
Annals of Operations Research
https://doi.org/10.1007/s10479-022-04894-y

ORIG INAL RESEARCH

Short-time implied volatility of additive normal tempered
stable processes

Michele Azzone1,2 · Roberto Baviera1

Accepted: 20 July 2022
© The Author(s) 2022

Abstract
Empirical studies have emphasized that the equity implied volatility is characterized by a
negative skew inversely proportional to the square root of the time-to-maturity. We examine
the short-time-to-maturity behavior of the implied volatility smile for pure jump exponential
additive processes. An excellent calibration of the equity volatility surfaces has been achieved
by a class of these additive processes with power-law scaling. The two power-law scaling
parameters are β, related to the variance of jumps, and δ, related to the smile asymmetry. It
has been observed, in option market data, that β = 1 and δ = −1/2. In this paper, we prove
that the implied volatility of these additive processes is consistent, in the short-time, with the
equity market empirical characteristics if and only if β = 1 and δ = −1/2.
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List of symbols
Bt Discount factor between date 0 and t
cBt (It (y), y)) Black call option price
ct (St , t) Quantity inside the ATS call expected value
Ct (x) Call option price at value date with maturity t and moneyness x
{ ft }t≥0 Sequence of random variables that models the forward exponent
F0(t) Price at time 0 of a forward contract with maturity t
g Standard normal random variable
It (x) Black implied volatility with maturity t and moneyness x
It (y) Black implied volatility with maturity t and moneyness degree y
1∗ Indicator function of the set ∗
kt Variance of jumps of ATS
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k̄ Constant part of variance of jumps of ATS kt
K Option strike price
lzt Quantity defined in Eq. (7)
N (∗) Standard normal cumulative distribution function evaluated in ∗
N ′(∗) Standard normal probability density function evaluated in ∗
pBt (It (y), y)) Black put option price
pt (St , t) Quantity inside the ATS put expected value
Pt (x) Put option price at value date with maturity t and moneyness x
{St }t≥0 Sequence of positive random variables
t Time-to-maturity
x Option moneyness, x = log K

F0(t)

y Moneyness degree, y := x/
√
t

α Tempered stable parameter of ATS
β Scaling parameter of kt
�(∗) Gamma function evaluated in ∗
δ Scaling parameter of ηt
ηt Skew parameter of ATS
η̄ Constant part of the skew parameter of ATS
ξ̂t Implied volatility skew term
ξ̂0 Short-time skew term, i.e. limit for t that goes to zero of ξ̂t
σ̄ Constant diffusion parameter of ATS
σ̂t ATM implied volatility, equal to It (0)
σ̂0 Short-time ATM implied volatility, i.e. limit for t that goes to zero of σ̂t
PSt Probability density function of St
ϕt Deterministic drift term of ATS

1 Introduction

Which characteristics of the implied volatility surface should be reproduced by an option
pricing model? A stylized fact that characterizes the equity market is a downward slope in
terms of strike, i.e. a negative skew, where the skew is the at-the-money (ATM) derivative
of the implied volatility w.r.t. the moneyness.1 Specifically, the short-time2 negative skew is
proportionally inverse to the square root of the time-to-maturity. The first empirical study of
the equity skew dates back to Carr andWu (2003): they find that the S&P 500 short-time skew
is, on average, asymptotic to −0.25/

√
t . Fouque et al. (2004) arrive at a similar conclusion

considering only options with short-time-to-maturity (i.e. up to 3 months). In this paper, we
show that a pure jump additive process, which also calibrates accurately the whole equity
volatility surface, reproduces the power scaling market skew.

A vast literature on short-time implied volatility and skew is available for jump-diffusion
processes. Both the ATM (see e.g., Alòs et al., 2007; Andersen & Lipton, 2013; Figueroa-
López et al., 2016; Muhle-Karbe &Nutz, 2011; Roper, 2009) and the OTM implied volatility
(see e.g., Figueroa-López & Forde, 2012; Figueroa-López et al., 2018; Mijatović & Tankov,
2016; Tankov, 2011) are analyzed. For a jump-diffusion Lévy process, the ATM implied
volatility is determined uniquely by the diffusion term; it goes to zero as the time-to-maturity

1 The moneyness is the logarithm of the strike price over the forward price. For a description of the equity
volatility surface and a definition of skew, see e.g., Gatheral (2011).
2 We refer to short-time-to-maturity.
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goes to zero if there is no diffusion term, i.e. for a pure-jump process. For this reason, pure
jumps Lévy processes are not suitable to reproduce the market short-time smile, because the
short-time implied volatility is strictly positive in all financial markets.

Muhle-Karbe and Nutz (2011) have shown that, for a relatively broad class of additive
models, the ATM behavior at small-time is the same as the corresponding Levy. In this paper,
we analyze the ATM implied volatility and skew for a class of pure jump additive processes
that is consistent with the equity market smile, differently from the Lévy case: this is the
main theoretical contribution of this study.

An additive process is a stochastic process with independent but non-stationary incre-
ments; a detailed description of the main features of additive processes is provided by Sato
(1999). In this paper, we focus on a pure jump additive extension of the well-known Lévy nor-
mal tempered stable process (for a comprehensive description of this set of Lévy processes,
see e.g., Cont & Tankov, 2003, Ch. 4).

Pure jumpprocesses present amain advantagew.r.t. jump-diffusionmodels: they generally
describe underlying dynamics more parsimoniously. In a jump-diffusion, both small jumps
and the diffusion term describe little changes in the process (see e.g., Asmussen & Rosiński,
2001). Because both components of the jump-diffusion process are qualitatively similar,when
calibrating the model to the plain vanilla option market, it is rather difficult to disentangle the
two components and several sets of parameters achieve similar results. Moreover, it seems
that an infinite number of jumps describes more precisely equity option prices independently
of the stochastic volatility dynamics (see e.g., Zaevski et al., 2014, Fig. 1), specifically for
the short maturities.

Recently, it has been introduced a class of pure jump additive processes, the power-
law scaling additive normal tempered stable process (hereinafter ATS), where the two key
time-dependent parameters—the variance of jumps per unit of time, kt , and the asymmetry
parameter, ηt—present a power scalingw.r.t. the time-to-maturity t . TheATS is a processwith
no diffusion term and infinite jumps (for an expression of its Lévymeasure see e.g., Azzone&
Baviera, 2021a, p. 16). It has been shown the excellent calibrating performances of this class
of processes. On the one hand, this class of pure jump additive processes allows calibrating the
S&P 500 and EURO STOXX 50 implied volatility surfaces with great accuracy, reproducing
“exactly” the term structure of the equity market implied volatility surfaces. On the other
hand, the observed reproduction of the skew term structure appears remarkable.

Moreover, an interesting self-similar characteristic w.r.t. the time-to-maturity arises.
Specifically, among all allowed power laws, the power scaling of kt , β, is close to one,
while the power scaling of ηt , δ, is statistically consistent with minus one half (see e.g.,
Azzone & Baviera, 2021a, pp. 9–10 and p. 11 for a robustness test).

In the literature, short-time implied volatility has been extensively studied also for stochas-
tic volatility models (see e.g., Gatheral, 2011, Ch. 7 and references therein). Alòs et al. (2007)
show that the skew of a stochastic volatility process goes to a constant at short-time, inconsis-
tently with equity market data. More recently, the short-time behavior of the skew has been
one of themain justifications for introducing rough volatilitymodels (see e.g. Friz et al., 2021;
Fukasawa, 2017, 2021; Gatheral et al., 2018). When the volatility is driven by a fractional
Brownian motion with Hurst coefficient H < 1/2 the short-time skew goes as 1/t1/2−H

(Alòs et al., 2007, p. 588). Unfortunately, rough volatility models, despite being able to
replicate the skew term structure for sufficiently large H , are computationally inefficient: no
close formula is available for European options and the existing simulation techniques are
“very slow” (see e.g., Bayer et al., 2016, p. 6). In this paper, we show that the ATS, a simple
and parsimonious additive process, replicates perfectly the market implied volatility skew.
Moreover, the ATS presents an explicit characteristic function, closed formulas for Euro-
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pean options, and fast simulation algorithms for path-dependent options (see e.g., Azzone &
Baviera, 2021).

Consider an option price with strike K and time-to-maturity t . We define It (x) the model
implied volatility, where x := log K

F0(t)
is the moneyness and F0(t) is the underlying forward

price with time-to-maturity t . In particular, we consider the moneyness degree y, s.t. x =:
y
√
t , introduced by Medvedev and Scaillet (2006). It has been observed that the moneyness

degree y can be interpreted as the distance of the option moneyness from the forward price in
terms of theBlackBrownianmotion standard deviation (see e.g., Carr&Wu, 2003;Medvedev
& Scaillet, 2006). The implied volatility w.r.t y is

It (y) := It (y
√
t),

and its first order Taylor expansion w.r.t. y in y = 0 is

It (y) = It (0) + y
dIt (y)
dy

∣
∣
∣
∣
y=0

+ o(y) =: σ̂t + y ξ̂t + o(y). (1)

We call ξ̂t the skew term. We define σ̂0 and ξ̂0 as the limits for t that goes to zero of σ̂t and
ξ̂t . Their financial interpretation is straightforward: σ̂0 corresponds to the short-time ATM
implied volatility, while ξ̂0 is related to the short-time skew, because it is possible to write
the skew as

d It (x)

dx

∣
∣
∣
∣
x=0

= ξ̂t√
t
.

In Fig. 1, we present an example of the short-time implied volatility and the skew for the
S&P 500 at a given date, the 22nd of June 2020 (the business day after a quadruple witching
Friday3). On the left, we plot the 1 month (blue circles), 2 months (red squares), 3 months
(orange stars), and 4 months (purple triangles) market implied volatility w.r.t. the moneyness
degree y: we observe a positive and bounded short-time σ̂t . On the right, we plot the market

skew w.r.t. the time t : it appears to be well described by a fit O

(√

1
t

)

.

As already observed in some empirical studies (see e.g., Carr & Wu, 2003; Fouque et al.,
2004), equity market data are compatible with a positive and bounded σ̂0 and a negative and
bounded ξ̂0, that leads to a skew proportionally inverse to the square root of the time-to-
maturity. We aim to present a pure-jump model with these features.

We study the behavior of σ̂t and ξ̂t for the ATS process, deriving, in (5, 6), an extension
of the Hull and White (1987, p. 4, Eq. (7)) formula (see e.g., Alòs et al., 2007, for another
application of this formula to the short-time case). This formula leads to two results: on the
one hand, we build some relevant bounds for σ̂t ; on the other hand, we obtain an expression
for ξ̂t in (24) via the implicit function theorem (see e.g., Loomis & Sternberg, 1990, Th. 11,
p. 164).

This paper provides several contributions to the existing literature. First, we deduce for
a family of pure-jump additive processes, the ATS, the behavior of the short-time ATM
implied volatility σ̂t and skew term ξ̂t (see Propositions 3.1–3.4 and 4.2–4.3). Second, we
prove that only the scaling parameters observed in market data (β = 1 and δ = −1/2) are
compatible with a bounded short-time implied volatility and a short-time skew proportionally
inverse to the square root of the time-to-maturity (see Theorem 5.1). This last result implies

3 A quadruple witching Friday is the third Friday of the months of March, June, September and December:
in this quarterly date, stock options, stock futures, equity index futures, and equity index options all expire on
the same day.

123



Annals of Operations Research

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4
17-Jul-2020
21-Aug-2020
18-Sep-2020
16-Oct-2020

0 0.5 1 1.5 2 2.5
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

S
ke

w

Fig. 1 Example of the S&P 500 short-time implied volatility and skew on the 22nd of June 2020. On the left,
we plot the 1 month (blue circles), 2 months (red squares), 3 months (orange stars), and 4 months (purple
triangles) market implied volatility w.r.t. the moneyness degree y. We observe a positive short-time σ̂t . On the

right, we plot the market skew w.r.t. the time t and the fitted ≈ (−)

√

1
t . (Color figure online)

the existence of a pure-jump additive process (an exponential ATS) that presents the two
key features observed in market data: not only a bounded and positive short-time implied
volatility but also a power scaling skew.

The rest of the paper is organized as follows. Section 2 presents the ATS power scal-
ing process and the extension of the Hull and White formula. Section 3 defines the implied
volatility problem and analyzes the short-time ATM implied volatility σ̂t . Section 4 com-
putes the short-time limit of the skew term ξ̂t . Section 5 presents the major result: the ATS
process is consistent with the equity market if and only if β = 1 and δ = −1/2. Finally,
Sect. 6 concludes. In the appendices, we report some technical lemmas: on basic properties
in “Appendix A” and on short-time limits in “Appendix B”.

2 The ATS implied volatility

In this Section, we recall the characteristic function of the power-law scaling additive normal
tempered stable process (ATS) and the notation employed in the paper. We also introduce a
sequence of random variables (4) with the same distribution of the ATS for any fixed time t ;
we use these random variables to study the short-time implied volatility.

Wediscuss the volatility smile at small-maturity producedby thismodel;we alsodetermine
the power laws of the ATS parameters that are consistent with market data, i.e. which choices
of β and δ reproduce the market short-time features mentioned above.

We define a sequence of positive random variables St via its Laplace transform. The
random variable St appears in the definition of the random variable ft , that is used to model
a forward contract of the underlying of interest.
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Definition 2.1 (Definition of {St }t≥0)
Let {St }t≥0 be a sequence of positive random variables with a Laplace transform s.t.

lnLt (u; kt , α) := lnE
[

e−uSt
]

=

⎧

⎪⎪⎨

⎪⎪⎩

t

kt

1 − α

α

{

1 −
(

1 + u kt
(1 − α)t

)α}

if 0 < α < 1

− t

kt
ln

(

1 + u kt
t

)

if α = 0
, t ≥ 0

where kt := k̄tβ and k̄, β ∈ R
+.

Notice that, by the Laplace transform, we can compute any moment of St . The first two
are

1. E [St ] = 1;
2. Var [St ] = kt/t .

Definition 2.2 (Definition of { ft }t≥0)
Let { ft }t≥0 be a sequence of random variables with characteristic function s.t.

E

[

eiu ft
]

:= Lt

(

iut

(
1

2
+ ηt

)

σ̄ 2 + t
u2σ̄ 2

2
; kt , α

)

ei u ϕt t , t ≥ 0 (2)

where
ηt := η̄tδ and ϕt t := − lnLt

(

t σ̄ 2ηt ; kt , α
)

. (3)

σ̄ , η̄ ∈ R
+ and δ ∈ R.

Notice that the characteristic function is the same as the power-law scaling additive normal
tempered stable process (ATS) in Azzone and Baviera (2021a, Eq. 2); the notation has been
slightly simplified, we report it at the end of the paper. We also define F0(t), the forward
contract at time 0 with maturity t , and model the same forward contract at maturity as

Ft (t) := F0(t) e
ft .

We recall that the forward price Ft (t), at maturity t , is equal to the underlying spot price. For
this reason, we can define European options on the forward price.

We report the known result on the existence of an additive process with characteristic
function (2), cf. Azzone and Baviera (2021a, Th. 2.3).

Theorem 2.3 (Power-law scaling ATS) There exists an additive process with the same char-
acteristic function of (2), where α ∈ [0, 1) and β, δ ∈ R with either β = δ = 0 or

1. 0 ≤ β ≤ 1

1 − α/2
;

2. −min

(

β,
1 − β (1 − α)

α

)

< δ ≤ 0;

where the second condition reduces to −β < δ ≤ 0 for α = 0.
The region of admissible values for the scaling parameters β and δ is shown in Fig. 2.

Notice that this is the unique region of scaling parameters that satisfies the conditions of
Theorem 2.1 in Azzone and Baviera (2021a) for the existence of the ATS.

In particular, we mention that, ∀ α ∈ [0, 1), the scaling parameters observed in the mar-
ket, {δ = −1/2, β = 1}, are always inside the ATS admissible region. In Fig. 2, we plot
the admissible region for the scaling parameters β and δ. In this paper, we prove that the
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Fig. 2 ATS admissible region for the scaling parameters. We separate the region in five Cases. (i) Case 1 (grey
area) with σ̂0 = 0. (ii) Case 2 (orange area) with σ̂0 = ∞. (iii) Case 3 (light green area) with bounded σ̂0

and ξ̂0 = 0. (iv) Case 4 (continuous dark green line) with bounded σ̂0 and ξ̂0 = −
√

π
2 . (v) Case 5 (red dot)

with bounded σ̂0 and negative and bounded ξ̂0. Notice that Case 3 includes all its boundaries, identified by the
green circles, with the exception of the point {β = 1, δ = −1/2} (red), that corresponds to Case 5. Moreover,
Case 1 includes just its upper bound, identified by the grey squares. We emphasize that for all α in [0, 1) the
point {β = 1, δ = −1/2} is inside the admissible region. (Color figure online)

ATS implied volatility at short-time is qualitatively different for different sets of scaling
parameters. We separate the admissible region into five Cases:
Case 1 (grey area):

{

β < 1, −min

(
1

2
, β

)

< δ ≤ 0

}

∪ {δ = β = 0} .

Case 2 (orange area):
{

−min

(

β,
1 − β(1 − α)

α

)

< δ < −1

2
max (β, 1)

}

.

Case 3 (light green area):
{

β ≥ 1, −β

2
≤ δ ≤ 0

}

\
{

β = 1, δ = −1

2

}

.

Case 4 (continuous dark green line):
{

β < 1, δ = −1

2

}

.

Case 5 (red dot):
{

β = 1, δ = −1

2

}

.

Notice that Case 3 includes all its boundaries, identified by the green circles, with the
exception of the point {β = 1, δ = −1/2} (red); Case 1 includes just its upper boundary
(but it does not include its lower boundary), identified by the grey squares.
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Table 1 Summary of ATS
short-time implied volatility
behavior in the five Cases. We
observe that only the last 3 Cases
admit a positive (and bounded)
implied volatility.

Case 1 σ̂0 = 0

Case 2 σ̂0 = ∞
Case 3 σ̂0 > 0 and ξ̂0 = 0

Case 4 σ̂0 > 0 and ξ̂0 = −
√

π
2

Case 5 σ̂0 > 0 and ξ̂0 < 0

Table 2 Summary of ATS
short-time implied volatility
behavior, w.r.t. the scaling
parameters β and δ in the additive
process admissible region. The
ATM implied volatility σ0 is
positive (and bounded) when we
report the value for ξ̂0

0 < β < 1 β = 1 β > 1

δ > − 1
2 σ̂0 = 0 ξ̂0 = 0 ξ̂0 = 0

δ = − 1
2 ξ̂0 = −

√
π
2 ξ̂0 < 0 ξ̂0 = 0

δ < − 1
2 σ̂0 = ∞ σ̂0 = ∞ σ̂0 = ∞ or ξ̂0 = 0

The main objective of this paper is to prove that the five different Cases correspond to
different behaviors of the implied volatility in the short-time and that Case 5 is the unique
choice of scaling parameters consistent with market characteristics. This is particularly inter-
esting because, by fixing β = 1, δ = −1/2, on the one hand, we are able to replicate
the market short-time implied volatility and skew and, on the other hand, the model is very
parsimonious because we do not have to calibrate β and δ from market data. A summary of
the ATS short-time behavior, and in particular of the ATM value σ̂0 and of the skew term ξ̂0,
w.r.t. the different Cases is available in Table 1.

It is also useful to provide the same result dividing the region for the admissible values
of Theorem 2.3, in terms of β and δ. A summary of the ATS short-time behavior, w.r.t. the
scaling parameters β and δ in the additive process admissible region is reported in Table 2.

It can be proven that, for every time t , the random variable

ft = −
(

ηt + 1

2

)

σ̄ 2 St t + σ̄
√

St t g + ϕt t (4)

has the characteristic function in (2), where g is a standard normal random variable indepen-
dent from St . The proof is the same as in the Lévy case, but with time dependent parameters,
and it is obtained by direct computation of E[ei u ft ], conditioning w.r.t. St . The ft in (4) is
then equivalent in law to the ATS process at maturity t ; thus, we can use this expression of
ft to compute the price of European options.
Consider a European call option discounted payoff Bt

(

F0(t) e ft − F0(t) ex
)+

(and

Bt
(

F0(t) ex − F0(t) e ft
)+

the discounted payoff for the corresponding put) where t is option
maturity, K option strike price, x := ln K

F0(t)
the asset moneyness and Bt the deterministic

discount factor between 0 and t . The European call and put option price at time zero are
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Ct (x) = Bt F0(t)E

[(

e ft − ex
)+]

= Bt F0(t)

E

[

eϕt t−t σ̄ 2ηt St N

( −x

σ̄
√
St t

+ l Stt + σ̄
√
St t

2

)

− ex N

( −x

σ̄
√
St t

+ l Stt − σ̄
√
St t

2

)]

(5)

Pt (x) = Bt F0(t)E

[(

ex − e ft
)+]

= Bt F0(t)

E

[

ex N

(
x

σ̄
√
St t

− l Stt + σ̄
√
St t

2

)

− eϕt t−t σ̄ 2ηt St N

(
x

σ̄
√
St t

− l Stt − σ̄
√
St t

2

)]

,

(6)

where

lzt := −σ̄ ηt
√
z t + ϕt

√
t

σ̄
√
z

(7)

and N (•) is the standard normal cumulative distribution. In the rest of the paper, we will use
these expressions to investigate the short-time implied volatility.

Option prices (5) and (6) are obtained by taking the conditional expectation wrt. the r.v.
St and computing the expected value wrt. the Gaussian r.v. g, that is independent from St (cf.
(4)). It can be useful to mention that a similar result has been obtained by Hull and White
(1987) with the same technique for a stochastic volatility model. Equations (5) and (6) are
crucial in the deduction of paper’s key results: let us stop and comment. First, let us notice that
we can consider option prices with F0(t) = 1 and Bt = 1 without any loss of generality: we
are interested in the implied volatility and these two quantities cancel out from both sides of
the implied volatility equation. Second, let us emphasize that the quantity inside the expected
values are, in both Eqs. (5) and (6), positive.

We can re-write Eqs. (5) and (6) w.r.t to the moneyness degree y (cf. Introduction)

Ct (y
√
t) = E

[

eϕt t−t σ̄ 2ηt St N

(

− y

σ̄
√
St

+ l Stt + σ̄

√
St t

2

)

− ey
√
t N

(

− y

σ̄
√
St

+ l Stt − σ̄

√
St t

2

)]

Pt (y
√
t) = E

[

ey
√
t N

(
y

σ̄
√
St

− l Stt + σ̄

√
St t

2

)

− eϕt t−t σ̄ 2ηt St N

(
y

σ̄
√
St

− l Stt − σ̄

√
St t

2

)]

,

and we can define ct (St , y) and pt (St , y) such that

E[ct (St , y)] := Ct (y
√
t)

E[pt (St , y)] := Pt (y
√
t).

Black (1976) option prices w.r.t. y are

cBt (It (y), y) = N

(

− y

It (y)
+ It (y)

√
t

2

)

− ey
√
t N

(

− y

It (y)
− It (y)

√
t

2

)

pBt (It (y), y) = ey
√
t N

(
y

It (y)
+ It (y)

√
t

2

)

− N

(
y

It (y)
− It (y)

√
t

2

)

,

where It (y) is the implied volatility w.r.t. the moneyness degree.
The implied volatility equation for the call options is

E[ct (St , y)] = cBt (It (y), y) (8)
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and the one for the put option is

E[pt (St , y)] = pBt (It (y), y). (9)

In the following lemma, we prove that σ̂t
√
t goes to zero at short-time following an

approach similar to Alòs et al. (2007, Lemma 6.1, p. 580), who considered a generalization
of the Bates model. We recall that we have defined σ̂t = It (0) in (1).

Lemma 2.4 For the ATS, at short-time,

σ̂t
√
t = o(1).

Proof For an ATM put (i.e. when y = 0), the left-hand side of Eq. (9) is equal to

E

[(

1 − e ft
)+]

. In the region of admissible scaling parameters, ft goes to zero in distribution

because its characteristic function in (2) goes to one. Hence, by the dominated convergence

theorem, E
[(

1 − e ft
)+]

goes to zero at short-time. For y = 0, the right-hand side of Eq. (9)

becomes

pBt (σ̂t , 0) = N

(
σ̂t

√
t

2

)

− N

(

− σ̂t
√
t

2

)

,

that goes to zero if and only if σ̂t
√
t goes to zero. �

Thanks to this lemma, ATM and for short-time, we can rewrite the right hand side of (8)
and (9) as

cBt (σ̂t , 0) = pBt (σ̂t , 0) = σ̂t

√

t

2π
+ o

(

σ̂t
√
t
)

, (10)

where the asymptotic expansion holds because N ′(0) =
√

1
2π , with N ′ the standard normal

probability density function.

3 Short-time ATM implied volatility

In this Section, we study the behavior of σ̂t at short-time for the ATS. The idea of the proofs
is simple. Equation (10) is the short-time asymptotic expansion of the ATM Black call and
put prices. We can study the short-time behavior of the ATS model price in (8) and (9).

1. If the model price (left-hand side in (8) and (9)) goes to zero faster than
√
t , then σ̂0 = 0

(Case 1).
2. If the model price goes to zero slower than

√
t , then σ̂0 = ∞ (Case 2).

3. If the model price goes to zero as
√
t , then σ̂0 is bounded (Cases 3, 4, 5).

The idea of the proofs is the following. In Case 1 we bound the model price from above and
we prove that it is o

(√
t
)

. In Case 2 we bound the model price from below and we show
that it goes to zero slower than

√
t . Finally in the remaining Cases we build upper and lower

bounds for the model price and prove that both bounds are O
(√

t
)

. Furthermore, the proofs
are divided into some sub-cases that correspond to particular ranges of the parameters β and
δ: we indicate with bold characters the range at the beginning of each sub-case.

Proposition 3.1 For Case 1:

{

β < 1& − min
( 1
2 , β

)

< δ ≤ 0 or

β = δ = 0
,
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the implied volatility is s.t.

σ̂0 = 0.

Proof

β < 1 & − min
(
1
2
,β

)

< δ ≤ 0 or β = δ = 0

We bound ct (St , 0) from above as follows.

ct (St , 0) = N

(

l Stt + σ̄

√
St t

2

)

− N

(

l Stt − σ̄

√
St t

2

)

−
(

eϕt t−t σ̄ 2ηt St − 1
)

N

(

l Stt + σ̄

√
St t

2

)

≤
√

t

2π
σ̄

√

St + eϕt t − 1. (11)

In the equality we have just added and subtracted the quantity N
(

l Stt + σ̄
√
St t
2

)

. The inequal-

ity holds because, by definition of standard normal cumulative distribution function,

N

(

l Stt + σ̄

√
St t

2

)

− N

(

l Stt − σ̄

√
St t

2

)

= 1√
2π

∫ l Stt +σ̄
√
St t
2

l Stt −σ̄
√
St t
2

dz e−z2/2 ≤
√

t

2π
σ̄
√

St ,

(12)

and because we bound from above the product
(

eϕt t−t σ̄ 2ηt St − 1
)

N
(

l Stt + σ̄
√
St t
2

)

with the

(positive) maxima of both factors.
We bound the expected value of ct (St , 0) as

E[ct (St , 0)] ≤ E

[√

t

2π
σ̄
√

St

]

+ eϕt t − 1 =
√

t

2π
σ̄ E[√St ] + o

(√
t
)

= o
(√

t
)

.

The first equality holds because eϕt t −1 = O (ϕt t) = o
(√

t
)

and the last equality because
E[√St ] converges to zero at short-time (see Lemma A.5).

Summarizing, the upper bound to the ATS ATM price in (8) is o
(√

t
)

. From (10) we have
that the Black price is O

(

σ̂t
√
t
)

. Thus,

σ̂0 = 0. �

Proposition 3.2 For Case 2: −min
(

β,
1−β(1−α)

α

)

< δ < − 1
2 max (β, 1),

σ̂0 = ∞.

Proof

We divide the proof in two sub-cases.

β ≤ 1 & − β < δ < −1
2

Consider the left-hand side of Eq. (8). We compute the derivative of ct (z, y)w.r.t. z in y = 0.

∂ct (z, 0)

∂z
= −t σ̄ 2ηt e

ϕt t−t σ̄ 2ηt z N

(

lzt + σ̄

√
zt

2

)

−
(

ϕt
√
t

2σ̄ z3/2
+

√
t σ̄ ηt

2
√
z

)(

eϕt t−t σ̄ 2ηt z N ′
(

lzt + σ̄

√
zt

2

)

− N ′
(

lzt − σ̄

√
zt

2

))
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+
√
t σ̄

4
√
z

(

eϕt t−t σ̄ 2ηt z N ′
(

lzt + σ̄

√
zt

2

)

+ N ′
(

lzt − σ̄

√
zt

2

))

. (13)

At short-time, for a given z ∈
(

0, ϕt
σ̄ 2ηt

)

, lzt =
√
t σ̄ ηt√
z

(

−z + ϕt
σ̄ 2ηt

)

> 0. We observe that

eϕt t−t σ̄ 2ηt z = 1+o(1) and limt→0 l
z
t = ∞due toLemmaA.6point 1; then, N

(

lzt + σ̄
√
zt
2

)

=
1 + o(1). Thus,

∂ct (z, 0)

∂z
= −t σ̄ 2ηt + o(tηt ),

because the first term goes to zero as tηt , while the second and the third terms go to zero as
N ′(

√
t ηt ) (i.e. as a negative exponential). Thus, for sufficiently small t , ct (z, 0) is decreasing

w.r.t. z in (0, ϕt
σ̄ 2ηt

). We emphasize that the right extreme of the interval is increasing to one
for sufficiently small t , see Lemma A.6 points 2 and 3.
Fix τ > 0 and S∗ ∈ (0, ϕτ

σ̄ 2ητ
); for any t < τ

E [ct (St , 0)]

≥ ct (S
∗, 0)P

(

St ≤ S∗)

≥
{

N

(

l S
∗

t + σ̄

√
S∗t
2

)

− N

(

l S
∗

t − σ̄

√
S∗t
2

)

+ (

ϕt t − t σ̄ 2ηt S
∗) N

(

l S
∗

t + σ̄

√
S∗t
2

)}

P
(

St ≤ S∗)

≥ (

ϕt t − t σ̄ 2ηt S
∗) N

(

l S
∗

t + σ̄

√
S∗t
2

)

P
(

St ≤ S∗) = O(tηt ).

The first inequality holds because ct (z, 0) is positive for any z ≥ 0 and because we bound
from below the expected value with its minimum in the interval (0, S∗) multiplied by the
probability of the interval,P (St ≤ S∗). The second inequality is due to the fact that ex ≥ x+1.
Finally, the last inequality holds because, by definition of the standard normal cumulative
distribution function,

N

(

lzt + σ̄

√
zt

2

)

− N

(

lzt − σ̄

√
zt

2

)

≥ 0 , z ∈ R
+. (14)

Recall that N
(

l S
∗

t + σ̄
√
S∗t
2

)

= 1 + o(1); notice that P (St ≤ S∗) is constant for β = 1 and

goes to one, by Lemma A.4 point 1, for β < 1. This proves the last equality.
Notice that t ηt goes to zero slower than

√
t (δ < −0.5), then the ATM call price goes to

zero slower than
√
t .

β > 1 & − 1 − β(1 − α)

α
< δ < −β

2

There exists q such that (β − 1)/2 < q < −δ − 1/2. We bound the ATM put price (6) from
below for a sufficiently small t

E[pt (St , 0)]

≥ E

[

1St≥1+tq

(

N

(

−l Stt + σ̄

√
St t

2

)

− N

(

−l Stt − σ̄

√
St t

2

)
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+N

(

−l Stt − σ̄

√
St t

2

)(

1 − eϕt t−t σ̄ 2ηt St
))]

≥ E

[

1St≥1+tq N

(

−l Stt − σ̄

√
St t

2

)(

1 − eϕt t−t σ̄ 2ηt St
)]

≥ P(St ≥ 1 + tq)
1

3

(

1 − eϕt t−t σ̄ 2ηt (1+tq )
)

=: Mt
(

t1+q σ̄ 2ηt + t σ̄ 4η2t kt/2
)

≥ Mt t
1+q σ̄ 2ηt . (15)

The first inequality holds because pt (St , 0) is non negative and because we have added

and subtracted the term N
(

−l Stt − σ̄
√
St t
2

)

. The second because the difference between the

standard normal cumulative distribution functions is non negative, analogously to (14). The
third because, for St ∈ [1,∞), 1−eϕt t−t σ̄ 2ηt St is positive and non decreasing in St ; moreover,

for a sufficiently small t , N
(

−l Stt − σ̄
√
St t
2

)

> 1/3 because

lim
t→0

N

(

−lzt − σ̄

√
zt

2

)

≥ 1/2, z ∈ [1,∞).

The quantityMt is defined in (15). At short-timeMt = 1/6+o(1) because (i) by LemmaB.3,
P(St ≥ 1 + tq) goes to 1/2 as t goes to zero, and (ii) by Lemma A.6 point 1,

1 − eϕt t−t σ̄ 2ηt (1+tq ) = (

t1+q σ̄ 2ηt + t σ̄ 4η2t kt/2
)

(1 + o(1)) .

Notice that t1+qηt goes to zero slower than
√
t , then ATM put price goes to zero slower than√

t .

Case 2 : −min
(

β,
1 − β(1 − α)

α

)

< δ < −max
(

β

2
,
1
2

)

Summing up, for both sub-cases, β ≤ 1 & −β < δ < −1/2 and β > 1 & − 1−β(1−α)
α

< δ <

−β/2, the lower bounds on the ATM option prices in (8) and (9) go to zero slower than
√
t .

Moreover, from (10) we have that the Black price is O
(

σ̂t
√
t
)

. Then,

σ̂0 = ∞. �
Proposition 3.3 For Case 3: β ≥ 1 & δ ≥ −β/2, with the exception of the point
{β = 1, δ = −1/2} ,

σ̂0 is bounded.

Proof We split the proof in three sub-cases. For each sub-case we build an upper and a lower
bound, on the model price, and we demonstrate that both bounds are O

(√
t
)

and then, that
σ̂0 is bounded.

β > 1 & − β

2
<= δ < −1

2

Upper bound
Let us split the expected value of the ATS call in two parts

E[ct (St , 0)]

= E

[

N

(

l Stt + σ̄

√
St t

2

)

− N

(

l Stt − σ̄

√
St t

2

)]

+ E

[

N

(

l Stt + σ̄

√
St t

2

)(

eϕt t−t σ̄ 2ηt St − 1
)]
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=: A1(t) + A2(t).

We prove that both parts are bounded from above by quantities O
(√

t
)

. The first expected
value is s.t.

A1(t) ≤
√

t

2π
σ̄ E

[√

St
]

= O
(√

t
)

, (16)

where the inequality holds true because of (12) and
√
t E[√St ] = O

(√
t
)

because, by
Lemma A.5 point 1, E[√St ] goes to one as t goes to zero.
Let us study the term A2(t).

A2(t) < E

[(

eϕt t−t σ̄ 2ηt St − 1
)

1St<ϕt/(σ̄ 2ηt )

]

=
√

t

2πkt

∫ ϕt/(σ̄
2ηt )

0
dze− t(z−1)2

2kt

(

eϕt t−t σ̄ 2ηt z − 1
)

(17)

+
∫ ϕt/(σ̄

2ηt )

0
dz

(

PSt (z) −
√

t

2πkt
e− t(z−1)2

2kt

)(

eϕt t−t σ̄ 2ηt z − 1
)

≤ O
(

tδ+(β+1)/2
)

, (18)

wherePSt is the law of St . The first inequality is true because the quantity inside the expected

value is positive on
(

0, ϕt
σ̄ 2ηt

)

and negative elsewhere. The equality is obtained by adding and

subtrancting the same expected value for a Gaussian random variable. We prove the second
inequality in two steps, showing that both (17) and (18) are bounded by O

(

tδ+(β+1)/2
)

.
First, we consider (17)

√
t

2πkt

∫ ϕt/(σ̄
2ηt )

0
dz e− t(z−1)2

2kt

(

eϕt t−t σ̄ 2ηt z − 1
)

= 1√
2π

∫

At

dw e− w2
2

(

eϕt t−t σ̄ 2ηt (1+w
√
kt/t) − 1

)

(19)

≤ 1√
2π

∫

At

dw e− w2
2 e−√

t σ̄ 2ηt
√
ktw − 1√

2π

∫

At

dw e− w2
2 (20)

= et σ̄
4η2t kt/2N

(√
t σ̄ 2ηt

√

kt +
(

ϕt

σ̄ 2ηt
− 1

)√
t

kt

)

− N

((
ϕt

σ̄ 2ηt
− 1

)√
t

kt

)

+ o
(

tδ+(β+1)/2
)

(21)

=
√

t

2π
σ̄ 2ηt

√

kt + t σ̄ 4η2t kt
4

+ o
(

tδ+(β+1)/2
)

= O
(

tδ+(β+1)/2
)

, (22)

where At ≡
{

w ∈ R : −
√

t
kt

< w <
(

ϕt/(σ̄
2ηt ) − 1

)√ t
kt

}

. Equality (19) is due to a

change of the integration variable w := (z − 1)/
√
kt/t , equality (20) to the fact that, by

Lemma A.6, eϕt t−t σ̄ 2ηt < 1. Equality (21) to a change of variable m := w + √
t σ̄ 2ηt

√
kt

and to the fact that both N
(

−
√

t
kt

)

and N
(√

t σ̄ 2ηt
√
kt −

√
t
kt

)

go to zero faster that any

power of t . Finally, (22) holds true because of the Taylor expansion of N in zero.
Second, we consider (18)

∣
∣
∣
∣
∣

∫ ϕt/(σ̄
2ηt )

0
dz

(

PSt (z) −
√

t

2πkt
e− t(z−1)2

2kt

)(

eϕt t−t σ̄ 2ηt z − 1
)
∣
∣
∣
∣
∣
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≤
∣
∣
∣
∣
−

(

P(St < 0) − N

(

−
√

t

kt

))
(

eϕt t − 1
)
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ ϕt/(σ̄
2ηt )

0
dz

(

P(St < z) − N

(

(z − 1)

√
t

kt

))

σ̄ 2 ηt t e
ϕt t−t σ̄ 2ηt z

∣
∣
∣
∣
∣

≤ 2
2 − α

1 − α

√

kt
t

(

eϕt t − 1
) = O

(

tδ+(β+1)/2
)

.

The first inequality is due to integration by part and to the triangular inequality. The second
inequality is a consequence of Jensen inequality and of Lemma B.3.

Lower bound
As discussed in the proof of Proposition 3.2, for a sufficiently small t , ct (St , 0) is decreas-

ing for St ∈
(

0, ϕt
σ̄ 2ηt

)

hence,

E [ct (St , 0)] ≥ E
[

ct (St , 0)1St≤ϕt/(σ̄ 2ηt )

]

≥ ct

(
ϕt

σ̄ 2ηt
, 0

)

P

(

St ≤ ϕt

σ̄ 2ηt

)

=
√

ϕt t

8πηt
+ o

(√
t
)

= O
(√

t
)

.

The first inequality is because ct (St , 0) is non negative and the second is because we bound
the expected value from below with the minimum of ct (St , 0) multiplied by the probability

of the interval
(

0, ϕt
σ̄ 2ηt

)

. The equality holds because, by Lemma B.3,

lim
t→0

P

(

St ≤ ϕt

σ̄ 2ηt

)

= 1

2
,

and

ct

(
ϕt

σ̄ 2ηt
, 0

)

= N

(√
ϕt t

4σ̄ ηt

)

− N

(

−
√

ϕt t

4σ̄ ηt

)

=
√

ϕt t

2πσ̄ηt
+ o

(√
t
)

,

with
√

ϕt t
8πσ̄ηt

= O
(√

t
)

.

β > 1 & δ = −1
2

Upper bound
The upper bound on the ATS call price is the same to the one of the previous sub-case
−β/2 ≤ δ < −1/2, β > 1.

Lower bound
We bound the put price from below. It exist H > 1 such that for a sufficiently small t

E [pt (St , 0)] ≥ E
[

pt (St , 0)1St∈[1,H ]
]

≥ E

[(

N

(

−l Stt + σ̄

√
St t

2

)

− N

(

−l Stt − σ̄

√
St t

2

))

1St∈[1,H ]
]

≥ E

[

N ′
(

−l Stt + σ̄
√
St t

2

)

σ̄
√

St t 1St∈[1,H ]
]

≥ N ′
(

σ̄ η̄ − ϕt
√
t

σ̄
+ σ̄

√
t

2

)

σ̄
√
t P(St ∈ [1, H ]) =

√

t

8π
σ̄ + o

(√
t
)

.
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Thefirst inequality holds because pt (St , 0) is nonnegative.The secondbecause eϕt t−t σ̄ 2ηt St <

1 in [1, H ]. The third inequality is due to the fact that we bound from above the difference

N

(

−l Stt + σ̄

√
St t

2

)

− N

(

−l Stt − σ̄

√
St t

2

)

with the standard normal law evaluated in themaximumbetween the two (positive) arguments
multiplied by the difference of the two arguments. Notice that σ̄

√
St t is a positive quantity

almost surely. The last inequality holds because, by Lemma B.4, it exists H > 1 s.t. the
quantity inside the expected value is increasing in [1, H ] for a sufficiently small t . The
equality is because, by Lemma B.3, P(St ∈ [1, H ]) goes to 1/2 as t goes to zero and

lim
t→0

N ′
(

σ̄ η̄ − ϕt
√
t

σ̄
+ σ̄

√
t

2

)

= 1√
2π

.

β ≥ 1 & − 1
2

< δ ≤ 0

Upper bound
We can bound ct (St , 0) from above as in (11).

We bound the ATS option price as

E[ct (St , 0)] ≤ E

[
1√
2π

σ̄
√

St t

]

+ eϕt t − 1 ≤ O
(√

t
)

.

The last inequality holds because, by Jensen inequality with concave function
√∗,E[√St ] ≤√

E[St ] = 1 and because, by Lemma A.6 point 1, eϕt t − 1 = o
(√

t
)

.

Lower bound
To bound ct (z, 0) from below, we study its derivative in (13). Notice that, at short-time,
lzt = O

(√
tηt

) = o(1), due to Lemma A.6 point 1, and to the fact that δ > −1/2. Moreover,

again due to Lemma A.6 point 1, eϕt t−t σ̄ 2ηt z = 1 + O (tηt ). Then, we have

(i) The negative first term at short-time is o
(√

t
)

−t σ̄ 2ηt e
ϕt t−t σ̄ 2ηt z N

(

lzt + σ̄

√
zt

2

)

= O (tηt ) = o
(√

t
)

.

(ii) The second term at short-time is o
(√

t
)

(
ϕt

√
t

2σ̄ z3/2
+

√
t σ̄ ηt

2
√
z

)(

eϕt t−t σ̄ 2ηt z N ′
(

lzt + σ̄

√
zt

2

)

− N ′
(

lzt − σ̄

√
zt

2

))

= O
(√

tηt
) e−(lzt )

2/2−σ̄ 2zt/8

√
2π

(

(1 + O(tηt ))

(

1 − lzt σ̄
√
zt

2
+ o(tηt )

)

−
(

1 + lzt σ̄
√
zt

2
+ o(tηt )

))

= O(η2t t
3/2) = o

(√
t
)

,

because

N ′
(

lzt ± σ̄

√
zt

2

)

= e−(lzt )
2/2−σ̄ 2zt/8

(

1 + ± lzt σ̄
√
zt

2
+ o(tηt )

)

.
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(iii) The positive third term at short-time is O
(√

t
)

√
t σ̄

4
√
z

(

eϕt t−t σ̄ 2ηt z N ′
(

lzt + σ̄

√
zt

2

)

+ N ′
(

lzt − σ̄

√
zt

2

))

=
√

t

8π z
σ̄ + o

(√
t
)

.

Summarizing, the leading term in (13), at short-time, is the third one, which is positive.
Hence, for a fixed z > 0 and for sufficiently small t , ct (z, 0) is increasing; thus, we can
bound the expected value from below

E [ct (St , 0)] ≥ E
[

ct (St , 0)1St∈[1/2,3/2]
]

> ct

(
1

2
, 0

)

P

(

St ∈
[
1

2
,
3

2

])

>

{

N

(

l1/2t + σ̄

√

t

8

)

− N

(

l1/2t − σ̄

√

t

8

)}

P

(

St ∈
[
1

2
,
3

2

])

> N ′
(

l1/2t + σ̄

√

t

8

)

σ̄

√

t

2
P

(

St ∈
[
1

2
,
3

2

])

=
(

σ̄

√

t

4π
+ o

(√
t
)
)

P

(

St ∈
[
1

2
,
3

2

])

= O
(√

t
)

.

The first inequality holds because ct (St , 0) is non negative. The second because, for
a sufficiently small t , ct (St , 0) is increasing. The third is true because, for sufficiently
small t , eϕt t−t σ̄ 2ηt/2 > 1, by Lemma A.6 point 3. The forth is due to the fact that
the difference of the standard normal cumulative distribution functions can be bounded
frombelowby the (positive)maximumof the two argumentsmultiplied by the (positive)
difference of the two arguments. The equality is due to the fact that P

(

St ∈ [ 1
2 ,

3
2

])

is
constant if β = 1 and goes to 1 at short-time if β > 1 because, by Lemma A.4 point 2,
St goes to one in distribution at short-time.

Case 3 : β ≥ 1 & − β

2
≤ δ ≤ 0 \ β = 1,

{

δ = −1
2

}

Summing up, in all sub-cases the upper bound and the lower bounds of the ATS option
prices in (8) and (9) are O(

√
t).Moreover, from (10)we have that theBlack price is O

(

σ̂t
√
t
)

.
Thus,

σ̂0 is bounded. �

Proposition 3.4 For Cases 4 and 5: β ≤ 1 & δ = − 1
2 ,

σ̂0 is bounded.

Proof

β ≤ 1 & δ = −1
2

Upper bound
We can bound ct (St , 0) from above as in (11).

We bound the ATS option price as

E[ct (St , 0)] ≤ E

[
1√
2π

σ̄
√

St t

]

+ eϕt t − 1 = O
(√

t
)

.

123



Annals of Operations Research

The equality holds because, by Jensen inequality with concave function
√∗, E[√St ] ≤√

E[St ] = 1 and because, by Lemma A.6 point 1, eϕt t − 1 = O
(√

t
)

.

Lower bound
We bound ct (St , 0) from below as:

ct (St , 0) ≥ 1St<ϕt /(σ̄ 2ηt )

(

N

(

l Stt + σ̄

√
St t

2

)

− N

(

l Stt − σ̄

√
St t

2

)

+ (

ϕt t − t σ̄ 2ηt St
)

/2

)

≥ 1St<ϕt /(σ̄ 2ηt )

(

ϕt t − t σ̄ 2ηt St
)

/2.

The first inequality is because ct (St , 0) is non negative, because ex ≥ x + 1, and because
the normal cumulative distribution function evaluated in a positive quantity is above 1/2.
The second holds because the difference between the two normal cumulative function is non
negative.

E[ct (St , 0)] ≥ E
[

1St<ϕt/(σ̄ 2ηt )
(ϕt t − t σ̄ 2ηt St )/2

]

= √
t σ̄ 2 η̄/2 E

[

1St<ϕt/(σ̄ 2ηt )
(−St + ϕt/(σ̄

2ηt ))
] = O

(√
t
)

.

The last equality is due to the fact that

E
[

1St<ϕt/(σ̄ 2ηt )
(−St + ϕt/(σ̄

2ηt ))
] = ϕt/(σ̄

2ηt )P(St < ϕt/(σ̄
2ηt )) − E[St1St<ϕt/(σ̄ 2ηt )

]
(23)

can be bounded from below with a positive constant for sufficiently small t . This fact can be
deduced for β ≤ 1. We prove it separately for the two cases β < 1 and β = 1.
For β < 1, let us observe that, at short-time,

0 ≤ E[St1St<ϕt/(σ̄ 2ηt )
] ≤ E[St1St<1] = o(1),

because, by point 2 of Lemma A.6, ϕt/(σ̄
2ηt ) < 1 and, by definition of convergence in

distribution, at short-time E[St1St<1] = o(1), because, by Lemma A.4 point 1, St converges
in distribution to 0. Moreover, at short-time, ϕt/(σ̄

2ηt )P(St < ϕt/(σ̄
2ηt )) = 1 + o(1), by

point 1 of Lemma A.6 and by point 1 of Lemma A.4.
For β = 1, we remind that the law of St does not depend from t and we observe that the

limit of (23) for t that goes to zero is positive

lim
t→0

{

ϕt/(σ̄
2ηt )P(St < ϕt/(σ̄

2ηt )) − E[St1St<ϕt/(σ̄ 2ηt )
]} = P(St < 1) − E[St1St<1] > 0,

where the last inequality is due to the fact that St has unitary mean and finite variance k̄.
Summarizing, as in Proposition 3.3 the upper and lower bounds of the ATM prices in (8)

are O
(√

t
)

. From (10), we have that the Black price is O
(

σ̂t
√
t
)

. Thus,

σ̂0. is bounded. �

In the propositions above, we have proven that σ̂0 is bounded only in Cases 3, 4 and 5.
Only for these Cases we study the short-time skew in the next Section.

4 Short-time skew

In this Section, we focus on the skew term ξ̂t for the ATS when σ̂0 is bounded. We obtain an
expression of ξ̂t in Lemma 4.1 and study its short-time limit.
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In the introduction, we have mentioned that the implied volatility skew observed in the
equity market is negative and it goes to zero as one over the square root of t . This behavior
is equivalent to a negative and bounded ξ̂0. In this Section, we prove that ξ̂0 is zero in Case 3
(Proposition 4.2) and is negative and bounded in Cases 4 and 5 (Proposition 4.3). Moreover,
Case 5 identifies the unique parameters’ set where ξ̂0 can be a generic value that it is possible
to calibrate from market data.

Lemma 4.1 The skew term ξ̂t is

ξ̂t =
N

(

− σ̂t
√
t

2

)

− E

[

N
(

l Stt − σ̄
√
St t
2

)]

N ′
(

− σ̂t
√
t

2

) . (24)

Proof Applying the implicit function theorem to the implied volatility equation for the call
option (8) we obtain the derivative of the implied volatility w.r.t y

∂It (y)
∂ y

=
∂E[ct (St ,y)]

∂ y − ∂cBt (It (y),y)
∂ y

∂cBt (It (y),y)
∂It (y)

.

We prove the thesis by computing the three partial derivatives separately.

∂E [ct (St , y)]

∂ y
= −√

te
√
t y
E

[

N

(

− y

σ̄
√
St

+ l Stt − σ̄

√
St t

2

)]

∂cBt (It (y), y)
∂ y

= −√
te

√
t y N

(

− y

It (y)
− It (y)

√
t

2

)

∂cBt (It (y), y)
∂It (y)

= √
te

√
t y N ′

(

− y

It (y)
− It (y)

√
t

2

)

.

Notice that it is possible to exchange the expected value w.r.t. St and the derivative w.r.t. y
using the Leibniz rule because the law of St does not depend from y. By substituting y = 0
and reminding that It (0) = σ̂t , we get (24). �

Notice that, because of Lemma 2.4, the denominator of ξ̂t in (24), N ′
(

− σ̂t
√
t

2

)

, goes to
1√
2π

at short-time. To study the short-time behavior of ξ̂t it is sufficient to consider only the
numerator of Eq. (24)

N

(

− σ̂t
√
t

2

)

− E

[

N

(

l Stt − σ̄

√
St t

2

)]

.

Proposition 4.2 For Case 3: β ≥ 1 & −β/2 ≤ δ ≤ 0, with the exception of the point
{β = 1, δ = −1/2}, the skew term is

ξ̂0 = 0.

Proof

We divide the proof in two sub-cases.

β = 1 & − 1
2

< δ ≤ 0
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We study the numerator of ξ̂t in (24).

lim
t→0

{

N

(

− σ̂t
√
t

2

)

− E

[

N

(

l Stt − σ̄

√
St t

2

)]}

= 0.

We compute the limit thanks to the dominated convergence theorem because the law of St
does not depend on t and lzt = o(1) in this sub-case.

β > 1 & − β

2
≤ δ ≤ 0

We want to prove that

E

[

N

(

l Stt − σ̄

√
St t

2

)]

= 1

2
+ o (1) . (25)

The equality holds because

E

[

N

(

l Stt − σ̄

√
St t

2

)]

=
√

t

2πkt

∫ ∞

0
dz e−t (z−1)2

2kt N

(

lzt − σ̄

√
zt

2

)

(26)

+
∫ ∞

0
dz

(

PSt (z) −
√

t

2πkt
e−t (z−1)2

2kt

)

N

(

lzt − σ̄

√
zt

2

)

, (27)

where PSt is the distribution of St . We study the quantities in (26) and (27) separately.
First, we consider (26)

lim
t→0

√
t

2πkt

∫ ∞

0
dz e−t (z−1)2

2kt N

(

lzt − σ̄

√
zt

2

)

= lim
t→0

1√
2π

∫ ∞

−
√

kt
t

dw e− w2
2 N

⎛

⎝
ϕt

√
t

σ̄
√

1 + w
√
kt/t

− σ̄ ηt

√

t
(

1 + w
√

kt/t
)

− σ̄

√

t
(

1 + w
√
kt/t

)

2

⎞

⎠

= lim
t→0

1√
2π

∫ ∞

−
√

kt
t

dw e− w2
2 N

(

σ̄ ηt
√
t
(

1 − w
√

kt/t/2
)

− σ̄ ηt
√
t
(

1 + w
√

kt/t/2
)

+ O
(√

t
))

= 1√
2π

lim
t→0

∫

R

dw e− w2
2

{

N
(

−σ̄ η̄
√

k̄tδ+β/2w
)

− 1

2
+ 1

2

}

= 1

2
.

The first equality is obtained via a change of the integration variable (w := √
t(z −

1)/
√
kt ). The second equality is due to the asymptotic of ϕt t in Lemma A.6 point 1. The

third equality holds because of the dominated convergence theorem. The last is trivial because
[

N
(

−η̄
√
k̄tδ+β/2w

)

− 1/2
]

is odd w.r.t. w.

Second, we consider (27)
∫ ∞

0
dz

(

PSt (z) −
√

t

2πkt
e−t (z−1)2

2kt

)

N

(

lzt − σ̄

√
zt

2

)
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=
(

P(St < 0)) − N

(

−
√

t

kt

))

+
∫ ∞

0
dz

(

P(St < z) − N

(

(z − 1)

√
t

kt

))

N ′
(

lzt − σ̄

√
zt

2

)

(
ϕt

√
t

2σ̄ z3/2
+ σ̄

√
tηt + σ̄

√
t/2

2
√
z

)

= o(1).

The first equality is due to integration by part. The second to the fact that (i) P(St < 0) = 0,

(ii) N
(

−
√

t
kt

)

go to zero as t goes to zero, and (iii)
∣
∣
∣
∣

∫ ∞

0
dz

(

N

(

(z − 1)

√
t

kt

)

− P(St < z)

)

N ′
(

lzt − σ̄

√
zt

2

)(
ϕt

√
t

2σ̄ z3/2
+ σ̄

√
tηt + σ̄

√
t/2

2
√
z

)∣
∣
∣
∣

≤ 2 − α

1 − α

√

kt
t

∫ ∞

0
dzN ′

(

lzt − σ̄

√
zt

2

)(
ϕt

√
t

2σ̄ z3/2
+ σ̄

√
tηt + σ̄

√
t/2

2
√
z

)

= 2 − α

1 − α

√

kt
t

= O

(√

kt
t

)

,

where the inequality is due to Lemma B.3 and the first equality is due the fact that
∫ ∞

0
dzN ′

(

lzt − σ̄

√
zt

2

)(
ϕt

√
t

2σ̄ z3/2
+ σ̄

√
tηt + σ̄

√
t/2

2
√
z

)

= − N

(

lzt − σ̄

√
zt

2

)∣
∣
∣
∣

∞

0
= 1.

This proves (25).
It is now possible to compute the short-time limit of the skew term

lim
t→0

{(

N

(

− σ̂t
√
t

2

)

− E

[

N

(

l Stt − σ̄

√
St t

2

))]}

= 0. �
Proposition 4.3 For Case 4: β < 1 and δ = −1/2, the skew term is

ξ̂0 = −
√

π

2
.

For Case 5: β = 1 and δ = −1/2 the skew term is

ξ̂0 = −
√

π

2
E [er f (σ̄ η̄ r(St ))] , (28)

where r(St ) := √
2(1/

√
St − √

St ).

Proof
We prove separately the two Cases.

δ = −1
2
& β < 1

Thanks to Lemma B.2, the limit of the numerator of ξ̂t in (24) can be computed simply,

lim
t→0

(

N

(

− σ̂t
√
t

2

)

− E

[

N

(

l Stt − σ̄

√
St t

2

)])

= −1

2
.

Thus,

ξ̂0 = lim
t→0

N
(

− σ̂t
√
t

2

)

− E

[

N
(

l Stt − σ̄
√
St t
2

)]

N ′
(

− σ̂t
√
t

2

) = −
√

π

2
.
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δ = −1
2
& β = 1

We compute the limit in t = 0 of the numerator of ξ̂t in (24)

lim
t→0

(

N

(

− σ̂t
√
t

2

)

− E

[

N

(

l Stt − σ̄

√
St t

2

)])

= E

[

1/2 − N
(

σ̄ η̄
(

1/
√

St − √

St
))]

.

We obtain the equality thanks to the dominated convergence theorem, because the law of St
is constant in time. We recall that er f (z) = 2N (z/

√
2) − 1, substituting in (24), we obtain

(28). �
Equation (28) is one of the major results of the paper. Let us stop and comment.
First, let us notice that ξ̂0 in (28), is a generic function of the couple of positive parameters

σ̄ η̄ and k̄; in particular the er f function is odd in its argument and r : R+ → R. Moreover
ξ̂0 depends on the parameter α ∈ [0, 1) that selects the truncated additive process of interest.

Second,

−
√

π

2
≤ ξ̂0 ≤ 0

i.e. theminimum value for the skew term is−√
π/2, its value in Case 4. Let us emphasize that

the possibility to choose ξ̂0 is the key difference between Case 4 and Case 5. A ξ̂0 function
of model parameters is more relevant, from a practitioner’s perspective, because it allows
calibrating ξ̂0 on market data rather than selecting a fixed value ξ̂0 = −√

π/2.
To show the upper bound, we can rewrite

E [er f (σ̄ η̄ d(St ))] =
∫ ∞

0
dz PSt (z) er f (σ̄ η̄ r(z))

=
∫ 1

0
dz

(

PSt (z) − PSt (z)

z2

)

er f (σ̄ η̄ r(z)) ,

where the second equality is due to the change of variablew = 1/z, and second to r(1/w) =
−r(w) and to the fact that er f (z) is odd. We also observe that er f (σ̄ η̄ r(z)) > 0 in (0, 1).

For the two cases where the distribution of St is known analytically α = 0 (VG) and
α = 1/2 (NIG), we can prove that the skew term ξ̂0 in (28) is negative for non zero σ̄ η̄ and k̄
(for the expression of the Gamma and Inverse Gaussian laws see e.g., Cont & Tankov, 2003,

Ch. 4, p. 128). In both cases we can prove that
(

PSt (z) − PSt (1/z)
z2

)

> 0 in (0, 1); recall that

PSt (z) does not depend from time because β = 1.
In the α = 0 case, St has the law of a Gamma random variable

PSt (z) − PSt (1/z)

z2
= 1

k̄1/k̄�(1/k̄)
z1/k̄ e−z/k̄

(

1 − e−1/k̄ (1/z−z)

z2/k̄

)

> 0,

where the inequality is true in (0, 1) because 1 − e−1/k̄ (1/z−z)

z2/k̄
> 0 or equivalently 1/z − z +

2 ln z > 0. The last inequality is trivial ∀z ∈ (0, 1), because it is equal to zero for z = 1 and
its derivative is negative.

In the α = 1/2 case, St has the law of an Inverse Gaussian random variable

PSt (z) − PSt (1/z)

z2
= 1√

2π k̄
e−r(z)2/(2k̄)

(
1

z3/2
− 1√

z

)

> 0,

where the inequality is true because 1
z3/2

− 1√
z > 0,∀z ∈ (0, 1).
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Fig. 3 ATS skew term ξ̂0 for {β = 1, δ = −1/2}. We report ξ̂0 for four values of α: α = 0 in the upper left
corner, α = 1/4 in the upper right corner, α = 1/2 in the lower left corner and α = 3/4 in the lower right
corner. We plot the skew for k̄, σ̄ η̄ ∈ [0, 3]. In all cases the skew is negative and decreasing w.r.t. k̄ and σ̄ η̄.
(Color figure online)

In all other cases, we compute numerically the skew term ξ̂0 for different admissible values
of k̄, σ̄ η̄ ∈ R

+ and α ∈ [0, 1), by means of inversion of the characteristic function of St ,
showing that it is either negative or equal to zero. In Fig. 3, we plot the numerical estimation
of the skew term for σ̄ η̄ and k̄ below 3 (an interval in linewith the situation generally observed
in market data) and for a grid of four values of α (α = 0, 1/4, 1/2, 3/4); in all cases the skew
term ξ̂0 looks rather similar: equal to zero on the boundaries (k̄ = 0 and σ̄ η̄ = 0), a negative
quantity in all other cases and a decreasing function w.r.t. both k̄ and σ̄ η̄. In Fig. 4, we plot
also the skew term for the same four values of α, varying k̄ with σ̄ η̄ = 1 (on the left) and
varying σ̄ η̄ for k̄ = 1 (on the right): all plots look rather similar with a decreasing ξ̂0.

Finally, let us emphasize that the limits of ξ̂0 are zero for σ̄ η̄ and k̄ that go to zero.
On the one hand, recall that the law of St , PSt , does not depend of σ̄ η̄. By the dominated

convergence theorem with bound PSt , we have that

lim
σ̄ η̄→0

E [er f (σ̄ η̄ r(St ))] = 0.

On the other hand, by Kijima (1997, Th. B.9, p. 308), we have that St converges in
distribution to 1 as k̄ goes to zero because

lim
k̄→0

Lt (u; kt , α) = lim
t→0

e
1
k̄
1−α
α

{

1−
(

1+ u k̄
(1−α)

)α}

= e−u .

We are computing the expected value of a bounded function of St that does not depend of k̄.
Thus, by definition of convergence in distribution,

lim
k̄→0

E

[

er f
(

σ̄ η̄
√
2

(

1/
√

St − √

St
))]

= 0.
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Fig. 4 ATS skew term ξ̂0 for β = 1 and δ = −1/2 for α = 0 (dashed blue line), α = 1/4 (red triangles),
α = 1/2 (orange circles) and, α = 3/4 (continuous violet line). We plot the skew for k̄ ∈ [0, 3] with σ̄ η̄ = 1
(on the left) and for σ̄ η̄ ∈ [0, 3] for k̄ = 1 (on the right). In all cases the skew is decreasing w.r.t. k̄ and σ̄ η̄.
(color figure online)

5 Main result

In the following theorem, we present the main results of this paper. We prove that if and only
if β = 1 and δ = −1/2 the ATS has a positive and constant short-time implied volatility σ̂0
and a negative and constant short-time skew term ξ̂0. We point out that a bounded skew term
w.r.t. y corresponds to a skew that goes as 1√

t
at short-time w.r.t. the moneyness x . We also

prove that the ATS short-time implied volatility behaves as described in Table 1. The proof
is based on the propositions of Sects. 3 and 4.

Theorem 5.1 The ATS has a positive and constant short-time implied volatility σ̂0 and a
negative and constant short-time skew term ξ̂0, that can be calibrated from market data, if
and only if β = 1 and δ = −1/2.
Moreover, the following hold true:

1. In Case 1, the short-time implied volatility σ̂0 = 0 and, in Case 2, σ̂0 = ∞.
2. In Case 3, the short-time implied volatility σ̂0 is constant and the short-time skew ξ̂0 = 0.
3. In Case 4, the short-time implied volatility σ̂0 is constant and the short-time skew ξ̂0 =

−√
π/2 cannot be calibrated from market data.

Proof Weprove that, for Case 1, σ̂0 = 0 in Proposition 3.1.We prove that, for Case 2, σ̂0 = ∞
in Proposition 3.2. We prove that, for Cases 3, 4 and 5, σ̂0 is bounded in Propositions 3.3 and
3.4.
Moreover, in Proposition 4.2 we demonstrate that, for Case 3, ξ̂0 = 0 and in Proposition 4.3
we show that, for Case 4, ξ̂0 = −√

π/2 and that, for Case 5, ξ̂0 is negative and bounded. �

6 Conclusions

In this paper, we have analyzed the short-time behavior of the implied volatility of a class of
pure jumps additive processes, the ATS family.
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An excellent calibration of the equity implied volatility surface has been achieved by the
ATS, a class of power-law scaling additive processes (see e.g., Azzone & Baviera, 2021a).
This class of processes builds upon the power-law scaling parametersβ, related to the variance
of jumps, and δ related to the smile asymmetry.

First, for this family of pure-jump additive processes we have obtained the behavior of
the short-time ATM implied volatility σ̂t and the skew term ξ̂t over the region of admissible
parameters (cf. Theorem 2.3). We get this result by constructing some relevant bounds for σ̂t
and obtaining the expression of ξ̂t , cf. Eq. (24), via the implicit function theorem.

Second, we have proven that only the scaling parameters observed in empirical analysis
(β = 1 and δ = −1/2) are compatible with the implied volatility observed in the equity
market (cf. Theorem 5.1). Hence, we have demonstrated that it exists a pure-jump additive
process (an exponential ATS) that, differently from the Lévy case, presents the two features
observed in market data: not only a bounded and positive short-time implied volatility but
also a short-time skew proportionally inverse to the square root of the time-to-maturity.
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Appendices

A Basic properties

We report some useful results for the proofs in Sect. 3. In the following lemmas we consider
St of Definition 2.1 with Laplace transform Lt (u; kt ; α), at a given time t > 0. The proofs
that follow are for the α ∈ (0, 1) case. Similar proofs hold in the α = 0 case.

Lemma A.1 Let s ∈ (0, 1), then

E
[

Sst
] =

∫ ∞

0

Lt (u; kt ; α) − 1

�(−s)us+1 du, (29)

where � is the Gamma function.

Proof By elementary calculus and Fubini’s Theorem (see e.g., Urbanik, 1993, Lemma 4, p.
325). �
Lemma A.2 Let n be a positive integer, then

E[S−n
t ] = �(n)−1

∫ ∞

0
un−1Lt (u; kt ; α)du.

Proof By elementary calculus and Fubini’s Theorem (see e.g.,Cressie et al., 1981, Ch. 2, p.
148). �
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Lemma A.3 1. The following two properties for the Laplace trasform Lt hold:
For all t > 0, c ≥ 1 and u ≥ 0

1 − Lt (u; kt , α) ≤ 1 − e−cu .

2. If β ≥ 1, Lt (u; kt , α) is non decreasing in t.

Proof Let us observe that

1 − Lt (u; kt , α) ≤ 1 − e−cu

t

kt

1 − α

α

{(

1 + u kt
(1 − α)t

)α

− 1

}

− cu ≤ 0.

The last inequality is true for any c ≥ 1 and u ≥ 0 because the left hand side is null in u = 0
and its first order derivative w.r.t. u is negative:

1
(

1 + kt u
t(1−α)

)1−α
− c < 0.

This proves the first point.
We demonstrate that the logarithm of Lt (u; kt , α) is not decreasing. Consider a positive

t , s ∈ (0, t) and

h(u; s, t) := t

kt

{

1 −
(

1 + u kt
(1 − α)t

)α}

− s

ks

{

1 −
(

1 + u ks
(1 − α)s

)α}

.

We observe that h(0; s, t) = 0 and the first order derivative

∂h(u; s, t)

∂u
= 1

(

1 + ksu
s(1−α)

)1−α
− 1

(

1 + kt u
t(1−α)

)1−α

is non negative ∀u > 0 because kt/t is non decreasing in t , if β > 1, and is constant in t ,
if β = 1. Thus, h(u; s, t) ≥ 0, ∀u ≥ 0, and Lt (u; kt , α) is non decreasing w.r.t. t . This
proves point 2. �
Lemma A.4 The following three properties for St hold:

1. If β < 1 St goes to zero in distribution as t goes to zero.
2. If β > 1 St goes to one in distribution as t goes to zero.
3. If β = 1 the distribution of St does not depend from t.

Proof Recall that convergence in the Laplace transform implies convergence in distribution
(see e.g., Kijima, 1997, Th. B.9, p. 308).
We compute the limit of St Laplace transform for β < 1. By using the fact that kt/t goes to
infinity as t goes to zero we obtain

lim
t→0

Lt (u; kt , α) = lim
t→0

e
t
kt

1−α
α

{

1−
(

1+ u kt
(1−α)t

)α}

= 1.

Thus, St converges in distribution to the constant zero. This proves point 1.
We compute the limit of St Laplace transform for β > 1. By using the fact that kt/t goes

to zero as t goes to zero we obtain

lim
t→0

Lt (u; kt , α) = lim
t→0

e
t
kt

1−α
α

{

1−
(

1+ u kt
(1−α)t

)α}

= e−u .
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Thus, St converges in distribution to the constant one. This proves point 2.
Point 3 follows from the fact that, if β = 1, Lt (u; kt , α) is constant in t . �

Lemma A.5

lim
t→0

E[√St ] =

⎧

⎪⎨

⎪⎩

0 if β < 1

1 if β > 1

D if β = 1

, (30)

where D is a positive constant.

Proof Recall that St is a positive r.v. and E[St ] = 1. Then, its moment of order 1/2 is finite.
By Lemma A.1

E

[√

St
]

=
∫ ∞

0

Lt (u; kt , α) − 1

�(−1/2)u3/2
du,

where −1
�(−1/2) ≈ 3.45. By Lemma A.3 point 1 with c = 2, the positive quantity (1 −

Lt (u; kt , α))/u3/2 is lower or equal than (1 − e−2u)/u3/2. Thus,

0 ≤ E

[√

St
]

≤ −1

�(−1/2)

∫ ∞

0

1 − e−2u

u3/2
du = −4

�(−1/2)

∫ ∞

0

e−2u

u1/2
du = √

2, (31)

where the first equality is obtained from integration by parts and the second from the definition
of �. Inequality (31) has two consequences. First, if β = 1,

lim
t→0

E[√St ] = E[√St ] := D ≤ √
2, (32)

because, by Lemma A.4 point 3, E[√St ] is constant w.r.t. to time. Second, we can apply
the dominated convergence theorem to (30) for all values of β. Recall that the limits for t
that goes to zero of Lt (u; kt , α) for β < 1 and for β > 1 are computed in the proof of
Lemma A.4.
If β < 1

lim
t→0

E[√St ] = lim
t→0

−1

�(−1/2)

∫ ∞

0

1 − Lt (u; kt , α)

u3/2
du = 0. (33)

If β > 1

lim
t→0

E[√St ] = lim
t→0

−1

�(−1/2)

∫ ∞

0

1 − Lt (u; kt , α)

�(−1/2)u3/2
du

= −1

�(−1/2)

∫ ∞

0

1 − e−u

u3/2
du = −2

�(−1/2)

∫ ∞

0

e−u

u1/2
du = 1, (34)

where the third equality is obtained from integration by parts and the third by the definition
of �. Equalities (32), (33) and (34) prove the thesis. �
Lemma A.6 Consider ϕt in (3). For every β and δ in the additive process boundaries of
Theorem 2.3

1.
ϕt t = t σ̄ 2ηt − t σ̄ 4η2t kt/2 + O

(

tη3t k
2
t

)

, (35)

where the second term t σ̄ 4η2t kt/2 goes to zero faster than t σ̄ 2ηt as t goes to zero.
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2.
ϕt

σ̄ 2ηt
≤ 1.

3.

lim
t→0

ϕt

σ̄ 2ηt
= 1, for δ > −min(1, β).

Proof We prove the asymptotic expansion (35). In the additive process boundaries of Theo-
rem 2.3 at least either β = δ = 0 or δ > −min(1, β). In the former case (35) is trivial. In
the latter, thanks to (3), both tηt = t1+δη̄ and ηt kt = tβ+δη̄k̄ go to zero as t goes to zero.
Using the Taylor series expansion

ϕt t = t(1 − α)

kt

{
σ̄ 2 ηt kt
1 − α

− σ̄ 4 η2t k
2
t

2(1 − α)
+ O

(

η3t k
3
t

)
}

= t σ̄ 2 ηt − t σ̄ 4 η2t kt/2 + O
(

t η3t κ2
t

)

.

This proves point 1.
We prove that ϕt/(σ̄

2ηt ) ≤ 1. We substitute the definition of ϕt in (3), for α > 0, in (35)
and we get

ϕt/(σ̄
2ηt ) = (1 − α)

ασ̄ 2ηt kt

((

1 + σ̄ 2ηt kt
1 − α

)α

− 1

)

≤ 1. (36)

We define z := σ̄ 2ηt kt
1−α

. Then, (36) is equivalent to

(1 + z)α ≤ 1 + αz,

which is a well known inequality. This proves point 2.
Point 3 is straightforward, given point 1, because, if δ > −min(1, β), ηt kt goes to zero

as t goes to zero. �

B Short-time limits

Lemma B.1 Consider a family of positive random variables {Xt }t≥0 s.t. limt→0 Xt = X in
distribution and a sequence of functions gt (z) ≥ 0 and uniformly bounded s.t. limt→0 gt (z) =
g(z).
If ∃ τ > 0 s.t. for t ∈ (0, τ )

(i) gt (z) is Lipschitz continuous with bounded Lipschitz constant,
(ii) |gt (z) − g(z)| < h(z) with limz→∞ h(z) = 0,

then

lim
t→0

E[gt (Xt )] = E[g(X)].

Proof It is possible to apply the Ascoli–Arzelá theorem (see e.g., Rudin, 1976, Th. 7.25,
p. 158) on every compact set [0, K ], K > 0, because a sequence of Lipschitz continuous
functions with bounded Lipschitz constant is equicontinous on any compact set. Thus, a
sub-sequence of gt (z) converges uniformly to g(z) in any [0, K ]. For every ε > 0, ∃ K s.t.
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lim
t→0

E[|gt (Xt ) − g(Xt )|] = lim
t→0

E
[|gt (Xt ) − g(Xt )|1Xt<K

]

+ lim
t→0

E
[|gt (Xt ) − g(Xt )|1Xt>K

]

< ε.

The first expected value goes to zero because gt (z) converges uniformly to g(z) on [0, K ],
as proven above via Ascoli–Arzelá theorem. It exists K s.t. it is possible to bound the second
with ε because h(z) goes to zero as z goes to infinity.
Moreover, g(z) is bounded because it is the limit of a uniformly bounded sequence and

lim
t→0

E [|g(Xt ) − g(X)|] = 0.

by definition of convergence in distribution, because g(z) is bounded. We have that

0 ≤ lim
t→0

E[|gt (Xt ) − g(X)|] ≤ lim
t→0

{E[|gt (Xt ) − g(Xt )|] + E [|g(Xt ) − g(X)|]} = 0,

this proves the thesis. �
Lemma B.2 For δ = −1/2, let {Xt }t≥0 be a sequence of positive random variable s.t. Xt →
X in distribution for t that goes to zero.
Then,

lim
t→0

E

[

N
(

σ̄ η̄
(

−√

Xt + ϕt/(σ̄
2
√

Xtηt )
)

− σ̄
√

t Xt/2
)]

= E

[

N (σ̄ η̄(−√
X + 1/

√
X))

]

.

Proof Define

gt (z) := N
(

σ̄ η̄
(−√

z + ϕt/(σ̄
2√zηt )

) − σ̄
√
t z/2

)

and g(z) := N (σ̄ η̄(−√
z + 1/

√
z)).

We emphasize that gt (z) is uniformly bounded by one and gt (z) converges point-wise to g(z)
because, thanks to Lemma A.6 point 3, limt→0 ϕt/(σ̄

2ηt ) = 1.
We prove that ∃ τ ∈ (0, 1) s.t. the derivative of gt (z) is uniformly bounded, if t ∈ (0, τ ). Fix
τ ∈ (0, 1) s.t.

⎧

⎪⎨

⎪⎩

ϕτ

σ̄ 2 ητ

> 2
3

σ̄ η̄

σ̄ η̄ + σ̄
√

τ/2
> 3

4

.

The following hold for t < τ ,
∣
∣
∣
∣

∂gt
∂z

∣
∣
∣
∣
= N ′ (σ̄ η̄

(−√
z + ϕt/(σ̄

2ηt
√
z)

) − σ̄
√
zt/2

)

∣
∣
∣σ̄ η̄

(−1/(2
√
z) − ϕt/(2σ̄

2ηt z
3/2)

) − σ̄
√
t/(4

√
z)

∣
∣
∣

= N ′ (σ̄ η̄
(−√

z + ϕt/(σ̄
2ηt

√
z)

) − σ̄
√
zt/2

) (

1 + ϕt/(σ̄
2ηt z) + √

t/(2η̄)
)

σ̄ η̄/
(

2
√
z
)

≤ N ′ (σ̄ η̄
(−√

z + ϕt/(σ̄
2ηt

√
z)

) − σ̄
√
zt/2

)

(1 + 1/z + 1/(2η̄)) σ̄ η̄/
(

2
√
z
)

(37)

≤
[

1√
2π

1D2 + N ′ (σ̄ η̄
(−√

z + 2/(3
√
z)

) − τ σ̄
√
z/2

)

1D1

+N ′ (σ̄ η̄
(−√

z + 1/
√
z
))

1D3

] · (1 + 1/z + 1/(2η̄)) σ̄ η̄/
(

2
√
z
) := M(z). (38)

Inequality (37) holds because, by Lemma A.6 point 2, ϕt/(σ̄
2ηt ) < 1 and τ ∈ (0, 1). Let us

observe that (37) is the product of positive quantities. In (38) we bound from above only the
first factor, the only one that still depends from t . Inequality (38) is deduced by dividing the
domain of z ∈ R

+ in the three sets D1 ≡ (0, 1/2], D2 ≡ (1/2, 3/2] and D3 ≡ (3/2,∞).
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For z ∈ D2, we bound the first factor with its maximum 1√
2π

.
For z ∈ D1, we observe that for t < τ

σ̄ η̄
(−√

z + ϕt/(σ̄
2ηt

√
z)

) − σ̄
√
zt/2 > σ̄ η̄

(−√
z + 2/(3

√
z)

) − τ σ̄
√
z/2 > 0.

Hence, because N ′ is a decreasing function of its argument in R+,

N ′ (σ̄ η̄
(−√

z + ϕt/(σ̄
2ηt

√
z)

) − σ̄
√
zt/2

) ≤ N ′ (σ̄ η̄
(−√

z + 2/(3
√
z)

) − τ σ̄
√
z/2

)

, z ∈ D1.

Finally, for z ∈ D3

σ̄ η̄
(−√

z + ϕt/(σ̄
2ηt

√
z)

) − σ̄
√
t z/2 < σ̄ η̄

(−√
z + 1/

√
z
)

< 0. (39)

Thus, because N ′ is an increasing function of its argument in R−

N ′ (σ̄ η̄
(−√

z + ϕt/(σ̄
2ηt

√
z)

) − σ̄
√
t z/2

)

< N ′ (σ̄ η̄
(−√

z + 1/
√
z
))

, z ∈ D3.

Notice that M(z) is positive and bounded on R
+; this implies that the derivatives of gt (z)

is uniformly bounded. Thus, the sequence gt (z) is Lipschitz continuous in z with bounded
Lipschitz constant on (0, τ ).
Moreover, for t < τ < 1 we have that

|gt (z) − g(z)| ≤ 1z∈(0,1] + N ′ (σ̄ η̄
(−√

z + 1/
√
z
))

(σ̄
√
zt/2 + σ̄ η̄(1 − ϕt/(σ̄

2ηt ))/
√
z)1z∈(1,∞)

≤ 1z∈(0,1] + N ′ (σ̄ η̄
(−√

z + 1/
√
z
))

(σ̄
√
z/2 + σ̄ η̄/

√
z)1z∈(1,∞) := h(z).

In the first inequality we divide the domain of z ∈ R
+ in two sets, D1 ≡ (0, 1] and D2 ≡

(1,∞). In the first domain the difference is bounded by one. In the second set, notice that
(39) is still valid for z > 1; then, the difference is lower than N ′ computed on the max of
the arguments of N multiplied by the positive difference of the arguments of N . The second
inequality holds because ϕt/(σ̄

2ηt ) is positive and t < 1. We observe that h(z) goes to zero
as z goes to infinity.
Notice that Xt converges to X in distribution, gt (z) is a sequence of positive function
uniformly bounded, Lipschitz continuous with bounded Lipschitz constant on (0, τ ), and
limz→∞ h(z)=0. Thus, we prove the thesis via Lemma B.1. �

Lemma B.3 For t > 0,

sup
z

∣
∣
∣
∣
P(St < z) − N

(

(z − 1)

√
t

kt

)∣
∣
∣
∣
≤ 2 − α

1 − α

√

kt
t

, (40)

where St is the random variable of Definition 2.1 with Laplace transform Lt (u; kt , α).
Moreover, if β > 1,

1.

lim
t→0

P(St < 1) = lim
t→0

P(St ≥ 1) = lim
t→0

P

(

St ≤ ϕt

σ̄ 2ηt

)

= 1

2
.

2.

lim
t→0

P(St ≤ 1 − tq) =

⎧

⎪⎨

⎪⎩

1/2 if q >
β−1
2

N (−1/
√
k̄) if q = β−1

2

0 if q <
β−1
2

.
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3.

lim
t→0

P(St ≤ 1 + tq) =

⎧

⎪⎨

⎪⎩

1/2 if q >
β−1
2

N (1/
√
k̄) if q = β−1

2

1 if q <
β−1
2

.

Proof We use an approach similar to Küchler and Tappe (2013, Th. 4.7, p. 4271). Given
t > 0, n ∈ N we define Xi

t := Sit − 1 for i = 1, 2, . . . , n with Sit independent positive
random variables with Laplace transform Lt (u; kt n, α). The standard deviation of Sit is
�n

t := √
ktn/t . We define Qn

t := ∑n
i=1 X

i
t /(

√
n�n

t ). Notice that Qn
t + √

n/�n
t has the

same law of
√
t/kt St by identity in Laplace transform because

E

[

e−u(Pn
t +√

n/�n
t )

]

= E

[

e−u
∑n

i=1 S
i
t /(

√
n�n

t )
]

= e
∑n

i=1
t(1−α)
kt αn

(

1−
(

1+ u
√
kt√

t(1−α)

)α)

= E

[

e
−u

√
t
kt
St
]

.

Thus,
√
kt/t Qn

t + 1 is equal in distribution to St . Moreover, for any t > 0

sup
z

∣
∣P(Qn

t < z) − N (z)
∣
∣ ≤

E

[∣
∣Xi

t

∣
∣
3
]

(

�n
t
)3 √

n
<

E
[

(Sit )
3
] + 1

(�n
t )3

√
n

= t3/2
2 + 3 kt n

t + (2−α)k2t n
2

(1−α)t2

k3/2t n2
= 2 − α

1 − α

√

kt
t

+ O

(
1

n

)

.

The first inequality holds thanks to the Berry–Esseen theorem (see e.g., Durrett, 2019, Th.
3.4.17, p. 136). The first equality is obtained by substituting the third moment of Sit and in
the last equality we emphasize the leading term in 1/n. Thus, ∀ ε > 0 it exists n such that

sup
z

∣
∣P(Qn

t < z) − N (z)
∣
∣ <

2 − α

1 − α

√

kt
t

+ ε.

By definition of cumulative distribution function, we get (40).
Equation (40) allow us to prove the limits of the probability.

1.

P(St ≤ 1) = N (0) + O
(

t (β−1)/2
)

= 1/2 + O
(

t (β−1)/2
)

,

where the first equality is due to (40) and second term goes to zero because β > 1.
Moreover,

P

(

St ≤ ϕt

σ̄ 2ηt

)

= N

(
ϕt − σ̄ 2ηt

σ̄ 2ηt

√
t

kt

)

+ O
(

t (β−1)/2
)

,

where limt→0 N
(

ϕt−σ̄ 2ηt
σ̄ 2ηt

√
t
kt

)

= 1
2 thanks to Lemma A.6 point 3 observing that

(
ϕt

σ̄ 2ηt
− 1

)√
t

kt
= √

t σ̄ 2ηt
√

kt + O
(

t2δ+(3β+1)/2
)

= o(1),

because, in the additive process boundaries, for β > 1, δ + (β + 1)/2 > δ + 1 > 0.
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2.

P(St ≤ 1 − tq) = N

(

−tq
√

t

kt

)

+ O
(

t (β−1)/2
)

,

where N
(

−tq
√

t
kt

)

goes to 1/2 if q > (β −1)/2, to N (−1/(
√
k̄) if q = (β −1)/2, and

to 0 if q < (β − 1)/2. We emphasize that the second term goes to zero as O
(

t (β−1)/2
)

.
3.

P(St ≤ 1 + tq) = N

(

tq
√

t

kt

)

+ O
(

t (β−1)/2
)

,

where N
(

tq
√

t
kt

)

goes to 1/2 if q > (β − 1)/2, to N (1/(
√
k̄) if q = (β − 1)/2, and to

1 if q < (β − 1)/2. We emphasize that the second term goes to zero as O
(

t (β−1)/2
)

. �
Lemma B.4 If δ = −1/2, ∃H > 1 s.t.

m(z) := N ′
(

−lzt + σ̄
√
zt

2

)

σ̄
√
z, z > 0,

is increasing for z ∈ [1, H ] for sufficiently small t , where lzt is the quantity defined in Eq. (7).
Proof We compute the derivative w.r.t. z of m(z) and study its sign at short-time.

∂m(z)

∂z
=

∂N ′
(

−lzt + σ̄
√
zt

2

)

σ̄
√
z

∂z

N ′
(

σ̄ η̄
(√

z − ϕt
σ̄ 2ηt

√
z

)

+ σ̄
√
t z

2

)

σ̄

= 1

2
√
z

− 2

(

σ̄ η̄

(√
z − ϕt

σ̄ 2√zηt

)

+ σ̄
√
t z

2

)(

σ̄ η̄

(
1

2
+ ϕt

2σ̄ 2ηt z

)

+ σ̄
√
t

4

)

= 1

z3/2

(

z

2
− z2

(

σ̄ η̄ + σ̄

√
t

2

)2

+ σ̄ 2η̄2
ϕ2
t

σ̄ 4η2t

)

.

The derivative is positive if

0 < z <

1/2 +
√

1/4 + 4
(

σ̄ η̄ + σ̄
√
t
2

)2
σ̄ 2η̄2

ϕt
σ̄ 4η2t

2
(

σ̄ η̄ + σ̄
√
t
2

)2 .

Notice that ∃ τ and H > 1 such that for every t < τ the derivative is positive if z < H
because for sufficiently small time

1/2 +
√

1/4 + 4
(

σ̄ η̄ + σ̄
√
t
2

)2
σ̄ 2η̄2

ϕ2
t

σ̄ 4η2t

2
(

σ̄ η̄ + σ̄
√
t
2

)2 >
1/2

2(σ̄ η̄ + σ̄
√
t/2)

+ η̄

η̄ + √
t/2

ϕt

σ̄ 2ηt
> H > 1,

where the first inequality is obtained by bounding from below 1/4 with 0 inside the square
root and the second holds because, by Lemma A.6 point 3,

lim
t→0

1/2

2(σ̄ η̄ + σ̄
√
t/2)

+ η̄

η̄ + √
t/2

ϕt

σ̄ 2ηt
= 1

4σ̄ 4η̄2
+ 1.

Thus, m(z) is increasing in [1,H] for sufficiently small t . �
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