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Abstract
Many neurodegenerative diseases are connected to the spreading of misfolded prionic pro-
teins. In this paper, we analyse the process of misfolding and spreading of both α-synuclein
and Amyloid-β, related to Parkinson’s and Alzheimer’s diseases, respectively. We intro-
duce and analyze a positivity-preserving numerical method for the discretization of the
Fisher-Kolmogorov equation, modelling accumulation and spreading of prionic proteins.
The proposed approximation method is based on the discontinuous Galerkin method on
polygonal and polyhedral grids for space discretization and on ϑ−method time integration
scheme. We prove the existence of the discrete solution and a convergence result where
the Implicit Euler scheme is employed for time integration. We show that the proposed
approach is structure-preserving, in the sense that it guarantees that the discrete solution is
non-negative, a feature that is of paramount importance in practical application. The numeri-
cal verification of our numerical model is performed both using a manufactured solution and
considering wavefront propagation in two-dimensional polygonal grids. Next, we present a
simulation of α-synuclein spreading in a two-dimensional brain slice in the sagittal plane.
The polygonal mesh for this simulation is agglomerated maintaining the distinction of white
and grey matter, taking advantage of the flexibility of PolyDG methods in the mesh con-
struction. Finally, we simulate the spreading of Amyloid-β in a patient-specific setting by
using a three-dimensional geometry reconstructed from magnetic resonance images and an
initial condition reconstructed from positron emission tomography. Our numerical simula-
tions confirm that the proposed method is able to capture the evolution of Parkinson’s and
Alzheimer’s diseases.
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1 Introduction

A neurodegenerative disease is a process that causes the progressive death or function loss
of neurons. Many different pathologies belong to this group and some of them are called
proteinopathies because their aetiology involves misfolding and aggregation of prions into
toxic and insoluble proteins [28]. Typical examples of proteins that undergo this process are
α-Synuclein, related to Parkinson’s disease [27], and Amyloid-β, whose aggregation is a
triggering mechanism of Alzheimer’s disease [25].

Recently, themathematicalmodelling of prion dynamics has been studied to elucidate how
the physical processes at the basis of the agglomeration and diffusion processes can be related
to complex brain structure and functioning. A mathematical description of the spreading at
the macroscopic level can be a useful tool in clinical practice, where the use of positron
emission tomography imaging (PET) is often considered too invasive and expensive [23].
Moreover, for some pathologies, like α-sinucleopathies, there not exist satisfactory chemical
ligands [24] that prevent diagnostic investigations, and this computed-assisted modelling is
mandatory.

Concerning the numerical modelling of neurodegeneration, the most diffused mathemat-
ical description of this phenomenon is based on the Fisher-Kolmogorov (FK) equation (also
known as Fisher-KPP) [18, 19]. This model is a nonlinear diffusion–reaction equation that is
particularly suited to describe biological species’ evolution [20, 33]. Many different numer-
ical methods have been proposed to compute the approximate solution of the FK equation,
also in the context of brain neurodegeneration. For example, we recall Finite Element Meth-
ods (FEM) [12, 38], Boundary Elements Methods (BEM) [17], and Discontinuous Galerkin
(DG) methods [13].

In the context of modelling neurodegenerative disorders, the solution c of the FK problem
represents the (relative) concentration of misfolded proteins, which needs to be non-negative.
It can be shown that in the continuous formulation, the solution of the FK equation has
two equilibrium states: c = 1 and c = 0 [35]. However, due to the unstable nature of the
second equilibrium, at the discrete level, it is fundamental to construct a positivity-preserving
numericalmethod to avoid numerical instabilities that lead to unphysical (negative) numerical
solutions [13]. For this reason, some works analyze the construction of suitable positivity-
preserving methods both within the context of finite differences [36] and DG [43] methods.
The latter work uses a change of variable based on the exponential transformation to ensure
positivity and entropy preservation at the discrete level. Indeed the construction of numerical
methods that preserve some structures, such as entropy dissipation [45, 46], other physical
constraints [44], or the invariant domain [47, 48], is a fundamental field in the actual research
of numerical analysis.

Starting from the high-order idea of [43] - limited to simplicial meshes - in this work
we present and analyse a DG formulation on polygonal/polyhedral grids (PolyDG). The
proposed approach presents several advantages and novelties: (i) The flexibility in the con-
struction of the mesh, based on mesh agglomeration [29]. This plays an important role,
especially because of the complexity of the geometrical domain of the application at hand,
i.e., the human brain; (ii) The freedom in the choice of discretization parameters, like the
polynomial degree, which might locally change, from element to element [30]. In the context
of brain neurodegeneration, where the geometrical complexity of the domain is an issue,
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the use of elementwise approximation orders allows us to reduce the computational cost,
without affecting the correctness of wavefront propagation; (iii) The use of higher-order time
integration. Indeed, to the timescales of the brain neurodegeneration process (that typically
means over decades), the use of low-order time integrationmethods is not convenient to catch
the wave propagation correctly. For this reason, we adopt a second-order time integration
strategy; (iv) Finally, we consider spatially varying and discontinuous physical parameters,
which are fundamental to correctly describe the axonal diffusion of prionic proteins [2, 38].

From the point of viewof the analysis,we extend the proof of the existence of the numerical
solution provided in [43] for the implicit Euler method, to the generic ϑ-method. The proof
of existence is based on the use of the Leray-Shauder fixed point theorem and relies on the
coercivity and continuity of the diffusion term. Even though the convergence of the fully
discrete numerical solution to the analytical one is not theoretically proved, it is numerically
demonstrated in the case ϑ = 0.5 (Crank-Nicolson (CN) scheme), with application to brain
neurodegenerative diseases, and it is shown that it outperforms first-order advancing schemes.

Concerning the application to the modelling of neurodegenerative disorders, the typical
solution of the FKmodel is awavefront propagating inside the brain geometry. For this reason,
we analyze also the capabilities of our method in approximating wavefronts, providing also
a comparison with the DG method proposed in [13], which is proven to suffer possible
instabilities due to the fact it does not preserve the positivity when low order polynomial
degrees are employed.

The paper is organized as follows. In Sect. 2, we introduce the FKmathematical model and
discuss its application to neurodegeneration. In Sect. 3, we introduce the PolyDG space dis-
cretization and the time discretization using the ϑ-method.Moreover, we show the coercivity
and continuity of the variational forms in order to prove the existence of the discrete solution,
and we discuss the extension of the convergence results of the fully discrete formulation. In
Sect. 4, we present some convergence tests with a known exact solution and we discuss the
accuracy of the proposed scheme in approximating travelling waves in a two-dimensional
setting, making a comparison with the DG method of [13]. Section5 is dedicated to the
application of the proposed method to α-Synuclein spreading in Parkinson’s disease in a
two-dimensional framework, employing agglomerated polygonal meshes, and Amyloid-β in
Alzheimer’s disease in a three-dimensional patient-specific geometry, with initial conditions
reconstructed from PET images. Finally, in Sect. 6, we draw some conclusions and discuss
future developments.

2 TheMathematical Model

In this section, we present the FK equation to describe the reaction and diffusion of misfolded
proteins. Given the final time T > 0, the problem depends on the time t ∈ (0, T ] and space
x ∈ � ⊂ R

d (d = 2, 3) variables. The unknown is the relative concentration of themisfolded
protein c = c(x, t), taking values in the interval [0, 1]. A detailed derivation of the model can
be found in [38]. The problem in its strong formulation reads as follows: Find c = c(x, t)
such that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂c

∂t
= ∇ · (D∇ c) + α c(1 − c) + f , in � × (0, T ],

(D∇c) · n = 0, on �N × (0, T ],
c = cD, on �D × (0, T ],
c(0) = c0, in �,

(1)
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where α = α(x) is the reaction parameter, representing the local conversion rate of the
proteins from the healthy to the misfolded state, modelling also the clearance mechanisms
[3, 4], and D = D(x) ∈ R

d×d is the diffusion tensor, denoting the spreading of misfolded
protein. Finally, f = f (x, t) is the forcing term modelling the external addition of mass.
Concerning the boundary conditions, we impose null flux at the boundary �N of the domain,
while cD fixes the value of concentration on a part of the boundary �D , where {�D, �N }
forms a partition of ∂�, namely, �D ∪ �N = ∂�, �D ∩ �N = ∅, and |�D| > 0.

Due to the physical meaning of the solution c, we aim to construct a positivity-preserving
numerical scheme. Following [43], we apply the exponential transformation c = eλ, where
λ = λ(x, t) becomes the new unknown of the problem. As a result, we obtain the following
strong formulation of the problem: Find λ = λ(x, t) such that:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂eλ

∂t
= ∇ · (eλD∇ λ) + α eλ(1 − eλ) + f , in� × (0, T ],

(D∇λ) · n = 0, on �N × (0, T ],
λ = λD, on �D × (0, T ],
λ(0) = λ0, in �,

(2)

The homogeneous Neumann boundary condition in problem (1) reflects a homogeneous
Neumann boundary condition also in problem (2). Concerning the initial condition and the
Dirichlet boundary term we impose that c0 = eλ0 and cD = eλD , respectively.

We make the following assumption on the data regularity.

Assumption 1 (Data’s regularity) We assume the following regularity on the data appearing
in (1):

• α ∈ L∞(�);
• D ∈ L∞(�,Rd×d), and ∃d0, D0 > 0 ∀ξ ∈ R

d : d0|ξ |2 ≤ ξ�Dξ ≤ D0|ξ |2;
• f ∈ L2((0, T ], L2(�));
• λD ∈ L2((0, T ]; H1/2(�D)).

3 Numerical Discretization

This section presents the discretization of the continuous problem (2), which is based on the
polygonal discontinuous Galerkin method for the space discretization and the ϑ−method for
the time advancement.

3.1 Discrete Setting and Preliminary Estimates

Let Th be a polytopic mesh partition of the domain �, being the collection of disjoint
polygonal/polyhedral elements K . For each element K ∈ Th , |K | denotes the Hausdorff
measure of the element, and hK denotes its diameter. We set h = maxK∈Th hK . Given
two neighboring elements K1, K2 ∈ Th , their interface is defined as the intersection of their
(d−1)−dimensional facets. In the case of d = 2, the interface is a collection of line segments
and the set of all of them is denoted withFh . In the case d = 3, the interface can be a generic
polygon; for this reason, we introduce a decomposition of the polygon in planar triangles
collected in the set Fh . Finally, we decompose Fh into the union of interior faces (F I

h) and
boundary faces (FB

h ), i.e.Fh = F I
h ∪FB

h . Moreover, we assume thatFB
h can be further split

according to the corresponding boundary condition:FB
h = F D

h ∪F N
h , whereF D

h andF N
h
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are the boundary faces contained in �D and �N , respectively. The last assumption implies
that any F ∈ FB

h is contained in either �D or �N .

Assumption 2 (Mesh Regularity [40]) The mesh sequence {Th}h satisfies the following
properties:

1. Shape Regularity: ∀K ∈ Th i t holds : hdK � q|K | � hdK .
2. Contact Regularity: ∀F ∈ Fh with F ⊆ K for some K ∈ Th , it holds h

d−1
K � |F |, where

|F | is the Hausdorff measure of the face F .
3. Submesh Condition: There exists a shape-regular, conforming, matching simplicial

submesh T̃h such that:

• ∀K̃ ∈ T̃h ∃K ∈ Th : K̃ ⊆ K .
• The family {T̃h}h is shape and contact regular.
• ∀K̃ ∈ T̃h, K ∈ Th with K̃ ⊆ K , it holds hK � hK̃ .

Remark 1 We remark that most of the analysis is valid also under milder assumptions on the
mesh [6]; however in this work, we need to refer to the ones in Assumption 2. The technical
point is the validity of (7) that holds under mesh assumptions of Assumption 2.3. However,
we notice that from the numerical results of Sects. 4 and 5, the assumption seems not to be
needed in practice.

Concerning the space discretization, we introduce the following discontinuous finite element
spaces with an elementwise variable polynomial degree:

WDG
h,p = {w ∈ L2(�) : w|K ∈ PpK (K ) ∀K ∈ Th},

WDG
h,p = {W ∈ L2(�;Rd×d) : W|K ∈ P

d×d
pK (K ) ∀K ∈ Th},

where PpK (K ) is the space of polynomials of total degree pK ≥ 1 over a mesh element
K . Concerning the physical data, we assume D ∈ WDG

h,p and α ∈ WDG
h,p . We introduce the

following trace operators [42]. Let F ∈ F I
h be a face shared by the elements K± and let n± be

the unit normal vector on face F pointing exterior to K±, respectively. Then, for sufficiently
regular scalar-valued functions v and vector-valued functions q, we define:

• the average operator {{·}} on F ∈ F I
h : {{v}} = 1

2
(v+ + v−), {{q}} = 1

2
(q+ + q−);

• the jump operator [[·]] on F ∈ F I
h : [[v]] = v+n+ + v−n−, [[q]] = q+ · n+ + q− · n.

The superscripts ± denote the traces of the functions on F taken within the interior to K±.
In an analogous way, on the face F ∈ F D

h associated with the cell K ∈ Th with n outward
unit normal on ∂�, we define:

• the average operator {{·}} on F ∈ F D
h : {{v}} = v, {{q}} = q;

• the standard jump operator [[·]] on F ∈ F D
h , with Dirichlet conditions g, g: [[v]] =

(v − g)n, [[q]] = (q − g) · n.
Let us introduce the following broken Sobolev spaces for an integer r ≥ 1: Hr (Th) =

{wh ∈ L2(�) : wh |K ∈ Hr (K ) ∀K ∈ Th}. Moreover, we introduce the shorthand notation
for the L2-norm ‖ · ‖ = ‖ · ‖L2(�) and for the L2-norm on a set of faces F as ‖ · ‖F =
(∑

F∈F ‖ · ‖2
L2(F)

)1/2
.We define the following penalization function η : F I

h ∪F D
h → R+:

η(λ) = ζ

{
max{(eλ)+, (eλ)−}2 max

{
e‖λ‖L∞(K+) , e‖λ‖L∞(K−)

}
on F ∈ F I

h,

(eλ)2e‖λ‖L∞(K ) on F ∈ F D
h ,

(3)
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where ζ = ζ(p, h, D) is a parameter that depends on the discretization parameters and the
diffusion tensor, defined as

ζ = ζ(p, h, D) = η0

⎧
⎪⎪⎨

⎪⎪⎩

{DK }A {p2K }A
{hK }H , on F ∈ F I

h

DK
p2K
hK

, on F ∈ F D
h

. (4)

We point out that in Eq. (3), we are considering both the harmonic average operator {·}H and
the arithmetic average operator {·}A on F ∈ F I

h and η0 is a parameter at our disposal (to be
chosen large enough to ensure stability). Moreover, we are defining DK = ‖√D|K ‖2.
Remark 2 The choice of using the harmonic average on themesh size hK and not an arithmetic
one is fundamental in the theoretical analysis of the next sections. Indeed, in the proof of
coercivity and continuity of A , we will exploit the following relation:

{hK }H
{DK }A{p2K }A

≤ 4min

{
hK−

DK− p2K−
,

hK+
DK+ p2K+

}

. (5)

This relation cannot be obtained using the arithmetic average of hK , because, in general, the
arithmetic average cannot be bounded by a constant multiplied by the minimum of the two
terms.

Next, we define the following DG-norm:

‖c‖2DG =
∥
∥
∥
√
D∇hc

∥
∥
∥
2 + ‖√ζ [[c]]‖2

F I
h∪F D

h
∀c ∈ H1(Th). (6)

The choice of using this combination of harmonic and arithmetic averages is fundamental to
obtaining the coercivity and continuity bounds of Propositions 1 and 2 below.

Finally, we recall the result of inverse trace inequality [31, 32]:

∃CI > 0 : ‖v‖2L2(∂K )
≤ CI

p2K
hK

‖v‖L2(K ) ∀v ∈ P
pK (K ), K ∈ Th . (7)

3.2 PolyDG Semi-Discrete Formulation

To construct the semi-discrete formulation, we first introduce the interior penalty DG
discretization of the nonlinear diffusion term A : WDG

h,p × WDG
h,p × WDG

h,p → R as:

A (u; v,w) =
∫

�

eu (D∇hv · ∇hw) +
∑

F∈F I
h∪F D

h

∫

F
η(u)[[v]] · [[w]]dσ

−
∑

F∈F I
h∪F D

h

∫

F

({{euD∇v}} · [[w]] + [[v]] · {{euD∇w}}) dσ ∀u, v, w ∈ WDG
h,p ,

(8)

where ∇h · is the elementwise gradient [39] and η is defined as in Eq. (3). The semi-discrete
PolyDG formulation reads as follows:

For any t ∈ (0, T ], find λh(t) ∈ WDG
h,p such that:

⎧
⎪⎨

⎪⎩

(
∂eλh (t)

∂t
, ϕh

)

�

+ A (λh(t); λh(t), ϕh) − (αeλh
(
1 − eλh

)
, ϕh
)

�
= F(ϕh) ∀ϕh ∈WDG

h,p ,

λh(0)=λ0h

(9)
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where λ0h ∈ WDG
h,p is a suitable approximation of λ0 ∈ W . In this work, we choose as λ0h

the L2-projection of λ0 on the space WDG
h,p .

Remark 3 We remark that the proposed formulation is not robust with respect to high-contrast
or strongly anisotropic diffusion tensor D. However, notice that the biological application
considered in this work does not feature large jumps in the diffusion tensor D. None the
less, using the weighted average and jump operators as proposed in [21, 22] should lead to
a formulation that also features such robustness.

Remark 4 Notice that, due to the change of variable c = eλ, the errors in the estimation of the
solution λ are exponentially amplified. However, considering that the final goal is to estimate
the value of the concentration c, we focus our attention both theoretically and numerically
on the computation of the error ‖c − eλh‖.
We next show some preliminary estimates that will be needed in the forthcoming well-
posedness and convergence analysis.

Proposition 1 (Coercivity of A ) The form A , defined in Eq. (8), satisfies for all v ∈ WDG
h,p :

A (v; v, v) ≥ 1

2
‖ev/2‖2DG, (10)

under the assumption on the penalty parameter value η0 ≥ 16C2
I D0, where d0 and D0 are

defined as in Assumption 1, and CI is the inverse trace inequality constant of relation (7).

Proof Taking u = v = w in Eq. (8), we have:

A (v; v, v) =
∫

�

ev(D∇hv) · ∇hv

︸ ︷︷ ︸
(I)

+
∑

F∈F I
h∪F D

h

∫

F
η(v)|[[v]]|2dσ

− 2
∑

F∈F I
h∪F D

h

∫

F
{{evD∇v}} · [[v]]dσ

︸ ︷︷ ︸
(II)

.
(11)

By treating each term separately, we obtain for (I) the following estimate:

(I) ≥
∫

�

ev|√D∇hv|2 =
∫

�

|√Dev/2∇hv|2 = 4
∫

�

|√D∇he
v/2|2. (12)

Then we control the term (II) by means of the Young’s inequality:

|(II)| ≤
∑

F∈F I
h∪F D

h

∫

F
βF |{{evD∇v}}|2dσ

︸ ︷︷ ︸
(III)

+
∑

F∈F I
h∪F D

h

∫

F

1

βF
|[[v]]|2dσ, (13)

where βF > 0 is a parameter we define as follows:

βF =
min

{
e−‖v‖L∞(K+) , e−‖v‖L∞(K−)

}

8D0C2
I max{(ev)+, (ev)−}2

⎧
⎪⎪⎨

⎪⎪⎩

{hK }H
{DK }A{p2K }A

, on F ∈ F I
h,

hK
DK p2K

, on F ∈ F D
h .

(14)
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In (14) d0 and D0 are defined as in Assumption 1 and CI is the inverse trace inequality
constant of relation (7). Then, by applying the inverse trace inequality and relation (5) we
obtain:

(III) ≤
∑

K∈Th

1

8D0

∫

∂K
4
hK e−‖v‖L∞(K )

C2
I DK p2K

|D∇v|2dσ

≤
∑

K∈Th

1

2

∫

K
e−‖v‖L∞(K ) |√D∇v|2 ≤ 1

2

∫

�

ev|√D∇hv|2 = 2
∫

�

|√D∇he
v/2|2.

Inserting the above estimates in Eq. (10), we obtain:

A (v; v, v) ≥ 2
∫

�

|√D∇he
v/2|2 +

∑

F∈F I
h∪F D

h

∫

F

(

η(v) − 1

βF

)

|[[v]]|2dσ. (15)

For F ∈ F I
h , the second integral on the rhs of Eq. (15) is positive provided that:

η(v) − 1

βF

=
(
η0 − 8C2

I D0

) {DK }A{p2K }A
{hK }H max{(ev)+, (ev)−}2 max

{
e‖v‖L∞(K+) , e‖v‖L∞(K−)

}
> 0.

The same bound can be obtained on F ∈ F D
h . By taking η0 ≥ 16C2

I D0 the positivity is
guaranteed, and by exploiting the following relation

max{(ev)+, (ev)−}max
{
e‖v‖L∞(K+) , e‖v‖L∞(K−)

}
≥ 1

we obtain:

A (v; v, v) ≥ 2
∫

�

|√D∇he
v/2|2 +

∑

F∈F I
h

η0

2

∫

F
{DK }A {p2K }A

{hK }H |[[ev/2]]|2dσ

+
∑

F∈F D
h

η0

2

∫

F
DK

p2K
hK

|ev/2|2dσ = 2
∫

�

|√D∇he
v/2|2

+
∑

F∈F I
h∪F D

h

1

2

∫

F
ζ |[[ev/2]]|2dσ ≥ 1

2
‖ev/2‖2DG,

(16)

where ζ has been defined in (4). ��

Proposition 2 (Continuity ofA ) The formA , defined in Eq. (8), satisfies for all u, v ∈ WDG
h,p :

|A (u; u, v)| ≤ μ max
K∈Th

{e‖u‖L∞(K )}‖eu‖DG ‖u‖DG ‖v‖DG , (17)

with μ := max

{

1,

√
4D0C2

I
d0η0

}

, where d0 and D0 are defined as in Assumption 1, CI is the

inverse trace inequality constant in (7), and η0 is the penalty constant introduced in 4.
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Proof From Eq. (8) we obtain:

A (u; u, v) =
∫

�

eu(D∇hu) · ∇hv

︸ ︷︷ ︸
(I)

+
∑

F∈F I
h∪F D

h

∫

F
η(u)[[u]] · [[v]]dσ

︸ ︷︷ ︸
(II)

−
∫

F
{{euD∇u}} · [[v]]dσ

︸ ︷︷ ︸
(III)

−
∫

F
{{euD∇v}} · [[u]]dσ

︸ ︷︷ ︸
(IV)

(18)

By treating each term separately, we obtain for (I) the following estimate using the regularity
assumption on D in Assumption 1:

|(I)| ≤
∫

�

eu |√D∇hu| |√D∇hv| =
∫

�

|√D∇he
u | |√D∇hv| ≤ ‖√D∇he

u‖ ‖√D∇hv‖.
(19)

Then, we control the term (II) by means of the Young’s inequality:

|(II)| ≤ max
K∈Th

{e‖u‖L∞(K )}‖√ζ [[u]]‖F I
h∪F D

h
‖√ζ [[v]]‖F I

h∪F D
h

. (20)

The bound on term (III) follows thanks to the Young’s inequality:

|(III)| ≤
∑

F∈F I
h∪F D

h

(∫

F
γF |{{euD∇u}}|2dσ

︸ ︷︷ ︸
(V)

)1/2(
∫

F

1

γF
|[[v]]|2dσ

)1/2
, (21)

where γF > 0 is defined as follows:

γF = d20
8D0C2

I

⎧
⎪⎪⎨

⎪⎪⎩

{hK }H
{DK }A{p2K }A

, on F ∈ F I
h,

hK
DK p2K

, on F ∈ F D
h .

(22)

Then, by applying the inverse trace inequality in relation (7) and relation (5) we obtain:

|(V)| ≤
∑

K∈Th

d20
8D0

∫

∂K
4

hK
C2
I DK p2K

|euD∇u|2dσ

≤
∑

K∈Th

d0
2

∫

K
|√D∇eu |2 = d0

2
‖√D∇he

u‖2.

From the above estimates, it follows:

|(III)| ≤
√

4D0C2
I

d0η0
‖√D∇he

u‖ ‖√ζ [[v]]‖2
F I

h∪F D
h

.
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Finally, we estimate the term (IV) by applying the definition of γF , and relation (5) on the
first integral. Then, we apply the inverse trace inequality in relation (7), to obtain:

|(IV)| ≤
∑

F∈F I
h∪F D

h

( ∫

F
γF |{{euD∇v}}|2dσ

)1/2(
∫

F

1

γF
|[[u]]|2dσ

)1/2

≤
( ∑

K∈Th

d20
8D0

∫

∂K
4

hK
C2
I DK p2K

|euD∇v|2dσ
)1/2

√
8D0C2

I

d20η0
‖√ζ [[u]]‖F I

h∪F D
h

≤
√

max
K∈Th

{e‖u‖L∞(K )}4D0C2
I

d0η0
‖√D∇hv‖ ‖√ζ [[u]]‖F I

h∪F D
h

.

Finally, putting together all the previous bounds, we obtain:

|A (u; u, v)| ≤ max

⎧
⎨

⎩
1,

√

4D0C2
I

d0η0

⎫
⎬

⎭
max
K∈Th

{e‖u‖L∞(K )}‖eu‖DG ‖u‖DG ‖v‖DG, (23)

and the proof is complete. ��

3.3 Fully Discrete Formulation

To discretize Eq. (9) in time, we consider the ϑ−method scheme. We remark that due to the
nonlinear nature of the strong formulation with the change of variable, we need a nonlinear
solver, and therefore using an implicit scheme for time integration does not affect the com-
putational cost. In this section, we consider homogeneous Dirichlet conditions λD = 0 for
simplicity in the calculations. However, the results can be extended to the non-homogeneous
case with proper regularity assumptions on λD .

Let {t�}Nt
�=0 be the uniform partition of the time interval [0, T ] into Nt intervals with

length dt = T
Nt
, namely, 0 = t0 < t1 < ... < tNt = T and t� = �T

Nt
for � = 0, ..., Nt . Let

us introduce a parameter ε > 0. Then, the fully discrete formulation of problem (9) reads:
given the initial condition λ0h = λ0h , find λk+1

h for k = 0, ..., Nt − 1, such that:

(
eλk+1

h − eλkh

�t
, ϕh

)

�

−
(
α
(
ϑeλk+1

h + (1 − ϑ)eλkh

) (
1 −

(
ϑeλk+1

h + (1 − ϑ)eλkh

))
, ϕh

)

�

+ ε

�t
(λk+1

h , ϕh)� + ε

�t
(D∇hλ

k+1
h ,∇hϕh)� + ε

�t
(ζ [[λk+1

h ]], [[ϕh]])F I
h∪F D

h

+ ϑA (λk+1
h ; λk+1

h , ϕh) + (1 − ϑ)A (λkh; λkh, ϕh) = ϑFk+1(ϕh) + (1 − ϑ)Fk(ϕh).

(24)

The introduction of the additional regularizing terms proportional to the parameter ε > 0
is fundamental to prove the existence of the solution via the Leray-Schauder fixed-point
theorem [43]. However, from a numerical point of view, the presence of a ε > 0 is not really
needed and it can be chosen equal to 0 in the simulations (see Sect. 4).

We next prove that formulation (24) admits a solution.

Proposition 3 (Existence of a solution) Let ε > 0. Given λkh ∈ WDG
h,p , then the fully discrete

formulation in Eq. (24) admits a solution λkh ∈ WDG
h,p , provided that Assumptions 1 and 2

hold and the penalty constant η0 defined as in (4) is chosen sufficiently large.

Proof The proof is based on the application of the Leray-Schauder theorem. For clarity, we
subdivide the proof into 3 steps. ��

123



Journal of Scientific Computing           (2024) 100:39 Page 11 of 24    39 

Step 1: Definition of the Operator8

First of all, let us introduce the fixed point operator � : WDG
h,p × [0, 1] → WDG

h,p such that

�(w, σ) = v with v ∈ WDG
h,p being the unique solution of the linear problem:

ε(v, φ)�+ε(D∇hv,∇hφ)� + ε(ζ [[v]], [[φ]])F I
h∪F D

h

= σ(eλkh − ew, φ)�

+ σ
(
α�t(ϑew + (1 − ϑ)eλkh )(1 − (ϑew + (1 − ϑ)eλkh )), φ

)

�

− σϑ�tA (w;w,φ) − σ(1 − ϑ)�tA (λkh; λkh, φ)

+ σϑ�t Fk+1(φ) + σ(1 − ϑ)�t Fk(φ) ∀φ ∈ WDG
h,p .

(25)

Step 2: Compactness of8

� is well defined by the Lax-Milgram lemma, thanks to the coercivity and continuity on
WDG

h,p of the left-hand side of (25) and to the continuity of the right-hand side of (25). Finally,

we observe that�(w, 0) = 0. Due to the finite dimension of the spaceWDG
h,p , these properties

are enough to prove also the compactness of the operator.

Step 3: Uniform Bound for all the Fixed Points

To prove the property of uniform bound we take v ∈ WDG
h,p and σ ∈ [0, 1] such that v =

�(v, σ ). First of all, let us notice that we can bound the right-hand side of (25) by using
the coercivity of A and the existence of a constant M = M(λkh) such that α�t(ϑev + (1 −
ϑ)eλkh )(1 − ϑev)v ≤ M(λkh). Indeed, there holds

ε‖v‖2 + ε‖v‖2DG = σ(eλkh − ev, v)� − σϑ�tA (v; v, v) − σ(1 − ϑ)�tA (λkh; λkh, v)

+ σ
(
α�t(ϑev + (1 − ϑ)eλkh )(1 − (ϑev + (1 − ϑ)eλkh )), v

)

�

+ σϑ�t Fk+1(v) + σ(1 − ϑ)�t Fk(v)

≤ σ(eλkh − ev, v)� − σ
(
α�t(1 − ϑ)eλkh (ϑev + (1 − ϑ)eλkh ), v

)

�
+ σM(λkh)

− σ(1 − ϑ)�tA (λkh; λkh, v) + σϑ�t Fk+1(v) + σ(1 − ϑ)�t Fk(v).

(26)

Then, by introducing the function s(x) = x(log(x)−1)+1 ≥ 0 and exploiting its convexity
we obtain:

(eλkh − ev)v = (eλkh − ev)s′(ev) ≤ s(eλkh ) − s(ev). (27)

Thus, using also the fact that −s(ev) ≤ 0 and relation (26) we obtain:

ε‖v‖2 + ε‖v‖2DG ≤ σ

∫

�

(
s(eλkh )(1 + α�tϑ(1 − ϑ)eλkh )

)
− σ

(
α�t(1 − ϑ)2e2λ

k
h , v
)

�

+ σM(λkh) − σ(1 − ϑ)�tA (λkh; λkh, v) + σϑ�t Fk+1(v) + σ(1 − ϑ)�t Fk(v).

Using Eq. (17) and the Young’s inequality with suitable coefficients ε1 and ε2, we get:
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(
ε − 3

2
σ�tε2

)
‖v‖2 +

(

ε − σ(1 − ϑ)�tμε1

2

)

‖v‖2DG ≤ −σα�t(1 − ϑ)‖e2λkh‖2

+ σ

∫

�

(
s(eλ

k
h )(1 + α�tϑ(1 − ϑ)eλ

k
h )
)

+ σ�t

2ε2

(
ϑ‖ f (tk+1)‖2 + (1 − ϑ)‖ f (tk+1)‖2

)

+ σM(λkh) + σ(1 − ϑ)�t

2ε1
μ max

K∈Th

{e‖λkh‖L∞(K ) }2‖eλkh‖2DG ‖λkh‖2DG.

(28)

By applying the Leray-Schauder theorem [35] we derive the existence of a solution for
problem (24), and the proof is complete. ��

3.4 Convergence of the Discrete Solution

In this section, we prove the convergence of the solution to the PolyDG fully discrete for-
mulation in Eq. (24) with ϑ = 1 (Implicit Euler method) to the solution of the continuous
problem. An additional assumption we make in this proof is the forcing-free model f = 0.
The result follows by extending the convergence theorem proved in [43] to the case of
polytopal/polyhedral meshes and high-order approximations.

Let us start introducing the notion of entropy S : [0, T ] → R of the system [41], namely

S(t) =
∫

�

(u(t)(log(u(t)) − 1) + 1) . (29)

To prove the convergence of the numerical solution, we need to show that the discrete entropy

Skh = ∫

�
(eλkh (λkh − 1) + 1) decays as k → ∞ [43], and that the DG norm (see Eq. (6)) of

the discrete solution is uniformly bounded.

Remark 5 The analysis in this section is performed only for the case ϑ = 1. The treatment of
the general case ϑ ∈ [0, 1] is not straightforward, due to the presence of the components from
the previous timestep that cannot be easily treated and prevent to recover the decay of the
discrete entropy. Nevertheless, as it will be demonstrated in the numerical result sections, the
scheme exhibits optimal convergence rates for any ϑ ∈ [0, 1]. The extension of the analysis
to the case ϑ �= 1 is under investigation and will be the subject of future research.

Lemma 1 (Discrete entropy inequality [43]) Let ε > 0 and let λk+1
h ∈ WDG

h,p be the solution
to (24) with a sufficiently large η0. Then,

Sk+1
h + C0�t

∫

�

∣
∣
∣
∣e

λk+1
h /2 − 1

|�|
∫

�

eλk+1
h /2

∣
∣
∣
∣

2

+ �t
∫

�

eλk+1
h

(
eλk+1

h − 1
)

λk+1
h ≤ Skh ,

(30)

where the constant C0 > 0 only depends on the constants of inverse trace inequality in Eq.
(7) and on the Poincaré-Wirtinger inequality [40].

Proposition 4 Let Assumptions 1 and 2 hold and let η0 defined as in Eq. (4) be chosen suffi-
ciently large. Let λk+1

h be the solution to problem (24) with ϑ = 1, ε > 0 and homogeneous
forcing term f = 0. Then:

∥
∥
∥eλk+1

h /2
∥
∥
∥
2

DG
≤ 2S0h

�t
, (31)
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where S0h is the initial discrete entropy.

Proof Let us consider the problem (24) with ϑ = 1 and ϕh = λk+1
h :

�t
(
αeλk+1

h

(
eλk+1

h − 1
)

, λk+1
h

)

�
+ ε‖λk+1

h ‖2 + ε‖λk+1
h ‖2DG

+�tA (λk+1
h ; λk+1

h , λk+1
h ) =

(
eλkh − eλk+1

h , λk+1
h

)

�
.

By observing that ev (ev − 1) v ≥ 0 for each v ∈ WDG
h,p and by using Eq. (10), we obtain:

�t

2
‖eλk+1

h /2‖2DG ≤
(
eλkh − eλk+1

h , λk+1
h

)

�
.

Exploiting the convexity of the density of entropy function s(v) = v(log(v) − 1) + 1 and
noticing that v = s′(v), we obtain:

�t

2
‖eλk+1

h /2‖2DG ≤ Skh − Sk+1
h ≤ Skh ≤ S0h , (32)

where in the last step we used the discrete entropy inequality in Lemma 1. From Eq. (32),
the thesis follows. ��
Theorem 1 (Convergence) Let Assumptions 1 and 2 hold and let η0 be sufficiently large. Let
ε > 0, ϑ = 1, �t ∈ (0, 1), and let λk+1

h ∈ WDG
h,p be a solution to (24) with homogeneous

forcing term f = 0. Assume that λkh ∈ WDG
h,p is such that eλkh → ck strongly in L2(�) as

(ε, h) → 0. Then there exists a unique strong solution ck+1 ∈ H2(�) to:
⎧
⎪⎪⎨

⎪⎪⎩

ck+1 − ck

�t
= ∇ · (D∇ ck+1) + α ck+1(1 − ck+1), in�,

ck+1 = cD = eλD , on�D,

(D∇ck+1) · n = 0, on�N ,

(33)

such that eλk+1
h → ck+1 strongly in L2(�) as (ε, h) → 0.

The proof follows the same steps as in [43] and it makes use of Propositions 1 and 4, as well
as of the extensions of variational inequalities valid for polygonal/polyhedral meshes.

4 Numerical Results: Verification

In this section, we aim at verifying the accuracy of the method presented in section 3.

4.1 Test Case 1: Convergence Analysis in Two Dimensions

For the numerical tests in this section, we use Lymph library [34] to solve the FK equa-
tion (d = 2). We define the domain � = (0, 1)2, which we discretize by means of a
polygonal mesh obtained by using PolyMesher [37]. Concerning the time discretization, we
use a timestep �t = 10−6 and the final time T = 2 × 10−5. We consider the following
manufactured exact solution:

λ(x, y, t) = log
(
(cos(πx) cos(π y) + 2)e−t ) . (34)
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Fig. 1 Test case 1: computed errors and convergence rates in DG-norm (left) and L2-norm (right),�t = 10−6

Fig. 2 Test case 1: computed errors and convergence rates with respect to the timestep (left) and polynomial
degree (right) with Nel = 30

We fix the physical parameters as follows: D = I and α = 0.1. The forcing term and
the Dirichlet boundary conditions are derived accordingly. To solve the resulting nonlinear
system we adopt a Newton method with tolerance equal to ε = 10−10.

In Fig. 1, we report the computed errors in both the DG and L2 norms at the final
time. We have performed the convergence test keeping fixed the polynomial order of the
space approximation pK = p = 1, ..., 6 ∀K ∈ Th and using different mesh refinements
(Nel = 30, 100, 300, 1000). It can be observed that the slope of error decrease is equal to
the polynomial degree p for the DG-norm and equal to p + 1 for the L2-norm.

In Fig. 2a, we report the computed errorswith respect to the timestep�t , using bothCrank-
Nicolson (ϑ = 0.5) and the Implicit Euler (ϑ = 1) schemes. The space discretization is
computed on ameshof Nel = 1000 elements andwith polynomial degree p = 6.As expected,
the use of the Crank-Nicolson method leads to a second-order convergence whereas the error
decays with a first-order rate if the implicit Euler scheme is employed. We remark that the
case ϑ = 1 is fully covered by our theoretical analysis, whereas the proof of convergence
for ϑ = 1/2 is under investigation.

A convergence analysis with respect to the polynomial order p is also performed on a
coarse mesh of 30 elements and with a time integration based on the Crank-Nicolson scheme
with timestep �t = 10−6. The results are reported in Fig. 2b, where can observe exponential
convergence can be observed.
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Table 1 Comparison of the computed errors in the DG-norm based on employing the proposed positivity-
preserving scheme and the DG method of [13], for different polynomial degrees, different mesh sizes, and
different final times

Method h = 0.72802 h = 0.41057

p DOFs T = 5 T = 10 DOFs T = 5 T = 10

Positivity-preserving method

p = 1 90 1.63 × 100 5.71 × 10−1 300 1.05 × 10−2 3.34 × 10−2

p = 2 180 7.02 × 10−2 4.67 × 10−2 600 2.89 × 10−3 5.35 × 10−3

p = 3 300 7.54 × 10−2 5.77 × 10−2 1000 4.52 × 10−2 1.03 × 10−1

p = 4 450 1.20 × 10−2 5.67 × 10−2 1500 1.37 × 10−1 1.76 × 10−1

DG method [13]

p = 1 90 6.38 × 103 9.44 × 103 300 2.19 × 104 2.30 × 104

p = 2 180 2.48 × 100 1.06 × 105 600 1.76 × 100 1.01 × 104

p = 3 300 1.07 × 10−1 1.29 × 105 1000 7.80 × 10−3 1.79 × 10−1

p = 4 450 1.54 × 10−2 6.47 × 10−1 1500 8.14 × 10−4 4.50 × 10−3

4.2 Test Case 2: TravellingWaves in Two Dimensions

In this section, we exploit the positivity-preserving PolyDG formulation to simulate a
traveling-wave solution of the FK equation in 2D, with the aim of comparing the formu-
lation we propose in this article, with the (non-positivity-preserving) scheme introduced in
[13]. The manufactured solution is of the form:

eλ(x,y,t) = c(x, y, t) = ψ(x − vt) = ψ(ξ). (35)

By substituting it in Eq. (1)with f = 0,we obtain the following equivalent systemof ordinary
differential equations:

⎧
⎨

⎩

χ ′(ξ) = − v

d
χ(ξ) + 1

d
ψ(ξ)(ψ(ξ) − 1) ξ ∈ (0, T ),

ψ ′(ξ) = χ(ξ) ξ ∈ (0, T ),
(36)

where we have used the assumption of isotropic diffusion tensor D = dI. In particular, we
fix d = 10−3, α = 1 and penalty parameter η0 = 1. Concerning the wave’s parameters we
take the speed v = 0.1 and the initial data ψ(0) = 1 and χ(0) = −10−2. We consider a
rectangle � = (0, 5) × (0, 1) as domain. We present the results of two simulations, with
different final times T = 5 and T = 10 and timestep �t = 10−2. Concerning the nonlinear
Newton solver, we fix a tolerance ε = 10−6.

In Tables 1 and 2, we report the computed errors in the L2 and DG norms computed at the
final times T = 5 and T = 10, respectively. In particular, we compare the results obtained
by using our positivity-preserving method (24) and the DG method proposed in [13], with a
semi-implicit treatment of the nonlinearity and a penalty parameter η = 10. We can observe
that, also using low order polynomials (p = 1), our method can correctly represent the wave
propagation front and leads to smaller errors (one order of magnitude). On the contrary, the
method in [13] fails to correctly simulate the wavefront because it does not preserve the
positivity of the solution and the equilibrium c = 0 is unstable.

Moreover, from the results of Tables 1 and 2, we can observe for p = 4 and T = 10 that
the proposed positivity-preserving scheme does not lead to a reduction of the error compared
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Table 2 Comparison of the computed errors in the DG-norm based on employing the proposed positivity-
preserving scheme and the DG method of [13], for different polynomial degrees, different mesh sizes, and
different final times

Method h = 0.72802 h = 0.41057

p DOFs T = 5 T = 10 DOFs T = 5 T = 10

Positivity-preserving method

p = 1 90 7.53 × 100 1.71 × 10−1 300 2.09 × 10−1 1.05 × 10−1

p = 2 180 2.63 × 10−2 1.83 × 10−2 600 1.83 × 10−3 2.66 × 10−3

p = 3 300 3.35 × 10−2 1.99 × 10−2 1000 9.24 × 10−2 2.03 × 10−1

p = 4 450 9.37 × 10−3 4.24 × 10−2 1500 2.63 × 10−1 3.21 × 10−1

DG method [13]

p = 1 90 9.02 × 104 1.45 × 105 300 7.89 × 105 8.22 × 105

p = 2 180 1.13 × 100 2.99 × 105 600 8.05 × 10−1 2.56 × 105

p = 3 300 4.76 × 10−1 1.33 × 106 1000 1.05 × 10−1 1.05 × 10−1

p = 4 450 2.00 × 10−1 3.17 × 10−1 1500 1.67 × 10−2 1.47 × 10−2

Fig. 3 Test case 2: comparison of the numerical solutions computed both using the proposed positivity-
preserving DG scheme and the DG method presented in [13], with the exact solution at time T = 10

with the results obtained for p = 3. Indeed, we can observe in Fig. 3 that for p = 3 we
have the formation of some small oscillations around the equilibrium c = 1. This is probably
due to Newton’s iterations that might be badly conditioned for large values of polynomial
degrees. The effect of this problem cannot be observed in the method of [13], but in this case,
the positivity of the solution cannot be guaranteed.

In Fig. 4, we report the values of H = η(λh)/ζ computed on the mesh skeleton for the
case of 100 mesh elements and p = 1, 2, 3, 4. We observe that, in most of the domain, the
values assumed by H are small. The largest penalization is applied near the wavefront to
stabilize the most delicate region of the physical phenomenon at each time step. This follows
from definition (3); indeed near the wavefront the value e‖λh‖L∞(K ) can assume large values
on one element while eλh can be much smaller. We notice that where the solution is near 0,
the penalty parameter assumes much smaller values if compared to the η to assume the same
order of magnitude of the other integrals of A . Moreover, in the right column of Fig. 4, we
show the boxplot associated with the mean values of H on all the edges for both the meshes
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Fig. 4 Test case 2: computed values of penalty parameter H = η(λh)/ζ on the skeleton of the mesh for
T = 5 (left) and boxplot of the distribution of the values of the ratio H = η(λh)/ζ for different values of
p = 1, 2, 3, 4 and h (right)

analyzed in the test case. With only 30 elements, the outlier values of the penalty can reach
values higher than 103. This fact is coherent because the larger area of the elements reflects
the large difference between the maximum and minimum values reached by the solution in
a single element. This impacts the values of the penalty, which are particularly high. It can
also be noticed that the fine mesh is associated with a smaller average value of the penalty.
Finally, we do not notice significant differences changing the value of p.

5 Numerical Results: Brain Applications

In this section, we present the numerical results obtained in two test cases: a two-dimensional
simulation of a sagittal section of a brain and a three-dimensional simulation of brain
geometries reconstructed from Magnetic Resonance Images (MRI).

In the prions’ spreading applications, the diffusion tensor is typically modelled as the
superimposition of an extracellular diffusion effect with magnitude dext and an axonal dif-
fusion with magnitude daxn [38]; for this reason, in this section, we assume that D has the
following structure:

D = dextI + daxn(n ⊗ n), (37)

where n = n(x) is the axonal fibres direction in the point x ∈ � and dext, daxn ≥ 0.
The axonal direction is derived from Diffusion Weighted Imaging (DWI) and represents the
principal orientation of the connections between the neurons (axons). Most of the spreading
of the prions seems to happen through the axons [38], however, due to the brain structure,
this is true only in white matter, while in grey matter, the diffusion can be considered to be
isotropic.

In order to construct the axonal component of the diffusion tensor D, we derive the
diffusion tensor fromDWImedical images by using Freesurfer andNibabel [1]. The principal
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Fig. 5 Brain section with the specification of the white-gray matter subdivision (a), the agglomerated mesh
(b), and the axonal directions (c)

eigenvector n of the tensor is then computed elementwise to find the diffusion tensor in Eq.
(37).We refer to [5] for more details on the reconstruction ofD starting frommedical images.
Concerning the forcing term we fix f = 0 and we impose homogeneous Neumann boundary
conditions in both test cases.

Concerning test case 3 in Sect. 5.1, we simulate the spreading of α-Synuclein in Parkin-
son’s disease in a two-dimensional brain section. The simulation starts with a concentration
of the misfolded proteins only at the base of the brainstem, so an initial stage of the pathol-
ogy, and it requires many years (� 25 years) of development. On the contrary, test case 4
in Sect. 5.2, refers to Alzheimers’s disease in a three-dimensional brain. The initial concen-
tration is diffused and derived from a Positron Emission Tomography (PET) image of an 83
years old patient with advanced pathological symptoms.

5.1 Test Case 3: Spreading of˛-Synuclein in a Two-Dimensional Brain Section

In this section, we address a numerical simulation of the spreading of α-Synuclein in Parkin-
son’s disease on a polygonal agglomerated grid of a sagittal 2D brain section. The geometry
is segmented from a structural MRI of a brain from the OASIS-3 database [14] by means
of Freesurfer [16]. The construction of the final mesh of a slice of the brain is performed
by using VMTK [15]. The resulting triangular mesh is composed of 43 402 triangles, and
each element of the mesh is labelled to be in white or grey matter, according to the MRI
segmentation, as in Fig. 5a. However, the generality of the PolyDG method allows us to use
mesh elements of any shape and the use of a smaller number of elements allows saving
computational cost. For this reason, by using ParMETIS [11], we agglomerate the initial
triangular mesh into a polygonal mesh of 534 elements, as shown in Fig. 5b. In particular, the
agglomeration procedure is performed in a segregated way for the white and the grey matter,
in this way we are sure to correctly describe both the domain boundary and the interface
between grey/white matters. Finally, in Fig. 5c, we report the axonal directions computed in
the white matter starting from DWI.

Concerning the physical parameters, we fix the reaction coefficient α = 0.45/year in
grey matter, and α = 0.9/year in white matter [8]. Moreover, we impose a constant isotropic
diffusion dext = 8mm2/year, and axonal diffusion which is 10 times faster than the isotropic
one in the white matter (daxn = 80mm2/year) and is negligible in the grey matter (daxn =
0mm2/year) [8]. In this simulation, we fix�t = 0.01 years and p = 1, moreover the penalty
parameter η0 = 1.
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Fig. 6 Patterns of α-synuclein concentration at different stages of the pathology

Fig. 7 Test case 3: mean value of the concentration (a) and activation time (b)

The simulation of α-Synuclein diffusion in Parkinson’s disease starts from an initial con-
dition, with concentration located in the dorsal motor nucleus [9]. In Fig. 6, we report both the
initial condition and the computed solution at different times t = 0, 5, 10, 15, 20, 25 years.
First of all, it can be observed that the directions of protein propagations are coherent with
the medical literature [10]. Indeed, the activation of brain regions follows the Braak staging
theory [9]. Moreover, we can notice that the heterogeneity of the reaction parameters causes
an earlier activation of the white matter in general, which is clearly visible in the frontal
cortex at time t = 20. By making a comparison with the literature results of [13], we have
that the reduced reactivity and diffusion inside grey matter causes a slowing of the disease
progression times, starting with the same initial condition and an agglomerated mesh with
comparable refinement level.

In Fig. 7a, we report the average concentration of misfolded protein eλh(t) inside the brain
with respect to the time t .Moreover, we compute the average concentrations inwhite and grey
matter separately. As we can observe, in the first years, the increase in the concentration is
almost equivalent for the two regions, after 14 years we have a clear distinction. In particular,
the higher reactivity and diffusion of the white matter tissue causes a faster increase in the
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Fig. 8 Test case 4: three-dimensional brain mesh (a) and projected initial condition from PET image (b)

concentration. Moreover, we compute the activation time of the pathology as:

t̂(x, t) = χ{eλh (x,t)>ccrit}(x, t) x ∈ � t ∈ [0, T ], (38)

where χ is the indicator function and ccrit = 0.95 is the critical value of α-Synuclein concen-
tration. We report the computed activation time in Fig. 7b. From a pathological perspective,
high concentrations of α-Synuclein alter the electric signal transport. The indicator (38)
measures the time after which a region of the brain can be affected by pathological electric
stimuli. The result is qualitatively similar to the literature results [13, 38]. Comparing the
result with respect to [13], we can notice a longer activation time, due to the reduced reactivity
and diffusion in grey matter, introduced in this work.

5.2 Test Case 4: Spreading of Amyloid-ˇ in a Three-Dimensional Brain Geometry

In this section, we present a numerical simulation of the spreading of the Amyloid-β on a
three-dimensional domain, reconstructed starting from anMRI taken fromOASIS-3 database
[14]. The medical images are associated with an 83-year-old patient, who is diagnosed to be
affected by Alzheimer’s disease at the moment of the acquisition. The geometry is segmented
by means of Freesurfer [16] and then is used to construct a mesh grid of 323’014 tetrahedral
elements, using SVMTK library [5]. The resulting mesh is reported in Fig. 8a. The problem
is solved with the use of a FEniCS code [7] (version 2019).

Concerning the parameters of the model, in this test case, for simplicity, we do not make
any distinction between white and greymatters, choosing α = 0.9/year, dext = 8mm3/year,
and daxn = 80mm3/year [8, 13].

To set up the initial condition for the FK problem in a patient-specific setting, we estimate
the function λ0(x) of Amyloid-β protein at the initial time t = 0. To do that, we project
the clinical data derived from PET images with Pittsburgh compound B (PET-PiB) [23]. The
PET-PiB adopts a radioligand, which identifies the presence of Amyloid-β plaques inside
the brain parenchyma (for the specifics about the acquisition techniques of the image used in
this work we refer to [14]). We report the result of the initial concentration rescaled between
0 and 1 and projected on the mesh grid in Fig. 8b. In particular, we can observe the presence
of large damaged regions (c � 1) in the brainstem and in the thalamus.
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Fig. 9 Test case 4: patterns of Amyloid-β concentration along horizontal (above), coronal (middle), and
sagittal (under) planes at different times (t = 0, 0.5, 1, 1.5, 2 years)

Starting from pathology in an advanced state, we set up a simulation with a final time
T = 2 years and a timestep �t = 0.01 years. Concerning the space discretization we adopt
the DG method for p = 1. The nonlinear solver for the resulting system is based on the
relaxed Newton method with absolute tolerance equal to 10−10 and relaxation parameter
ω = 0.75.

The results are reported in Fig. 9 for different times (t = 0, 0.5, 1, 1.5, 2 years). The
solution is visualized on many slices inside the brain geometry on the three different planes:
horizontal, coronal and sagittal. The results show a propagation of the Amyloid-β concentra-
tion inside the parenchyma, following the typical paths of the pathology [23]. In particular,
we can observe a late activation of the cerebellum in the slice along the coronal plane of Fig. 9
(middle line). This is coherent with Braak’s stages of Alzheimer’s pathology, which show the
presence of Amyloid-β accumulation only in the last stages of the pathological development
[26]. Moreover, coherently to the clinical stage of the pathology we are simulating (due to the
presence of evident symptoms from the patient’s documentation), we can find a generalised
misfolding after a few years from the PET acquisition and this is also coherent with what we
expected in the disease evolution [23].

6 Conclusions

In this work, we have proposed a positivity-preserving DGmethod on polygonal and polyhe-
dral grids for the solution of the FK model. The main applicative motivation is the modelling
of neurodegeneration caused by the spreading of prionic proteins, such asα-synuclein protein
in Parkinson’s disease and amyloid-β in Alzheimer’s disease.We have analyzed the existence
of the discrete solution by means of the Leray-Schauder theorem and we have discussed the
convergence of the numerical scheme.
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Numerical tests have been presented both in two and three dimensions. In particular,
we have analyzed the convergence in space both with respect to the mesh size and the
polynomial order of themethod on polygonal grids. Then, we have discussed the convergence
in time, by making a comparison between implicit Euler and Cranck-Nicolson schemes.
Finally, we have performed a numerical simulation to test the capabilities of the proposed
formulation to approximate propagating wavefronts in two dimensions. In this test, we have
compared the proposed positivity-preserving method with the polyDGmethod introduced in
[13], highlighting the advantages and disadvantages of both formulations.

Finally, we have presented two applications of the proposed scheme in the framework
of neurodegenerative diseases. In particuarl, we have performed a simulation of α-synuclein
spreading on a slice of a real brain in the sagittal plane, constructing a polygonal agglomerated
mesh that preserves the quality of both domain boundaries and the interface between white
matter and greymatter.Moreover, starting from initial amyloid-β concentrations derived from
PET images, we have simulated the spreading of amyloid-β in a three-dimensional brain in
a patient-specific Alzheimer’s disease setting. The results obtained in both patient-specific
settings are coherent with the clinical literature, showing that the proposed approach is a
valuable instrument that can be employed for patient-specific computed-assisted simulations
of the evolution of Parkinson’s and Alzheimer’s neurodegenerative disorders.

A possible future development of this work consists in extending the convergence analysis
to the general ϑ-method, by proving a discrete entropy decay. Another possibility can be the
use of PET images at different times of the disease to calibrate the physical parameters of
the Fisher-Kolmogorov model, for example by means of inverse uncertainty quantification
methods.
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