fig. 13 shows the cumulative number of monitoring tools reported
across our sample: 18% of the surveyed companies do not have any de-
ployed system for monitoring, with pretty much the same percentage
using at most one or two tools. These companies reportedly operate us-
ing manual checks via terminal commands such as ping, ssh or grep if
there is any problem, as well as to troubleshoot. With respect to the rest
of our data over these companies, it is clear that they handle usually
small systems: 60% of them manage between 1 and 3 components, 32%
between 4 and 10. They also have slow release rates compared to com-
panies that practice continuous delivery. In fact, none of them releases
more than once per day. Conversely, such companies are subject to small
workloads and reportedly experience limited complexity of the system

D.A. Tamburri, M. Miglierina and E.D. Nitto

40

35

30

Frequency
3 &

i
[

None 1 2

N Frequency

Information and Software Technology 127 (2020) 106376

120.00%
100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

== Cumulative %

Fig. 13. Number of monitoring tools used across our sample.

It
P\PP \ication \nsid
Azure Py LG raphite

09Stash -

I G riodeX . l\,l\z{[.x Vector

Stats "Crunch
Inngrn PRIG
NewRehc E

Dﬂ,uo - O//e
C \n¥\uY~DB O Rq b b

IdW A

Google Cloud Monitoring

atch

ynomlcs
Q

Fig. 14. Word cloud made with monitoring tools and their usage frequency.
Google Analytics (i.e., the most frequent tool) was removed for picture clarity.

they manage, which leads to fewer incidents on average. Nonetheless,
when incidents do occur, they experience longer unavailability times
perceived by end users.

Moreover, 38% of the entire sample use no third party monitoring
tools. They only use internally developed solutions, meaning that be-
sides manual inspection, over a third of the companies in our dataset
finds it more convenient to develop their own indoor custom monitor-
ing and incident-tracking dashboard.

Among the companies using third party tools for monitoring pur-
poses, the most used ones are: Google Analytics (18%), Nagios (16%),
MySQL (14%), Grafana (12%), and Amazon CloudWatch (11%). In gen-
eral, the monitoring tools offer is really fragmented among both com-
mercial and open source solutions, with no clear winner, as can be seen
from the word cloud generated according to the usage frequency in
Fig. 14.

Finally, it is worth considering, that only 50% of all the surveyed
companies release new features or new components always jointly with
monitoring in mind, i.e., releasing new monitoring configurations or
features specific for the new piece of the system.

Finding 2. Not all companies are used to monitor their software
assets or have a strategy to do so; monitoring procedures and in-
cident management organizational structures emerge organically
often around custom-made ad-hoc monitoring solutions with little
or no reference to the state of the art or practice.

4.2.3. RQ3 and RQ5: What are the people/roles involved with monitoring?
What is the pandemic ratio for incidents?

Monitoring was once considered an operational endeavour [41].
However, our data shows that this trend is changed since in about 63%
of the companies software developers access monitoring information
and receive alerts. In about 16% of the cases also the business access
monitoring information and, differently from our expectations, in 31.1%
of the companies business directly receives alerts at the same time as op-
erations and software development teams.

Whatsmore, we used the above figures and data to give an answer
to RQ 5, namely, What is the pandemic ratio for incidents? I.e., how many
people are reached on average, if incidents do manifest? To look for an
answer, we correlated the average unavailability times with the sets of
people and roles that access monitoring data.

Our data shows that the downtime perceived by end-users—that is,
the people whose service is being interrupted—is inversely correlated
with a Spearman correlation value of -0,37 (p — value = 0.04) to the num-
ber of roles that receive alerts immediately, and at the same time, mean-
ing that downtime decreases the more roles are alerted at the same time.
This confirms our conjectured existence of a *pandemic factor* that helps
keeping downtimes low based on how many people are “involved” in
incidents management and handling. However, we reported one single
datapoint (or 0.6% of our dataset) where development, operations, and
business personnel are all alerted by incidents - that same datapoint ex-
hibits the lowest downtime perceived by end-users.

D.A. Tamburri, M. Miglierina and E.D. Nitto

80%

650%

40%

20%

0%

Damaged
hardware

Information and Software Technology 127 (2020) 106376

Fig. 15. Distribution of the alerting mechanism used by companies.
Respondents could select multiple answers concerning incident re-
porting.

Fig. 16. Distribution of the most common cause for incidents accord-
ing to interviewees.

Incidents on third
party service

12.1

Disk is full
6.4%

Network saturation
3.6%

Memory saturation
9.2%
CPU saturation

5.7%

Buggy release

6.4% Bug on third party

Wrong

configuration

9.2%

9.2%

Analyzing further in our data to elaborate more in the pandemic
factor above, we observed that, according to our data, an average of 7
people receive 1 to 20 messages per day, with that average increasing
linearly per size of the organization and with a maximum team-size of
14 people. Correlating the aforementioned average with team size, we
observed that up to half the team can be notified and their activities
disrupted whenever downtime is registered; this indicates a haphazard
organizational structure around incident management. Also, our data
reflects almost 20% of false-alarm rates - this leads to conclude that, on
average, there exists an immature incident-management organisational
structure.

Finding 3. application incidents reported through monitoring al-
most always involves only IT technical roles; however, when busi-
ness roles are involved in the incident-management organizational
structure, the incidents frequency and resolution times are ham-
pered (incident pandemic factor).

4.2.4. RQ4: How are incidents discovered and handled?

In terms of how incidents are discovered and treated, 70% of sur-
veyed companies use emails among the alerting techniques. 57.45%
discover problems by actively inspecting logs or graphs. The third
most frequent way of how employee are alerted is directly from end-
users/customers. The complete distribution is depicted in Fig. 15. The
release of buggy core components is considered the most common cause
for an incident by 38.3% of the respondents. The distribution of the

service

other causes is depicted in Fig. 16. The release of buggy core components
requires manual intervention for 60.1% of the companies. For about half
of the sample, manual intervention is also required for wrong configu-
ration updates, filling of the disks, and hardware damage. Automatic
remediation (or partial mitigation) is instead common for about 40% of
the cases in the case of CPU or memory resource saturation.

Finding 4. 2 out of 3 incidents are found by direct manual log
inspection and are reported via email. Heavy manual operations
are involved in subsequent handling.

4.2.5. RQ6: What are the most critical challenges perceived when trying to
make a system observable?

An explicit question in both our phase (1) interview campaign and
phase (3) online survey asked participants information on the main ob-
stacles they perceived as preventing the adoption of monitoring; as for
other questions, the answer-set for this closed question was prepared us-
ing data from phase (1) of our study, but in the case of these questions we
provided respondents with an open field to openly suggest an unforeseen
answer. Fig. 17 shows the results. Almost 50% of the interviewees orig-
inally perceived the lack of standards as the main obstacle. This aspect,
together with the proliferation of way too many tools for monitoring
(34%), each one bringing new protocols and schemas, are undoubtedly
the most critical challenges. Much in the same vein, challenges reported
reflect learning curve and technical difficulty in usage (33%) - tools are
hard to use - self-service and painless-setup solutions are preferred. Fur-

D.A. Tamburri, M. Miglierina and E.D. Nitto

60%
45%
30%
15%

0%

Nl $& v o w°

m““wd@ o d“’*"o & @o““e we®
o &° ¢ ot S e o
« ot ¥ 2 w® o o

2 o @ w

thermore, organisational planning and IT strategies also play the role of
the challenger - 29% of our respondents remark that monitoring is not
currently perceived as a priority for internal infrastructure improvement
investments. Lastly, a mere 2 respondents chose to suggest an alterna-
tive answer with the open-inquiry field.

Finding 5. Lack of (1) strategic monitoring business choices, (2)
standardization, (3) faster learning-curves are perceived as the
most critical challenges in systems monitoring and observability.

4.2.6. RQY: Is there correlation between complexity of cloud architectures
and the time of unavailability reported for incidents?

To address the above question we calculated the Spearman corre-
lation coefficient between the measurement of cloud architecture com-
plexity outlined in our research design (see Section 3.1 sub-question
7) with the average time of unavailability reported by our survey re-
spondents. Our results show that the more complex and the more
microservice-like the system is, then the less average unavailability is
likely to be reported for that system. This finding seems to provide evi-
dence of the benefits of microservice architectures [42] in the context of
achieving large-scale complexity and availability at the same time. How-
ever, we report a little negative correlation around -0,28, which, even
though statistically significant in terms of its p-value, may not reflect the
commonly understood dimensions of software architecture complexity
[43], mainly because of our particular definition of architecture com-
plexity, devised specifically for the scope of this study.

Finding 6. complexity of cloud architectures, defined according
to the SA; metric (see Section 3), is (in a mild form) inversely
proportional to unavailability times.

4.2.7. RQ8: Is there any relation between systems observability and
architecture complexity?

To address the above question we calculated the Spearman correla-
tion coefficient between our respondents’ systems observability degree,
as reported by respondents on a Likert-scale from no observability (equal

Information and Software Technology 127 (2020) 106376

Fig. 17. Challenges perceived by interviewees in the adoption of moni-
toring.

to 0) to full observability (equal to 5), and SA; outlined in our research
design (see Section 3.1 sub-question 7). We report a mild, though still
statistically significant, positive correlation of 0.16, meaning that for an
increase in systems complexity an equal increase in systems observabil-
ity also manifests in at least 15% of the times. On the one hand, the cor-
relation indicates that people are aware of the “increasing architecture
complexity ==> increased observability requirements” conundrum. On
the other hand, the relatively low number could indicate the immatu-
rity of architectures and systems observability [7] in this respect, e.g.,
in defining and operationalising systems observability as an architecture
property and evaluate it in the context of cloud software architectures.
Regardless of the previous tentative interpretation, the correlation does
not warrant for any major observation about our target sub-research
question, which, in the context of this study, remains un-answered.

Finding 7. there is limited to no perceivable relation between sys-
tems observability (as defined in literature [7]) and architecture
complexity (as previously defined); the limited statistical signifi-
cance and low correlation between the two scores, however, im-
plies the need for further research in this field.

5. Threats to validity

Like any study of comparable magnitude and scale, this study is af-
fected by several threats to validity [39]. In what follows we outline the
major ones in our study design and execution.

5.1. Internal and sampling validity

Internal validity refers to the internal consistency and structural
integrity of the empirical research design. More specifically it refers
to how many confounding factors may have been overlooked. We at-
tempted to address this threat with a sampling strategy where we con-
trolled as many variables as possible to: (a) ensure a meaningful variety
of our sample; (b) ensure that important variables for the objects of our
study were controlled. For example, we controlled for organisational
maturity, people age, gender, and more. Also, we controlled for process
maturity, by selecting a heterogeneous sample according to a standard
CMMI scale. Furthermore, there exist several angles to cloud applica-

D.A. Tamburri, M. Miglierina and E.D. Nitto

Information and Software Technology 127 (2020) 106376

Table 3
An industrial study of cloud applications monitoring — an overview of findings.

Finding Description

1 Monitoring is perceived as a fundamental asset only for a specific profile of the industry and their subset constitutes around 15% of the
total.

2 Not all companies are used to monitor their software assets or have a strategy to do so; monitoring procedures and incident management
organizational structures emerge organically often around indoor ad-hoc monitoring solutions with little or no reference to the state of
the art or practice.

3 Application incidents reported through monitoring almost always involve only IT technical roles; however, when business roles are
involved in the incident-management organizational structure, the incidents frequency and resolution times are hampered (incident
pandemic factor).

4 2 out of 3 incidents are found by direct manual log inspection and are reported via email. Heavy manual operations are involved in
subsequent handling.

5 Lack of (1) strategic monitoring business choices, (2) standardization, (3) faster learning-curves are perceived as the most critical
challenges in systems monitoring and observability.

6 Complexity of cloud architectures, in terms of the number of architecture components multiplied by the numbers of styles involved in
such architectures, is (in some mild form) inversely proportional to unavailability times.

7 There is limited to no perceivable relation between systems observability (as defined in literature [7]) and architecture complexity (as

previously defined); the limited statistical significance and low correlation between the two scores, however, implies the need for further

research in this field.

tions monitoring that we could not consider, including for example the
networked infrastructures monitoring angle in the scope of Software-
Defined Networks (SDNs) domain area. From this perspective, we hope
our study can become a reference work to drive further systematic anal-
ysis.

5.2. Construct and external validity

Although our measurements, observations, and findings are based
on valid content (i.e., reported by practitioners who were directly in-
volved with and witnesses to the reported subjects) and valid criteria,
the external validity connected to the above-mentioned flaw may be
compromised as well. For example, we used simple non-weighted and
aggregate sums to evaluate the quantities involved in this study so we
have no way of knowing whether the entity and arity of the involved
quantities may yield different results. In this respect, we are planning
further studies by automated quantitative means. Finally, our simplistic
definition of architectural complexity was designed as a proxy for such
complexity and is by no means of systematic inception and evaluation.
We are aware that this definition would need further exploration and
validation, but we feel this would fall out of the specific scope of this

paper.
5.3. Conclusion validity

Conclusion validity represents the degree to which conclusions about
the relationship among variables are reasonable. In the scope of the dis-
cussions of our results, we made sure to minimise possible interpreta-
tions, designing the study with reference to known hypotheses. Also, our
conclusions were drawn from statistical analysis of our dataset. Finally,
our conclusions, the dataset, the analyses were all disclosed for others
to progress, replicate, or compound our results.

6. Discussion

Table 3 offers an overview of the findings we have identified in
Section 4.2. From these, a rather obvious conclusion can be gathered:
there is much untapped potential in the use of more precise and bet-
ter instrumented monitoring practices for industrial cloud applications
quality assurance.

6.1. Comparing our findings with the available literature: preliminary
analysis

As a further step, we questioned whether there exist literary refer-
ences, either grey or research literature, which address the points high-

lighted in the findings. In the following, we provide the preliminary
results of our analysis.

First, with respect to findings 1 and 2, Gonzales et al. [44] highlight
the exact same issues we reveal and offer an overview of Continuous Mon-
itoring, a proposed methodology with supporting tools which reflects
the adoption of a specific monitoring pipeline built as part of a DevOps
pipeline and a specific strategy to use it during operations. The work
provides an overview of the advantages, technical and business gains
around the aforementioned adoption but also agree with several of the
limitations highlighted in our finding 5 (e.g., lack of standardization) as
the limiting factors hampering proper adoption of continuous monitor-
ing in the field. Similar insights are provided by Chan et al. [45] who
offer similar insights from an edge computing perspective.

Secondly, with respect to finding 3, while no research literature was
found, several grey literature report on the urgency to devise more ap-
propriate and effective ways to measure the quality of organizational
structures involved in software engineering and cloud computing, espe-
cially around monitoring. Most prominently the article by Neray'! offers
several pointers for further research and practice in this direction.

Concerning finding 4, a white-paper from Instana'?, a software mon-
itoring solutions vendor, highlights the risks and problems caused by
manual monitoring in a continuous development/continuous integra-
tion context, where the presence of manual operations cause the whole
pipeline to slow down.

Concerning finding 5, we were not able to find any literature to ad-
dress either of the shortcomings emerged from our data analysis, other
than whitepapers'® or research literature [46] confirming the urgency
and need to invest on the topic from both the academic and practical
perspectives.

Finally, concerning finding 6 and 7, several recent works have
touched upon cloud architecture complexity in terms of microservices
proliferation as well as their governance and management. Most promi-
nently by Toffetti et al [47] who offer experimental results on managing
large-scale microservices solutions and Galletta et al. [48] who offer one
such large-scale microservices management solution but in the very spe-
cific domain of oceanographic Big Data management and analysis. Fur-
thermore, Tamburri et al. [7] offer an operationalisation of the concept
of Observability and offer a refactoring exercise that shows how soft-
ware maintainability improves and at which costs. Further research is

11 https://searchitchannel.techtarget.com/tip/Cloud-demands-new-IT-
organizational-structure-How-providers-can-help.

12 https://www.instana.com/blog/continuous-deployment-and-continuous-
monitoring-a-winning-pair/.

13 https://www.infoq.com/articles/problem-with-cloud-computing-
standardization.

https://searchitchannel.techtarget.com/tip/Cloud-demands-new-IT-organizational-structure-How-providers-can-help
https://www.instana.com/blog/continuous-deployment-and-continuous-monitoring-a-winning-pair/
https://www.infoq.com/articles/problem-with-cloud-computing-standardization

D.A. Tamburri, M. Miglierina and E.D. Nitto

still needed in this emerging research direction before the role of either
microservices monitoring as well as observability becomes clear.

As mentioned above, our analysis is still preliminary and may have
missed several other papers that explain or further elaborate on the find-
ings we reported; a systematic literature review of methods and tech-
niques for incident management would be needed and may reveal fur-
ther insights into the organisational mechanisms and measures existing
to sustain service continuity. This, however, is obviously beyond the
scope of this paper and is the subject of our future work.

Summary of the literature preliminary analysis. From our pre-
liminary analysis of the literature, the existing solutions are frag-
mentary and the field is rather immature; the present literature is
not organic and there is no apparent continuity between the gray
and research literatures. The works we reported upon confirm that
monitoring platforms cannot be agnostic from the domain or from
the business aspects around them and similarly there needs to be
more research towards more effective and well-coordinated orga-
nizational structures around more suitable sets of tools. Finally,
we report an evident barrier to the adoption of monitoring and
incident management approaches and techniques that needs to
be addressed. Our survey offers initial pointers in the direction,
specifically, both towards a system that allows to define a better
monitoring approach as well as towards standard monitoring sys-
tems and organizational structures [49].

6.2. Lessons learned

Beyond the literature-based discussion above, we report some
lessons we learned from our findings.

Although the presence of standards is often frowned upon by re-
searchers, academics, and practitioners themselves, standards have a con-
trolling power over the proliferation of differently-mature, diverse technolo-
gies. In the scope of our findings, we revealed the presence of several
technological “combo’s”, from the most basic ones (featuring MySQL
for data storage and simple SQL querying mechanisms for monitoring
data analysis) to de-facto standard patterns such as the ELK, Elastic-
Search/Logstash/Kibana monitoring stack. In this proliferation, there
exists a lack of harmonious effectiveness measurements, which leads
software quality assurance researchers and practitioners to adopt an ad-
hoc approach rather than standardised solutions to be improved over
time with practice and experimentation. Perhaps the time has come for
a standard to be proposed from industry and for industry, beyond pre-
vious proposals (e.g., the NIST proposed standardisation agenda over
monitoring cloud applications'#).

Beyond standards, there exists no measurable quantity to evaluate to
what degree cloud applications monitoring solutions are effective, that is,
there are no intuitive software architecture or code quality metrics that
can be correlated with the number of incidents such that monitoring
practice can be measurably improved. This also leads to a prolifera-
tion of rather simple-to-use and maintain solutions, without any defini-
tive, disciplined approach emerging. Further software architecture, code
quality, and maintainability research should look into this shortcoming
for the benefit of both research and practice.

Finally, our results altogether show that the human factor weighs heav-
ily in monitoring effectiveness. For example, we unwittingly uncovered a
pandemic factor playing a role in reducing the amount of incidents re-
ported with respect to architecture complexity, while investigating the
impact of reported incidents across monitoring and quality management
organisational structures. In the scope of this finding, we recon that very
little research has been conducted so far in effective organisational struc-

14 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-
291r2.pdf.

Information and Software Technology 127 (2020) 106376

tures for incident management, coverage, and disaster recovery. Further
research in social software engineering should be invested in this direc-
tion, since the management practices we elicited from our results are
basic and rather un-structured, deserving further investigation.

7. Conclusion

The manuscript offers an industrial, mixed-methods study featuring
interview, large-scale survey research. Our results shed light over sev-
eral key research questions in the domain of cloud applications moni-
toring, spanning themes and topics such as (1) monitoring prominence
in industry, (2) monitoring pandemics, (3) most critical challenges from
a process, product, and lifecycle perspective.

Our results offer a glimpse of the untapped potential behind using
more structured approaches for cloud applications monitoring and con-
tinuous quality improvement. In discussing our results, we conclude that
the lack of technical and organisational standards were elicited as being
the key limitations currently in the field.

In the future, we plan to refine a standards proposal to be addressed
in the context of our participation within the OASIS Standardisation
board such that industries at large may in fact benefit from our results
and hopefully gain an active stance with respect to technological stan-
dardisation in the field.

Moreover, in the future we plan to further investigate the notion of
effectiveness in cloud application monitoring organisational structures
— this notion emerged as a novel contribution of our study, but we
barely scratched its surface. Finally, we are planning to strengthen the
validity of the contributions and results we outlined in this paper by
executing a large-scale case-study campaign in industry, in hope of gen-
eralising our results by means of further observational, and exploratory
research.

Declaration of Competing Interest

All authors declare not to have any financial or other cois of any
kind.

CRediT authorship contribution statement

Damian A. Tamburri: Conceptualization, Data curation, Formal
analysis, Funding acquisition, Investigation, Methodology, Project ad-
ministration, Resources, Software, Supervision, Validation, Visualiza-
tion, Writing - original draft, Writing - review & editing. Marco Miglie-
rina: Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Software, Supervision, Validation, Visualization, Writing
- original draft, Writing - review & editing. Elisabetta Di Nitto: Concep-
tualization, Funding acquisition, Methodology, Project administration,
Resources, Software, Supervision, Validation, Writing - original draft,
Writing - review & editing.

Acknowledgements

Some of the authors’ work is partially supported by the
European Commission grant no. FP7-ICT-2011-8-318484 (MODA-
Clouds), European Commission grant no. 0421 (Interreg ICT), Werk-
inzicht and the European Commissionrant no. 787061 (H2020), ANITA
as well as the European Commissionrant no. 825040 (H2020), RADON
and the European Commissionrant no. 825480 (H2020), SODALITE. We
are very grateful to the domain experts who participated in our initial
pilot analysis and to those who entusistically joined our survey and filled
in our questionnaire.

References

[1] M. Conley, A. Vahdat, G. Porter, Achieving cost-efficient, data-intensive computing
in the cloud., in: S. Ghandeharizadeh, S. Barahmand, M. Balazinska, M.J. Freedman
(Eds.), SoCC, ACM, 2015, pp. 302-314.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-291r2.pdf
https://doi.org/10.13039/501100000780
https://doi.org/10.13039/501100000780
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0001

D.A. Tamburri, M. Miglierina and E.D. Nitto

(2]
[3]
[4]
[5]

[6]

7]

[8

—

[9

[}

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]
[24]

V. Prakash, Y. Wen, W. Shi, Tape cloud: scalable and cost efficient big data infras-
tructure for cloud computing., in: IEEE CLOUD, IEEE, 2013, pp. 541-548.

L. Barolli, X. Chen, F. Xhafa, Advances on cloud services and cloud computing.,
Concurrency Comput. 27 (8) (2015) 1985-1987.

L. Liu, Services computing: from cloud services, mobile services to internet of ser-
vices., IEEE Trans. Serv. Comput. 9 (5) (2016) 661-663.

P. Skvortsov, D. Hoppe, A. Tenschert, M. Gienger, Monitoring in the clouds:
comparison of ECO2Clouds and excess monitoring approaches., CoRR (2016)
abs/1601.07355.

M. Zuniga-Prieto, P. Cedillo, J. Gonzélez-Huerta, E. Insfrén, S. Abrahdo, Monitoring
services quality in the cloud., ERCIM News 2014 (99) (2014).

D.A. Tamburri, M.M. Bersani, R. Mirandola, G. Pea, Devops service observability
by-design: experimenting with model-view-controller., in: K. Kritikos, P. Plebani,
F.D. Paoli (Eds.), ESOCC, Lecture Notes in Computer Science, vol. 11116, Springer,
2018, pp. 49-64.

J. Hernantes, G. Gallardo, N. Serrano, It infrastructure-monitoring tools., IEEE Softw.
32 (4) (2015) 88-93.

P. Lipton, D. Palma, M. Rutkowski, D.A. Tamburri, Tosca solves big problems in the
cloud and beyond!, IEEE Cloud Comput. 5 (2) (2018) 37-47.

K. Alhamazani, R. Ranjan, K. Mitra, F.A. Rabhi, S.U. Khan, A. Guabtni, V. Bhatnagar,
An overview of the commercial cloud monitoring tools: research dimensions, design
issues, and state-of-the-art., CoORR (2013) abs/1312.6170.

M.B. de Carvalho, R.P. Esteves, G. da Cunha Rodrigues, L.Z. Granville,
L.M.R. Tarouco, A cloud monitoring framework for self-configured monitoring slices
based on multiple tools., in: CNSM, IEEE Computer Society, 2013, pp. 180-184.

S. Kvale, Doing Interviews (Sage Qualitative Research Kit), SAGE, 2008.

A.M. Pettigrew, Longitudinal field research on change: theory and practice, Organ.
Sci. Spec. Issue 1 (3) (1990) 267-292.

H. Gam, Controllability and observability of risk and resilience in cyber-physical
cloud systems., in: S. Jajodia, K. Kant, P. Samarati, A. Singhal, V. Swarup, C. Wang
(Eds.), Secure Cloud Computing, Springer, 2014, pp. 325-343.

T. Mauro, Adopting microservices at netflix: lessons for team and pro-
cess design, 2015, ((accessed January 16, 2017) https://www.nginx.com/blog/
adopting-microservices-at-netflix-lessons-for-team-and-process-design/).

A. Bertolino, Software testing and/or software monitoring: differences and common-
alities, Jornadas Sistedes (2014) 2093-2095.

K. Fatema, V.C. Emeakaroha, P.D. Healy, J.P. Morrison, T. Lynn, A survey of cloud
monitoring tools: taxonomy, capabilities and objectives, J. Parallel Distrib. Comput.
74 (10) (2014) 2918-2933, doi:10.1016/j.jpdc.2014.06.007.

IBM, IBM Dictionary of Computing, 10th ed., McGraw-Hill, Inc., New York, NY, USA,
1993.

G. Aceto, A. Botta, W. de Donato, A. Pescape, Cloud monitoring: a survey., Comput.
Netw. 57 (9) (2013) 2093-2115.

C. So-in, C. Netflow, A survey of network traffic monitoring and analysis tools,
(2020).

1. Ghafir, V. Prenosil, J. Svoboda, M. Hammoudeh, A survey on network security
monitoring systems, in: 2016 IEEE 4th International Conference on Future Internet
of Things and Cloud Workshops (FiCloudW), 2016, pp. 77-82, doi:10.1109/W-Fi-
Cloud.2016.30.

R. Jabbari, N.B. Ali, K. Petersen, B. Tanveer, What is devops?: a systematic mapping
study on definitions and practices, in: XP Workshops, ACM, 2016, p. 12.

M. Kersten, A cambrian explosion of devops tools., IEEE Softw. 35 (2) (2018) 14-17.
T. Mens, A state-of-the-art survey on software merging, IEEE Trans. Softw. Eng. 28
(5) (2002) 449-462.

[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]
[33]
[34]
[35]
[36]

[37]
[38]

[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

Information and Software Technology 127 (2020) 106376

T. Mens, T. Tourwé, A survey of software refactoring, IEEE Trans. Softw. Eng. 30 (2)
(2004) 126-162.

J.S. Ward, A. Barker, A cloud computing survey: developments and future trends in
infrastructure as a service computing., CoRR (2013) abs/1306.1394.

R. Prodan, S. Ostermann, A survey and taxonomy of infrastructure as a service and
web hosting cloud providers., in: GRID, IEEE Computer Society, 2009, pp. 17-25.

, Model-Driven Development and Operation of Multi-Cloud Applications: The
MODACIouds Approach, E. Di Nitto, P. Matthews, D. Petcu, A. Solberg (Eds.),
Springer, Cham, 2017.

R. Cimera, Asset Management, ADDitude, 2010.

S.G. Linkman, Quantitative monitoring of software development by time-based and
intercheckpoint monitoring., Softw. Eng. J. 5 (1) (1990) 43-49.

D.A. Tamburri, P. Lago, H.v. Vliet, Organizational social structures
for software engineering, ACM Comput. Surv. 46 (1) (2013) 3:1-3:35,
doi:10.1145/2522968.2522971.

L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, SEI Series in
Software Engineering, Addison-Wesley, 2003.

L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison Wesley,
1998.

P.C. Clements, R. Kazman, M. Klein, Evaluating Software Architectures, SEI Series
in Software Engineering, Addison-Wesley, 2001.

P. Biernacki, D. Waldorf, Snowball sampling. problems and techniques of chain re-
ferral sampling, Sociol. Methods Res. 10 (2) (1981) 141-163.

C. Heath, J. Hindmarsh, P. Luff, Video Analysis and Qualitative Research, Sage Pub-
lications, London, 2010.

S. Kvale, Doing Interviews (Sage Qualitative Research Kit), SAGE, 2008.

K. Krippendorff, Content Analysis: An Introduction to Its Methodology (second edi-
tion), Sage Publications, 2004.

C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, Experimentation in Soft-
ware Engineering., Springer, 2012.

E. Matouskova, K. Pavelka, Hyperspectral approach to a non-invasive survey of cul-
tural heritage objects., in: WHISPERS, IEEE, 2013, pp. 1-4.

K. Mahbub, Runtime Monitoring of Service Based Systems., City University London,
UK, 2006 Ph.D. thesis. British Library, EThOS

S. Newman, Building Microservices: Designing Fine-Grained Systems, O’Reilly, Bei-
jing, 2015.

R.S. Sangwan, L.-P. Lin, C.J. Neill, Structural complexity in architecture-centric soft-
ware evolution., IEEE Comput. 41 (10) (2008) 96-99.

G.C. Gonzalez, P.N. Sharma, D.F. Galletta, Factors influencing the planned adoption
of continuous monitoring technology., J. Inf. Syst. 26 (2) (2012) 53-69.

C. ling Chan, R. Fontugne, K. Cho, S. Goto, Monitoring TLS adoption using backbone
and edge traffic, in: INFOCOM Workshops, IEEE, 2018, pp. 208-213.

M. Miglierina, D.A. Tamburri, Towards omnia: a monitoring factory for quali-
ty-aware devops., in: W. Binder, V. Cortellessa, A. Koziolek, E. Smirni, M. Poess
(Eds.), ICPE Companion, ACM, 2017, pp. 145-150.

G. Toffetti, S. Brunner, M. Blochlinger, F. Dudouet, A. Edmonds, An architecture for
self-managing microservices., in: V.I. Munteanu, T.-F. Fortis (Eds.), AIMC@EuroSys,
ACM, 2015, pp. 19-24.

A. Galletta, L. Carnevale, A. Buzachis, A. Celesti, M. Villari, A microservices-based
platform for efficiently managing oceanographic data., in: Innovate-Data, IEEE,
2018, pp. 25-29.

M. Miglierina, Monitoring Modern Distributed Software Applications: Challenges
And Soloutions, Politecnico di Milano, 2017 Ph.D. thesis. Under revision

http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0004
http://arxiv.org/abs/1601.07355
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0009
http://arxiv.org/abs/1312.6170
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0014
https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0015
https://doi.org/10.1016/j.jpdc.2014.06.007
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0018
https://doi.org/10.1109/W-FiCloud.2016.30
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0023
http://arxiv.org/abs/1306.1394
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0028
https://doi.org/10.1145/2522968.2522971
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30145-2/sbref0047

	Cloud applications monitoring: An industrial study
	1 Introduction
	2 Background and related work
	2.1 Monitoring: terms and definitions
	2.2 Monitoring: dimensions of analysis
	2.3 Related surveys

	3 Research design
	3.1 Research problem, goals, and questions
	3.2 Research methods
	3.2.1 Pilot phase
	3.2.2 Theoretical synthesis
	3.2.3 Confirmatory survey

	4 Analysis of the results from the confirmatory survey
	4.1 Descriptive statistics
	4.2 Analysis of results in the light of research sub-questions
	4.2.1 RQ1: Is monitoring perceived as a fundamental asset?
	4.2.2 RQ2: Do all companies in our sample monitor their software systems? How?
	4.2.3 RQ3 and RQ5: What are the people/roles involved with monitoring? What is the pandemic ratio for incidents?
	4.2.4 RQ4: How are incidents discovered and handled?
	4.2.5 RQ6: What are the most critical challenges perceived when trying to make a system observable?
	4.2.6 RQ7: Is there correlation between complexity of cloud architectures and the time of unavailability reported for incidents?
	4.2.7 RQ8: Is there any relation between systems observability and architecture complexity?

	5 Threats to validity
	5.1 Internal and sampling validity
	5.2 Construct and external validity
	5.3 Conclusion validity

	6 Discussion
	6.1 Comparing our findings with the available literature: preliminary analysis
	6.2 Lessons learned

	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References

